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Quantum metrology exploits quantum correlations to perform measurements with precision higher
than can be achieved with classical approaches. Photonic approaches promise transformative ad-
vances in the family of interferometric phase measurement techniques, a vital toolset used to precisely
determine quantities including distance, velocity, acceleration and various materials properties [1–
3].Without quantum enhancement, the precision limit in determining an unknown optical phase
ϕ—i.e. the minimum uncertainty ∆ϕ—is the shot noise limit (SNL): ∆ϕSNL = 1/

√
n, where n is

the number of resources (e.g. photons) used. Entangled photons promise measurement sensitivity
surpassing the shot noise limit achievable with classical probes. The maximally phase-sensitive
state is a path-entangled state of definite number of photons N . Despite theoretical proposals
stretching back decades [3, 4], no measurement using such photonic (definite photon number) states
has unconditionally surpassed the shot noise limit: by contrast, all demonstrations have employed
postselection to discount photon loss in the source, interferometer or detectors. Here, we use an
ultra-high efficiency source and high efficiency superconducting photon detectors to respectively
make and measure a two-photon instance of the maximally-phase-sensitive NOON state, and use it
to perform unconditional phase sensing beyond the shot noise limit—that is, without artificially cor-
recting for loss or any other source of imperfection. Our results enable quantum-enahanced phase
measurements at low photon flux and open the door to the next generation of optical quantum
metrology advances.

It has been known for several decades that probing
with various optical quantum states can achieve phase

super-sensitivity, i.e measurement of the phase with an
uncertainty below the SNL [3, 4]. It has been shown
theoretically that multi-photon entangled states, such as
NOON states, may achieve super-sensitivity and can, in
principle, saturate the Heisenberg limit (HL), the ulti-
mate bound on sensitivity [3, 4, 7]. For this reason,
they are of great interest for maximising the informa-
tion that can be collected per photon, which is useful
for investigating sensitive samples [8]. NOON states are
superpositions of N photons across two arms of an in-
terferometer, each of which is a single optical mode:
|ΨNOON 〉 = 1/

√
2(|N〉 |0〉 + |0〉 |N〉). We use the term

photonic to refer to states like this, because they possess
definite photon number, and these photons are counted
in detection. By contrast, we exclude from term “pho-
tonic” schemes using states of indefinite photon number
and continuous wave-like measurement, such as squeezed
states and homodyne detection. Such techniques have
genuinely beaten the SNL, e.g. refs [5, 6], but work over
narrow bandwidths and cannot directly achieve the theo-
retical maximal sensitivity per resource. The key feature
of NOON and similar photonic states [17] is that they
produce interference fringes that oscillate faster any clas-
sical interference pattern, a feature called phase super-

resolution [9]. Super-resolution interference experiments
have been reported using two-[10–13], three-[14], four-
[15, 16], six- [9, 17] and eight- [18, 19] photon states.

∗ g.pryde@griffith.edu.au

Super-resolution, however, is not enough by itself to
surpass the SNL [9, 20]: a high interference fringe visi-
bility, and high transmission and detection efficiency are
also required—they must exceed the threshold at which
these imperfections cancel the quantum advantage. For
imperfect NOON state interferometry, a handy estimate
of this threshold was introduced in Ref. [9]: a genuine
quantum advantage requires the interference visibility v
and the combined single-photon transmission and detec-
tion efficiency η to satisfy ηNv2N > 1. (For precise eval-
uation of the potential for super-sensitivity, the Fisher
information can be used to analyse experimental data,
as described below.)

Here we performed the first phase sensing experiment
with N = 2 photon NOON states that unconditionally
demonstrates phase uncertainty below the SNL. This re-
sult was enabled by construction of a spontaneous para-
metric downconversion (SPDC) source [21], that was op-
timized for high photon transmission and required no
spectral filtering in order to achieve high quantum in-
terference visibility v. This allowed us to fully ex-
ploit the benefits of high-efficiency detector configura-
tion [23], yielding an ultra-high heralding efficiency [22]—
equivalent to the single-photon efficiency η. We em-
phasise that high-efficiency (95%) detection at 1550 nm
wavelength has been available since 2008 [? ], but
photonic metrology beyond the SNL has not yet been
achieved. This is because the capability to reach the
required quantum interference and efficiency simultane-
ously requires a source capable of producing photons of
exceptional spatial and spectral purity without filtering.

Unlike previous experiments, our measurement appa-
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ratus does not require post-selection to achieve phase
uncertainty below that achievable in an ideal, lossless
classical interferometer. For our experimental appara-
tus, we expected v ≈ 0.98 and symmetrical interferome-
ter arm efficiencies η ≈ 0.8 (which includes the detector
efficiency), resulting in ηNv2N ≈ 1.23. Thus, we antic-
ipated a violation of the SNL, which we tested in two
experiments described below.

For fair comparison with the SNL, an accurate ac-
counting of resources is required. In the archetypal
NOON-state phase sensing protocol, preparation and use
of an N -photon NOON state constitutes a trial. In the
ideal case, each trial leads to a detection event at the out-
put of the interferometer. Since each trial gives only a
little information about the phase, a number of such tri-
als may be performed. In our work, two-photon NOON
states were generated probabilistically at random times
by the SPDC source. Each detection event (i.e. any com-
bination of detector registrations) represented a recorded

trial. We counted k such detection events to complete the
protocol. However, due to imperfect transmission and
detection efficiency η, some NOON states did not lead
to detections. Furthermore, due to higher-order SPDC
events (the occasional simultaneous emission of 4, 6, . . .
photons), the resources equivalent to multiple (2, 3, . . .)
trials were overlapped in time and could not be distin-
guished by our non-photon-number-resolving detectors.
Therefore, the actual number of trials (i.e. the number of

photon pairs passing the phase shift), k̃, was larger than
the number of recorded trials. Because the ideal classical
scheme is assumed to be lossless and to use all resources
passing the phase shift, it must be attributed an effective
number of resources n = Nk̃ = 2k̃. This makes the SNL
harder to beat. For the loss and downconversion param-
eters of our experiment, the worst-case estimated, based
on the lowest possible value for the overall experimental
efficiency, we determined k̃/k = 1.048125.

Our experimental scheme is shown in Figure 1. We
used collinear type-II parametric down-conversion, pro-
ducing degenerate 1550 nm photon pairs [21]. Careful
design and implementation of the source’s output mode
structure allowed us to achieve high fiber-coupling ef-
ficiency and state-of-the-art superconducting nanowire
single photon detectors (SNSPDs) [23] provided high
detection efficiency. The down-conversion process gen-
erates two photons in the |1〉H |1〉V polarisation state
(H ≡ horizontal; V ≡ vertical) in the same spatial mode,
which can be written as the NOON-polarisation state
|Ψ〉 = 1√

2
(|2〉L |0〉R+|0〉L |2〉R). These right- (R) and left-

circular (L) polarisation modes constituted the two arms
of the interferometer. A half-wave plate (HWP) set at
an angle ϕ/4 relative to its optic axis was used to imple-
ment the birefringent phase shift ϕ between the arms. A
common misconception about two-photon NOON states
generated from SPDC is that the same phase sensitiv-
ity can be usefully achieved by using a pump photon (at
half the wavelength) instead of the two-photon entangled
state. However, this is clearly not correct for sensing in
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Fig. 1. Experimental setup for the N = 2 NOON state
optical interferometer. Laser pulses of ∼ 170 fs duration, and
centred at 775 nm, pump a 2 mm periodically poled KTP
(pp-KTP) crystal, phase-matched for type-II collinear, group-
velocity-matched, degenerate down-conversion at 1550 nm.
A compensation crystal (1 mm KTP) was used to compen-
sate the temporal walk-off between signal and idler photons.
Pump and collection spatial modes were set by F (focusing)
and C (collimating) lenses correspondingly. A silicon filter,
AR-coated for 1550 nm, was used to block the pump beam.
Transmitted (t) and reflected (r) modes of the interferome-
ter, corresponding to H and V polarizations respectively, were
separated by a polarizing beam-splitter (PBS) and then cou-
pled into single mode fibres and sent to SNSPDs. A HWP
mounted in an automated rotation stage is used to implement
a controlled phase rotation, ϕ.

any material with dispersion.

After the phase shift, the modes were interfered on
a polarising beam-splitter (PBS) and the output count-
ing statistics were detected with SNSPDs and analyzed
with coincidence or time-tag logic. The output signal
consisted of three possible types of detection outcomes:
C11, a coincidence detection between both output modes;
C20, a detection occurring only in the transmitted output
mode; and C02, a detection occurring only in the reflected
output mode. The numbers of each type of detection in
a time period τ were, respectively, c11(ϕ), c20(ϕ) and
c02(ϕ).

In order to test and calibrate our setup we first mea-
sured interference fringes. Detection events (≈ 250000
per phase value) were collected for a fixed amount of
time for various ϕ ∈ [0, 2π). We observed an interfer-
ence visibility of (98.9 ± 0.02)%, calculated from fitting
to the c11(ϕ) detection fringe. The transmissions of the
reflected and transmitted outputs of the interferometer
were measured to be ηr = (79.41 ± 0.09)% and ηt =
(80.26± 0.09)%, calculated from c11(0)/(c11(0) + c20(0))
and c11(0)/(c11(0) + c02(0)) ratios, respectively (a slight
variation of transmission was observed when HWP was
rotated, see Methods for details). Calculated transmis-
sions include all the loss in the setup and the non-unit de-
tection efficiency of SNSPDs. Probability fringes p11(ϕ),
p20(ϕ) and p02(ϕ) were then obtained by fitting detection
signals, ci(ϕ), i ∈ {11, 20, 02}, which were appropriately
normalized for each phase value. We used the Fisher in-

formation per recorded trial, F =
∑

i

(

∂ ln pi

∂ϕ

)2

pi where

i ∈ {11, 20, 02}, to quantify the phase sensitivity of our
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Fig. 2. Experimentally measured output detection proba-
bility and the corresponding Fisher information. a, Yellow
circles, blue triangles and red squares represent our experi-
mentally determined p11(ϕ), p20(ϕ) and p02(ϕ) probabilities,
respectively. Error bars are smaller than the markers. Lines
represent a theoretical model with corresponding transmission
and interference visibility parameters. b, The yellow curve
represents the Fisher information per recorded trial deter-
mined from the probability fringes, p11(ϕ), p20(ϕ) and p02(ϕ),
as a function of the unknown phase ϕ. The dashed red line
represents the Fisher information (per recorded trial) at the
SNL, while the solid blue line represents the SNL Fisher infor-
mation taking into account the inefficiency and multi-photon
emission—see text and Appendix for details. Shaded areas
correspond to the 95% confidence region, derived from the
uncertainty in the fit parameters.

phase measurement setup [3]. Our results (Fig. 2b) show
a clear violation, for a range of phase values ϕ, of the
adjusted SNL bound that takes into account the infor-
mation in unrecorded trials: FSNL = Nk̃/k = 2.09625.

For the second experiment, we performed phase sens-
ing for individual settings of the phase shifter within the
range where we expected to beat the SNL. At each set-
ting, time-tag hardware was used to acquire detection
events corresponding to k = 10000 trials. From the dis-
tribution of Ci events (i ∈ {11, 20, 02}), corresponding Pi

probabilities were obtained by normalisation. The esti-
mate of the phase, ϕest, was found by least squares fitting
to the set of pi(ϕ) curves (Fig. 2a). The phase search
range was restricted to ϕest ∈ [0, π/2]. This process was
repeated for s = 14520 samples (for each angle of the
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Fig. 3. Experimentally measured phase estimate and
phase uncertainty. a, Lines represent theoretically modeled
p11(ϕ), p20(ϕ) and p02(ϕ) probabilities from Fig. 2a. Yellow
circles, blue triangles and red squares, correspond to average
P11, P20, and P02 probabilities, correspondingly, calculated
from 145200000 detection events per angle of HWP. Their
positions on horizontal axis represent the measured phase
estimate—see text for details. Error bars are smaller than
the markers. b, Data points correspond to the standard er-
rors of corresponding phase measurements of a. The purple
line corresponds to standard error at the SNL, adjusted for
correct number of resources Ñ . The yellow line corresponds
to the expected standard error, calculated from the Fisher in-
formation from Fig. 2b. The shaded areas correspond to 95%
confidence regions, derived from the uncertainty in the fit pa-
rameters. The uncertainty in standard error was determined
via the standard bootstrapping technique [24], similarly to
Ref. [25].

HWP), determining ϕest
j for each sample j. The mean

and standard error of {ϕest
j } are shown in Fig. 3. This

measurement procedure was repeated for a range of phase
values around the region of interest. When compared to
the standard error (= 1/

√
ntot) that is achievable with

ntot = ns = Nk̃s = 304375500 classical resources (ad-
justed for loss and higher order terms, as before) per data
point, our results show a clear advantage of our quantum
approach.

In conclusion, we demonstrated unconditional viola-
tion of the SNL in photonic phase sensing. We recover the
estimate of the phase shift applied to the mode, and its
corresponding standard error, directly from our measure-
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ment data without additional adjustments. Moreover, all
the parameters necessary for the calculation of the SNL
of our measurement apparatus, such as circuit loss, pair
and multi-pair generation probability, were calculated di-
rectly from our measurement data. Our results are not
only of fundamental interest, but are also directly appli-
cable to a phase measurement scenario where low photon
flux is required, such as measurement of light-sensitive
materials [8]. We anticipate that our technique can be ex-
tended, using loss-tolerant approaches [26] and number-
resolving detectors [27], to perform sub-SNL sensing with
significantly higher photon numbers in the near future.

I. APPENDIX

A. Photon source and characterization

High heralding efficiency (Klyshko efficiency [22]) and
high interference visibility were essential to the success of
this demonstration. These features were achieved by us-
ing a spontaneous parametric down-conversion (SPDC)
source that operated at the group velocity matching con-
ditions to generate frequency uncorrelated photon pairs,
removing the need for spectral filtering that is typi-
cally required in conventional SPDC sources. The her-
alded single photon source was pumped by a mode-locked
Ti:Sapphire laser with 81 MHz repetition rate, 775 nm
wavelength and 6 nm FWHM bandwidth. SPDC from a
nonlinear periodically poled KTP crystal (pp-KTP, pol-
ing period 46.20 µm) phase matched for type-II collinear
operation produced degenerate photon pairs centred at
1550 nm wavelength and with ≈ 15 nm FWHM band-
width. We used a pump waist size of 170 µm and a sig-
nal and idler collection waist size of 50 µm [21]. Together
with the high efficiency SNSPDs [23], this allowed us to
achieve symmetric heralding efficiencies of (82±2)%. An
additional 1 mm KTP crystal, with optic axis rotated by
90◦ with respect to the optic axis of pp-KTP, was placed
after the downconverter to compensate for the temporal
walk-off (due to birefringence) in the 2 mm pp-KTP crys-
tal. Non-classical interference visibilities between the sig-
nal and idler photons were measured to be (98.9±0.2)%,
with no background subtraction.

B. Detection

There is one superconducting nanowire single photon
detector (SNSPD) coupled to each of the interferometer
outputs. We record three types of events:C11, a coinci-
dence detection between both output modes; C20, a de-
tection occurring only in the transmitted output mode;
and C02, a detection occurring only in the reflected out-
put mode. Since the SNSPDs cannot resolve photon
number, the latter two events may arise from: the case
where both photons in the two-photon NOON state went
to the same detector; a case where one photon was lost

and therefore only one photon is recorded; or the case of
a dark count. We do not artificially remove signals from
these latter two cases. We note that the rate of dark
counts is small compared to the rate of real events.

C. Resource counting

The total transmission (including detection efficiency)
is easily determined when the phase shift is set to zero.
However, we have also observed that the circuit transmis-
sion can slightly vary with the rotation of the HWP that
implements the phase shift. In order to verify transmis-
sion at every value of ϕ deviates only slightly from this,
we build a theoretical model of the interferometer, which
includes an imperfect interference on the PBS and loss in
two of the output modes. Then, at each rotation angle
of the HWP we find transmission of both output modes
(ηr(ϕ) and ηt(ϕ)) by finding the closest theoretical match
to the measured data with least squares minimization.
We confirm that the transmission variation stays below
≈ 1%. Moreover, the standard deviation in total num-
ber of detection events per point in Fig. 2, which were
acquired over a fixed amount of time, was measured to
be ≈ 0.2%, confirming that the variation of our setup
parameters was very small.
In order to estimate the true number of resources we

use, we calculated the probability of having at least one
photon transmitted through the system. For the three
possible outcomes, this is given by

η11(ϕ) = 1− (1− ηt(ϕ))(1− ηr(ϕ)), (1)

η20(ϕ) = 1− (1− ηt(ϕ))(1− ηt(ϕ)),

η02(ϕ) = 1− (1− ηr(ϕ))(1− ηr(ϕ)).

The lowest efficiency ηmin = minϕ,j(ηj(ϕ)), for j ∈
{11, 20, 02} and ϕ ∈ [0, 2π), observed over entire range
of ϕ out of the three outcomes was ηmin ≈ 95.56%. We
chose the lowest efficiency ηmin(ϕ) = minj(ηj(ϕ)), calcu-
lated at each angle of the HWP (i.e. at each ϕ) in order
to calculate the number of trials accordingly. This results
in an overestimate of the number of photons used in our
experiment—and therefore used to calculate the effective
SNL—setting a higher SNL bound than was actually the
case, and making it harder to violate the SNL. The uncer-
tainty in the estimated transmission and the SNL bound
was calculated by error propagation of the uncertainty
in ci through the theoretical model of the interferome-
ter. We have observed very strong dependence of the
estimated parameters on c11(ϕ) near the ϕ = π/2 + kπ,
k ∈ Z, resulting in an increased parameter uncertainty
in those regions.
Another important source of additional resources that

are not directly detected in the protocol is the possi-
ble emission of multiple photon pairs in the SPDC pro-
cess. For the pump power of ≈ 100 mW used in our
experiment, we measured this probability to be ξ =
(0.1550 ± 0.0004)%, relative to the probability of gen-
erating a single pair. This was done by comparing the
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number of photon detection events within a fixed time
window with the actual number of laser pulses in that
window, acquired with a separate trigger signal. We de-
termined ξ by carefully determining the single pair gen-
eration probability, with loss taken into account.

The actual number of trials (pairs of photons gener-

ated, for N = 2) k̃ is related to the number of recorded

trials k by

k̃(ϕ) =
k(1 + ξ)

ηmin(ϕ)
. (2)

Equivalently, the actual average number of resources per
recorded trial is

Nk̃

k
=

2(1 + ξ)

ηmin(ϕ)
, (3)

for N = 2.
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