
Unconditionally Secure Constant-Rounds
Multi-party Computation for Equality,
Comparison, Bits and Exponentiation

Ivan Damgård1, Matthias Fitzi1,�, Eike Kiltz2,��,
Jesper Buus Nielsen1,���, and Tomas Toft1,†

1 University of Aarhus,
Department of Computer Science,

DK-8200 Aarhus N, Denmark
2 CWI Amsterdam,
The Netherlands

Abstract. We show that if a set of players hold shares of a value a ∈ Fp

for some prime p (where the set of shares is written [a]p), it is possible
to compute, in constant rounds and with unconditional security, shar-
ings of the bits of a, i.e., compute sharings [a0]p, . . . , [a�−1]p such that
	 = �log2 p�, a0, . . . , a�−1 ∈ {0, 1} and a = �−1

i=0 ai2i. Our protocol is
secure against active adversaries and works for any linear secret sharing
scheme with a multiplication protocol. The complexity of our protocol
is O(log) invocations of the multiplication protocol for the underlying
secret sharing scheme, carried out in O(1) rounds.

This result immediately implies solutions to other long-standing open
problems such as constant-rounds and unconditionally secure protocols
for deciding whether a shared number is zero, comparing shared numbers,
raising a shared number to a shared exponent and reducing a shared
number modulo a shared modulus.

1 Introduction

Assume that n parties have shared values a1, . . . , a� from some field F using
some linear secret sharing scheme, such as Shamir’s. Let f : F� → Fm. By

� Supported by SECOQC, Secure Communication based on Quantum Cryptography,
under the Information Societies Technology Programme of the European Commis-
sion, IST-2003-506813.

�� The paper was written while the author was a visitor at University of California,
San Diego, supported by a DAAD postdoc fellowship.

��� Supported by FICS, Foundations In Cryptology and Security, centre of the Danish
National Science Research Council and ECRYPT, European Network of Excellence
in Cryptology, under the Information Societies Technology Programme of the Eu-
ropean Commission, IST-2002-507932.

† Supported by SCET, Secure Computing, Economy, and Trust, Alexandra Insti-
tuttet A/S.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 285–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 I. Damgård et al.

computing f with unconditional security on the sharings we mean that the par-
ties run among themselves a protocol using a network with perfectly secure
point-to-point channels. The protocol results in the parties obtaining sharings of
(b1, . . . , bm) = f(a1, . . . , a�), while leaking no information on the values a1, . . . , a�

or b1, . . . , bm. The question which functions can be computed with unconditional
security on sharings, using a constant rounds protocol is a long-standing open
problem [BB89].

However, a number of functions are known to have unconditionally secure,
constant-rounds protocols. The most general class with known solutions are
functions with a constant-depth arithmetic circuit (counting unbounded fan-in
addition and unbounded fan-in multiplication as one gate towards the depth).

The only non-trivial part needed in these solutions is unbounded fan-in multi-
plication b =

∏�
i=1 ai. This can be done in constant rounds using the techniques

by Bar-Ilan and Beaver [BB89], assuming a single multiplication can be done in
constant rounds, which is indeed the case for standard linear (verifiable) secret-
sharing schemes.

However, a number of functions do not have small constant-depth arithmetic

solutions. Consider, e.g., the function
?
<: Fp × Fp → Fp, where (a

?
< b) ∈ {0, 1}

and (a
?
< b) = 1 iff a < b (where a and b are considered as residues a, b ∈

{0, 1, . . . , p − 1}). This function has a huge number of zeros and is not constant
zero. Therefore we cannot hope for an efficient arithmetic solution to computing
?
< (the function can of course be expressed as a polynomial over the field, and
thus a constant-depth circuit, but the circuit would have a number of gates
proportional to the size of the field).

On the other hand a number of results are known where if the inputs are given
in a particular form, then any function which can be expressed by a binary
Boolean circuit with g gates and depth d, can be computed unconditionally
securely in constant rounds, by evaluating a constant-depth arithmetic circuit
with O(2dg) gates (see e.g [BB89, IK00, IK02]).

If, in particular, the input a is delivered as bitwise sharings [a0]p, . . . , [a�−1]p
and b = f(a) can be computed using a binary Boolean circuit with depth d and
g gates, then sharings of the bits of b = f(a) can be computed with complex-
ity1 O(2dg), unconditionally secure in constant rounds. This can e.g. be done
using Yao’s circuit scrambling technique with an unconditionally secure encryp-
tion scheme — an observation first made by [IK02]. This would e.g. allow to

compute the function
?
<: (Fp)� × (Fp)� → Fp, ((a0, . . . , a�−1), (b0, . . . , b�−1)) �→∑�−1

i=0 ai2i
?
<

∑�−1
i=0 bi2i unconditionally securely in constant rounds.

So, different representations of the inputs allow different classes of functions
to be computed unconditionally securely in constant rounds — at least with the

1 For the rest of the paper we measure the complexity of protocols by the maximal
number of invocations of the multiplication protocol, which is typically the domi-
nating term in the communication complexity. The exact communication complexity
then depends on the communication complexity of the multiplication protocol used.

Unconditionally Secure Constant-Rounds Multi-party Computation 287

current knowledge of the area. It would therefore be very useful to be able to
change representations efficiently. Previously it was not known how to do this.
For instance, this was the reason why the protocols of Cramer and Damgård [CD01]
for linear algebra in constant rounds could not handle fields with large character-
istic without assuming that the input was shared bitwise to begin with, which
limits the applicability of those protocols. In this paper, we therefore investi-
gate the problem of changing between sharings modulo a prime p and bitwise
sharings.

1.1 Our Results

Given a prime p, let � = $log2 p�. We will show how to compute, uncondi-
tionally secure and in constant rounds, [a0]p, . . . , [a�−1]p from [a]p such that
a0, . . . , a�−1 ∈ {0, 1} ⊆ Zp and such that a =

∑�−1
i=0 ai2i. The complexity is

bounded by O(1) rounds and O(� log2 �) invocations of the multiplication pro-
tocol.

The only assumptions we need about the underlying secret sharing scheme
are the following: 1) the secret sharing scheme is linear (i.e., given sharings [a]p
and [b]p and public constants c, d ∈ Zp, the parties can securely compute a shar-
ing [ac + bd mod p]p without interaction) and 2) there exists a constant-round
multiplication protocol for the secret sharing scheme (i.e., given sharings [a]p
and [b]p, the parties can securely compute a sharing [ab mod p]p by interacting).
If the multiplication protocol (and the secret sharing scheme) is secure against
active adversaries, our protocols will be actively secure too. Likewise, if secret
sharing scheme and multiplication protocol are adaptively secure, our protocols
inherit this property. The assumption on multiplication implies that the adver-
sary structure must be Q2 which, in the standard threshold case, means that we
need honest majority.

This result immediately implies efficient constant-rounds protocols for some
interesting problems. In particular, we can also compute, in constant rounds,
outputs from the following functions in shared form:

– The equality function asking whether a shared input value is zero or not.
This function was exactly what was missing in [CD01] in order to handle
fields with large characteristics.

– The less-than comparison function of two numbers from Fp, when considered
residues in {0, 1, . . . , p − 1}.

– Modulo reduction, performing a discrete modulo reduction (with respect to
a public/shared modulus).

– Discrete Exponentiation (with respect to a public/shared exponent and mod-
ulus).

We note that, while unconditional security is typically defined by requiring
that the information leaked by the protocol is exponentially small in some se-
curity parameter κ, our protocols obtain a slightly stronger notion, which has
also been considered in the literature. In particular, our protocols are perfectly

288 I. Damgård et al.

secure except with probability O(2−κ) — i.e. with probability 1−O(2−κ) no in-
formation is leaked at all. Furthermore, the parties will be able to detect when a
run of the protocol is in progress which would leak information if completed, and
have the power to abort such a run. This yields a perfectly secure protocol, except
that with probability O(2−κ) it might terminate with some abort symbol ⊥.2

1.2 Related Work

There has been a considerable amount of previous work on unconditionally se-
cure constant-rounds multi-party computation with honest majority (c.f. [BB89]
and [FKN94, IK97, CD01, Bea00, IK00, IK02]). As mentioned, this work has
shown that some functions can indeed be computed in constant rounds with un-
conditional security, but this has been limited to restricted classes of functions,
such as NC1 or non-deterministic log-space.

In [ACS02] Algesheimer, Camenisch and Shoup also present a protocol for se-
curely computing the bit-decomposition [a]p �→ ([a0]p, . . . , [a�−1]p). It however
only provides correctness and privacy when a is guaranteed to be noticeably smaller
than p. Furthermore, it is only passively secure and is not constant rounds.

1.3 Organization

In Section 2 we give some technical preliminaries. In Section 3 we give the high-
level protocol for bit decomposition, assuming a number of results from subse-
quent sections, in particular that it is possible to add bitwise-shared numbers
and compare bitwise-shared number within certain complexities. In Section 4 we
show how to generate the sharing of a uniformly random bit. In Section 5 we
give the protocol for comparing two bitwise-shared numbers and in Section 6 we
give the protocol for adding two bitwise-shared numbers. Finally, in Section 7
we mention a couple of applications of the new bit-decomposition protocol.

2 Preliminaries

In this section we introduce some notation and some known techniques.
We assume that n parties are connected by perfectly secure channels in a

synchronous network. Let Fp denote the finite field with p elements where p is
2 Choosing between unconditional (but imperfect) termination, correctness or privacy,

we find that settling for imperfect termination but perfect correctness (on termina-
tion) and perfect privacy is the better choice. Simply because the other unconditional
notions can be obtained from such a solution. To get perfect termination and perfect
correctness but only unconditional privacy: when the protocol aborts, reconstruct
the inputs and compute the results. This yields a protocol which is perfect except
that it leaks information with small probability. To get perfect termination, perfect
privacy but only unconditional correctness: when the protocol aborts, simply return
with some dummy guess at the results. This yields a protocol which is perfect except
that it is incorrect with small probability. Finally, to get a perfectly secure protocol:
rerun the protocol when it aborts. This gives a perfectly secure protocol. It, however,
only runs in expected constant rounds.

Unconditionally Secure Constant-Rounds Multi-party Computation 289

a prime, and let � = $log2 p�. We will assume throughout that p > 2κ, and
so whenever one of our protocols abort with a probability that is O(1/p), this
will be considered negligible and will be ignored. If one needs to execute our
(sub)protocol(s) with a given (small) prime p, one can always execute in parallel
a sufficiently large number of instances to make the failure probability small
enough.

By [a]p we denote a secret sharing of a ∈ Fp over Fp. We assume that the
secret-sharing scheme allows to compute a sharing [a + b mod p]p from [a]p and
[b]p without communication, and that it allows to compute [ab mod p]p from
a ∈ Fp and [b]p without communication; We write

[a + b mod p]p ← [a]p + [b]p

and
[ab mod p]p ← a[b]p

for these operations. The secret-sharing scheme should of course also allow to
take a sharing [c]p and reveal the value c ∈ Fp to all parties; We write

c ← reveal([c]p) .

We also assume that the secret sharing scheme allows to compute a shar-
ing [ab mod p]p from [a]p and [b]p with unconditional security. We denote the
multiplication protocol by mult, and write

[ab mod p]p ← mult([a]p, [b]p) .

Sometimes we will also write

[b mod p]p ← mult([a1]p, . . . , [al]p) ,

to avoid writing b2 ← mult([a1]p, [a2]p), b3 ← mult([b2]p, [a3]p), . . ., b ←
mult([bl−1]p, [al]p). This costs l − 1 rounds and l − 1 invocations of mult.

We will express the protocols’ round complexities as the number of sequential
rounds of mult invocations — and their communication complexities as the
overall number of mult invocations. I.e., if we first run a copies of mult in
parallel and then run b copies of mult in parallel, then we say that we have
round complexity 2 and communication complexity a + b. Note that standard
linear (verifiable) secret-sharing schemes have efficient constant-rounds protocols
for multiplication.

For our protocols to be actively secure, the secret sharing scheme and the
multiplication protocol should be actively secure. This in particular means that
the adversary structure must be Q2. By the adversary structure we mean the
set A of subsets C ⊂ {1, . . . , n} which the adversary might corrupt; It is Q2 if
it holds for all C ∈ A that {1, . . . , n} \ C �∈ A.

All our protocols can be proven secure in the UC model [Can01]. In the UC
model our protocols can be expressed in a hybrid model with an ideal function-
ality F allowing the parties to privately load values in Fp into F and allowing

290 I. Damgård et al.

the parties to add, multiply and output loaded and/or computed values. For an
approach to formulate such an ideal functionality, see e.g., the Arithmetic Black-
Box (ABB) from [DN03]. It can then be shown that an information theoretic
VSS with a multiplication protocol implements this ideal functionality (as an ex-
ample the VSS schemes from [CDM00] will do). The full version of this paper will
contain more details on how our protocols can be proven secure in the UC model.

2.1 Some Known Techniques

The following known techniques will be of importance later on.

Random Elements. The parties can share a uniformly random, unknown field
element. We write

[a]p ← ranp() .

This is done by letting each party Pi deal a sharing [ai]p of a uniformly random
ai ∈ Fp. Then the parties compute the sharing [a]p =

∑n
i=1[ai]p. The commu-

nication complexity of this is given by n dealings, which we assume is upper
bounded by the complexity of one invocation of the multiplication protocol.

If passive security is considered, this is trivially secure. If active security is
considered and some party refuses to contribute with a dealing, the sum is just
taken over the contributing parties. This means that the sum is at least taken
over ai for i ∈ H , where H = {1, . . . , n} \ C for some C ∈ A. Since A is Q2 it
follows that H �∈ A. So, at least one honest party will contribute to the sum,
implying randomness and privacy of the sum.

Random Invertible Elements. Using [BB89] the parties can share a uniformly
random, unknown, invertible field element along with a sharing of its inverse.
We write

([a]p, [a−1]p) ← ran∗
p() ,

and it proceeds as follows: [a]p ←ranp() and [b]p ←ranp(). [c]p =mult([a]p, [b]p).
c ← reveal([c]p). If c �∈ F∗

p, then abort. Otherwise, proceed as follows: [a−1 mod
p]p ← (c−1 mod p)[a]p. Output ([a]p, [a−1]p).

The correctness is straightforward. As for privacy, if c ∈ F∗, then (a, b) is a
uniformly random element from F∗ × F∗ for which ab mod p = c, and thus a is
a uniformly random element in F∗

p. If c �∈ F∗, then the algorithm aborts. This
happens with probability less than 2/p. The complexity is (at most) 2 rounds
and 3 invocations of mult.

Unbounded Fan-In Multiplication. Using the technique from [BB89] it is pos-
sible to do unbounded fan-in multiplication in constant rounds. For the spe-
cial case where we compute all “prefix products”

∏m
i=1 ai (m = 1, . . . , �), we

write
([a1]p, . . . , [(a1a2 · · ·a�) mod p]p) ← mult∗([a1]p, . . . , [a�]p) .

In the following, we only need the case where we have inputs [a1]p, . . . , [a�]p,
where ai ∈ F∗

p. For 1 ≤ i0 ≤ i1 ≤ �, let ai0,i1 =
(∏i1

i=i0
ai

)
mod p. We are often

Unconditionally Secure Constant-Rounds Multi-party Computation 291

only interested in computing a1,�, but the method allows to compute any other
ai0,i1 at the cost of one extra multiplication. For the complexity analysis, let A
denote the number of ai0,i1 ’s which we want to compute.

First run ran∗
p �+1 times in parallel, to generate [b0 ∈R F∗]p, [b1 ∈R F∗]p, . . . , [b�

∈R F∗]p, along with [b−1
0]p, [b−1

1]p, . . . , [b−1
�]p, using 2 rounds and 3(� + 1) invoca-

tions of mult. For simplicity we will use the estimate of 3� invocations.
Then for i = 1, . . . , � compute and reveal [di]p = mult([bi−1]p, [ai]p, [b−1

i]p),
using 2 rounds and 2� invocations of mult.

Now we have that di0,i1 =
∏i1

i=i0
di = bi0−1(

∏i1
i=i0

ai)b−1
i1

= bi0−1ai0,i1b
−1
i1

(mod p), so we can compute [ai0,i1]p = di0,i1mult([b−1
i0−1]p, [bi1]p), using 1 round

and A invocations of mult.
The overall complexity is 5 rounds and 5� + A invocations of mult.

3 Bit-Decomposition

Let p be a prime p ∈ [2�−1, 2�]. We look at the bit-decomposition function
bits : Fp → (Fp)�, a �→ (a0, . . . , a�−1) given by a0, . . . , a�−1 ∈ {0, 1} ⊆ Fp and
a =

∑�−1
i=0 ai2i, where a ∈ Fp is considered a residue a ∈ {0, 1, . . . , p − 1}. We

denote a run of this protocol by

([a0]p, . . . , [a�−1]p) ← bits([a]p) .

The protocol for bit decomposition makes use of various sub-protocols which
in turn draw on further sub-protocols. The dependency between the building
blocks can be seen in Fig. 1. We now describe the highest level sub-protocols:

• Random solved bits. This protocol has no inputs, and has outputs

([b0]p, . . . , [b�−1]p, [b]p) ← solved-bits() ,

where b is a uniformly random element b ∈ Fp and (b0, . . . , b�−1) = bits(b).
As shown in the next subsection, this can be done using 21 rounds and 96�
invocations of the multiplication protocol.

• Bitwise sum. Let [x]B = [x0]p, . . . , [xl−1]p denote a bitwise sharing of an
integer x. We use

[z]B ← bit-add([x]B, [y]B)

to denote the computation of a bitwise sharing [z]B = [z0]p, . . . , [zl]p of x+ y
from bitwise sharings, [x]B = [x0]p, . . . , [xl−1]p and [y]B = [y0]p, . . . , [yl−1]p,
of integers x and y. The length l need not be the length � of the prime p.
In Section 6 it is shown how to implement bit-add unconditionally securely
in constant rounds. When x, y ∈ {0, . . . , 2l − 1} the complexity is 37 rounds
and 55l log2 l invocations of the multiplication protocol.

• Bitwise less-than. Finally we use

[x
?
< y]p ← bit-lt([x]B, [y]B)

292 I. Damgård et al.

bits

solved-bits bit-add

bit-ltran carries

pre◦

pre∨ / pre∧

Fig. 1. Protocol hierarchy

to denote the computation of a sharing of the bit (x
?
< y) ∈ {0, 1}, where

(x
?
< y) = 1 iff x < y, starting from bitwise sharings, [x]B = [x0]p, . . . , [xl−1]p

and [y]B = [y0]p, . . . , [yl−1]p, of integers x and y; Again l need not be �. In
Section 5 it is shown how to implement bit-lt unconditionally securely in
constant rounds. The complexity is 19 rounds and 22l invocations of the
multiplication protocol.

We sometimes run the above protocols on non-shared inputs. If e.g. x is an
integer known by all parties, then we let

[z]B ← bit-add(x, [y]B) ,

mean the following: first compute the bitwise representation (x0, x1, . . . , xl−1) of
x, then let [x]B = ([x0]p, . . . , [xl−1]p) be some dummy bitwise sharing of x, and
then run [z]B ← bit-add([x]B, [y]B).

The bit decomposition of [a]p now proceeds as follows.

Protocol [a]B ← bits([a]p)

1. The input is [a]p, where a ∈ Fp.
2. ([b0]p, . . . , [b�−1]p, [b]p) ← solved-bits().
3. [a − b]p ← [a]p − [b]p.
4. c ← reveal([a − b]p), where c ∈ Fp.
5. [d]B ← bit-add(c, [b]B), where [d]B = ([d0]p, . . . , [d�]p).
6. [q]p ← bit-lt(p, [d]B).
7. (f0, . . . , f�−1) = bits(2� − p), the bitwise representation of the posi-

tive integer 2� − p.
8. For i = 0, . . . , � − 1 in parallel: [gi]p = fi[q]p.
9. [g]B = ([g0]p, . . . , [g�−1]p).

10. [h]B ← bit-add([d]B, [g]B), where [h]B = ([h0]p, . . . , [h�+1]p).
11. [a]B = ([h0]p, . . . , [h�−1]p).
12. Output [a]B.

Unconditionally Secure Constant-Rounds Multi-party Computation 293

As for the privacy, notice that assuming that the sub-protocols leak no in-
formation, the only place where information is potentially leaked is in Step 4,
where c is leaked. Since b is assumed to be a uniformly random, unknown value
from Fp, independent of a, it however follows that c is uniformly random in Fp

and leaks no information about a.
As for the correctness, notice that c = a − b mod p and d = c + b (in the

integers). Therefore d = a + qp for some q ∈ {0, 1}. Since a ∈ {0, 1, . . . , p − 1} it
follows that q = 1 iff p < d. A sharing of this q is computed in Step 6. Then let
f = 2� − p, let g ∈ Z be the integer which is bitwise shared in Step 9, and let
h ∈ Z be the integer which is bitwise shared in Step 10. Clearly, g = qf = q2�−qp
(in the integers). Therefore h = d+g = (a+qp)+(q2� −qp) = a+q2�. In Step 11
we then compute a as h mod 2� by dropping the two most significant bits of h.

As for the complexity, we generated one solved bits, had two applications of
bit-add and one application of bit-lt. This yields a total complexity of 114
rounds and 110� log2 � + 118� invocations.

3.1 Generating Random Solved bits

We now describe the protocol solved-bits. As a sub-protocol we use a protocol
ran2 for generating uniformly random shared bits. This protocol has no inputs,
and outputs a sharing [a]p, where a ∈ {0, 1} ⊆ Fp is uniformly random. We
write

[a]p ← ran2() .

In Section 4, we show how to implement ran2 in 2 rounds and 2 invocations
of the multiplication protocol.

The generation of a random input/output pair for bits proceeds as follows.

Protocol ([b]B, [b]p) ← solved-bits()

1. For i = 0, . . . , � − 1 in parallel: [bi]p ← ran2().
2. [b]B = ([b0]p, . . . , [b�−1]p).
3. [c]p ← bit-lt([b]B, p).
4. c ← reveal([c]p).
5. If c = 0, then abort. Otherwise proceed as below.
6. [b]p ←

∑�−1
i=0 2i[bi]p.

7. Output ([b]B, [b]p).

As for the correctness, notice that [b]B is by construction the bit-wise sharing
of [b]p. Furthermore, b is uniformly random from {0, 1, . . . , 2� − 1}. So under
the condition that solved-bits does not abort, b is uniformly random from
{0, 1, . . . , p − 1}, as desired.

As for the privacy, when solved-bits does not abort, the only information
leaked is that b < p. This is however an a priory fact by the output requirement
on solved-bits.

294 I. Damgård et al.

Let us examine the probability that solved-bits aborts. In case one is able
to control the choice of the prime p, an optimal choice would be to let p be a
Mersenne prime p = 2� − 1 for some � > κ. In that case the probability that
b ≥ p is less than 2−κ. Although the Mersenne primes soon become sparse, this
would at least work for small values of �. At the time of writing p = 225964951 −1
is the largest p for which we know that this works [NWKo]. Other primes close
to powers of two work almost as nicely.

In the worst-case, where we have no control over p, our only guarantee is
that p ∈ [2�−1, 2�] for some �. In that case the probability that b ≤ p when
b ∈R {0, 1, . . . , 2� − 1} can be as large as 1/2. Using a Chernoff bound it can
be seen that if one generates n = 12κ candidates, then the probability that less
than n/4 of them satisfy b < p is upper bounded by 2−κ.

As for the complexity, one run of the basic solved-bits requires � calls of
ran2 and one call of bit-lt, neglecting the cost of the one call to reveal.
This gives a complexity of 21 rounds and 24� invocations of the multiplication
protocol. If the basic protocol has to be repeated in parallel to get a lower abort
probability, the round complexity is still 21, and the amortized communication
complexity goes up to 96�.

4 Random Bits

We now describe a protocol ran2 for securely generating a sharing of a uniformly
random bit. The protocol has no inputs, and the output is a sharing [a]p of a
uniformly random a ∈ {0, 1} ⊆ Fp. We assume that p > 2 such that Fp does not
have characteristic 2.

First some notation. Let F∗
p be the set of non-zero elements of Fp and let

Qp ⊂ F∗
p be the subset of squares. For a ∈ Qp, let

√
a be the unique b ∈

{1, . . . , (p − 1)/2} where b2 mod p = a. We define S : F∗
p → Fp by S(x) = 1 if

0 < x < p/2 and S(x) = −1 if p/2 < x < p. Note that it holds for all x ∈ F∗
p that

x = S(x)
√

x2 mod p. Clearly, if a ∈R F∗
p is a uniformly random non-zero element,

then S(a) is uniformly random in {1, −1} and, furthermore, S(a) = a(
√

a2)−1.
This suggests the following protocol.

Protocol [d]p ← ran2()

1. [a]p ← ranp().
2. [a2 mod p]p = mult([a]p, [a]p).
3. a2 mod p ← reveal([a2 mod p]p).
4. If a2 mod p = 0, then abort. Otherwise, proceed as below.
5. b =

√
a2 mod p.

6. [c]p ← (b−1 mod p)[a]p.
7. [d]p ← 2−1([c]p + 1).
8. Output [d]p.

Unconditionally Secure Constant-Rounds Multi-party Computation 295

As for correctness, notice that when ran2 does not abort, then c = S(a),
where c is the value shared in Step 6. Therefore c is uniformly random in {1, −1}.
It then easily follows that d is uniformly random in {0, 1}.

As for privacy, note that when the protocol does not abort, then a is uni-
formly random from F∗

p, and we are essentially using S(a) as output. The only
information leaked about a is a2 mod p, which is independent of S(a) when a is
uniformly random in F∗

p.
If a = 0, then the protocol aborts. This happens with probability 1/p.
The complexity of generating [a]p is bounded by the complexity of one mul-

tiplication. Then one multiplication is needed to compute [a2 mod p]p. The rest
is essentially for free. This gives a complexity of 2 rounds and 2 invocations.

5 Bitwise Less-Than

We show how to compare two bitwise-shared numbers in constant rounds. We
first present two sub-protocols.

5.1 Symmetric Functions

Assume that we have inputs [a1]p, . . . , [a�]p, where a1, . . . , a� ∈ {0, 1} ⊆ Fp, and
want to compute a symmetric Boolean function f on these. We also need to
assume that Fp has characteristic larger than � + 1, which here just means that
we need that � < p − 1.

A symmetric Boolean function only depends on the number of 1’s in its input,
it can therefore be written as f(x1, . . . , x�) = φ(1 +

∑�
i=1 xi) for some function

φ : {1, 2, . . . , � + 1} → {0, 1}. By Lagrange interpolation, we can construct a
polynomial with coefficients α0, . . . , α� such that φ(X) =

∑�
i=0 αiX

i mod p for
X ∈ {1, 2, . . . , � + 1}. This allows a particularly efficient secure computation, as
follows.

Protocol [f(a1, . . . , a�) mod p]p ← f([a1]p, . . . , [a�]p)

1. [a]p ← 1 +
∑�

i=1[ai]p.
2. ([a]p, [a2 mod p]p, . . . , [a�+1 mod p]p) ← mult∗([a]p, . . . , [a]p).
3. [f(a) mod p]p ←

∑�
i=0 αi[ai mod p]p.

In Step 2 we have that a ∈ F∗
p, so we can apply the protocol mult∗ securely.

The protocol is clearly private and correct. The complexity is 5 rounds and 6�
invocations of mult.

5.2 Prefix-Or

Assume that we have inputs [a1]p, . . . , [a�]p, where a1, . . . , a� ∈ {0, 1} ⊆ Fp, and
want to compute the prefix-or [b1]p, . . . , [b�]p, where bi = ∨i

j=1aj.

296 I. Damgård et al.

To obtain complexity linear in �, we use the method by Chandra, Fortune
and Lipton [CFL83a]. For notational convenience, assume that � = λ2 for an
integer λ. We will split a into λ blocks of λ bits each. For this purpose we
rename each bit ak as ai,j where k = λ(i − 1) + j, and i, j = 1, . . . , λ. Thus,
a = (a1,1, a1,2, . . . , a1,λ, a2,1, . . . , a2,λ, . . . , aλ,λ), and for i = 1, . . . , λ, we call
ai,1, . . . , ai,λ a block of a. The desired output will be split in blocks using the
same notation. Note that we can compute an Or with unbounded fan-in, [x]p ←
∨λ

j=1[xj]p, using Section 5.1, as this is a symmetric function.

Protocol ([b1]p, . . . , [b�]p) ← pre∨([a1]p, . . . , [a�]p)

1. For i = 1, . . . , λ, in parallel: [xi]p = ∨λ
j=1[ai,j]p.

2. For i = 1, . . . , λ, in parallel: [yi]p = ∨i
k=1[xk]p.

3. [f1]p = [x1]p.
4. For i = 2, . . . , λ, let [fi]p = [yi]p − [yi−1]p.
5. For i = 1, . . . , λ, j = 1, . . . , λ, in parallel: [gi,j]p = mult([fi]p, [ai,j]p).
6. For j = 1, . . . , λ: [cj]p =

∑λ
i=1[gi,j]p.

7. For j = 1, . . . , λ, in parallel: [b·,j]p = ∨j
k=1[ck]p.

8. For i = 1, . . . , λ, j = 1, . . . , λ, in parallel: [si,j]p = mult([fi]p, [b·,j]p).
9. For i = 1, . . . , λ, j = 1, . . . , λ: [bi,j]p ← [si,j]p + [yi]p − [fi]p.

The privacy follows from the fact that we only call private sub-protocols. As
for the correctness, the variables have the following interpretation. We have that
xi = 1 iff the the i’th block contains a 1. Therefore yi = 1 iff there is a 1 in one of
the i first blocks, and fi = 1 iff the i’th block is the first block to contain a 1. Hence
the sequence of fi values has form f = (0, . . . , 0, 1, 0, . . . , 0), and we let i0 be the
position of the single 1-bit. Now, for i < i0, the i’th block of the output should
be all 0’s. For i > i0, the i’th block of the output should be all 1’s. Finally, the
i0’th block of the output should the prefix-or of the i0’th input block. The block
c = (c1, . . . , cλ) is formed by taking the “inner product” of f and a and therefore,
by the special form of f , equals the i0’th block of a. The values (b·,1, . . . , b·,λ) are
the prefix-or bits of c. This means that the bits si,j form an all-0 vector, except
that the i0’th block equals c. It now follows directly from the form of the si,j ’s,
fi’s and yi’ s that the output bits bi,j get the correct value in the final step.

The protocol uses 3λ invocations of the protocol for symmetric functions, in
three rounds and on problems of size λ. This gives a complexity of 15 rounds
and 18� invocations. Besides this there are two rounds of � multiplications each,
giving a total complexity of 17 rounds and 20� invocations.

5.3 Bitwise Less-Than

We now describe the protocol bit-lt. Note that given sharings of two bits [a]p
and [b]p we can compute their Xor in one round by first computing [d]p ←
[ai]p − [bi]p and then computing [e]p ← mult([d]p, [d]p). Below we write this as
[e]p ← xor([a]p, [b]p).

Unconditionally Secure Constant-Rounds Multi-party Computation 297

Protocol [c]p ← bit-lt([a]B, [b]B)

1. For i = 0, . . . , � − 1: [ei]p ← xor([ai]p, [bi]p).
2. ([f�−1]p, . . . , [f0]p) = pre∨([e�−1]p, . . . , [e0]p).
3. [g�−1]p = [f�−1]p.
4. For i = 0, . . . , � − 2: [gi]p ← [fi]p − [fi+1]p.
5. For i = 0, . . . , � − 1: [hi]p ← mult([gi]p, [bi]p).
6. [h]p ←

∑�−1
i=0 [hi]p.

7. Output [h]p.

Privacy follows from the fact that we only call private sub-protocols. As for
the correctness, assume that a �= b, and let i0 denote the largest index i, where
ai �= bi. Then a < b iff bi0 = 1. Note that i0 is the largest i for which fi = 1, and
thus gi = 1 iff i = i0. Therefore h = bi0 . In the special case a = b, clearly h = 0,
as it should be.

The protocol uses one invocation of pre∨ on an instance of size �, costing 17
rounds and 20� invocations of mult. Then there are two rounds more, each of �
invocations of mult, giving a total of 19 rounds and 22� invocations of mult.

6 Bitwise Sum

We show how to add two bitwise-shared numbers in constant rounds. We first
present a sub-protocol.

6.1 Generic Prefix Computations

Assume that we have some alphabet Σ ⊆ {0, 1}n and bitwise-shared inputs
[a1]B, . . . , [a�]B, where ai ∈ Σ. That is, [ai]B = [ai,1]p, . . . , [ai,n]p consists of n
sharings of bits, and (ai,1, . . . , ai,n) ∈ Σ. Assume furthermore that an associative
binary operator ◦ : Σ × Σ → Σ is given and that we want to compute sharings

([b1]B, . . . , [b�]B) = pre◦([a1]B, . . . , [a�]B) ,

where bi = ◦i
j=1aj . Assume that it is possible to securely compute a sharing [b�] =

◦�
j=1[aj] with complexity R rounds and C(�) invocations of mult. For short,

we will refer to ◦�
j=1[aj] as the “sum” of a1, . . . , a�. We assume for notational

convenience that � = 2k for some k.
We use the method by Chandra, Fortune and Lipton [CFL83b]. For each

i = 1, . . . , k we will split the sequence a1, . . . , a� into consecutive blocks of
size 2i items each. We let bi,j be the “sum” of the j’th such block, i.e., bi,j =
◦j·2i+2i

m=j·2i+1am. There are � − 1 of the “sums” bi,j, namely one of length � = 2k,
two of length 2k−1, up to �/2 of length two. The complexity for computing all
of them in parallel is thus R rounds and

∑k
i=1 2iC(� · 2−i) invocations of mult.

298 I. Damgård et al.

It is easy to see that each of the � values bi can be computed as a “sum” of
at most k of the bi,j ’s. Doing this in parallel for all bi’s costs another R rounds
and at most �C(k) invocations. Therefore the total complexity is upper bounded
by 2R rounds and

∑log2 �
i=1 2iC(� · 2−i) + �C(log2 �) ≤ log2 � · C(�) + �C(log2 �)

invocations of mult.

6.2 Bitwise Sum

We now describe the protocol [d]B ← bit-add([a]B, [b]B).
For i = 1, . . . , �, define the carry ci ∈ {0, 1} by ci = 1 iff

∑i−1
j=0 2j(aj +bj) > 2i.

It is straightforward to verify that given a bitwise sharing of the carries we can
compute a bitwise sharing of the sum as follows.

Protocol [d]B ← bit-add([a]B, [b]B)

1. ([c1]p, . . . , [c�]p) ← carries([a]B, [b]B).
2. [d0]p = [a0]p + [b0]p − 2[c1]p.
3. [d�]p = [c�]p.
4. For i = 1, . . . , � − 1: [di]p = [ai]p + [bi]p + [ci]p − 2[ci+1]p.
5. Output [d]B = ([d0]p, . . . , [d�]p).

Evidently, the complexities of this protocol are the same as those of sub-
protocol carries as presented below. We therefore get 37 rounds and 55� log2 �
invocations of mult.

6.3 Computing the Carry Bits

In order to compute the carries, we use the well-known carry set/propagate/kill
algorithm. Let Σ = {S, P, K}. The algorithm uses an operator ◦ : Σ × Σ → Σ,
defined by x ◦ S = S for all x ∈ Σ, x ◦ K = K for all x ∈ Σ, and x ◦ P = x for
all x ∈ Σ. This is the carry-propagation operator, and it can be verified to be
associative3.

For two bitwise-represented numbers a = (a0, . . . , a�−1) and b = (b0, . . . , b�−1),
for i = 0, . . . , � − 1, let ei = S iff a carry is set at position i (i.e., ai + bi = 2);
ei = P iff a carry would be propagated at position i (i.e. ai +bi = 1); and ei = K
iff a carry would be killed at position i, (i.e. ai + bi = 0). It is straightforward
to verify that ci = 1 (the i’th carry bit is set) if and only if e0 ◦ · · · ◦ ei−1 = S.

We represent S, P , and K with bit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) ∈
{0, 1}3. The values of the ei’s in this representation can be easily computed
from the ai’s and bi’s as shown below. Hence, given a protocol for unbounded
fan-in computation of the carry-propagation operator ◦ on this representation,
we compute carries as follows.

3 Note that this definition is changed from the standard one to be consistent with the
fact that we write numbers with the least significant bit first.

Unconditionally Secure Constant-Rounds Multi-party Computation 299

Protocol [c]B ← carries([a]B, [b]B)

1. For i = 0, . . . , � − 1, in parallel: [si]p = mult([ai]p, [bi]p).
2. For i = 0, . . . , � − 1: [pi]p = [ai]p + [bi]p − 2[si]p, [ki]p = 1 − [si]p −

[pi]p and set [ei]B = ([si]p, [pi]p, [ki]p), i.e., interpret the sharings
[si]p, [pi]p, [ki]p as a bit-wise sharing of a 3-bit string ei ∈ Σ.

3. ([f0]B, . . . , [f�−1]B) ← pre◦([e0]B, . . . , [e�−1]B).
4. For i = 0, . . . , � − 1, set ([si]p, [pi]p, [ki]p) = [fi]B, i.e., each [fi]B

consists of shares of 3 bits which we now name si, pi and ki .
5. Output [c]B = ([s0]p, [s1]p, . . . , [s�−1]p).

The privacy follows from only using private sub-protocols, and correctness
follows readily from the above arguments.

Section 6.1 describes how to compute pre◦([e0]B, . . . , [e�−1]B) assuming a
protocol for computing the ◦-operator with unbounded fan-in. The next section
shows how to do this unbounded fan-in with complexity 18 rounds and 27�
invocations of mult. This and the analysis of the protocol from Section 6.1 shows
that we can compute all f0, . . . , f�−1 with complexity 36 rounds and 54� log2 �
invocations. Besides this, the carries protocol has only one round containing
a total of � invocations of mult, giving a total complexity of 37 rounds and
55� log2 � invocations of mult.

6.4 Unbounded Fan-In Carry Propagation

We describe a protocol for computing ◦�
i=1ei, where we again represent ei as

(si, pi, ki). The protocol uses an unbounded fan-in And in Step 1 and a prefix-
And in Step 2. These protocols are defined equivalently to a unbounded fan-in
Or and prefix-Or, and implemented in the same complexity using DeMorgan’s
Rule.

Protocol ([a]p, [b]p, [c]p) ← ◦�
i=1([si]p, [pi]p, [ki]p)

1. [b]p ← ∧�
i=1[pi]p.

2. ([q�]p, . . . , [q1]p) ← pre∧([p�]p, . . . , [p1]p).
3. [c�] = [k�].
4. For i = 1, . . . , � − 1, in parallel: [ci]p ← [ki] ∧ [qi+1]p.
5. [c]p =

∑�
i=1[ci]p.

6. [a]p ← 1 − [b]p − [c]p.

As for correctness, it should be clear that b = 1 (a propagate) iff pi = 1 for
i = 1, . . . , �, making b correct. Furthermore, we have that c = 1 (a kill) iff there
exists some i such that ki = 1 and pi+1 = 1, . . . , p� = 1. I.e. c = ∨�

i=1(ki ∧ qi+1).
Since ki and pi are never 1 simultaneously it can be seen that at most one of
the expressions ki ∧ qi+1 equals one. This implies that c =

∑�
i=1(ki ∧ qi+1). By

our representation it follows that a = 1 − b − c.

300 I. Damgård et al.

Since we can compute [b]p and [c]p in parallel, the overall complexity for an
unbounded fan-in carry propagation can be verified to be 18 rounds and 27�
invocations of mult.

7 Applications

In this section we mention some secure multi-party protocols for specific tasks
that use our new constant-rounds protocol for computing shares of the bit decom-
position as an atomic sub-protocol. All application protocols are unconditionally
secure constant-rounds protocols. We want to stress that even though the num-
ber of invocations of the underlying multiplication protocol is always polynomial
in � = $log2 p� and the number of rounds is constant we did not put much effort
in optimizing the running time and round complexity.

For the remaining part of this section let p be a prime, p ∈ [2�−1, 2�].

7.1 Comparison and Equality

In this subsection we look at the equality function ?= : Fp → Fp, where (x ?=y) ∈
{0, 1} and (x ?=y) = 1 iff x = y, and the comparison function

?
< : Fp × Fp → Fp,

where (x
?
<y) ∈ {0, 1} and (x

?
<y) = 1 iff x < y.

For equality, assume the shares [x]p, [y]p are given and we want to compute
shares [x ?=y]p. Setting z = x − y ∈ Fp the problem clearly reduces to comput-
ing [z ?=0]p. The latter one can be done by first computing shares of the bits
[z]B = [z0]p, . . . , [z�−1]p and then [z ?=0]p = ∧�−1

i=0 [zi]p, which can be computed in
constant round using Section 5.1, as it is a symmetric function.

For the comparison function we are given shares [x]p, [y]p and want to com-

putes shares [x
?
<y]p. This can be done by first computing shares of the bits

[x]B = [x0]p, . . . , [x�−1]p and [y]B = [y0]p, . . . , [y�−1]p. Now shares of the com-
parison function can be computed using bit-lt from Section 5.

7.2 Private Exponentiation

The exponentiation function exp : Fp ×Zp → Fp is given by exp(x, a) = (xa mod
p) ∈ Fp.

Public exponent a. We first deal with the case where the exponent a is pub-
licly known and the value x is shared, i.e., given [x]p and a we want to compute
[xa]p. Assume there exists a protocol that outputs random shares [r]p of a ran-
dom non-zero value r ∈ F∗

p together with shares of its ath power [ra]p. We will
show later how to implement such a protocol in constant rounds.

Assuming such a protocol exists, a protocol to securely compute the expo-
nentiation function is straightforward (using the Bar-Ilan and Beaver [BB89]
inversion trick): First the parties run the protocol to get shares of [r]p and [ra]p
for a random r ∈ F∗

p. Then they compute [xr]p = mult([x]p, [r]p), open [xr]p to

Unconditionally Secure Constant-Rounds Multi-party Computation 301

get xr ∈ Fp, and every player individually computes y = (xr)a = xara ∈ Fp.
Now [xa]p is obtained by computing [xa]p = y[r−a]p where [r−a]p = [(ra)−1]p is
obtained from [ra]p using the Bar-Ilan and Beaver inversion protocol.

It is easy to see that this protocol is private as long as x �= 0. We handle
the case x = 0 as an “exception” using our protocol for evaluating the equality
function from Section 7.1. The idea is to substitute x by x̃ = x + (x ?=0). Note
that this always assures x̃ �= 0. Then shares [xa]p can be computed as

[xa]p = [x̃a]p − [(x ?=0)]p .

We note that this “exception trick” may also be used in some other places (like
in the inversion protocol) to handle special shared inputs that may lead to in-
formation leakage. Any protocol that initially leaks information for m different
shared input values can now be updated to a protocol providing perfect pri-
vacy by (roughly) the cost of additional m (parallel) executions of the equality
protocol.

It remains to provide the protocol that, given a public a, outputs shares [r]p
together with shares of its ath power [ra]p for a random non-zero value r ∈ F∗

p. In
the honest-but-curious model this is simply done by letting each player j locally
select a random non-zero value rj ∈ F∗

p together with its ath power ra
j ∈ F∗

p. Each
value rj is shared among the players. Now define r as the product of all rj such
that ra also equals to the product of all ra

j . Shares of both products r =
∏n

j=1 rj

and ra =
∏n

j=1 ra
j can be computed using the unbounded fan-in multiplication

protocol, mult∗. We now show how to make this protocol robust against active
adversaries using a “cut-and-choose” technique: In addition to [ri]p, [ra

i]p, user
i generates random sharings [si]p, [sa

i]p . The players jointly form a random bit
b. Then they compute and open (si, s

a
i) or (siri, s

a
i ra

i), according to the value
of b and verify that the first number is non-zero and that the second number is
the first raised to the public a. This can be repeated in parallel an appropriate
number of times.

Shared exponent a. Now we consider the case where the exponent a is also
given as a share, i.e., the users are given [x]p and [a]p and want to compute [xa]p.
We show how this case can be reduced to the previous one.

First run the bit decomposition protocol to obtain shares of the bits [a]B =
[a0]p, . . . [a�−1]p of the exponent a such that a =

∑�−1
i=0 2iai with ai ∈ {0, 1}.

Then, using unbounded fan-in multiplication, shares [xa]p may now be obtained
via the equation

xa = x
�−1
i=0 2iai =

�−1∏
i=0

x2iai =
�−1∏
i=0

(aix
2i

+ 1 − ai) ∈ Fp (1)

where the shares [x(2i)]p can be computed (in parallel for 1 ≤ i ≤ l −1) with the
exponentiation protocol above. If x is non-zero the protocol mult∗ can be used
for the unbounded fan-in multiplication, and the “exception trick” can be used
use to deal with the case were x can be zero.

302 I. Damgård et al.

7.3 Modulo Reduction

Let m ∈ [2, p − 1] be a public integer. In this subsection we look at the “modulo
m” function, modm : Fp → Fp, x �→ x mod m ∈ {0, . . . , m − 1}, where x ∈ Fp

is considered a residue x ∈ {0, 1, . . . , p − 1}. We show how to privately compute
the modulo m function in constant rounds, i.e., the players are given [x]p and
want to compute [modm(x)]p for a public integer m.

The players first compute shares [x]B = [x0]p, . . . , [x�−1]p of the bits of x, i.e.
x =

∑�−1
i=0 xi2i. Note that if m is a power of 2, i.e., m = 2a, then [x mod m]p can

be computed using the equation x mod 2a =
∑a−1

i=0 2ixi. Otherwise define y =∑�−1
i=0 xi(2i mod m) ∈ Z. Then clearly x mod m = (

∑�−1
i=0 xi(2i mod m)) mod

m = y−tm for some integer t in the range t ∈ [0, �−1]. Define y(i) = y−im ∈ Z.
The shares [y(i)]B can be computed in parallel for all i ∈ [0, �−1] using the bitwise
sum protocol from Section 6. The value x mod m is now the unique y(t) such
that 0 ≤ y(t) < m. Shares of such an [x mod m]B = [y(t)]B can be found using (�
parallel applications of) the comparison function and one conversion to shares
of [x mod m]p.

7.4 Private Modulo Reduction

The players are given shares [x]p and shares [m]p of an integer m of known bit-
size �0 + �. The problem is to compute shares [x mod m]p. There already exists
an efficient protocol to approximate [x mod m]p due to [ACS02] but it does not
run in a constant number of rounds. In this section we note that combining
the techniques of this paper with the results from [ACS02] and [KLM05] (the
latter one approximates the fractional part of 1/m by a Taylor polynomial),
we get an efficient constant-rounds protocol to compute an approximation of
[x mod m]p = [x − � x

m� · m]p. Shares of the exact value of x mod m may then
be obtained by running an appropriate number of comparison protocols to make
sure that result lies in the interval [0, m−1]. With the results from Section 7.2 this
enables us to build a constant-rounds protocol that privately computes shares
[xa mod m]p, where all three inputs, x, a, and m are given as shares (together
with the bit-size �0 of m). Here we only consider the case of prime m. First
compute shares [x mod m]p and [a mod m − 1]p. The prime p has to be large
enough (of bit-size � > �2

0) such that in Eqn. (1) no wrap-around modulo p
appears: after computing [xa]p, the modulo reduction protocol is used again to
compute shares [xa mod m]p.

7.5 Unrestricted Conversion to Additive Shares over the Integers

Informally, additive shares over the integers are (n − 1)-out-of-n shares where
each party Pj holds a random share xj ∈ [−2ρA, 2ρA] (where ρ is some security
parameter). The secret x is then defined as x =

∑n
j=1 xj ∈ [−A, A] over the

integers. We use [x]Z to denote additive shares over the integers. See [ACS02]
for a formal definition of additive shares and for applications.

Let p be a prime. We want to note that we now can give a constant-rounds
protocol that converts shares [x]p to shares [x]Z. Prior to our work, by a result

Unconditionally Secure Constant-Rounds Multi-party Computation 303

from [ACS02], this could only be done in constant rounds when x is guaranteed
to be considerably smaller than the modulus p. As the protocol in [ACS02] our
protocol is only passively secure.

First compute shares [x]B = [x1]p, . . . , [x�−1]p of the bits of x. Then (in paral-
lel) convert the shares [xj]p to shares [xj]Z over the integers using the technique
from [ACS02] (note that this can be carried out since the shares of the bits are
now “small enough” compared to the modulus p). Finally, the integer shares of
x can be computed without interaction via [x]Z =

∑�−1
i=0 2i[xi]Z.

Acknowledgments

The authors would like to thank the anonymous referees for many useful sug-
gestions, which helped improve the presentation considerably.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computa-
tion modulo a shared secret with application to the generation of shared
safe-prime products. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
417–432, Santa Barbara, CA, USA, August 18–22, 2002. Springer-Verlag,
Berlin, Germany.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In Proc. ACM
PODC’89, pages 201–209, 1989.

[Bea00] Donald Beaver. Minimal latency secure function evaluation. In Bart Pre-
neel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 335–350, Bruges, Belgium,
May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, pages 136–145, Las Vegas, Nevada, 14–17 October 2001. IEEE.

[CD01] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a
constant number of rounds. In J. Kilian, editor, Advances in Cryptology -
Crypto 2001, pages 119–136, Berlin, 2001. Springer-Verlag. Lecture Notes
in Computer Science Volume 2139.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, Advances in Cryptology - EuroCrypt 2000, pages 316–334, Berlin,
2000. Springer-Verlag. Lecture Notes in Computer Science Volume 1807.

[CFL83a] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Lower bounds
for constant depth circuits for prefix problems. In Proceedings of ICALP
1983, pages 109–117. Springer-Verlag, 1983. Lecture Notes in Computer
Science Volume 154.

[CFL83b] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-
in circuits and associative functions. In 15th Annual ACM Symposium on
Theory of Computing, pages 52–60, Boston, Massachusetts, USA, April 25–
27, 1983. ACM Press.

304 I. Damgård et al.

[DN03] Ivan Damgård and Jesper B. Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In D. Boneh,
editor, Advances in Cryptology - Crypto 2003, Berlin, 2003. Springer-Verlag.
Lecture Notes in Computer Science.

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure compu-
tation. In Proc. ACM STOC, pages 554–563, 1994.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols
with applications. In Proc. 5th Israel Symposium on Theoretical Comp. Sc.
ISTCS, pages 174–183, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
Annual Symposium on Foundations of Computer Science, pages 294–304,
Las Vegas, Nevada, USA, November 12–14, 2000. IEEE Computer Society
Press.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computa-
tion via perfect randomizing polynomials. In Proceedings of ICALP 2002,
pages 244–256, Berlin, 2002. Springer-Verlag. Lecture Notes in Computer
Science Volume 2380.

[KLM05] Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of
the mean and related statistics. In TCC 2005: 2nd Theory of Cryptography
Conference, volume 3378 of Lecture Notes in Computer Science, pages 283–
302, Cambridge, MA, USA, February 10–12, 2005. Springer-Verlag, Berlin,
Germany.

[NWKo] Martin Nowak, Georg Woltman, Scott Kurowski, and others. Mersenne.org
project discovers new largest known prime number 225,964,951 − 1. Press
release.

	Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation

