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Abstract:  We demonstrate the first unconditional violation of the shot noise limit in photonic 

NOON-state interferometry. Using ultrahigh-efficiency source and detectors we outperform ideal 

classical measurement without employing postselection, or correction for loss and imperfections. 

 
OCIS codes: (270.5585) Quantum information and processing, (120.5050) Phase measurement 

 

 

Quantum metrology exploits quantum correlations to perform measurements with precision higher than can be 

achieved with classical approaches [1]. Photonic approaches promise transformative advances in the family of 

interferometric phase measurement techniques, a vital toolset used to precisely determine quantities including 

distance, velocity, acceleration and materials properties. Without quantum enhancement, the precision limit in 

optical phase sensing (i.e. the minimum uncertainty) is the shot noise limit (SNL):                  , where N  is the 

number of resources (e.g. photons) used. Entangled photons promise sensitivity surpassing the shot noise limit 

achievable with classical probes. The maximally phase-sensitive state is the NOON state [2], a path-entangled state 

of definite photon number N 

 

|ΨNOONi =
1p
2
(|Ni|0i+ |0i|Ni) (1)

 
 

Despite theoretical proposals stretching back decades [3], no measurement using such photonic (i.e. definite photon 

number) states has unconditionally surpassed the shot noise limit: by contrast, all such demonstrations employed 

postselection to discount photon loss in the source, interferometer or detectors. Here, we use the state of art single 

photon generation and detection technology to respectively make and measure a two-photon NOON state, and use it 

to perform unconditional phase sensing beyond the shot noise limit — that is, without artificially correcting for loss 

or any other source of imperfection [4]. 

 

 
Fig. 1. Experimental setup. Spontaneous parametric downconversion source, based on a periodically-poled KTP 

(ppKTP) nonlinear crystal, was used to generate 1550 nm wavelength photon pairs in a maximally-engangled 

polarisation NOON state. The photons were used to sample a birefringent phase shift j in a polarisation interferometer, 

and the output was detected with high efficiency superconducting nanowire single photon detectors (SNSPDs). 
 

 

We performed a two-photon NOON state polarisation interferometry measurement on a birefringent test phase. Our 

experimental setup (Fig. 1), uses photons generated from a high-heralding-efficiency, high purity source of telecom-

wavelength photon pairs [5], and we employ high efficiency superconducting photon detectors [6] for photon 

∆ϕ = 1/
√

N
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counting at the output of the measurement setup. Unlike previous experiments, our apparatus does not require 

postselection to achieve phase uncertainty below that achievable in an ideal, lossless classical interferometer. 

 

For our experimental apparatus, we expected an interference fringe visibility of > 0.98 and symmetrical 

interferometer arm efficiencies around 0.8 (which includes the detector efficiency), which is sufficient for beating 

the SNL with N=2 NOON states [7, 8]. 

 

 
Fig. 2. Fisher information. The black curve is determined from uncorrected experimental interferometric data. The 

dashed blue line is the naïve shot noise limit (SNL) for this scheme, and the red curve is the SNL taking into account 

actual photon source and detector characteristics. Shading represents uncertainties. The experimentally-determined 

Fisher information surpasses the SNL over certain phase ranges. 

 

 

Our results (Fig. 2) show a clear violation (for a range of phases) of the stringent SNL bound, FSNL =  2.09635, that 

takes into account the information in unrecorded trials arising from loss and higher order terms — making our 

demonstration unconditional. We also performed a direct phase sensing measurement and observed phase 

uncertainties more than 10 standard deviations below the SNL [4]. Our results enable quantum-enhanced phase 

measurements at low photon flux and open the door to the next generation of optical quantum metrology advances. 
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