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Figure 1: Input (top) and filtered data (bottom) obtained using our Shock Filter advection. Applied to the colors of an image

(left) the filtering process enhances the edges. Applied to the normals (right) the filter accentuates creases in the geometry.

Abstract

This work revisits the Shock Filters of Osher and Rudin [OR90] and shows how the proposed filtering process can

be interpreted as the advection of image values along flow-lines. Using this interpretation, we obtain an efficient

implementation that only requires tracing flow-lines and re-sampling the image. We show that the approach is sta-

ble, allowing the use of arbitrarily large time steps without requiring a linear solve. Furthermore, we demonstrate

the robustness of the approach by extending it to the processing of signals on meshes in 3D.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations I.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

1. Introduction

Over the past decades, numerous filters have been proposed
for enhancing images and geometry. An important aim of
many of these filters is edge-enhancement – generating a

new image or surface that accentuates the boundaries sep-
arating smooth regions. In this work, we revisit the early
Shock Filters proposed by Osher and Rudin [OR90] for
image-processing and provide an interpretation of the origi-
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nal filter that results in a simple and robust implementation
that is easily generalized to geometry-processing.

In Osher and Rudin’s original implementation, the filter-
ing is performed by evolving the image under a non-linear
PDE that preserves extrema, encourages sharp discontinu-
ities at edges, and becomes smooth everywhere else. Due to
the non-linear nature of the PDE, time-integration requires
careful implementation so as to avoid instabilities. As we
show, the PDE used for Shock Filters can be understood as
describing the advection of a signal along a flow. Thus, we
are able to compute an unconditionally stable solution, tak-
ing arbitrarily large steps for the time-integration, without
having to solve a linear system. Furthermore, the ability to
implement advection over meshes makes our approach ex-
tend easily to signals on surfaces in 3D.

Casting Shock Filters in terms of advection provides sev-
eral important contributions, including: A robust and sim-
ple implementation; An extension to filtering signals on sur-
faces; And a formulation that facilitates analysis.

We discuss these contributions in the remainder of the
paper. We begin with a brief review of Shock Filters, as
well as other techniques for enhancing images and geom-
etry (§2). We present the relationship between Shock Filters
and advection, providing an analysis of the underlying PDE
(§3). We describe how the advection formulation can be ex-
tended to surfaces, enabling both the processing of signals
over meshes as well as the processing of the geometry itself
(§4). We discuss performance and compare to related meth-
ods (§5) and summarize our contributions (§6).

2. Review

Introduced more than two decades ago, Shock Fil-

ters [OR90] formulate image-processing as a PDE which
evolves the image towards a steady-state solution which is
piecewise smooth with sharp discontinuities (shocks) form-
ing along edges. The PDE holds extrema fixed and evolves
concave-up (resp.concave-down) regions towards their local
minima (resp. maxima).

Shock Filters have been made more robust in recent work
and have included an unconditionally stable implementa-
tions that uses an implicit time-integrator to solve the PDE
coupled with anisotropic diffusion [AM94], regularized im-
plementations that are more stable in the presence of signal
noise [GSZ02], and fast implementations using smoothed
histograms [VAKMS12].

In addition to Shock Filters, a variety of methods for
edge-aware filtering have been proposed. Anisotropic diffu-
sion [PM90,ALM92] smooths the image while constraining
the diffusion not to cross edges. Bilateral filtering [TM98]
replaces a pixel with the weighted average of its neighbors,
adapting the weights so that more smoothing occurs between
pixels on the “same side” of an edge. Laplacian sharpen-
ing [BCCZ08] amplifies high-frequency content. And, L0

gradient minimization [XLXJ11] solves for the image which
matches the input but has sparse gradients.

Though initially proposed for image-processing, many of
these approaches have since been adapted to editing sur-
face geometry, including anisotropic diffusion of geome-
try [CDR00, BXBT02] and normals [TWBO02], bilateral
mesh denoising [FDCO03], and Laplacian/spectral sharpen-
ing [VL08, CLB∗09].

More recently, there has also been a significant body of
work that leverages priors, learned either from the image it-
self, frames of a video, or a large database of images, to per-
form edge-aware processing [Fat07, SXS08, SLJT08, FF10].

Though unconditionally stable solutions for PDEs have
been proposed in numerous image-processing applications,
these are often obtained through the solution of a large lin-
ear system. In contrast, our approach only requires tracing
values along flow-lines. Thus, much like Stam’s Uncondi-
tionally Stable Fluids [Sta99,Sta03], our method can use ar-
bitrarily large time-steps and generalizes to meshes.

3. Shock Filters and Advection of Images

In this section we describe the relationship between Shock
Filters and advection and show how this leads to a simple,
unconditionally stable, implementation.

3.1. Shock Filters

The partial differential equation describing the time-
evolution of a signal I under the Shock Filter is given by:

dIt

dt
=−‖∇It‖ ·F(L (It)) s.t. I0 = I (1)

Here L is an edge-detector such as the Laplacian or the sec-
ond derivative of It along the direction of the gradient:

L (It) = ∆It or L (It) = (∇It)
T Ht(∇It)

(with Ht the Hessian of It ) and F is a sign-preserving re-
weighting of the edge-detection response.

Intuitively, the incorporation of the ‖∇It‖ term ensures
that the time derivative is zero when the gradient vanishes,
so that local extrema are fixed under the evolution. And, the
sign-preservation of F ensures that the time derivative is neg-
ative (resp. positive) in regions that are concave-up (resp.
concave-down) so that these regions evolve towards their lo-
cal minima (resp. maxima).

3.2. Advection

Re-writing Equation 1 we get:

dIt

dt
=−

〈

F(L (It))

‖∇It‖
∇It ,∇It

〉

s.t. I0 = I.
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Thus, the PDE governing Shock Filters is precisely the PDE
describing the advection of the signal I along the vector field

~ut =
F(L (It ))
‖∇It‖

∇It . (The relationship between shock filters and
advection in 1D is briefly alluded to in [AM94], though im-
plications are not pursued.)

In particular, setting F to be the identity and L to be the

edge-detector L (It) =
(∇It )

T Ht (∇It )
‖∇It‖

we obtain a particularly
simple expression for the PDE:

dIt

dt
=−

1
2

〈

∇‖∇It‖
2,∇It

〉

. (2)

This gives a simple, trivially parallelizable, implementa-
tion that approximates running a Shock Filter for time t by
linearizing the problem and back-tracing along flow-lines:

SignalProcess( I , t )

1 P←‖∇I‖2 compute the potential

2 ~u← 1
2 ∇P compute the flow

3 return Advect*( I , −~u , t ) advect

Figure 2 compares the results of the filtering on an im-
age of a market scene, with zoom-ins highlighting details in
(a) the input, (b) the steady-state solution of the Shock Filter
PDE [OR90], and (c) the steady-state solution of our advec-
tion. As the images show, our results are hard to distinguish
from those obtained by solving the Shock Filter PDE.

Properties

Formulating Shock Filters in terms of advection provides an
interpretation of the filtering process in terms of the poten-
tial P = ‖∇I‖2. Specifically, by flowing the image values
along the gradients of this potential, we fix the signal val-
ues at the local minima of the potential (incuding the points
where the gradient of I vanishes) and advect the values ev-
erywhere else towards the local maxima, thereby pushing
the change in pixel values towards points where the gradient
magnitude is already extremal. Additionally, this formula-
tion makes several properties of Shock Filters easier to see:

Unconditional Stability Since advection sets the values in
the new image by sampling the old image, instabilities can-
not arise, regardless of the step-size t.

Preservation of Extrema Since~u vanishes when the gradi-
ent is zero, values of local minima/maxima are not changed
by the flow. Furthermore, assuming that the flow is bounded,
‖~u‖ ≤ γ < ∞, we know that after advecting for time ε , the
value at a point p must be sampled from a disk of radius at
most ε · γ about p. Thus, since the value at a local extremum
is fixed under the flow and since the values of neighboring
points are obtained by sampling from a neighborhood of the
local extremum, the local extremum will continue to be a
local extremum (with the same value) after advection.

Total Variation Preservation (TVP) in 1D Letting πt(p)
be the map giving the position of a point that starts at p and
flows with~ut for time t, we get:

It ◦πt = I.

Then, the total variation becomes:

TV (It) =
∫

∥

∥

∥
∇It |p

∥

∥

∥
d p

=
∫

∣

∣

∣
det

(

dπt |p

)∣

∣

∣
·
∥

∥

∥
∇It |πt (p)

∥

∥

∥
d p

=
∫

∥

∥

∥
∇(It ◦πt)|p

∥

∥

∥
d p

=
∫

∥

∥

∥
∇I|p

∥

∥

∥
d p = TV (I)

(with the second equality deriving from a change of variables
and the fact that the determinant of πt cannot be negative).

While the advection formulation makes it clear that Shock
Filtering is TVP in 1D, it also suggests that it will not be in
2D. In particular, the advected image satisfies:

∇I|p =
(

dπt |p

)

◦ ∇It |πt (p) .

However, the condition that should be satisfied to ensure
preservation of total variation is:

∥

∥

∥
∇I|p

∥

∥

∥
=
∣

∣

∣
det

(

dπt |p

)∣

∣

∣
·
∥

∥

∥
∇It |πt (p)

∥

∥

∥
.

Less formally, advection acts on gradients by scaling them
by the reciprocal of the differential change of length along
the flow-line. In contrast, total variation preservation re-
quires that gradients be scaled by the reciprocal of the differ-
ential change in area. In general, these two definitions differ,
with agreement implying that flow-lines are parallel.

3.3. Defining the Flow

We conclude by discussing the definition of the flow ~u. We
defer details of the spatial discretization to Appendix A.

Multi-Channel Signals Though one can apply the advec-
tion to multi-channel signals by processing the channels in-
dependently, we have found that it is often preferable to
couple the channels so that the values in the different chan-
nels evolve together. Our advection formulation ensures that
this happens so long as we use the same flow field ~u to de-
fine the filtering. In particular, given a multi-channel image
I(p) =

(

I1(p), . . . , Id(p)
)

, we define the flow field as:

~u =
1
2

d

∑
j=1

∇

∥

∥

∥
∇I j

∥

∥

∥

2
.

Multi-Step Advection Our implementation only approxi-
mates Shock Filters as we fix the flow, setting ~ut ≡ ~u0. A
more faithful implementation can be obtained by perform-
ing multiple (short) advection steps and updating the flow to
~ut ≡

1
2 ∇‖∇It‖

2 after each step.
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Figure 2: Comparison of the steady-state solution (t → ∞) obtained by filtering an image of a market scene (left). Zoom-ins

show: (a) the initial image, (b) the solution to the Shock Filter PDE, and (c) our Shock Filter advection.

While the naive approach for generating It+1 is to step
back along ~ut for a unit of time and sample image It at the
back-traced position, we have found that repeated sampling
leads to undesirable smoothing. Instead, we compose the
flows, taking a unit step back along ~ut , then a unit step back
along~ut−1, etc., and only then sampling the input image, I0,
at the back-traced position. (Noting that the first t steps taken
in estimating It+1(p) are the same t steps taken in estimating
It(p), we obtain an efficient implementation by storing and
updating the source position for each pixel p.)

Figure 3 compares these implementations, showing re-
sults with the updated flow~ut ≡

1
2 ∇‖∇It‖

2, using naive (top)
and composed (middle) implementations, as well as the re-
sults using the fixed flow ~ut ≡ ~u0 (bottom). As the figure
shows, the naive implementation loses fine feature detail
over time, while results with flow composition are hard to
distinguish from those obtained using a fixed flow field.

Robustness to Noise As pointed out in [GSZ02], a chal-
lenge of using Shock Filters is that the definition is sensitive
to noise. Using our advection formulation, this instability
can be removed by smoothing the flow field ~u before per-
forming the advection. (Visualizations are shown in the next
section, for applications in geometry processing.)

4. Extending to Surfaces

Using the SignalProcess algorithm we can also apply Shock
Filters to processing signals on a surface by estimating the
gradient to define the potential and the flow and then advect-
ing. (Discretization details are described in Appendix A.)

Figure 4 shows a visualization of advection in filtering the
texture on the “Pleo” model. As with images, advection pro-
duces a texture with enhanced edges, converging to a stable
steady-state solution as the flow time goes to infinity.

4.1. Geometry Processing

Treating the normals of a mesh as the signal, we can sharpen
the geometry by first sharpening the normals using the Sig-

nalProcess algorithm and then solving for the new geometry
that best fits the normal field.

Following [YZX∗04], we fit a surface to the sharpened
normal field ~N by solving a screened Poisson equation:

1. Compute the gradient of the initial coordinate function c0
(the function assigning a 3D position to each vertex):

~v = ∇c0

2. Project out the component in the normal direction:

~w =~v−〈~v,~N〉 ·~N

3. Solve the screened Poisson equation to get the positions
of the surface whose normals match the target normals:

c1 = arg min
c

(

ε · ‖c− c0‖
2 +‖∇c−~w‖2

)

⇓

c1 = (ε−∆)−1 (ε · c0 +∇ ·~w)

(In our evaluations we fix the regularization term ε = 1.)

Figures 5 and 6 show the results of our Shock Filter ad-
vection on the “David” and “Chinese Dragon” models. Fig-
ure 5 shows the results of the sharpening with increasing
time steps while Figure 6 shows the steady-state solution
obtained by performing increasing number of passes of um-
brella smoothing on the potential before advecting. As the
figures show, the approach is stable, providing more pro-
nounced sharpening as advection time is increased. (With the
exception of the results in Figure 2 we use a single smooth-
ing pass in our evaluations.)

Remark Using the normals (Nx,Ny,Nz) as the signal, the

potential (‖∇Nx‖
2 +

∥

∥∇Ny

∥

∥

2
+ ‖∇Nz‖

2) is the sum of the
squares of the principal curvatures. Thus, in the context of
geometry processing, Shock Filters advect the normals so
that discontinuities occur at extrema of total curvature.

Remark In sampling the normals at the back-traced posi-
tions we can either use nearest-point sampling (copying the
normal from the triangle containing the back-traced posi-
tion) or linear interpolation (initially averaging the per-face
normals to the vertices to get a per-vertex signal and then
interpolating using the barycentric coordinates of the back-
traced position). As shown in Figure 7, linear interpolation

c© 2015 The Author(s)
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Figure 3: Comparison of the advection solution obtained for different times steps: Zoom-ins show results with naive sampling

(top), flow composition (middle), and a fixed flow field (bottom).

Figure 4: Shock Filter advection used to sharpen a signal on a triangle mesh: Showing results for different time steps t.

Figure 5: Shock Filter advection used to sharpen geometry: Showing results for different time steps.

has the desirable property of removing high-frequency noise
from the signal and we use this approach in our evaluations.

This is further highlighted in Figure 8 which shows the
results of Shock Filter advection applied to the “Mon-
keys” dataset [Pau12]. In this example, sampling with lin-
ear interpolation removes the high-frequency noise result-
ing from the structure-from-motion reconstruction and the

steady state solution robustly advects the normals so that cur-
vature concentrates along the edges of the model.

5. Performance

In this section we evaluate the performance of our method.
All results were obtained using an Intel Core i7-4710MQ
processor with 16 GB of RAM, parallelized across eight
(hyper) threads using OpenMP [DM98]. For geometry-

c© 2015 The Author(s)
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Figure 6: Shock Filter advection used to sharpen geometry: Showing the solution with increasing number of smoothing passes.

Figure 7: Comparison of geometry processing with Shock

Filter advection: Showing the original geometry (left), re-

sults with nearest-point sampling (middle), and results with

linear interpolation (right).

processing applications where we fit vertex positions to the
sharpened normals, we solve the linear system using 25 it-
erations of a diagonally preconditioned Conjugate Gradients
solver, initialized with the original vertex positions.

5.1. Image-Processing

We begin by considering applications of our advection for-
mulation of Shock Filters to image-processing.

As demonstrated in Section 3, Osher and Rudin’s PDE
and our advection formulation provide different implemen-
tations of the same image sharpening technique. An advan-
tage of the advection formulation is that the computational
effort in determining a pixel’s value adapts to the length of
the stream-line traversed when back-tracing the flow. In con-
trast, the PDE formulation requires the same computational
effort of each pixel.

Figure 8: Shock Filter advection applied to a noisy sur-

face: Showing the original geometry (left) and the steady

state (t→ ∞) solution (right).

We evaluate the benefit of using advection by measuring
the steady-state convergence rate, ‖It − I0‖/‖I∞− I0‖, as a
function of the time required to compute It .

Figure 9 plots the convergence rates of the two methods
for the 2848× 2136 image in Figure 2, sampling at time
steps t = 2k with k ∈ {1,2, · · · ,9} and approximating I∞ by
I2048. As the plots show, while advection is slightly less ef-
ficient than the PDE solution at short time steps, the ability
to adapt computation to stream-line length makes it signifi-
cantly faster when computing the steady-state solution.

Remark As the flow~u= 1
2 ∇P is curl-free, stream-lines can-

not form cycles and we expect the back-traced paths to even-
tually terminate at sources. This is corroborated by Figure 9

c© 2015 The Author(s)
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Figure 9: Comparison of steady-state convergence times, as

a function of convergence rate, for solutions obtained using

the Shock Filter PDE and our Shock Filter advection.

Time Step (t)
1 4 16 64 256 1024

Naive 0.4 1.3 5.0 19.8 79.0 310.1
Composed 0.4 1.2 4.7 20.0 77.6 308.6
Fixed 0.4 0.4 0.5 0.6 0.6 0.6

Table 1: Processing times for image sharpening (in sec-

onds) using naive sampling, flow composition, and a fixed

flow field, as a function of time step.

which shows that the run-time of our (fixed flow) implemen-
tation approaches a constant as flow time increases.

In Figure 3 we showed that though our implementation
uses a fixed flow field, it generates results that are nearly
identical to those obtained when the flow field is updated at
each time step. We have chosen to use the fixed flow field be-
cause we have found that most stream lines tend to be short
so that run-time grows sub-linearly with the flow duration. In
contrast, updating the flow at each time-step gives run-times
that are linear in the duration of the flow.

This can be seen in Table 1 which gives the run-times for
sharpening the 1368×1824 image in Figure 3, demonstrat-
ing the sub-linear complexity (in flow time) of the fixed flow-
field implementation. In contrast, updating the flow-field (re-
gardless of whether it is done by naively sampling from the
previous solution or by using the composite flow and sam-
pling from the input) has linear complexity.

Comparison to filtering/diffusion methods As with
Shock Filters, edge-preserving image filtering operators
(e.g. [PM90, ALM92, TM98, TT99]) encourage the gradient
field to concentrate along sharp edges in the input. Away
from these edges, however, they tend to smooth out the im-
age and are commonly used to extract texture layer hierar-
chies [BPD06, FFDLS08, SSD09, CM11]. Figure 10 high-
lights this distinction by comparing our method to existing
edge-preserving operators. While all methods preserve the

Figure 10: Comparison of our method (top right) to state-

of-the-art techniques in edge-aware filtering. Labels indicate

the parameter setting used to generate the different images.

Time Step (t)
1 4 16 64 256 1024 4098

Color 0.2 0.2 0.2 0.3 0.3 0.4 0.5
Positions 1.7 1.8 1.9 2.2 2.7 3.2 3.5

Table 2: Processing times (in seconds) for sharpening ge-

ometry color and positions, as a function of time step.

silhouette boundaries like the slats and the saucer, the filter-
ing approaches tend to lose detail in areas like the reflection,
whereas Shock Filtering tends to enhance it.

5.2. Geometry-Processing

In extending our advection formulation of Shock Filters to
geometry-processing, we find similar performance, whether
we are sharpening per-vertex colors or the geometry itself.

Table 2 gives the running times for processing the colors
on the 213K vertex “Pleo” model (Figure 4) and the normals
on the 2M vertex “David” model (Figure 5). As with image-

c© 2015 The Author(s)
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Smoothing Passes (s)
0 1 2 4 8 16

Pre-Processing 1.9 1.8 1.8 1.8 1.8 1.8
Flow Computation 0.2 0.4 0.6 0.8 1.4 2.4
Advection 0.9 1.4 1.6 1.8 2.1 2.5
Geometry Fitting 1.0 1.1 1.1 1.1 1.0 1.1

Table 3: Break-down of processing time (in seconds) for

sharpening geometry, as a function of smoothing passes.

processing, we find that the computational complexity is
sub-linear in the duration of the flow, with run-times ap-
proaching a constant as flow time is increased. (Note that for
the “David” results, fitting vertex positions to the sharpened
normals requires setting up and solving a screened Poisson
equation, which takes an additional 9.3 seconds on average.)

Finally, Table 3 gives a break-down of the running times
for the different phases of sharpening the positions of the
656K vertex “Chinese Dragon” mesh (Figure 6), using a
time step of t = 2048 and varying the number of smoothing
passes. As expected, the running times for computing (Pre-

Processing) and solving (Geometry Fitting) the screened
Poisson system are constant independent of the number of
smoothing passes, while the cost of computing the flow
field (Flow Computation) grows linearly with the number
of smoothing passes.

We also note that the time required for back-tracing along
flow lines (Advection) grows with the number of smoothing
passes. We believe that this is because successive smoothing
passes remove (non-persistent) sources/sinks so that points
back-trace longer paths to reach the steady-state.

Comparison to bilateral and mean-shift filters In Fig-
ure 11 we compare our approach to the geometry filtering
methods of Solomon et al. [SCBW14] on two noisy “frog”
datasets [Sol08], comparing the results of bilateral filtering
(second column), mean-shift filtering (third column), and
Shock Filter advection (fourth column). For low amplitude
noise, all three successfully clean the data, and Shock Filter
advection additionally sharpens the edges. For larger ampli-
tude noise, bilateral filtering and Shock Filter advection fail
to clean the data. However, by mollifying the normal field in
a pre-processing step (by performing two passes of Lapla-
cian smoothing on the normals while keeping the vertex po-
sitions unchanged) [JDD03], we get a signal that is success-
fully sharpened with Shock Filter advection (last column).

We stress that though our approach is robust to noise, it
is not designed for mesh-denoising. We expect that when
the input is noisy, applying state-of-the-art denoising tech-
niques in a pre-processing step will improve the quality of
the sharpened geometry.

6. Conclusion

We present a novel interpretation of Shock Filters as a PDE
describing image advection. We show that this interpretation
provides a simple and unconditionally stable implementa-
tion that extends to signal processing on triangle meshes. In
the future, we would like to consider several extensions:

• We would like to explore other approaches for performing
the advection (e.g. [AWO∗14]).

• We would like to extend our work to the gradient-domain
context by adapting the implementation to flow signal gra-
dients, rather than values.

• Leveraging ideas from optical flow [LK81], we would like
to explore a hierarchical extension, estimating the flow at
coarser resolutions and using the low-resolution flow for
advecting at higher resolutions. Using such an approach,
it may be possible to “jump over” small edges at the finer
resolution in order to converge at larger silhouettes.
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Figure 11: Comparison to related methods: Showing the noisy input (left column), results of bilateral and mean-shift filter-

ing [SCBW14] (second and third columns), results obtained with Shock Filter advection (fourth column), and results obtained

by applying Shock Filter advection to the mollified normals (last column). Labels indicate the parameters used to generate the

different geometries.
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Appendix A: Spatial Discretization

Implementing Shock Filter advection requires discretizing
the flow, smoothing the potential, and tracing flow-lines. We
describe the implementation details for each.

To consolidate the discussion, we will assume that the do-
main is a mesh, M = (V,F), with V the vertex set and F the
face set. (For images, V is the set of pixels and F is the set
of squares joining four adjacent pixels.)

Discretizing the Flow

Given a signal I : V → R, we define the gradient as a piece-
wise constant function assigning a vector to each face, ∇I :
F → R

2. For images, the vector associated to a face is ob-
tained by computing the finite differences along edges of the
mesh and setting the x/y-coordinates to the average differ-
ence on adjacent horizontal/vertical edges. For surfaces, the
vector is defined as the gradient of the linear interpolant of
the values at the triangle’s corners. (For processing geome-
try, the initial normal field is defined per-face so we compute
a per-vertex signal by taking the area-weighted average.)

Given the vector field, we compute its square norm on
each face to get a function ‖∇I‖2 : F → R, which we turn
into the vertex-valued potential, P : V → R by setting the
value at a vertex to the area-weighted average of the values
in adjacent faces.

Finally, taking the gradient of the potential as above, we
get a piecewise constant vector-field assigning a flow direc-
tion to each face,~u = ∇P : F → R

2

Smoothing

To obtain a smoother flow, we apply umbrella smoothing
to the signal prior to computing gradients, using Gaussian
weights [Tau95, BN08]:

I[v]←
I[v]+∑w∈N(v) αvw · I[w]

1+∑w∈N(v) αvw
with αvw = e−‖(v−w)/ℓ̄‖

2

where N(v) is the set of one-ring neighbors of v and ℓ̄ is
the average edge length. Smoothing is performed before
both gradient calculations (i.e. before computing the poten-
tial P = ‖∇I‖2 and before computing the flow field~u = ∇P).

Tracing Flow-Lines

Given a flow field~u, a point p ∈M and a time step t ≥ 0, we
trace the position of p along the flow by iteratively sampling

Trace( p ,~u , t )

1 δ ← ℓ̄/10

2 ~v←~u(p) ,~v0←~v

3 while( t > 0 AND 〈~v,~v0〉> 0 )

4 dt←min( t , δ/|~v| ) compute the step-size

5 p← p+~v ·dt advance the position

6 t← t−dt reduce the flow time

7 ~v0←~v ,~v←~u(p) update flow directions

8 return p

the flow field and stepping along the flow direction, ensuring
that no individual step is larger than a fixed δ > 0:

For images, Step 5 only requires vector addition. For sur-
faces, this step is implemented as in [SY04] traveling along
the (straight-line) geodesic from p in direction ~v. If the
geodesic intersects a triangle edge, the edge-adjacent trian-
gle is unfolded into the plane of the current triangle and the
path is extended into the next triangle.

Face Advection For geometry processing, normals are de-
fined per-face and we compute the advected position by
starting at the center of the face and following the flow:

AdvectFaces( I ,~u , t )

1 for f ∈ F

2 f̄ ←Center( f ) compute the face center

3 p←Trace( f̄ ,~u , t ) flow from the center

3 J[ f ]← I(p) sample

4 return J

Vertex Advection For signals defined per-vertex, the situa-
tion is more challenging since the vector-field is only defined
in the interior of faces. To address this, we compute the value
at a vertex by offsetting into each of the adjacent faces, flow-
ing from the offset positions, and taking the average:

AdvectVertices( I ,~u , t )

1 ε ← 0.001

2 for v ∈V

3 J[v]← 0

4 for f ∋ v

5 f̄ ←Center( f ) compute the face center

6 p← v · (1− ε)+ f̄ · ε offset into the triangle

7 q←Trace( p ,~u , t ) flow from the offset

8 J[ f ]← J[ f ]+ I(q) increment

9 J[v]← J[v]/Valence( v ) average

10 return J
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