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Unconditionally Stable LOD-FDTD Method
for 3-D Maxwell’s Equations

Eng Leong Tan, Senior Member, IEEE

Abstract— This paper presents an unconditionally stable
locally one-dimensional finite-difference time-domain (LOD-
FDTD) method for three-dimensional (3-D) Maxwell’s equations.
The method does not exhibit the second-order non-commutativity
error and its second-order temporal accuracy is ascertained
via numerical justification. The method also involves simpler
updating procedures and facilitates exploitation of parallel and/or
reduced output processing. This leads to its higher computation
efficiency than the alternating direction implicit (ADI) and split-
step (SS2) FDTD methods.

Index Terms— Locally one-dimensional FDTD, alternating di-
rection implicit FDTD, split-step FDTD, unconditionally stable
FDTD methods, computational electromagnetics.

I. INTRODUCTION

There has been considerable interest in the development of

unconditionally stable finite-difference time-domain (FDTD)

methods that are not constrained by Courant-Friedrich-Levy

(CFL) condition [1]. One such method is based on the cele-

brated alternating direction implicit (ADI) technique [2], [3].

Recently, many researchers have proposed other uncondition-

ally stable (nondissipative) methods such as split-step (SS) [4],

[5] and locally one-dimensional (LOD) FDTD methods [6],

[7]. It can be found that the LOD-FDTD methods presented

in [6], [7] for two dimensions correspond to the split-step

approach of [4] denoted by SS1. As is commonly anticipated

by the researchers, such LOD-FDTD exhibits an extra non-

commutativity error term (not present in ADI), thus making

the method accurate to first order only in time. To achieve

second-order temporal accuracy, Strang splitting scheme may

be employed as in the split-step approach of [4] denoted

by SS2. However, when field data is to be output at every

time step, this scheme involves more arithmetic operations for

requiring three updating procedures (see also [5]) that do not

facilitate separate or parallel implementation.

In this paper, an alternative unconditionally stable LOD-

FDTD method is presented which does not exhibit the afore-

mentioned second-order non-commutativity error. For gener-

ality, we shall consider the LOD-FDTD method for full three-

dimensional (3-D) Maxwell’s equations. Numerical justifica-

tion will be provided to ascertain its second-order temporal

accuracy. Furthermore, the present 3-D LOD-FDTD method

involves essentially two simple updating procedures and facil-

itates exploitation of parallel and/or reduced output processing.

This leads to its higher computation efficiency than the ADI

and SS2 FDTD methods.

The author is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
eeltan@ntu.edu.sg).

II. 3-D LOD-FDTD METHOD

In this section, the updating equations will be presented

explicitly for the 3-D LOD-FDTD method. Like the previous

LOD-FDTD methods [6], [7], there are two updating proce-

dures in the main iterations. However, one major distinction

is that the present two procedures signify the advancement of

time steps from n+ 1
4 to n+ 3

4 and from n+ 3
4 to n+1 1

4 , rather

than from n to n+ 1
2 and from n+ 1

2 to n+1 as in the previous

methods. Such distinction has important implications on the

temporal accuracy especially when one is dealing with field

data at integer time steps (as is often the case). Based on the

LOD principle of rational approximation, the two procedures

can be formulated as follows (the equations for other field

components can be written down simply by permuting the

indices):
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4
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(ii) Explicit updating for Hz|n+ 3
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B. Second procedure from n + 3
4 to n + 1 1
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(ii) Explicit updating for Hy|n+1 1
4 :
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With field updating at quarter (and three-quarter) time steps,

it will often be necessary to relate the fields to those at integer

time steps. This calls for additional processing for the input

and output field data as follows (the coefficient 1
16 = 1

42

corresponds to the quarter-step updating):

C. Input processing at n = 0
(i) Input processing (implicit) for Ex| 14 :
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(ii) Input processing (explicit) for Hy| 14 :
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D. Output processing at n + 1
(i) Output processing (implicit) for Ex|n+1:
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(ii) Output processing (explicit) for Hy|n+1:
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Note that the input processing is to be invoked only once

(unlike SS2) at n = 0 throughout the entire simulations (even

if frequent outputs are required). Since most electromagnetic

excitation problems involve null initial fields, this step may

be omitted altogether. For the output processing at n + 1, one

often does not need to update all field components (unlike SS2)

except only one or two of interest at few desired observation
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Fig. 1. Normalized norm errors versus p of geometric time subdivision
(Δt = ΔtCFL/2p) for LOD-FDTD without (LOD1) and with (LOD2)
input/output processing. Also shown are the errors for ADI and SS2 FDTD.

points. Meanwhile, the previous LOD-FDTD methods [6],

[7], with their field updating at (half and) integer time steps

(like SS1), do not prompt for any additional processing like

above. Their field data will then be prone to (uncorrected)

non-commutativity error making them accurate to first order

only in time.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical test is carried out to show that

the present 3-D LOD-FDTD method is indeed of second-order

temporal accuracy and does not exhibit the non-commutativity

error. For simplicity, it is sufficient to illustrate using a

small problem whereby numerically exact solution can be

obtained readily for reference. Since we are interested in the

temporal error alone, it is necessary to ensure that the (same)

spatial discretization errors have been incorporated into the

numerically exact reference. To that end, we chose an air-

filled cavity meshed with 8× 8× 8 uniform grid cells of size

2 mm each. A first-order differential matrix system is then

set up for this geometry with its numerically exact solution

determined from the corresponding matrix exponential.

To initialize the fields inside the cavity, they are arbitrarily

set to be those of TM111 mode. The simulations are then

carried out until t = 4ΔtCFL with varying time step size

Δt = ΔtCFL/2p, where ΔtCFL is the Courant limit time

step size and p is the integer for geometric time subdivision.

A normalized norm error is defined in terms of the entire

FDTD results (superscripted with n) and the numerically exact

solutions (subscripted with e) as

Error =
||En − Ee||

||Ee|| +
||Hn − He||

||He|| . (9)

Fig. 1 plots the normalized norm errors versus p for the

LOD-FDTD methods without (LOD1) and with (LOD2) in-

put/output processing. It is evident that the errors are of

O(Δt2) and O(Δt3) for LOD1 and LOD2 which signify their

temporal accuracies of first and second order respectively. Also
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TABLE I

FLOPS COUNT FOR 3-D FDTD METHODS

3-D FDTD Method ADI [2], [3] LOD herein SS2 [4]

Implicit
M/D 18 18 27
A/S 48 24 36

Explicit
M/D 12 6 9
A/S 24 24 36

Total
M/D 30 24 36
A/S 72 48 72

shown in the figure are the errors associated with the ADI and

SS2 FDTD methods, which are clearly second-order accurate

in time as is well understood.

Having ascertained the temporal accuracy, it will be desir-

able to assess the computation efficiency of the 3-D LOD-

FDTD method as compared to the 3-D ADI-FDTD method

of [2], [3]. Table I lists the floating point operations (flops)

count for both methods, taking into account the number

of multiplications/divisions (M/D) and additions/subtractions

(A/S) required in the right-hand sides of their main updating

equations, c.f. (1)-(4) etc. For simplicity, the number of electric

and magnetic field components in all directions have been

taken to be the same. From the table, it is clear that the

total (M/D+A/S) flops count of LOD-FDTD (72) has been

reduced considerably from that of ADI-FDTD (102). Note that

the flops count for the input and output processing has been

excluded. This is good for the case like Fig. 1 above, where

(5)-(6) are invoked only once at the beginning, while (7)-(8)

are executed only at the end of many iterations. Also shown

in Table I is the (right-hand side) flops count for SS2 of [4],

which involves three updating procedures.

In simulations where the entire field data is to be output

frequently at short periodic time intervals, the flops for output

processing should be counted as well. Furthermore, in order to

better evaluate the overall efficiency gain, the cost of solving

tridiagonal systems should also be considered. This takes

approximately 5N flops for a tridiagonal system of order N
using precomputed bidiagonally factorized elements. Taking

these flops into account, the efficiency gains achieved for

LOD-FDTD over ADI-FDTD are depicted in Fig. 2 for various

field data output periods m, i.e. data is output at time step

n = m, 2m, 3m, . . . . From the figure (crossed line), we see

that the LOD-FDTD method is more efficient than the ADI-

FDTD method except only when m ∼ 1. In this case, the

LOD-FDTD, like the original SS2 (cf. Fig. 2 dotted line),

essentially calls for three updating procedures at every time

step. Hence the reduction of flops in their right-hand sides

could not cover the overall cost. To alleviate such shortcoming,

we may exploit the present LOD-FDTD that allows separate

or parallel processing of output field data. For instance, the

computations to deduce say, the first output at time step

n = m, i.e. m + 1
4 → m [via (7)-(8)] may be performed

separately and independently in parallel without disrupting the

main iterations: 1
4 → 3

4 → · · · → m − 3
4 → m − 1

4 →
m + 1

4 → m + 3
4 → · · · [via (1)-(4)]. By this way maximum

efficiency gain may be achieved directly without having to

approach large m >> 1, see Fig. 2 (dashed line). This is in

contrast to the combined SS2 approach that does not facilitate
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Fig. 2. Efficiency gains of LOD-FDTD over ADI-FDTD for various field
data output periods. Maximum gain may be achieved directly with parallel
and/or reduced output processing. Also shown is the efficiency (relative to
ADI) of SS2 with three updating procedures.

such independent output processing at n = m in its iterations.

Moreover as mentioned above, when only a small number of

field components are needed at only a few observation points,

the computation cost of output processing for LOD-FDTD can

be reduced further.

IV. CONCLUSION

This paper has presented an unconditionally stable 3-D

LOD-FDTD method without second-order non-commutativity

error. With its higher efficiency due to simpler updating

procedures along with exploitation of parallel and/or reduced

output processing, the present method would be very attractive

for further developments and applications.

REFERENCES

[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method (Boston, M. A.: Artech House,
2005).

[2] F. Zheng, Z. Chen and J. Zhang, “Toward the Development of a Three-
Dimensional Unconditionally Stable Finite-Difference Time-Domain
Method,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 9, pp. 1550-
1558, 2000.

[3] T. Namiki, “3-D ADI-FDTD Method – Unconditionally Stable Time-
Domain Algorithm for Solving Full Vector Maxwell’s Equations,” IEEE
Trans. Microwave Theory Tech., vol. 48, no. 10, pp. 1743-1748, 2000.

[4] J. Lee and B. Fornberg, “A split step approach for the 3-D Maxwell’s
equations”, J. Comput. Appl. Math., vol. 158, pp. 485-505, 2003.

[5] W. Fu and E. L. Tan, “Development of split-step FDTD method with
higher order spatial accuracy,” Electron. Lett., vol. 40, no. 20, pp. 1252-
1254, 2004.

[6] J. Shibayama, M. Muraki, J. Yamauchi and H. Nakano, “Efficient
implicit FDTD algorithm based on locally one-dimensional scheme,”
Electron. Lett., vol. 41, no. 19, pp. 1046-1047, 2005.

[7] V. E. do Nascimento, B.-H. V. Borges and F. L. Teixeira, “Split-
Field PML Implementations for the Unconditionally Stable LOD-FDTD
Method,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 7, pp. 398-
400, 2006.


