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Abstract. Verifiable secret sharing schemes (VSS) are secret sharing
schemes dealing with possible cheating by the participants. In this pa-
per, we propose a new unconditionally secure VSS. Then we construct a
new proactive secret sharing scheme based on that VSS. In a proactive
scheme, the shares are periodically renewed so that an adversary cannot
get any information about the secret unless he is able to access a specified
number of shares in a short time period. Furthermore, we introduce some
combinatorial structure into the proactive scheme to make the scheme
more efficient. The combinatorial method might also be used to improve
some of the previously constructed proactive schemes.

1 Introduction

One important topic in cryptography is how to securely share a secret among
a group of people. In some cases, many people need to share the power to use
a cryptosystem. Thus some secret information should be shared by a group so
that the cryptosystem can be used only if it is permitted by a specified subset
of the group. The study of how to keep a secure backup of a secret key and
how to recover it securely has been first studied by Blakley [f] and Shamir
[] independently. Shamir proposed a polynomial threshold scheme. In a (¢, n)-
threshold scheme, a secret value is shared by n participants such that any t of the
participants can reconstruct the secret value by putting their shares together,
but any ¢ — 1 participants cannot get any information about the secret value. In
such a scheme, an adversary needs to compromise at least t locations in order
to learn the secret, and corrupt at least n —t — 1 locations to destroy the secret.

In many situations, such as cryptographic master keys, data files, legal docu-
ments, etc., a secret value needs to be stored for a long time. In these situations,
an adversary may attack the locations one by one and eventually get the secret
or destroy it. To prevent such an attack, proactive secret sharing schemes are
proposed. Proactive security for secret sharing was first suggested by Ostrovsky
and Yung in [B]. In 3] they presented, among other things, a proactive polyno-
mial secret sharing scheme. Proactive security refers to security and availability
in the the presence of a mobile adversary. Herzberg et al. 5] specialized this
notion to robust secret sharing schemes and gave a detailed efficient proactive
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secret sharing scheme. In their scheme, a secret value is shared by n servers. The
mobile adversary is able to attack all the servers during a long period of time.
However, since the corrupted servers can be rebooted, in any time period there
are only a subset of servers that are corrupted. “Robust” means that in any time
period, the servers can reconstruct the secret value correctly.

The scheme in [ is based on Shamir’s polynomial threshold scheme, thus
most aspects of the scheme are unconditionally secure. However, their scheme
depends on verifiable secret sharing schemes based on [ which depend on
some cryptographic assumptions.The security of the scheme in [ is based on
the hardness of solving discrete logarithm. In the scheme of [E9], the privacy of
the secret is unconditionally secure, but the correctness of the shares depends
on a computational assumption. In a sense, these two schemes complement each
other.

The purpose of this paper is to provide a new proactive secret sharing scheme
which is unconditionally secure, i.e., the security of any part of the scheme is
not based on any cryptographic assumption. Let S be the set of possible secret
values, where |S| = ¢. Then unconditional security of the scheme means that at
any time the adversary cannot guess the shared secret s € S with probability
better than %.

We first propose an unconditionally secure verifiable secret sharing scheme.
This scheme has some similar features to the absolute VSS in [@]. Then we
propose several protocols to make it proactive. Following from the method of [],
the lifetime of the secret is divided into periods of time in the proactive scheme.
In each time period, the n shares will be renewed while the secret remains the
same. In this way, a mobile adversary who is able to attack (learn or corrupt) at
most b shares in a time period cannot learn any information about the secret in
the long lifetime. This scheme is also robust, i.e., the secret can be reconstructed
at any time.

Furthermore, we introduce some combinatorial structures in the scheme so
that the scheme will be more efficient. With the combinatorial structure, most
of the computation of the system will depend on the parameter b. Thus there is
a “trade-off” between the computation and the value of b: when b is smaller (the
ability of the adversary is more limited), the computation takes less time. Thus
our scheme is more efficient in the situation when the number of the possible
corrupted servers are much smaller as compared to the total number of the
servers in the system. On the other hand, our combinatorial method might be
easily adapted to the scheme of ] to make the scheme more efficient.

The rest of this paper is arranged as follows. In Section ll we give some
preliminaries and the main settings of the system. Section H describes our new
verifiable secret sharing scheme. We also propose an anonymous VSS in a subsec-
tion. Section [l describes the proactive scheme without combinatorial structure.
Section H introduces the combinatorial structure and describes how to apply it
to the proactive scheme.
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2 Preliminaries

2.1 Previous Work

Proactive refers to the security of the scheme in the presence of a mobile adver-
sary who may corrupt all participants of the scheme throughout the lifetime of
the system but cannot corrupt too many participants during any short period
of time. Such a mobile adversary was first considered by Ostrovsky and Yung in
.

The motivation of ] is to combat mobile viruses. The scheme requires the
participants to constantly exchange messages and to be able to erase parts of its
memory. A polynomial secret sharing proactive scheme is proposed which uses
the verifiable secret sharing scheme of [Z)].

Herzberg et al. B3] further discussed proactive secret sharing schemes and
gave a detailed practical scheme. In their scheme the lifetime is divided into peri-
ods of time. At the beginning of each time period, the share holders engage in an
interactive update protocol which includes a share recovery protocol and a share
renewal protocol. At the end of the period, each shareholder holds completely
new shares of the same secret. The secret will not be computed during the update
phase while it can be reconstructed at any time. They used the polynomial-based
method from [3] for the renewal protocol. They also proposed a polynomial-
based method for share recovery protocol. The verifiable secret sharing schemes
they used are from [ECY].

There are also many papers that discuss proactive security, see e.g.,
AR and their references. Our discussion will mainly follow the papers

=1

2.2 The Setting

We will follow the setting of the scheme in [EE]. We assume that there is a
system of n servers P, Ps,---, P,, which are connected to a common broad-
cast channel such that messages sent through this channel instantly reach every
server. We also assume that the system is synchronized, i.e., the servers can
access a common global clock, and that each server has a local source of ran-
domness. To make things simpler, we assume that there are private channels
between each pair of servers and that messages sent by broadcast are safely
authenticated. With these assumptions, we are able to focus on the proactive
scheme itself.

There is an adversary which can corrupt b servers during any time period.
Corrupting a server means learning the secret information in the server, mod-
ifying its data, sending out wrong message, changing the intended behavior of
the server, disconnecting it, and so on. Since the server can be rebooted, the
adversary is a mobile one.

A secret value s € GF(q) will be shared by the servers through the scheme.
The value of s needs to be maintained for a long period of time. The life time
is divided into time periods which are determined by the global clock. At the
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beginning of each time period the servers engage in an interactive update proto-
col. The update protocol will not reveal the value of s. At the end of the period
the servers hold new shares of s. The mobile adversary who corrupts b servers in
a time period cannot get any information about the secret value s. The system
can reproduce s in the presence of the mobile adversary at any time.

We consider unconditional security in this paper, which means that the ad-

versary cannot guess the secret with probability better than i if the secret

q
s € GF(q).

3 Verifiable Secret Sharing

Since secret sharing schemes were proposed initially by Shamir [E3] and Blak-
ley [H], research on this topic has been extensive. In the “classic” secret sharing
schemes, there are assumed to be no faults in the system. Tompa and Woll [,
and McEliece and Sarwate &4 first considered schemes with faulty participants
and gave partial solutions for that problem. In their schemes, the dealer is always
assumed honest. Chor et al. [H] first defined the complete notion of Verifiable
Secret Sharing (VSS), and gave a solution which is based on some cryptographic
assumption. In a VSS, each holder of a share can verify that the share is consis-
tent with the other shares. Thus both the dealer and other participants can be
verified in such a scheme. There are two aspects of the security in a VSS. One
is the security of the secret and the other is the security of the verification.

There are many papers which have discussed VSS recently. Most schemes use
zero-knowledge proofs, e.g., [AREIEAZNZA . Others use cryptographic assump-
tions such as the hardness of discrete logarithm, see [EES]. [ proposed a simple
and efficient VSS, but it based on some “collision resistance” assumption. On
the other hand, many known VSS are not easy to adapt for proactive property.

The VSS in [ZIi8H] are used in proactive schemes in B, [3] used the
VSS from [ZJ] which used some zero-knowledge proofs. [ used the VSS of
Feldman [d] and Pedersen [id]. The security of the scheme in [ is based on the
hardness of solving discrete logarithm. In the scheme of [id], the privacy of the
secret is unconditionally secure, but the verification depends on a computational
assumption.

In [ it was shown that in any unconditionally secure VSS, b < %. Thus the
VSS with b > 7 will either depend on some cryptographic assumption or have
small probability of errors. In this section, we will propose an unconditionally
secure VSS with b < % — 1, which is simpler and more efficient than the scheme
in [H]. Moreover, our scheme has the threshold property that any coalition of
t — 1 participants cannot get any information about the secret value (regardless
of whether the coalition consists of good or bad participants), a property which
the scheme of [ does not have, since secret information may be revealed during
the “share” protocol. Another feature of our scheme is that it requires less secret
information to be communicated by the dealer, and the dealer is not required to
take part in the protocol after the initial distribution of secret information.
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3.1 Definition

Now we give a formal definition of VSS, as follows.

Suppose there are a dealer D and n other participants Py, Py, - - -, P, all con-
nected by private communication channels. They also have access to a broadcast
channel. There is a static adversary A that can corrupt up to b of the partici-
pants including the D. Here static means that the b participants controlled by
the adversary are fixed.

Let 7 be a protocol consisting of two phases Share and Reconstruct. Let S
be the set of possible secret values. At the beginning of Share, the dealer inputs
a secret s € S. At the end of Share each participant P; is instructed to output
a Boolean value ver;. At the end of Reconstruct each participant is instructed
to output a value in S.

The protocol 7 is an unconditionally secure Verifiable Secret Sharing protocol
if the following properties are hold:

1. If a good player P; outputs ver; = 0 at the end of Share then every good
player outputs ver; = 0;

. If the dealer is good, then ver; = 1 for every good P;.

3. If at least n — b players P; output ver; = 1 at the end of Share, then there
exists an s’ € S such that the event that all good P; output s’ at the end of
Reconstruct is fixed at the end of Share and s’ = s if the dealer is good;

4. If |S| = g and s is chosen randomly from S, and the dealer is good, then any
coalition of at most ¢ — 1 participants cannot guess at the end of Share the
value s with probability better than %.

[\

3.2 The New VSS

In this subsection we provide a new unconditionally secure VSS which will be
used in our proactive scheme later.

Suppose there is a dealer D and n participants P;, 1 < ¢ < n, where n > t+3b
and ¢ > b. Let S = GF(q) be a finite field and let w be a primitive element in
GF(q). In the following protocol, all the computations are in the field GF(q).
We first state the share phase as follows.

Share

1. When D wants to share a secret value s € .S, he chooses a random symmetric

polynomial
t—1t—1

flaoy) =Y > aya'y,
i=0 j=0
where ago = s and a;; = a;; for all 4, j. Then, for each k, D sends hy(z) =
f(z,w*) to Py through a private channel.
2. After receiving hx(z), each Pj sends hp(w!) to P, for 1 < 1 < n, (I # k)
through a private channel.



Proactive Secret Sharing Scheme 205

3. Each P, checks whether hx(w!) = hy(w¥) for 1 < k < n, (I # k). If P, finds
that hg(w') # hi(w"), then P, broadcasts (I, k).

4. Each P; computes the maximum subset G C {1, -- -, n} such that any ordered
pair (I, k) € GxG is not broadcasted. If |G| > n—b, then P; outputs ver; = 1.
Otherwise, P; outputs ver; = 0.

It is obvious that every good participant computes the same subset G in
the end of Share. Next we consider the reconstruct phase. Note that although
the adversary is static, he could provide correct information in Share phase but
wrong information in Reconstruct phase.

Reconstruct

1. Each P; sends h;(0) to Py, where i € G.

2. After receiving h;(0), Px computes a polynomial fx (0, y) such that f(0,w?) =
hi(0) for at least n — 2b of the data he received. This can be done efficiently
using methods of [Z4].

3. P, computes and output s = fi(0,0).

In order to prove that the protocol is an unconditionally secure VSS, we need
the following lemma.

Lemma 1 Suppose there are T polynomials hq(x), ha(x), - -+, hr(x) with degree
at most t — 1, where T > t, such that h;(w’) = hj(w’) for all i,j. Then there
exists a polynomial h(x) of degree at most t — 1 such that h(w®) = h;(0) for all
i,1 <1 < T. Equivalently, any t of the shares h;(0),1 < ¢ < T, determine the
same secret K = h(0).

Proof First we note that for any ¢-subset I = {i1,i9,---,4;} C {1,2,---,T}
and any h;(z), where 1 < j < T, we can use the Lagrange interpolation formula
(see [ZH]) to compute

hi(0) = hj(w')bi = > hi(w)bi,
i€l i€l

where
k

w
= 11 2
wh —wJ

kel k#j

1 < 4 < t. This comes from the condition h;(w’) = h;j(w’) for any i,j €
(1,2,---,T}.

Now suppose that I and J are two different t-subsets of {1,2,---,T}. Then
we can compute a polynomial hy(z) such that h;(w?) = h;(0) for all i € I, and
then h7(0) can be obtained by the Lagrange interpolation:

hi(0) = Z hi(0)b;.

iel
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By the above discussion we have

hr(0) = Zbihi(o)

iel

= Z bz Z hi(wj)bj
iel  jeJ

= Z bj Z hl(wj)bl
jeJ iel

= bih;(0)
jeJ

= hy(0).

We are now in a position to prove the following theorem.

Theorem 2 The scheme of this section is an unconditionally secure verifiable
secret sharing scheme.

Proof We prove that the above scheme satisfies the conditions of the VSS as
follows.

1. If a good player P; outputs ver; = 0, then the size of the maximum subset
G is at most n — b — 1. Thus every good player will output “0”.

2. If the dealer is good, then the good player receives f(x,w?). Since f(x,y)
is symmetric, f(w!, w’) = f(w’,w!) for all good players P;. Thus all good players
are in the subset G. Therefore ver; = 1 for each good player P;.

3. Suppose at least n — b players output “1” at the end of the Share. Then
there is a subset G of size n — b such that no one in the subset complained
the others. Since we assume that there are at most b bad players, there are at
least n — 2b good players in G, who all have consistent shares. By Lemma [l
any t-subset of the good players can compute the same value K. It is easy to
check that if the dealer is good, then we have K = s, the secret value. Further
at most b out of the n —b shares in G are not consistent with the secret K. Since
n—>b > t+2b, the algorithms in [4] can be used to find the maximum consistent
set of shares and thus determine K.

4. Without loss of generality, we assume that the coalition knows the values
of hi(x), ha(x), -+, he—1(x). It is easy to show (see, e.g., [H]) that for any value
S/ S GF(q), we can find bij S GF(q), where b()() = S/, bij = bji,O S Z,] S t—1
such that if

t—1t—1
i=0 j=0
then f/(x,wk) = hy(x) for k=1,2,---,b. 0

Remark. This scheme is modified from Blom’s key predistribution scheme (see
[B for the details). For simplicity, our description used a Reed-Solomon code
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instead of general MDS codes. It is straightforward to generalize our scheme by
using MDS codes.

3.3 An Example

We display a toy example in this subsection. Let ¢ = 13,w = 2,n = 9,t = 3
and b = 2. First suppose the dealer D is good. First D selects a polynomial as
follows:

flz,y) =3+9z + 222 + 9y + 29 + Sxy + 11ay® + 1122y + 422y

Then D sends the vector (vq,v2,v3) to the players as follows, each of which
determines a polynomial v; + vox + vg22:

hy — (3,4,1)

hy — (6,9,6)

hs — (8,10, 8)
hy — (9,2,6)

hs «— (12,11, 4)
he — (9,12, 8)
hr — (6,11,9)
hs — (12,10, 10)
hy — (7,12,1)

Suppose that only P, and P, are bad and send wrong data to the other
players. Then the pairs broadcasted are of the form (1,1),(2,1), (i,1) or (i, 2).
So the good players will find G = {3,4,5,6,7,8,9} and output “1”. Since we
assume that there are at most 2 bad players, all the good players will output “1”
if the dealer is good. On the other hand, the player P; chooses “0” or “1” only
depending on the broadcasted pairs, so all good players will output the same
value of ver;.

Now suppose that there are at least 7 players who output “1”. Since there are
at most 2 bad players, it is true that the subset G is found. Suppose, for example,
G =1{1,2,3,4,5,6,7}. Then all the good players in G possess consistent shares
regardless of whether D is good or bad. However up to two of these players
may be bad, and send incorrect shares during Reconstruction. Thus in the
Reconstruction phase, there are at least 5 consistent shares held by each of the
players. Thus each good player will compute the same polynomial f(z,0) using
the methods of [Z4].

3.4 VSS without Dealer

Secret sharing without dealer means that there is no dealer in the scheme, who
knows and distributes the secret. Secret sharing without dealer is first considered
in [&]. One such secret sharing scheme is considered in [E].

We can remove the dealer from our scheme as follows. The other properties
of the scheme are the same as in the previous subsection.

Share
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1. Each Pj chooses an independent random symmetric polynomial

t—1t—-1

U wy) =D aa'y,
i=0 j=0
where agp = si and a;; = aj; for all 4, j. Then Py sends hl(k)(x) = ") (z,wh)
to P; through a private channel.

2. After receiving hl(k)(x), each P, sends hl(k)(wm) to P, for 1 < m < n through
a private channel.

3. P,, checks whether hi¥)(w!) = h{®(w™) for 1 < I < n. If P, finds that
hgf)(wl) # hl(k)(wm), then P, broadcasts (k;m,1).

4. For every k # m, each player P, computes the maximum subset G} such
that for any pair (m, ) € G x Gy, (k;m, 1) is not broadcasted. If |G| > n—b,
then P,, puts the value k in a list L.

5. If |£| > n — b, then P, outputs ver,, = 1 and computes his share as

hn = B ().

leL

Otherwise, P,, refuses the shares and outputs ver,, = 0.

The reconstruct phase is the same as the previous scheme. Note that in this
scheme the shared secret is
S = Z Si.

In this scheme, each player in turn plays the part of the dealer. Thus the security
of scheme follows from Theorem . We need only to show that each good player
has the same list £, which is obvious.

Remark. As we indicated before, our VSS is modified from Blom’s key pre-
distribution scheme. In the original scheme, there is a dealer to construct the
schemes. Using the methods of this section, we obtain a key predistribution
scheme without dealer.

4 New Proactive Scheme

In this section, we describe our proactive secret sharing scheme without combina-
torial structure. We will add combinatorial structures in this scheme to improve
the efficiency of the scheme in next section.

4.1 Initialization

In the initial step, we assume that there is a dealer to set up the scheme. After
the initialization phase, the dealer will no longer be needed.

In the initialization, we use the share phase of the VSS described in the
Section @, but we assume that ¢ > b+ 1. The first four steps are the same. Then
we do the following.
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5. If at least n — b of the servers output ver; = 1, then the dealer erases all the
information about the scheme on his end. Otherwise, the dealer reboots the
whole system and initializes the system again.

4.2 Share Renewal

In the share renewal phase, all good servers do the following;:

1. Each server P; selects a random symmetric polynomial

t—1t—1

r® (z,y) = Z Z Tz‘jl’iyj,

i=0 j=0

where 799 = 0 and r;; = r;; for all ¢, j.

2. P, sends hg) (z) = r®(z,w*) to Py for k = 1,2,---,n by a private channel
and broadcasts hél) (z) = rO(x,0).

3. Py checks whether hél) (0) = 0 and hg) (0) = hél) (w*). If the conditions are

satisfied, then P, computes and sends P, the value hg) (w™). Otherwise Py
broadcasts an accusation of Pj.

4. P,, checks whether A (Wk) = hg) (w™) for the values of I not accused by
n — b servers of the system. If the equation is not true for more than b values
of k, then P, broadcasts an accusation of F;.

5. If P, is accused by at most b servers, then he can defend himself as follows.
For those P; that P, is accused by, P, broadcasts hl(.l) (z). Then server Py

checks whether hl(.l) (Wk) = hg) (w?) and broadcasts “yes” or “no”. If there
are at least n — b — 2 servers broadcasting yes, then P; is not a bad server.
6. P,, updates the list of bad servers £ by including all values [ for which P,
is accused by at least b+ 1 servers, or found bad in the previous step. Then
P,, updates its shares as
hon () — h () + B (2)

m

for all k & L.

Remark. We can remove the private channels in step 2, since our scheme is also
a key predistribution scheme and the server P; and P; can use h;(j) = h;(i) as
a key to communicate securely.

To check the security of the renewal phase, first we note that any coalition of
at most b servers cannot get any information about any shares except their own.

In fact, a server P; only knows hl(-l) (z) and hél) (x). Since b < t — 1, the coalition
of b servers knows at most ¢t — 1 polynomials which cannot reveal ) (z, %) (see,
e.g., [M). Secondly, from the protocol we know that every good server should
have the same list £. Therefore, the good servers will keep consistent shares

after renewal.
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Note that a good server P; can be accused by at most b servers. In this case,
P; will broadcast b polynomials in its defense. Thus P; will broadcasts total b+ 1
polynomials. Since ¢ > b+ 1, these information will not reveal 7 (z,y). On the
other hand, suppose P, gives P; a wrong share, i.e., the share P; received is not
consistent with at least "T’b other servers (the majority of good servers). Then
P; will accuse P, in step 4, since "T’b > b. If P, broadcasts a correct share in the
defense, then P; can correct his share. Otherwise, P, will be found to be bad.

4.3 Recover a Share

When a server is corrupted or replaced, it needs to be rebooted and thus it needs
to recover the secret shares.

We first provide a protocol, to detect the corrupted servers, which we call
detection.

Detection

1. P, computes and sends h;(w¥) to Py for k = 1,2, ---,n by private channels.

2. Py checks whether hy(w*) = hy,(w!). Pi. then broadcasts an accusation listy,
which contains those [ such that hy(w*) # hy(w!) or hy(w¥) was not received.

3. Each good server updates the list £ so that it contains those [ accused by at
least b + 1 servers of the system.

After running Detection, the system will recover the shares for all server P,
where [ € L. The recovery protocol is as follows.

1. For each | € L, every good server P; computes and sends h;(w') to P;.

2. Upon receiving the data, P; computes a polynomial h;(z) such that h;(w*) =
hi(w') for the majority of k it received, using the algorithms of 2. P; sets
hi(x) as its shares.

4.4 Reconstruct the Secret

The reconstruction protocol is similar to the Reconstruction of VSS introduced
in Section . We need only to change the first two steps as follows.

1’ For each good server P;, P; sends h;(0) to Py, where k is not in the list L.
2" After receiving h;(0), Px computes a polynomial fx (0, y) such that f(0,w?) =
hi(0) for at least n — 2b of the data he received.

5 Combinatorial Structure

In this section, we will introduce some combinatorial structure into our scheme.
The combinatorial structure provides a predetermined arrangement of the servers
which permits the possibility of reducing the computation of the scheme.
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5.1 Set Systems

A set system is a pair (X, B), where X is a set of n points and B is a collection
of subsets of X called blocks.
We will use a set system with the following properties, where ¢t < % — 1:

1. |B| >t for any B € B.
2. For any subset F' C X with |F| < b, there exists a B € B such that FNB = 0.

It is easy to see that such a set system exists. For example, we can choose
B to be all the t-subsets of X. However, there are often better set systems (i.e.,
set systems containing fewer blocks). The following definition is well-known (see,

e.g., [E)).

Definition 3 A collection T of k-subsets of {1,...,n} (called blocks) is an
(n, k,b)-covering if every b-subset of {1,...,n} is contained in at least one block.

It is easy to see that if (X,7) is an (n,n —t, b)-covering, then the set system
{Ll,....,.n\T:T €T}

is a set system satisfying our purpose. There are several efficient constructions
of (n,n —t, b)-coverings in [B4] which can be easily implemented by a computer.

5.2 Applying Set System to the Proactive VSS

The idea of using the set system is to reduce the computations for the share re-
newal and share recover protocols. In the scheme of Section [l share renewal and
share recover used the data from all the participants. However, these operations
can be carried out using the data from ¢ good servers. For example, in share
renewal protocol, any ¢ good servers can renew the shares, since the shares are
polynomials of degree at most ¢ — 1. In protocol of Section B, every good server
provides information to renew shares. So there are redundant computations. If
the system can determine ¢ good servers, then the protocol will be more efficient.
Note that there are at least 3t + 1 good servers in the system. Thus we can save
at least one third of the computations. On the other hand, we should be very
careful when the t good servers are selected, since the adversary is mobile. The
good server could turn to bad at any time. Thus in the scheme of this section,
we will actually select correct information instead of good servers, although we
will still use “good server ” for convenience.

Now let us use the set system to improve our proactive scheme. Suppose
(X, B) is a set system satisfying the conditions of subsection B2l where X =
{1,2,---,n}, and B = {B1,Ba, -+, Bs}. The set system is published so that
each participant can consult it.

Note that in our scheme, in any phase there is a list £ containing all the bad
servers. By the property of the set system, there is a block B which contains
only good servers. If the system can determine one of the “good” blocks, then
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the system can renew the shares or recover the shares only using the data from
these servers. We will call these servers the members of an executive committee.

For a list £ of bad servers, the system can decide following list of blocks:
Bil,Biz,"',Bie, such that Bij NL= @,] =1,2,---¢, and 1 <ip <ig < -+ <
1. < s. These blocks are called executive committee candidates. Note that the
adversary is mobile, therefore we cannot guarantee that these candidates contain
only good servers in the next time period.

The proactive secret sharing scheme with combinatorial structure works as
follows. The initialization is the same as that in Section ll. In each time period
the system does the following.

1. Run Detection to obtain the list £ of bad servers and the executive com-
mittee candidates: By, , Bi,,- -, Bi,.

2. If an executive committee has not been found, then for next executive com-
mittee candidate B, each P, € B does the following:
(a) Selects a random symmetric polynomial

t—1t—1

r@(@,y) = ryaty,

i=0 j=0

where 99 = 0 and r;; = rj; for all 4, j, and sends hég) (z) = r@(z,w") to
Py fork=1,2,---,n,k # g by private channel and broadcasts hég) (x) =
79 (x,0).
(b) Py checks whether 19 (0) = 0 and A\ (0) = h{? (") for g € B. If
the conditions are satisfied, then P, computes and sends P,, the value
hég) (w™). Otherwise Py, broadcasts an accusation of P.
(¢) P,, checks whether hY (Wk) = hég) (w™) for g € B. If the equation is not
true, then P, broadcasts an accusation of P,.
(d) A member in B is accused by at least b+ 1 servers is bad. If a member in
B is accused by at most b servers, then it can defend itself. If no member
in B is bad, then B is found to be the executive committee.
3. The system runs the recovery protocol to recover the shares for the servers
in L.
4. Each server P,, updates its shares as

hon (@) — hun () + b (z)
forall g € B.

The reconstruction protocol is the same as that in Section H.

5.3 Applying Combinatorial Structures to Other Schemes

The proactive secret sharing scheme proposed by Herzberg et al. in [E] is similar
to our scheme in Section Bl Thus it is straightforward to modify our method with
combinatorial structures to their scheme. In general, suppose a proactive secret
sharing scheme has the following properties:



Proactive Secret Sharing Scheme 213

1. Information from any ¢ good servers can be used to renew shares and recover
shares.

2. A VSS exists in which any server can use this VSS to send data which can
be verified by the system.

3. There is a detection protocol to find the bad servers.

4. There is a defense protocol so that an accused server can be determined bad
or good by the system.

5. There are renewal and share recovery protocols.

6. There is set system (X, B) satisfying the conditions of Subsection E=l

Then we can use the following scheme for renewal and share recovery proto-
cols.

1. Run the detection protocol to obtain a list £ of bad servers and the executive
committee candidates: By, , B;,, -, Bi..

2. If executive committee has not been found, then for next executive committee
candidate B, each P, € B does:

(a) Send recovery information rc to Py for each k € £ in the system and
send renewal information rn] to P, for each [ in the system by VSS.

(b) The system checks the correctness of rcj and rnj. If some mistake is
found, then P, is accused.

(¢) A member in B is accused, then it can defend itself and the system can
decide whether it is bad. If no member in B is bad, then B is defined to
be the executive committee.

3. The Pj, € L recovers its share using {rcj : g € B}.
4. Each server P, renews its share using {rn{ : g € B}.

It is readily checked that the proactive secret sharing scheme of [i] satisfies
all the properties we needed. Thus we can use the combinatorial method to
improve their scheme. The details are omitted here.
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