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Abstract

Blind Quantum Computing (BQC) [1, 2, 3, 4, 5] allows a client to have a server carry out
a quantum computation for them such that the client’s input, output and computation remain
private. Recently the authors together with Broadbent proposed a universal unconditionally
secure BQC scheme [3] where the client only needs to be able to prepare single qubits in separable
states randomly chosen from a finite set and send them to the server, who has the balance of
the required quantum computational resources. A desirable property for any BQC protocol is
verification, whereby the client can verify with high probability whether the server has followed
the instructions of the protocol, or if there has been some deviation resulting in a corrupted
output state. A verifiable BQC protocol can be viewed as an interactive proof system leading
to consequences for complexity theory [3, 4, 7].

In this paper we extend the BQC protocol presented in [3] with new functionality allowing
blind computational basis measurements, which we use to construct a new verifiable universal
BQC protocol based on a new class of resource states. We rigorously prove that the probability
of detecting an incorrect output is exponentially small in a security parameter, while resource
overhead remains polynomial in this parameter. The new resource state allows entangling gates
to be performed between arbitrary pairs of logical qubits with only constant overhead. This
is a significant improvement on the original scheme, which required that all computations to
be performed must first be put into a nearest neighbour form, incurring linear overhead in the
number of qubits. Such an improvement has important consequences for efficiency and fault-
tolerance thresholds.

1 Introduction

Scalable quantum computing has proven extremely difficult to achieve, and when the technology
to build large scale quantum computers does become available it is likely that they will appear
initially in small numbers at a handful of centres. How will a user interface with such a quantum
computer? The solution is blind quantum computing (BQC) that enables a classical client (called
Alice) with limited quantum technology to delegate a computation to the quantum server(s) (called
Bob) in such a way that the privacy of the computation is preserved [1, 2, 3, 4, 5].

The concept of blind classical computing was proposed first by Feigenbaum [10] and then ex-
tended by Abadi, Feigenbaum and Killian [11]. They studied the notion of “computing with en-
crypted data”, and showed that for some functions f , an instance x can be efficiently encrypted
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into z = Ek(x) in such a way that Alice can recover f(x) efficiently from k and f(z) computed by
Bob. Moreover Abadi, Feigenbaum and Killian showed that no NP-hard function can be computed
blindly if unconditional security is required, unless the polynomial hierarchy collapses at the third
level [11]. Even restricting the security condition to be only computational1 the question of the
possibility of blindly computing known circuits remained open for 30 years [12].

Unlike classical computing, quantum mechanics can overcome the limitation of computational
security. An example of the blind quantum computation was first proposed by Childs [1] based
on the idea of encrypting input qubits with a quantum one-time pad [13, 14]. At each step, Alice
sends the encrypted qubits to Bob, who applies a known quantum gate (with some gates requiring
further interaction with Alice). Bob returns the quantum state, which Alice decrypts using her key.
Cycling through a fixed set of universal gates ensures that Bob learns nothing about the circuit.
The protocol requires fault-tolerant quantum memory and the ability to apply local Pauli operators
at each step, and does not provide any method for the detection of malicious errors.

Similarly, still in the model where the function is classical and public, Arrighi and Salvail [2] gave
an approach using quantum resources. The idea of their protocol is that Alice gives Bob multiple
quantum inputs, most of which are decoys. These are quantum states which are not intended to be
part of the desired computation, but rather are used to detect a deviation from the protocol by Bob.
Bob applies the target function on all inputs, and then Alice verifies his behaviour on the decoys.
The protocol only works for a restricted set of classical functions called random verifiable where it
is possible for Alice to efficiently generate random input-output pairs. Moreover, the protocol does
not prevent Bob from learning Alice’s private input; it relies upon quantum physical information
gain versus disturbance trade offs to achieve cheat-sensitive security against individual attacks.

Aside from the cryptographic scenario, a different scheme based on authentication was proposed
by Aharonov, Ben-Or and Eban [4], where they showed that any language in BQP has an interactive
proof system with a nearly classical verifier. Their protocol can be also used for blind quantum
computation. However, their scheme requires that the verifier (Alice) has quantum computational
resources and memory to act on a constant-sized register.

On the other hand, in a recent scheme proposed by the authors together with Broadbent [3],
based on the framework of measurement-based quantum computing [6], all Alice needs is a clas-
sical computer and a very weak quantum instrument. We gave the first universal blind quantum
computation (UBQC) protocol that allows Alice (who does not have any quantum computational
resources or quantum memory) to interact with a server Bob (who has a quantum computer) in
order for Alice to obtain the outcome of her target computation such that privacy is preserved.
This means that Bob learns nothing about Alice’s inputs, outputs, or desired computation. The
privacy is perfect, not relying on any computational assumptions, and holds no matter what actions
a cheating Bob undertakes. The protocol works for any quantum circuit and assumes Alice has a
classical computer, augmented with the power to prepare single qubits in separable states randomly
chosen from the set {|+θ〉 =

1√
2

(

|0〉+ eiθ |1〉
)

| θ = 0, π/4, 2π/4, . . . , 7π/4}. The required quantum

and classical communication between Alice and Bob are linear in the size of Alice’s desired quantum
circuit. Interestingly, if verification is not required it is sufficient for Alice’s classical computation
to be simply addition modulo 8, though no such restricted model is yet known to be sufficient for
verification. Similar observations in a non-cryptographic context have been made in [15]. Except
for an unavoidable leakage of the size of Alice’s data [11], Alice’s privacy is perfect.

Following this work a similar scheme which exploits the ground state of Affleck-Kennedy-Lieb-

1A cryptosystem is unconditionally secure (also refereed to as “information-theoretically secure”) if it is secure even
when the adversary has unlimited computing power. A weaker notion is computational security where the adversary
power is restricted to efficient computation.
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Tasaki (AKLT) chains as a novel resource state was also proposed, also within the model of
measurement-based quantum computing, leading to more robust computation on Bob’s side [5].
More recently the concept of blindness has been also extended to the approximate setting where
using an amplification technique similar to the quantum key distribution scenario, a new BQC
protocol where Alice has access to coherent states only, was proposed [16].

All previous protocols for blind quantum computation require technology for Alice that is to-
day unavailable: Arrighi and Salvail’s protocol requires multi-qubit preparations and measurements,
Childs’ protocol requires fault-tolerant quantum memory and the ability to apply local Pauli oper-
ators at each step, while Aharonov, Ben-Or and Eban’s protocol requires a constant-sized quantum
computer with memory. In sharp contrast to this, from Alice’s point of view, our protocol can be
implemented with physical systems that are already available and well-developed. The building
blocks for this type of blind computation protocol have recently been demonstrated the first time
using polarization-entangled photonic qubits [17].

A desirable property for any UBQC protocol is verification (also known as authentication),
that is detection of a cheating Bob. Note that if Alice wants to compute the solution to a classical
problem in NP, she could efficiently verify the outcome. An interfering Bob is not so obviously
detected in other cases. The main contribution of the present paper is to present a new protocol
that compared to the original protocol offers a more rigorous but intuitive proof of verification.
Where Alice can verify with high probability whether Bob has followed the instructions of the
protocol and the output state is indeed in the correct form, or if there has been a deviation and
therefore she would reject the output state.

The rest of this paper is organised as follows. Section 2 and 3 summarise various required con-
cepts from measurement-based quantum computing and also the original UBQC scheme presented
in [3]. In order to construct our new verifiable UBQC protocol we first introduce the concept of
dummy qubits in Section 4, where we assume Alice now can prepare a qubit randomly chosen not
only from the set A defined above, but also from the set {|0〉 , |1〉}. The latter qubits are called
dummy qubits as they have no effect on the actual underlying computation. However, they permit
the blind construction of isolated trap qubits in the state |+θ〉 as explained in Section 6 where
the core concept of verification is introduced. In order to deal with universality, in Section 5 we
introduce a new resource state called the dotted-complete graph states which allow us to adapt the
topological fault-tolerant measurement-based quantum computation scheme due to Raussendorf,
Harrington and Goyal [9] to our blind setting. The use of this scheme is expected to lead to sub-
stantially increased thresholds for fault tolerant computing in the blind setting. A threshold for
fault-tolerant blind computation in the absence of verification based on this fault-tolerance scheme
was previously calculated as 4.3 × 10−3 by Fujii and Morimae [18]. As shown in Section 6, intro-
duction of a single blind isolated trap qubit leads to a verifiable blind quantum computing protocol
with security polynomial in the total number of qubits. In order to boost the security while main-
taining universality a new scheme has to be constructed. This is done in Section 7 where we put
together various constructions of the previous sections to present the main result of this paper,
a universal exponentially secure verifiable and fault-tolerant blind quantum computing protocol.
Moreover, similar to the original UBQC protocol [3], the new protocol can also be adapted to pro-
vide a two-prover interactive proof for any languages in BQP with a purely classical verifier, though
a full discussion of this adaptation is beyond the scope of the current manuscript.
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2 Preliminaries

Measurement-based quantum computing (MBQC) [6, 19] is a novel form of quantum information
processing, where the key twin notions that distinguish quantum information processing from its
classical counterpart, entanglement (creating non-local correlations between quantum elements) and
measurement (observing a quantum system), are the explicit driving force of computation. More
precisely, a measurement-based computation consists of a phase in which a collection of qubits are
set up in a standard entangled state. Measurements are then made on individual qubits and the
outcomes of the measurements may be used to determine further adaptive measurements. Finally,
again depending on measurement outcomes, local adaptive unitary operators, called corrections,
are applied to some qubits; this allows the elimination of the indeterminacy introduced by mea-
surements. Conceptually MBQC separates the quantum and classical aspects of computation; thus
it clarifies, in particular, the interplay between classical control and the quantum evolution process.
The UBQC protocol explores this unique feature of MBQC as it has been proven to be conceptually
enlightening to reason about distributed computing tasks using this approach [20]. We begin by
describing all the required elements for an MBQC protocol and then move to the particular family
of distributed MBQC protocols for hiding various aspects of a given computation.

2.1 Single party (undistributed) MBQC protocol

A single party MBQC protocol consists of the following three elements:

• A uniform family of open graph states2 {(Gn,m, In, On)}n over m vertices associated with in-
dividual qubits, where n is the size of the input/output space of the underlying computation3.
We usually assume that |I| = |O| = n, however sometime n is taken to be strictly larger than
the dimension of the input/output Hilbert space due to the existence of auxiliary input or
output qubits (as in later protocols which incorporate trap qubits). In order to have uniform
notation, for the latter case, we will still use I/O to be the class of all non-prepared/non-
measured qubits where it is strictly larger than the class of all input/output qubits. By the
term “uniform family” we simply mean that for any protocol there exist a classical Turing
machine that for a given input of the size n describes the required graph over m ≥ n vertices.
If the underlying geometry of the graph is regular, for example being one-dimensional lines,
two-dimensional regular lattices or brickwork graphs (as we describe later), then instead of
referring to the Turing machine to define the uniform family we simply use fixed parameters
such as the size of the line or lattice to specify the graphs. For any fixed input size n the
graph Gn,m describes the initial quantum state of the protocol. Given an arbitrary state of
the input qubits corresponding to the input vertices of the graph, one prepares m− n qubits
in the state |+〉 = 1√

2
(|0〉 + |1〉) corresponding to all non-input qubits (Ic) in the graph and

then apply control-Z operator between qubits i and j, if the corresponding vertices in Gn,m

are connected. Note that since the control-Z gate is symmetric the direction of the edge is
not important and hence we are working with undirected graphs. We will usually refer to the
obtained quantum state based on the graph Gn,m as the graph state Gn,m, unless a different
notation is more appropriate, also for simplicity we drop the subindex m.

2An open graph state (G, I,O) consists of an undirected graph G together with two subsets of nodes I and O,
called inputs and outputs.

3In this paper we deal only with those MBQC protocol that implements a unitary operator over their input space
and hence the size of the output space is the same as the input space, but this is not a restriction and we can extend
this treatment to any general CP map by padding the input and output spaces. Further, for simplicity, we will assume
that the input is always a pure state, though again this treatment can be extended to the general case.
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• A set of angles φi ∈ A where A ⊆ [0, 2π) for all non-output qubits, to describe a collection
of single qubit (X,Y )-measurements, that is measurement in the bases 1√

2
(|0〉 ± eiφi |1〉). For

the specific class of MBQC protocols that we discuss in this paper we require the angles to
specify a collection of measurement bases, such that individual measurements are unbiased
with respect to the initial state. This is an essential ingredient for the blindness property that
we define later. Without loss of generality, we can fix the set from which the angles are chosen
to be A = {0, π/4, 2π/4, · · · , 7π/4}. We will discuss later how this combination of angles and
particular families of graph states leads to approximate universality.

• The last ingredient is the structure of the dependency among the measurements. It is known
that despite the probabilistic nature of the measurements, an MBQC protocol can imple-
ment a unitary computation over the input space by introducing a casual structure over the
measurements. This is done by allowing any measurement on qubit i to be dependent on the
result of some (possibly none) previously measured qubits. Let si ∈ {0, 1} be the classical
result of the measurement at qubit i. There are two type of dependencies, called X and Z
dependency. If a measurement at qubit i is X or Z dependent on the sj where qubit j has
been already measured then the actual angle of the measurement of qubit i during the pro-
tocol run is (−1)sjφi or φi + sjπ respectively. Naturally one needs a non-cyclic structure to
be able to run such dependencies and for an arbitrary graph such construction (if it exists) is
formalised by the notion of the flow of the graph [21, 22]. A function (f : Oc → Ic) from the
measured qubits to non-input qubits and a partial order (�) over the vertices of the graph
such that ∀i : i � f(i) and ∀j ∈ NG(i) : f(i) � j, where NG(i) denotes the neighbourhood
of vertex i in G. Each qubit k is X dependent on f−1(k) and Z dependent on all qubits l
such that k ∈ NG(f(l)). Note that if the dependency set is empty, that is there is no qubit
q such that q = f−1(k) or q ∈ NG(f(l)) then we set the convention that the corresponding
value of sq is zero and hence we can use the same formulas ((−1)sjφi or φi+ sjπ) to compute
the dependent angles.

The above describes only a non-distributed (single party) MBQC protocol, that is a protocol
where a party both prepares the graph state and performs the sequence of the dependent measure-
ments according to the order given by the flow (see [6, 19] for more details on MBQC computation).
One can easily extend the above definition to the distributed setting where different elements of
the protocol are accessible and known only to specific parties and through classical/quantum com-
munication the parties collaborate to perform a specific computation. Consider a simple two-party
example where Alice has the information about the angles and Bob has the information about the
graph and hence he can calculate the flow. Then they can collaborate to perform the corresponding
computation as follows: first Bob prepares the required graph state and asks Alice to send him the
classical information about the angles of the measurement, Bob then computes the dependency and
performs the measurement and so forth. The purpose of this paper is to describe a family of such
distributed protocols where, despite the communication, Alice can keep the measurement angles
hidden from Bob. We then show that, for certain carefully chosen graph families, hiding these angles
is sufficient to hide the full underlying computation together with the input and outputs.

2.2 2-Party (distributed) Hiding Protocols

We define a specific family of two-party (Alice and Bob) MBQC protocols (which we term hiding
protocols) that can be shown to be “blind” in the sense that Alice can hide information from Bob.
For simplicity, instead of working with a family of graphs representing the computation over an
arbitrary size input, we fix the input size to be n and we denote by m ≥ n the total number of
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vertices in the graph and hence the total number of qubits in the equivalent single-party protocol.
Note that if we desire to have an efficient protocol, then we restrict the computation of the protocol
to be of the polynomial size by requiring that m = Poly(n). However blindness is independent of
any complexity assumptions so we do not, in general, restrict the size of m.

The protocol will be interactive having m− n steps if the output is quantum or m steps if the
output is classical, where at each step a single qubit is measured. In practice we can parallelise the
protocol to D steps, where D is the depth of the partial order of the flow of the graph [23, 24]. This
is due to the special structure of the partial order of the qubits defined by the flow function whereby
all the qubit in the same class of the partial order are independent of each other and hence can be
measured in parallel, i.e. at the same time. However this parallelisation will make no difference to
the concept of blindness that we are concerned with, so we keep the simple convention that at each
step only one qubit is measured. Furthermore we assume for the case of classical output that all of
the output qubits are measured in the final step with a Pauli X measurement. Again this is simply a
convention for the discussion in our paper and in general the output qubits could be measured with
any angles and in different steps depending on the flow construction. Such a convention does not
affect universality, as the circuit being implemented can simply by modified to replace measurements
in arbitrary bases with measurements in fixed bases preceded by an appropriate local rotation.

We will denote by s a sequence of length m− n with value in {0, 1} describing the result of the
non-output measurements performed so far. In the case of classical output, where output qubits are
measured as the last n steps, s is a sequence of length m. The value associated with a qubit that is
not yet measured are set to 0, and hence at the beginning of the protocol before any measurement
being performed we set s = 0, 0, · · · , 0. We will denote by s≤i the prefix of length i of s and elements
of s are denoted by si. Whenever adding the values of si and sj we define their sum modulo 2. All
the qubits in the protocol are enumerated in such a way that at position i all qubits with label
less than i are measured before measuring qubit i. Any total ordering of the qubits consistent with
partial ordering of the flow will work and as a result the measurement at qubit i will depends only
on the string s<i .

We describe first a generic hiding protocol with quantum input and output (Protocol 1) and
one with classical input and output (Protocol 2) and then formalise various derivatives of them to
obtain universal, blind and verifiable protocols. Protocol 2 is exactly the same as Protocol 1 except
that the steps for encoding input are removed and all the output qubits are measured in the Pauli
X basis.4

The outline of the main protocol is as follows. Alice has in mind a unitary operator U that is
implemented with a measurement pattern on some graph state G with its unique flow function f ,
and measurements angles in A. This pattern could have been designed either directly within the
MBQC framework or from a circuit construction. The pattern assigns a measurement angle φi to
each qubit in G, however during the execution of the pattern, the actual measurement angle φ′i is a
modification of φi that depends on previous measurement outcomes instructed by f in the following
way [21, 22]:

φ′i = (−1)
s
f−1(i)φi + (

∑

j: i∈NG(f(j))

sj)π .

As said before, in a standard MBQC pattern all the non-input qubits are prepared in the state
|+〉 and all the input qubits in the desired input state |I〉. Considering such quantum input allows

4Note that for simplicity of presentation we have chosen to measure the output qubits with Pauli X, so that the
same evaluation function C of the non-output measurements, in Protocol 1, can be used for the output qubits. However
one could add separate evaluation function for the output qubit measurement to perform Pauli Z measurement over
them.
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for the possibility of Alice having additional capabilities allowing her to produce arbitrary input
states, or for the possibility that the input state is supplied on Alice’s behalf by a third party. In
our protocols, in order to hide the information about the angles some randomness has to be added
to the preparation and consequently the measurements have to be adjusted to compensate for this
initial randomness to obtain the correct outcome. Hence, Alice prepares all the non-input qubits
in |+θi〉 for some randomly chosen θi ∈ A and also applies a full quantum one-time pad encryption
over the input qubits using random keys xi ∈ {0, 1} and θi ∈ A in the following way:

|e〉 = Xx1Z(θ1)⊗ . . .⊗XxnZ(θn) |I〉 ,

before sending all qubits to Bob. After that, Bob entangles qubits according to G. Note that this
unavoidably reveals upper bounds on the dimensions of the underlying quantum computation,
corresponding to the length of the input and depth of the computation. The computation stage
involves interaction: for each qubit, Alice sends Bob a classical message δi ∈ A to tell him in which
basis (in the (X,Y ) plane) he should measure the qubit. This angle is computed in such a way as
to correct for the one-time padding of the input qubits and the random rotation of the non-input
qubits, as follows:

δi = (−1)
xi+s

f−1(i)φi + (
∑

j: i∈NG(f(j))

sj)π + θi + riπ ,

where the last term riπ, with a randomly chosen ri ∈ {0, 1}, is added to hide the correct classical
outcome of the measurement from Bob without effecting the overall computation (see correctness
proof below). Bob then performs the measurement and communicates the outcome bi to Alice.
Alice’s choice of angles in future rounds will depend on these values, hence she will correct the
obtained outcome by setting si := bi ⊕ ri. If Alice is computing a classical function, the protocol
finishes when all qubits are measured (Protocol 2), as the classical outputs are encoded in the
measurement outcomes sent to Alice. If she is computing a quantum function, Bob returns to her
the final qubits (Protocol 1), and it is taken that the quantum output is encoded in these qubits.
Note that in Protocol 2 we take the input to be |+〉 ⊗ · · · ⊗ |+〉, an encoding of the fixed classical
input 0 · · · 0, any other arbitrary classical input i1 · · · in is prepared by applying appropriate Z on
the corresponding qubit to create

|e〉 = Zi1
1 ⊗ . . .⊗ Zin

n (|+θ1〉 ⊗ · · · ⊗ |+θn〉) .

For classical input there is no need for a full one-time padding of the input hence no need for the
xi random variables as θi rotation completely hides the input.

The above explanation is the basis for the correctness of all of the protocols presented in this
paper.

Definition 1. A hiding protocol with quantum input is correct if the quantum output state is U |I〉
or if the classical outputs are the result of Pauli X measurements 5 on the state U |I〉, where U is
the unitary operator corresponding to the implementation of the measurement pattern of the hiding
protocol. Similarly one could define correctness for protocols with classical input.

Theorem 1 (Correctness). Assume Alice and Bob follow the steps of Protocols 1 and 2. Then the
outcome is correct.

5Recall that for simplicity of presentation we have chosen to measure the output qubits with Pauli X.
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Proof. Here we explicitly give a proof only for the case of quantum input and output, as the re-
maining cases have virtually identical proofs. The protocol deviates in three ways from the standard
implementation of the desired measurement pattern defined by a graph state G with measurement
angles φi: a random Z(θi) rotation over all qubits; a random Xxi rotation over the input qubits;
measuring with angles δi. However, since ctrl-Z commutes with Z-rotations, Alice’s preparation
does not change the underlying graph state; only the phase of each qubit is locally changed, and
it is as if Bob had done the Z-rotation after the ctrl-Z. Let φ′i be the adapted angles of the
measurement φi according to the flow structure of the desired measurement pattern defined by

G. Note that a measurement in the
∣
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basis on X |ψ〉. Finally since

δi = (−1)xiφ′i + θi + πri, if ri = 0, Bob’s measurement has the same effect as Alice’s target mea-
surement; if ri = 1, all Alice needs to do is to flip the outcome. Therefore all the deviation from
the actual implementation of the measurement patter are corrected and the quantum output is the
desired state corresponding to the action of the unitary operator implemented by the graph state
G over the input state.

3 Blindness

We say a hiding protocol is blind if Bob cannot tell anything relating to the angles of measurements.
In considering this it is worth noting that Bob can run the protocol only once with fixed values for
Alice’s parameters φi, θi, ri, xi. Later we will show how for generic graphs this will lead to hiding
the output of the computation as well. Following the convention of [11], we use the notation of a
leakage function, denoted as L(X), to formalise what Bob learns during the interaction.

Definition 2. A hiding protocol P with input X is blind while leaking at most L(X) if:

1. The distribution of the classical information obtained by Bob in P is dependent only on L(X).

2. Given the distribution of classical information described in 1 and L(X), the state of the
quantum system obtained by Bob in P is fixed.

Theorem 2 (Blindness). Protocols 1 and 2 are blind while leaking at most G.

Proof. Necessarily Bob learns G as he is instructed to entangle all the received qubits according
to G. We show now that for a fixed G every possible set δ = {δi} occurs with equal probability
(satisfying the first condition). We then prove that for a fixed set of angles δ the state of the
quantum system obtained by Bob is the maximally mixed state, and hence independent of both
φ = {φi} and ρI (the quantum input state), thereby satisfying the second condition.

For simplicity, we first prove the blindness for Protocol 2 with no quantum input or output.
Alice’s secret angles consist of φ = {φi}, with the actual measurement angles φ′ = {φ′i} being a
modification of φ that depends on previous measurement outcomes. Let the classical angles that
Bob receives during the protocol be δ = {δi}, and let ρ be the quantum system initially sent from
Alice to Bob.

To show independence of Bob’s classical information, let θ′i = θi + πri (for a uniformly random
chosen θi) and θ′ = {θ′i}. We then have δ = φ′ + θ′, with θ′ being uniformly random. Thus the
distribution of δ is also the uniformly random distribution, and is hence independent of φ and/or
φ′ (satisfying the first condition).
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Protocol 1 Generic Hiding Protocol with Quantum Input and Output

• Alice’s resources
– Graph G over m vertices where labelling of vertices are in such a way that the first n qubits
are input and the last n qubits are output.
– An n-qubit input state |I〉.
– A sequence of non-output measurement angles, φ = (φi)1≤i≤(m−n) with φi ∈ A.
– m random variables θi with values taken uniformly at random from A.
– n random variables xi andm−n random variables ri with values taken uniformly at random
from {0, 1}.
– A fixed function CG that for each non-output qubit i (1 ≤ i ≤ m− n) computes the angle
of the measurement of qubit i to be sent to Bob. This function depends on φi, θi, ri, xi and
the result of the measurements that have been performed so far (s<i). The function CG also
depends on the flow (f,�) of the graph G. However, since the flow of the graph G is unique
(if it exists), we need not take flow as a parameter of the function CG. We have

CG : {1, · · · , (m− n)} ×A×A× {0, 1} × {0, 1} × {0, 1}m−n → A

(i, φi, θi, ri, xi, s) 7→ (−1)
xi+s

f−1(i)φi + (
∑

j: i∈NG(f(j)) sj)π + θi + riπ

where xk for n+ 1 ≤ k ≤ m and also sk for any non-defined value of k is set to zero.

• Initial Step

– Alice’s move: Alice sends Bob the graph G and sets all the values in s to be 0. Next she
sends m qubits in the order of the labelling of the vertices of the graph, as follows: first, Alice
encodes the n-qubit input state as

|e〉 = Xx1Z(θ1)⊗ . . .⊗XxnZ(θn) |I〉

and sends them as the first n qubits to Bob. She then prepares m − n single qubits in the
state |+θi〉 (n+ 1 ≤ i ≤ m) and sends them to Bob as the remaining qubits.
– Bob’s move: Bob receives m single qubits and entangles them according to G.

• Step i : 1 ≤ i ≤ (m− n)

– Alice’s move: Alice computes the angle δi = CG(i, φi, θi, ri, xi, s) and sends it to Bob.
– Bob’s move: Bob measures qubit i with angle δi and sends Alice the result bi.
– Alice’s move: Alice sets the value of si in s to be bi ⊕ ri.

• Step i : m− n+ 1 ≤ i ≤ m

– Bob’s move: Bob sends qubit i to Alice.

– Alice’s move: Alice applies X
s
f−1(i)Z

∑
j: i∈NG(f(j)) sjZ(θi) over qubit i.

9



Protocol 2 Generic Hiding Protocol with Classical Input and Output

• Alice’s resources
– Graph G over m vertices where labelling of vertices are in such a way that the first n qubits
are input and the last n qubits are output.
– A sequence of non-output measurement angles, φ = (φi)1≤i≤(m−n) with φi ∈ A.
– m random variables θi with values taken uniformly at random from A.
– m random variables ri with values taken uniformly at random from {0, 1}.
– A fixed function CG that for each non output qubit i (1 ≤ i ≤ m) computes the angle of
the measurement of qubit i to be sent to Bob:

CG : {1, · · · ,m} ×A×A× {0, 1} × {0, 1}m → A

(i, φi, θi, ri, s) 7→ (−1)
s
f−1(i)φi + (

∑

j: i∈NG(f(j)) sj)π + θi + riπ

where sk for any non-defined value of k is set to zero, also φi = 0 for m− n+ 1 ≤ i ≤ m.

• Initial Step

– Alice’s move: Alice sends Bob the graph G and sets all the value in s to be 0. Next she
sends m qubits in the order of the labelling of the vertices of the graph, as follows: first, Alice
encodes the n-bit string classical input i1 · · · in as state

|e〉 = Zi1
1 ⊗ . . .⊗ Zin

n (|+θ1〉 ⊗ · · · ⊗ |+θn〉) = |+θ1+i1π〉 ⊗ · · · ⊗ |+θn+inπ〉

and sends them as the first n qubits to Bob. She then prepares m − n single qubits in the
state |+θi〉 (n+ 1 ≤ i ≤ m) and sends them to Bob as the remaining qubits.
– Bob’s move: Bob receives m single qubits and entangles them according to G.

• Step i : 1 ≤ i ≤ m

– Alice’s move: Alice computes the angle δi = CG(i, φi, θi, ri, s) and sends it to Bob.
– Bob’s move: Bob measures qubit i with angle δi and sends Alice the result bi.
– Alice’s move: Alice sets the value of si in s to be bi ⊕ ri.

10



In Protocol 2, there is no quantum input, and so the quantum system Bob receives from Alice
is composed only of the qubits prepared in states |ψi〉 = |+θi〉. For each qubit i, we fix δi. Because
ri is uniformly random, one of the following two has occurred:

1. ri = 0 so δi = φ′i + θ′i and |ψi〉 =
1√
2
(|0〉+ ei(δi−φ′

i) |1〉, or

2. ri = 1 so δi = φ′i + θ′i + π and |ψi〉 =
1√
2
(|0〉 − ei(δi−φ′

i) |1〉.

For any given ri there is a unique value of θi such that δi takes any given value. Thus δi is
independent of ri. Tracing over all ri we see that for any fixed value of δi each qubit of ρ is left
in the maximally mixed state, and so ρ = I/2m, where m is the total number of qubits sent by
Alice to Bob. Hence the state of the quantum system obtained by Bob in Protocol 2 is fixed and
independent of the angles {φi} (satisfying the second condition).

Similarly we can prove the blindness of Protocol 1. The only difference is that Alice has per-
formed a full one-time pad over the input qubits and the first layer of the measurements are adapted
to undo these if required. However the quantum system initially sent from Alice to Bob is again
the maximally mixed state. This is due to the fact that for each qubit i in the input state tracing
over ri and xi leaves the system in the maximally mixed state.

4 Dummy Qubits

In order to obtain an intuitive method for achieving verification, we construct an extension of
Protocol 1 and 2 (see Protocol 3) where Alice can also prepare qubits in the state |z〉 where z is
chosen uniformly at random from {0, 1}. These qubits are called dummy qubits, as they will not
be part of actual computation. A dummy qubit remains disentangled from the rest of the qubits
of the graph state and, as we prove later, the addition of these dummy qubits does not affect the
correctness or blindness of the hiding protocol. These dummy qubits are measured with random
angles which again will not affect the actual computation due to the fact that they are disentangled
from the rest of the qubits. However, as we prove in the next section, these dummy qubits allow
Alice to easily add isolated trap qubits to the computation and achieve verification. Note that Alice
must keep the position of the dummy qubits hidden from Bob (i.e. part of the secret) in order to
keep the position of any trap qubits hidden. The addition of the dummy qubits can also be viewed
as a method for the blind implementation of the Pauli Z basis measurements. This is due to the fact
that their position is hidden from Bob and from his point of view they are measured in the (X,Y )
plane as well. However due to their preparation state (|0〉 or |1〉) through the entangling step, they
have the same effect of measuring the corresponding qubit in the Pauli Z basis. Therefore, we use
the term blind Pauli Z measurement interchangeably with dummy qubits in the rest of the paper.
Due to the addition of dummy qubits, we will assume from now on that n is an upper bound over
the number of the input or output qubits. This is required to allow the possibility of having trap or
dummy qubits as part of the input or output system. Therefore in the design of the measurement
pattern, auxiliary qubits are added to the input and output space in such a way that the actual
computation remains intact.

Theorem 3. Assume Alice and Bob follow the steps of Protocol 3. Then the outcome obtained is
the same as if the computation took place over the graph G after removal of the dummy vertices in
D, the set of positions of dummy qubits in G.

Proof. The proof is similar to the proof of Theorem 1, the only new element is the effect of the
dummy qubits. If a dummy qubit is in the state |0〉 then in the entangling step this qubit does
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Protocol 3 Generic Hiding Protocol with Quantum Input and Output and Dummy Qubits

• Alice’s resources
– Graph G over m vertices where labelling of vertices are in such a way that all the l input
qubits are located among the first n ≥ l qubits and all the l output qubits are located among
the last n qubits.
– An l-qubit input state |I〉.
– The dummy qubits positions, set D, chosen among all possible vertices except the l input
and l output qubits.
– A sequence of non-output measurement angles, φ = (φi)1≤i≤(m−n) with φi ∈ A where φi = 0
for all i ∈ D.
– m random variables θi with value taken uniformly at random from A.
– l random variables xi, m − n random variable ri and |D| random variable di with values
taken uniformly at random from {0, 1}.
– A fixed function CG that for each non output qubit i (1 ≤ i ≤ m− n) computes the angle
of the measurement of qubit i to be sent to Bob:

CG : {1, · · · , (m− n)} ×A×A× {0, 1} × {0, 1} × {0, 1}m−n → A

(i, φi, θi, ri, xi, s) 7→ (−1)
xi+s

f−1(i)φi + (
∑

j: i∈NG(f(j)) sj)π + θi + riπ

where xk for n+ 1 ≤ k ≤ m and sk for any non-defined value of k are set to zero.

• Initial Step

– Alice’s move: Alice sends Bob the graph G and sets all the value in s to be 0. Alice encodes
the l-qubit input state as

|e〉 = Xx1Z(θ1)⊗ . . .⊗XxlZ(θl) |I〉

and positions them among the first n qubits. She then prepares the remaining qubits in the
following form

∀i ∈ D |di〉

∀i 6∈ D
∏

j∈NG(i)∩D Z
dj |+θi〉 =

∣

∣

∣+θi+
∑

j∈NG(i)∩D djπ

〉

Then Alice sends Bob all m qubits in the order of the labelling of the vertices of the graph.

– Bob’s move: Bob receives m single qubits and entangles them according to G.

• Step i : 1 ≤ i ≤ (m− n)

– Alice’s move: Alice computes the angle δi = CG(i, φi, θi, ri, s) and sends it to Bob.
– Bob’s move: Bob measures qubit i with angle δi and sends Alice the result bi.
– Alice’s move: Alice sets the value of si in s to be bi ⊕ ri.

• Step i : m− n+ 1 ≤ i ≤ m

– Bob’s move: Bob sends qubit i to Alice.

– Alice’s move: Alice applies X
s
f−1(i)Z

∑
j: i∈NG(f(j)) sjZ(θi) to qubit i.
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not affect the state of the other qubits. However, if the dummy qubit is in the state |1〉 then the
entangling operation will introduce a Pauli Z rotation on all the neighbouring qubits in G. Hence
a qubit i 6∈ D will be affected by the operator

∏

j∈NG(i)∩D Z
dj . However, in the initial step, Alice

already applied the operation
∏

j∈NG(i)∩D Z
dj over the prepared qubits and therefore all qubits

i 6∈ D are in the desired state |+θi〉, since Z operator is self-inverse. Moreover all the dummy qubits
are disentangled from the rest of qubits and are measured in a random basis with no consequences
for the part of the computation taking place over the graph G after removing vertices D.

Theorem 4. The generic hiding protocol with dummy qubits, Protocol 3, is blind while leaking at
most G.

Proof. Proof follows along similar lines of Theorem 2. As before let θ′i = θi + πri. Alice’s total

communication to Bob consists of the initial quantum states, which we can rewrite as
∣

∣

∣
+θ′i−πri

〉

if the qubit is not a dummy qubit or ∈R {|0〉 , |1〉} if it is a dummy qubit, and the measurement
angles which are set to be δi = φ′i + θ′i . As before, the values of δi are uniformly random, and for
any fixed values of δi tracing over all ri, we obtain the initial quantum state for each qubit as either

1

2

∣

∣

∣+θ′i

〉〈

+θ′i

∣

∣

∣+
1

2

∣

∣

∣−θ′i

〉〈

−θ′i

∣

∣

∣ =
I

2

if the qubit was not dummy, and

1

2
|0〉 〈0|+

1

2
|1〉 〈1| =

I

2

if the qubit was a dummy. Hence the qubits obtained by Bob are always in the maximally mixed
state and are not correlated with each other.

5 Generic Graph

During a hiding protocol Bob learns the graph of entanglement, G, however it was shown in [3] that
it is possible for Alice to choose a family of graphs corresponding to what were termed brickwork
states such that blindness of the angles, as defined before, will permit Alice to hide the unitary
operator that the protocol is implementing, revealing only an upper bound on the dimensions of
the circuit required to implement it. The key element to achieve this is the use of those universal
resources for MBQC [25] that are generic, hence revealing no information about the structure of the
underlying computation, except the bounds on the size of input and the depth of the computation.
Moreover to make the protocol practical from Alice’s point, it is desirable to restrict the class of
measurement angles, so that the required class of random qubits prepared by Alice is also restricted.
Hence we are restricted to achieving only approximate universality, however this is still equivalent
to the quantum circuit model with a finite but universal set of gates. Note that exact universal
blind quantum computing could be achieved similarly if Alice could prepare separable single qubit
states |+θ〉 with θ chosen randomly in [0, 2π) and if Bob could make any measurement with angles in
[0, 2π). However, such a model requires Alice to communicate random real angles to Bob, and hence
such a setting is unattractive from a communications resources point of view. However, similar to
the quantum circuit scenario, by the Solovay-Kitaev theorem, a finite set of angles (for instance
a set that corresponds to Hadamard and π

8 -Phase gates) can be used to efficiently approximate
any single qubit unitary operator.6 For the rest of this paper we will restrict our attention to

6More precisely, the Solovay-Kitaev theorem states that if the subgroup generated by some subset of SU(2)
operators is dense in SU(2), then the approximation converges exponentially quickly to any element of SU(2) in the
number of these operators from a smaller set one uses to approximate.
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approximate universality and we use the fact that a large family of graph states are approximately
universal if one restricts the set of angles to be in the set {0,±π/4,±π/2} [26]. We give two such
examples below.

Definition 3. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n×m qubits
constructed as follows:

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a row (i ∈ [n])
and j being a column (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m− 1.

3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits
(i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits
(i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

We will refer to the underlying graph of a brickwork state as the brickwork graph and denote it with
the same notation as Gn×m, see Figure 1.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits are arranged according to layer x and row y, corre-
sponding to the vertices in the above graph, and are originally in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state.

Controlled-Z gates are then performed between qubits which are joined by an edge.

Theorem 5 (Universality [3]). The brickwork state Gn×m is universal for quantum computa-
tion. Furthermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}
to achieve approximate universality, and measurements can be done layer-by-layer.

Let us denote vertices of a brickwork graph Gn×m by (i, j) (where 1 ≤ i ≤ n, 1 ≤ j ≤ m), then
it is easy to verify that the unique flow function of G is defined by:

fG((i, j)) = (i, j + 1)

That is to say, the flow of each vertex in the graph is from its immediate left neighbour in the same
row. The corresponding partial order ≺G is defined as the collection of sets Lj of all vertices in the
jth column of the brickwork graph

Lj = {(x, y)|1 ≤ x ≤ n, y = j}.
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Now suppose Alice has in mind a unitary operator U of size 2n × 2n and the n-qubit input state
|I〉. Due to Theorem 5 there exist an integer m and angles {φi,j}1≤i≤n,1≤j≤m ∈ A such that the
measurement pattern with angles {φi,j} over the brickwork state Gn×m, where the first n qubit are
set to be in the state |I〉, approximates U |I〉. Therefore the last n qubits after the measurements
of the first m− n qubits and application of the corresponding corrections induced by flow are in a
state which can be made arbitrarily close to U |I〉. We can simply adapt the generic hiding protocol
to implement this measurement pattern blindly.

Protocol 4 Brickwork State Universal Hiding Protocol with Quantum/Classical Input/Output

Replace G with Gn×m and follow the steps of Protocols 1 or 2.

Theorem 6. Protocol 4 is blind while leaking at most m and n.

Proof. The proof is exactly the same as the proof of Theorem 2 and therefore the angles of mea-
surement φi remain secret from Bob. Moreover, the universality of the brickwork state guarantees
that Bob’s knowledge of Gn×m does not reveal anything about the underlying computation except
n and m.

Note that at every step of protocol, Bob’s quantum state is one-time padded with Alice’s secret
key. During the execution of the protocol the true value of si are unknown to Bob since they have
been one-time padded using the random keys ri at each step. Due to the flow construction [21], each
qubit (starting at the third column of the brickwork state) receives independent Pauli operators,
which act as a full quantum one-time pad over Bob’s state. In the case of quantum input they are
all already one-time padded using secret keys xi and θi, and since the first layer performs a hidden
Z-rotation, it follows that the qubits in the second layer are also completely encrypted during the
computation. Similarly, the classical input are one-time padded using only θi keys. Finally for the
classical output, random keys ri are enough to classically one-time pad the outcome measurements
of the final Pauli X measurements over the last n qubits containing the classical outputs.

Note that in practice if Alice has the description of a unitary V such that V (⊗i |+〉) = |I〉
then trivially a hiding protocol that blindly computes UV over the input states ⊗i |+〉 will prepare
the desired output state of the form U |I〉. Therefore for such a scenario Alice can follow the step
of the Protocol 1 with classical input without having to prepare the encoded state Xx1Z(θ1) ⊗
. . .⊗XxnZ(θn) |I〉 herself. However, we have presented the full protocol for an arbitrary, possibly
unknown, quantum input state, since the general scheme proved useful for dealing with input
supplied by a third party [7].

Next we introduce another generic family called dotted-complete graph states which will be
necessary for our new method of verification. The basic idea behind this new universal resource
state is that it can be partitioned blindly into smaller universal resource states, one of which will
be used for the computation, while the others will be used as traps for verification purposes (see
later). To begin with, we need to introduce the graphs which we will use, and prove that they have
some special properties.

Definition 4. We define the operator ∼ (G) on graph G to be the operator which transforms a
graph G to a new graph denoted as G̃ by replacing every edge in G with a new vertex connected
to the two vertices originally joined by that edge. Let KN denote the complete graph of N vertices,
we call the quantum state corresponding to the graph K̃N the dotted-complete graph state denoted
with K̃N . We denote the set of vertices of K̃N previously inherited from KN as P (K̃N ), and denote
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the vertices added by the ∼ () operation by A(K̃N ). The number of the vertices in the K̃N graph is
then equal to N(N + 1)/2.

K
4

K
4

~

~

Figure 2: An example of the relationship between a complete graph K4 and the corresponding
dotted-complete graph K̃4. The vertices in black in K̃4 denote the set P (K̃4), while the white
vertices correspond to A(K̃4).

The next definition and lemmas will be used in manipulation of dotted-complete graph states.

Definition 5. We define the bridge operator on a vertex v of degree 2 on graph G to be the operator
which connects the two neighbours of v and then removes vertex v and any associated edges from G.
We define the break operator on a vertex v of graph G to be the operator which removes vertex v and
any associated edges from G. Let G be a graph on m vertices. Then we say that G is n-universal,
for n ≤ m, if and only if any graph of n vertices can be obtained from G through a sequence of
bridges and breaks.

Lemma 1. K̃N is N -universal, and the bridge and break operations used to obtain a target graph
need only be performed on vertices in A(K̃N ).

Proof. Given any graph G on N vertices, associate each vertex ui in G with a vertex vi in P (K̃N ).
Each pair of vertices (vi, vj) in P (K̃N ) is connected through an intermediate vertex of degree 2
in A(K̃N ). Thus by bridging over the intermediate vertex if ui and uj are joined by an edge and
breaking the intermediate vertex otherwise, K̃N reduces to G. As this is true for all graphs G on
N vertices, K̃N is N -universal.

Lemma 2. Given a partitioning of the vertices P (K̃N ) into n sets {Pi} containing Ni vertices
respectively, by applying a sequence of break operations only, it is possible to transform K̃N into n
disconnected graphs k̃i such that each one of them are of the form K̃Ni

and P (k̃i) = Pi.

Proof. As the vertices P (K̃N ) are associated with a corresponding vertex in KN , the vertices of
KN can by partitioned into the sets {Pi}. As KN is the complete graph the vertices within each
partition Pi form a clique. Thus by removing edges between the partitions the resulting graph is
composed of n disconnected graphs {ki = KNi

} such that the vertices in ki are the vertices in Pi.
As removing an edge before applying the ∼ () operator is equivalent to applying a break operation
after the ∼ () operator there exists a corresponding sequence of break operations, such that the
resulting graph is ∼ ({ki}) = {k̃i}. As k̃i =∼ (ki), it follows that P (k̃i) = Pi and since ki = KNi

then k̃i = K̃Ni
as required.

Lemma 3. Given a graph K̃N , by applying break operators to every vertex in P (K̃N ) or A(K̃N )
the resulting graph is composed of the vertices of A(K̃N ) or P (K̃N ) respectively and contains no
edges.
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Proof. As the ∼ () operation only introduces vertices connected to vertices in P (K̃N ), every vertex
in A(K̃N ) shares edges only with vertices in P (K̃N ). Thus when the vertices in P (K̃N ) and their
associated edges are removed by the break operators, the vertices in A(K̃N ) become disconnected.
Similarly, since ∼ () removes all edges between vertices in P (K̃N ), hence every vertex in P (K̃N )
shares edges only with vertices in A(K̃N ). Thus when the vertices in A(K̃N ) and their associated
edges are removed by the break operators, the vertices in P (K̃N ) become disconnected.

We now extend these results to graph states.

Lemma 4. Given two graph states |ψG1〉 and |ψG2〉 corresponding to graphs G1 and G2 respectively,
if it is possible to obtain G2 from G1 through a sequence of bridge and break operations, then it is
possible to obtain |ψG2〉 from |ψG1〉 through a sequence of Pauli measurements and local rotations
about the Z axis through angles from the set {0, π2 , π,

3π
2 }.

Proof. By measuring any qubit in a graph state with Pauli Z operator, we obtain a state equivalent
up to local Pauli Z corrections to the graph state obtained from the graph when that vertex and
its associated edges are removed. To see this, we consider the operations this qubit undergoes: It
is first prepared in a state |+〉, then interacted with its neighbours via control-Z gates, and then
measured in the Z basis. As the measurement commutes with the entangling operation, this result
is identical to the case where the control-Z gates are applied to the measured eigenstate of Z. Thus
when the complete sequence of events is taken into account, this operation is equivalent to the
identity when the measurement outcome is 0, and equivalent to local Pauli Z operators applied to
the neighbours of the measured site when the measurement outcome is 1. This is then the graph
state equivalent of the break operation defined on the associated graph.

If a vertex is of degree 2, then measuring the associated qubit with the Pauli Y operator
yields the graph state corresponding to the graph obtained by applying a bridge operation to that
vertex, up to local Z-rotations through an angle ±π

2 . To see this, we again consider the sequence
of operations the qubit undergoes: It is prepared in the state |+〉, interacted with its neighbours
and then measured in the Y basis. Immediately prior to measurement, the net operator applied is
1√
2
|0〉 ⊗ I+ 1√

2
|1〉 ⊗Z1 ⊗ Z2, where the subscripts 1 and 2 denote the neighbours of the measured

qubit. Thus if the measurement result is 0 then this is equivalent to directly applying the operator
ei

π
4
Z1⊗Z2 to the neighbouring qubits, whereas if the measurement result is 1 this is equivalent to

applying the operator e−iπ
4
Z1⊗Z2 to these qubits. Since the control-Z gate can be written either as

ei
π
4
(I−Z⊗I−I⊗Z+Z⊗Z) or e−iπ

4
(I−Z⊗I−I⊗Z+Z⊗Z), the effect on the neighbouring qubits is equivalent to

a control-Z, up to local Z-rotations by π
2 (for a measurement result of 0) or −π

2 (for a measurement
result of 1).

For a more detailed discussion of the effect of Pauli measurements in the measurement based
model, the reader is referred to [27].

Theorem 7 (Universality). The dotted-complete graph state K̃N is universal for quantum compu-
tation. Furthermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}
and in the Pauli Z basis to achieve approximate universality, and measurements can be done layer-
by-layer.

Proof. Due to lemmas 1 and 4, by choosing N big enough, we could construct the brickwork state
Gn×m from K̃N using only Pauli measurements. Hence from Theorem 5 we obtain the universality of
dotted-complete graph states and approximate universality with only single qubits measurements
under the angles {0,±π/4,±π/2} (which includes the Pauli Y measurements required to implement
bridge operations), and the Pauli Z basis measurements required to implement break operations.
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From this result we can construct a new universal hiding protocol based on dotted-complete
graph states, as given in Protocol 5. Interestingly, in the case of classical input and output this new
protocol does not even reveal the circuit dimensions, but instead a single integer which is an upper
bound on the number of qubits required to implement the computation in the measurement-based
model.

Protocol 5 Dotted-Complete Graph State Universal Hiding Protocol with Quantum Input/Output

• Alice’s resources
– Parameter N such that the desired computation could be obtained from the state K̃N after
a sequence of break and bridge operators (Theorem 7). The labelling of vertices are in such
a way that the first n qubits are input and the last n qubits are output.
– The dummy qubits position, set D, is set to be the position of all the qubits that are
required to be Pauli Z measured for performing the break operators.
– A sequence of non-output measurement angles, φ = (φi)1≤i≤(m−n) with φi ∈ A where φi =

π
2

for all i ∈ D and also for all the qubits that are required to be Pauli Y measured to perform
the bridge operators.
– The rest of the resources are the same as Protocol 3.

Follow the steps of Protocol 3 where G is replaced with K̃N .

Theorem 8. Protocol 5 is blind, while leaking at most n and N .

Proof. As Bob entangles according to K̃N , clearly the parameter N is leaked. Additionally, in the
case of quantum output, Bob must be instructed how many qubits to return to Alice, and hence
knows n. However, fixing these parameters, due to Theorem 2 all the measurement angles including
the measurements for the bridge operators are blind to Bob. Similarly, from Theorem 4 we have
blindness for the measurement corresponding to the break operators. Together these guarantee
the blindness of the operations required to prepare a brickwork state from K̃N . Finally Theorem 6
proved the blindness of the remaining measurements performed on the prepared brickwork state.

6 Verification

This section deals with another property of the hiding protocol called verification. This property
requires that Alice can verify with high probability whether Bob has followed the instructions of
the protocol and hence if the quantum or classical output state is indeed in the correct form, or
whether there has been a deviation and she should therefore reject the output state. The main idea
is to exploit blindness so that Alice can expand the protocol to include trap qubits where Alice
knows in advance the classical outcome of these specific measurements (i.e. the correct message
from Bob for these measurements), where the blindness ensures that the position of these traps
remains hidden to Bob. At the end Alice will accept the quantum or classical output only if Bob
has produced all of the expected outcomes for these trap qubits measurements. The subtlety in
verification is to prove that the accepted quantum or classical output is indeed correct.

It is essential that Alice keeps the position of these trap qubits unknown to Bob, so that
he cannot attempt to interfere with the actual computation of U while keeping the trap qubits
untouched. We will present a protocol where every qubit of the underlying graph could potentially
be an isolated (unentangled) trap qubit in an unknown state |+θ〉 for θ ∈ A. In order to do so, it is
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enough to prepare all the neighbouring vertices of the trap qubit as a dummy qubits, hence these
dummy qubits together with the trap qubits remain disentangled from the rest of the graph during
the preparation stage. Building on this simple construction, by adding more traps and adding error
detection elements, we will present the a final protocol in which the probability of not detecting an
incorrect outcome is exponentially small.

In order to first demonstrate the main idea of this method of verification, we ignore the uni-
versality property and only later will we present a concrete universal blind quantum computing
protocol with the verification property. Hence to obtain a generic hiding protocol with a random
unknown trap it is sufficient to use Protocol 3, where Alice chooses a random position t to be an
isolated trap qubit (Protocol 6).

Protocol 6 Generic Hiding QC For Unitary with Dummy, Trap, Quantum Input and Output

• Alice’s resources
– Graph G over m vertices and a random position t among the vertices of G.
– The rest of the resources are the same as Protocol 3 where φi = 0 for i = t and i ∈ D where
D is the set of all neighbours of position t in the original graph to create an isolated trap
qubit at position t.

• Follow the steps of Protocol 3.

• Accept/Reject
– After obtaining all the output qubits from Bob, if the trap qubit, t, is an output qubit,
Alice measures it with angle δt = θt + rtπ to obtain bt.
– Alice accepts if bt = rt.

Theorem 4 directly implies that Protocol 6 is blind and the position of the trap qubits t remains
unknown to Bob. Recall that at each stage i only qubit i is measured. We present some intermediate
definitions before formalising the definition of verification. All the protocols presented so far describe
the expected behaviour of Alice and Bob in a hiding protocol. Since we are concerned with the
secrecy of Alice’s resources we can assume that Alice always follows the steps of the protocol. In
fact after the initial step when Alice draws all the random variables θi and ri her behaviour, for a
fixed run of the protocol, is deterministic. This means that at each step the next move of Alice is
determined completely by the past, however a malicious Bob might deviate in any way he desires.
We will define a run of protocol to be honest (Bob has behaved as expected) or correct (the output
is correct despite Bob’s deviations) based on the outcome of all measurements and the quantum
output state if it exists.

Recall that in a generic hiding protocol with quantum input and output the messages sent by
Bob to Alice depend on a collection of outcome measurements, si ∈ {0, 1}. In fact Bob will send
the outcome value bi and then Alice, depending on ri, will reset them to their corrected values si.
In what follows we will deal with the corrected outcome measurement that is si. Similarly at the
end of the protocol Bob will send Alice some quantum output state in the output Hilbert space
HO that needs to be corrected depending on all the measurements outcomes. In what follows we
consider the corrected quantum output state ρ. Note that the values of si and ρ depends on Alice’s
specific random choices and also Bob’s general strategy of deviation. We treat this information as a
single density operator to deal uniformly with both classical and quantum output. Finally in order
to consider the most general deviation that Bob can perform during a run of protocol we consider
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a collection of unitary operators acting each at a stage of the protocol on the private qubits of Bob
and all the other qubits and classical bits sent by Alice to Bob.

Definition 6. Consider a particular run of a generic hiding protocol, where all the following pa-
rameter are fixed: Alice’s angles of measurements φ = (φi)1≤i≤(m−n); Alice’s random variables
x = (xi)1≤i≤n, r = (ri)1≤i≤(m−n) and θ = (θi)1≤i≤m; Alice’s input state |I〉; The number of Bob’s
private qubits B; Bob’s deviation unitaries at each stage of the protocol U = {Ui}0≤i≤m+1 acting
on all quantum and classical messages 7. We denote the outcome density operator (of all classical
and quantum messages sent by Bob to Alice) as follows:

Bj(ν) =
∑

~s∈{0,1}|O|c

pν,j(~s) |~s〉 〈~s| ⊗ ρ~sν,j

where ν ranges over Alice’s choices: φ, x, r, θ; and j ranges over Bob’s choices: B and U ; and
~s ranges over all possible values of the corrected values {si} of the measurement outcomes {bi}
sent by Bob to Alice; and ρ~sν,j is the reduced density operator for the non-measured qubits with
the corresponding correction operators for the measurement outcomes ~s has been applied. We call
the outcome density operator B0(ν), obtained from a run of the protocol where all Ui are set to be
the identity operator, the exact outcome density operator. That is the outcome density operator
obtained from a run where Bob exactly follows the step of the protocol.

Note that if we were dealing only with deterministic pattern over a connected graph state
then the outcome density operator could have been simplified to a fixed pure state of the output
qubits, independent of the measurement outcomes. Moreover in such a scenario the probability of
each branch of the computation would have been the same. However the above definition aims to
capture any general deviation by Bob, that could effect the determinism and probability of the
branches. Also since we will have dummy and trap qubits then not all the possible branches will
be equally probable. The outcome density operator, depending on all the random choices of Alice
and Bob, can be classified as follows below8.

Definition 7. We say the outcome density operator Bj(ν) is honest if it is indistinguishable from
the exact outcome density operator:

‖Bj(ν)− B0(ν)‖tr = 0.

It is called correct if the quantum output state and the trap outcome measurement is indistinguish-
able from the corresponding value of the exact outcome density operator:

‖Tri 6∈O,i 6=t(Bj(ν))− Tri 6∈O,i 6=t(B0(ν))‖tr = 0.

It is called lucky if bt = rt and finally it is called incorrect if it is lucky but the quantum output
state, Tri 6∈{O∪{t}}(Bj(ν)), is orthogonal to the corresponding subsystem of the exact outcome density
operator. Note that for the classical output scenario, any bit-flip implies orthogonality.

Alice should not care if Bob’s deviation leads to a correct outcome density operator, as the final
quantum or classical output is in the correct state. Therefore in the definition of a verifiable blind
quantum computing we aim to bound the probability of Alice being fooled i.e the probability of

7Note that Bob can deviate before the first measurement (step i = 0) and after the last measurement step
(i = m+ 1).

8We will not use all the mentioned category but we believe pointing out the subtle differences could be beneficial
for understanding the main definition.
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Alice accepting an incorrect outcome density operator. Any outcome density operator either results
in st 6= rt or is contained within the subspace of correct and incorrect outcome states, which could
be then probabilistically projected into a correct or an incorrect state. Hence intuitively, a protocol
is defined to be verifiable if the corresponding outcome state is far from any incorrect outcome
states. Following the approach of [28], we first define the notion of correctness 9.

Definition 8. Let P ν
incorrect be the projection onto the subspace of all the possible incorrect outcome

density operator for the fixed choice of Alice’s random variables denoted with ν, that is the following
projection

P ν
incorrect = (I− |Ψν

ideal〉 〈Ψ
ν
ideal|)⊗ |rνt 〉 〈r

ν
t |

where |Ψν
ideal〉 〈Ψ

ν
ideal| = Tri 6∈{O∪{t}}(B0(ν)). Let p(ν) be the probability of Alice choosing random

variables parameterized by ν, that is the probability of choosing a position i among all possible
vertices of the graph to be the trap position (denoted as a random variable t) and the probability
of choosing random variables φ, r, x, θ (as defined in Definition 6). Given 0 ≤ ǫ < 1, we define a
protocol to be ǫ-verifiable, if for any choice of Bob’s strategy (denoted by j) the probability of Alice
accepting an incorrect outcome density operator is bounded by ǫ:

Tr(
∑

ν

p(ν) P ν
incorrect Bj(ν)) ≤ ǫ.

Theorem 9. Protocol 6 is (1− 1
2m)-verifiable in general, and in the special case of purely classical

output the protocol is also (1− 1
m)-verifiable, where m is the total number of qubits in the protocol.

Proof. At the beginning of the protocol, Alice prepares the input qubits in the following form:

|e〉 = Xx1Z(θ1)⊗ . . .⊗XxlZ(θl) |I〉

and positions them among the first n qubits. She then prepares the remaining qubits in the following
form (where D is the index of the dummy qubits)

∀i ∈ D |di〉

∀i 6∈ D
∏

j∈NG(i)∩D Z
dj |+θi〉 =

∣

∣

∣+θi+
∑

j∈NG(i)∩D djπ

〉

and sends all m qubits in the order of the labelling of the vertices of the graph, we represent the
whole m qubit state as |M〉. We can treat all the measurement angels δi as orthogonal quantum
states |δi〉. Note that for Protocol 6 all the random variables t, x, r, θ are independent and uniform.
For a fixed choice of Alice’s random variables and Bob’s strategy denoted indexed by ν and j
respectively, the outcome density operator Bj(ν) can be written in the form of the output of a
circuit computation as depicted in Figure 3.

While in the actual protocol, at step i, Alice computes δi as a function of s<i which in turn is
calculated from b<i and r<i, we note that we can rewrite the circuit from Figure 3 in such a way
that the values δi are part of the initial state, without affecting causality as they do not interact
with anything until after the corresponding bi has been generated. In other words, despite the fact
that the protocol seems to be interactive, since the interactions is only required to compensate for
the correction operators, one could instead consider a post-selected scenario to simplify the protocol

9Recall that for simplicity we have assumed that the computation is deterministic and the input is in a pure state,
and hence the ideal output will necessarily be a pure state. This restriction to pure states mirrors the approach of
[28].
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Figure 3: A run of protocol together with Bob’s deviation represented as Ui operators. The en-
tangling operator, EG, is the collection of all the required ctrl-Z operators corresponding to the
graph edges. Note that in Definition 6 we also considered an operator U0 representing Bob’s initial
deviation. In the figure, for simplicity, we have commuted U0 and combined it with U1. Trivially,
if all the Ui operators are set to be identity the above circuit converges to the exact run of the
protocol, where a measurement in the basis |±δi〉 is implemented using the controlled Z-rotation
followed by a Hadamard gate and finally a Pauli Z basis (computation basis) measurement on the
corresponding qubits.

to a single round. The assumption that all δi are sent at the initial step will allow us to reorder
all the operators Ui to the end to obtain the new circuit shown in Figure 410. Note that Figure 4
is not an actual run of the protocol, it is a mathematical equivalent of Figure 3 where the values
of bi have been fixed to permit us to commute the operators as depicted. However in the following
proof we have considered any general deviation performed by Bob, that is to say we consider any
arbitrary Ui operators.

In the rest of this proof we will use t to represent both the random variable and also the position
of the trap qubit. We denote by Ω = U ′

m−nU
′
m−n−1...U

′
1 the overall action of Bob’s deviation and

by P =
(
⊗

1≤i≤m−nHiZi(δi)
)

EG the action of the exact protocol prior to measurement. Here, and

in Figure 4, we have taken U ′
i = PiUiP

†
i , where Pi =

⊗

i+1≤j≤m−nHjZj(δj). Further we denote
by |Ψν〉 =

⊗

1≤i≤m |M〉
⊗

1≤j≤m−n |δj〉 the joint state of the initial (input, dummy and prepared)

qubits sent by Alice to Bob and the classical angles δi, and take P⊥ = I −P |Ψν〉 〈Ψν | P† to be the
projection onto the subspace of incorrect output states. Hence

P ν
incorrect = P⊥ ⊗ |ηνt 〉 〈η

ν
t |

where |ηνt 〉 = |rt〉t for 1 ≤ t ≤ m − n and |ηνt 〉 = |+θt〉t for m − n + 1 ≤ t ≤ m. Here we use the

10Note that Theorem 2 guarantees that each δi is independent of all bj whether or not Bob follows the protocol,
as they are uncorrelated with the state of the system he receives from Alice.
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Figure 4: The fact that any Uj in Figure 3 is independent of all δi<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ν
incorrect Bj(ν)) = Tr(P⊥ ⊗ |ηνt 〉 〈η

ν
t | (ΩP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†Ω†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have Ω =
∑

i αiσi, where
∑

i αiα
∗
i = 1 and σi is a Pauli operator acting on the joint quantum state of Bob’s

private qubits and |Ψν〉. Therefore the above equation can be written as

Tr(P ν
incorrect Bj(ν)) = Tr



P⊥ ⊗ |ηνt 〉 〈η
ν
t |





∑

i,j

αiα
∗
j σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj









= Tr





∑

i,j

αiα
∗
j P⊥ ⊗ |ηνt 〉 〈η

ν
t | (σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj)



 .

In order to determine which σi terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by σi|x the action of σi on qubit x, and hence
σi|x ∈ {I,X, Y, Z}. For simplicity we assume each δi is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1 ≤ x ≤ (m + B + 3(m − n)), where 1 ≤ x ≤ m identifies
qubits received from Alice, m+ 1 ≤ x ≤ m+B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing δi. Without loss of generality, as Bob’s private
register is assumed to start in the state |0〉⊗B we need only consider a decomposition in terms of σi
in which σi|x ∈ {I,X} for all m+ 1 ≤ x ≤ m+B, since Z |0〉 = I |0〉 and Y |0〉 = iX |0〉. Similarly,
without loss of generality we can take σi|x ∈ {I,X} for all m + B < x, since each qubit in the
register containing the angles {δi} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
Tr(
∑

ν p(ν) P ν
incorrect Bj(ν)). This can be calculated via the expression for Tr(P ν

incorrect Bj(ν))
obtained earlier

pincorrect =
∑

ν

p(ν)Tr(P ν
incorrect Bj(ν))

= Tr





∑

ν

p(ν)
∑

i,j

αiα
∗
jP⊥ ⊗ |ηνt 〉 〈η

ν
t |σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj





=
∑

i,j

Tr

(

∑

ν

p(ν)αiα
∗
j P⊥ ⊗ |ηνt 〉 〈η

ν
t |σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj

)

.

In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of σi at that position, σi|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. σi|x = I and 1 ≤ x ≤ m}

Bi = {x s.t. σi|x = X and 1 ≤ x ≤ m}

Ci = {x s.t. σi|x = Y and 1 ≤ x ≤ m}

Di = {x s.t. σi|x = Z and 1 ≤ x ≤ m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1 ≤ x ≤ m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m−n < x). Thus, for example, DO

i = {x s.t. σi|x = Z and m−n+1 ≤ x ≤ m}. We

note that only σi and σj operators for which Tr(P⊥σiP((⊗B |0〉 〈0|)⊗ |Ψ〉 〈Ψ|)Pσj) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i | ≥ 1 (denoted as i ∈ Ei) and |Bj |+ |Cj |+ |DO
j | ≥ 1 (denoted as j ∈ Ej). That

is to say, one or both of the following has happened: σi (σj) has produced an incorrect outcome for
one or more of the measurement results and hence |Bi/B

O
i |+ |Ci/C

O
i | ≥ 1 (|Bj/B

O
j |+ |Cj/C

O
j | ≥ 1)

or σi (σj) acts non-trivially on the quantum output and hence |BO
i | + |CO

i | + |DO
i | ≥ 1 (|BO

i | +
|CO

j |+ |DO
j | ≥ 1). Thus after expanding the random variable ν we have

pincorrect ≤

∑

i∈Ei,j∈Ej

Tr





∑

t,θ,r,x

p(θ)p(t)p(r)p(x)αiα
∗
j P⊥ ⊗ |ηνt 〉 〈η

ν
t |σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj



 .

We note that averaging over r, x and θ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles δi) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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pincorrect ≤
∑

i∈Ei,j∈Ej

Tr

(

∑

t,θt,rt

p(θt)p(t)p(rt)αiα
∗
jP⊥ ⊗ |ηνt 〉 〈η

ν
t |

σi

(

(⊗B |0〉 〈0|)⊗ |ηνt 〉 〈η
ν
t | ⊗ |δt〉 〈δt| ⊗

I

Tr(I)

)

σj

)

where I is the identity matrix of dimension 24m−3n−4 if t ≤ m − n and dimension 24m−3n−1

otherwise. Here, for ease of notation, we include a system in state |δt〉 〈δt|, even though Bob does
not receive an angle δt for t > m − n, in which case we will define the system to have only one
dimension. Pauli matrices have trace zero, and hence the term inside the summation goes to zero
unless σi|x = σj|x for all x ≤ m other than x = t. Further, note that σi|x ∈ {I,X} for any qubit x
in Bob’s private register or the register containing δi, and Tr(σi|x |ℓ〉 〈ℓ|σj|x) = 0 unless σi|x = σj|x
for ℓ ∈ {0, 1}, and hence only terms for which σi|x = σj|x on both Bob’s private qubits and the δi
register contribute to the summation. Thus we have

pincorrect ≤
∑

i∈Ei,j∈Ej

Tr
(

∑

t,θt,rt

p(θt)p(t)p(rt) αiα
∗
j 〈ηνt |σi|t |η

ν
t 〉 〈η

ν
t |σj|t |η

ν
t 〉 ⊗ |δt〉 〈δt| ⊗

σi|B(⊗
B |0〉 〈0|)σi|B ⊗ P⊥(σi|A

I

Tr(I)
σi|A)

)

=
∑

i∈Ei,j∈Ej

Tr
(

∑

t,θt,rt

p(θt)p(t)p(rt) αiα
∗
j 〈ηνt |σi|t |η

ν
t 〉 〈η

ν
t |σj|t |η

ν
t 〉 ⊗ |δt〉 〈δt| ⊗

P⊥(σi|A
I

Tr(I)
σi|A)

)

,

where σi|x = σj|x∀x 6= t and where A represents the subsystem of all qubits sent by Alice except the
trap qubit. Finally, using the fact that

∑

θ,rt
Tr
(

〈ηνt |σi |η
ν
t 〉 〈η

ν
t |σj |η

ν
t 〉
)

= 0 unless σi|t = σj|t, we
arrive at the conclusion that the only terms which contribute to pincorrect are those where σi = σj .
Thus we have

pincorrect ≤
1

16m

∑

i∈Ei

Tr





∑

t,θt,rt

|αi|
2
(

〈ηνt |σi|t |η
ν
t 〉
)2

⊗ |δt〉 〈δt| ⊗ P⊥(σi|A
I

Tr(I)
σi|A)





≤
1

16m

∑

i∈Ei

Tr





∑

t,θt,rt

|αi|
2
(

〈ηνt |σi|t |η
ν
t 〉
)2



Tr
(

|δt〉 〈δt|
)

Tr

(

σi|A
I

Tr(I)
σi|A

)

=
1

16m

∑

i∈Ei





∑

t,θt,rt

|αi|
2
(

〈ηνt |σi|t |η
ν
t 〉
)2





=
1

16m

∑

i∈Ei

|αi|
2





∑

t≤m−n,θt,rt

(

〈ηνt |σi|t |η
ν
t 〉
)2

+
∑

m−n<t,θt,rt

(

〈ηνt |σi|t |η
ν
t 〉
)2
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=
1

16m

∑

i∈Ei

|αi|
2





∑

t≤m−n,θt,rt

(

〈rt|t σi|t |rt〉t
)2

+
∑

m−n<t,θt,rt

(

〈+θt |t σi|t |+θt〉t
)2





=
1

16m

∑

i∈Ei

|αi|
2
((

16|Ai/A
O
i |+ 16|Di/D

O
i |
)

+
(

8|BO
i |+ 8|CO

i |+ 16|AO
i |
))

=
1

2m

∑

i∈Ei

|αi|
2
(

2|Ai|+ 2|Di/D
O
i |+ |BO

i |+ |CO
i |
)

.

This can be further simplified, since |Ai|+ |Bi|+ |Ci|+ |Di| = m, giving

pincorrect ≤
1

2m

∑

i∈Ei

|αi|
2
(

2m− 2(|Bi|+ |Ci|+ |DO
i |) + |BO

i |+ |CO
i |
)

≤
1

2m

∑

i∈Ei

|αi|
2
(

2m− |Bi| − |Ci| − 2|DO
i |
)

≤
1

2m

∑

i∈Ei

|αi|
2 (2m− 1)

≤ 1−
1

2m

for the general case. However, for the specific case of only classical output, this bound can be made
tighter by performing the simplification in a different way, since |BO

i | = |CO
i | = |DO

i | = 0, and
hence

pincorrect ≤
1

2m

∑

i∈Ei

|αi|
2
(

2|Ai|+ 2|Di/D
O
i |+ |BO

i | − |CO
i |
)

=
1

m

∑

i:|Bi|+|Ci|≥1

|αi|
2 (|Ai|+ |Di|)

=
1

m

∑

i:|Bi|+|Ci|≥1

|αi|
2 (m− |Bi| − |Ci|)

≤
1

m

∑

i:|Bi|+|Ci|≥1

|αi|
2 (m− 1)

≤ 1−
1

m
.

7 Probability Amplification for Universal Verifiable Blind QC

In the previous section we presented a very simple verifiable protocol where the probability of Bob
succeeding in making Alice accept an incorrect outcome density operator was strictly less than 1.
Building upon that simple construction, by adding more traps and making the computation fault
tolerant, we can make the probability of Alice accepting an incorrect outcome density operator as
small as required. The central idea is to design a protocol with O(N) many traps in essentially
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random locations, where N is the number of qubits in the protocol, to increase the probability
of any local error being detected. The fault-tolerance is added to increase the minimum weight of
any operator which leads to an incorrect outcome, and hence further increase the probability of
detection. Here, and in what follows, the weight of a Pauli operator is defined to be the number
of qubits upon which it acts non-trivially. First, given such a protocol we show how it amplifies
the verification parameter. We then present the central contribution of this paper, a new universal
verifiable blind quantum computing protocol that achieves the probability amplification without
any such assumptions.

Theorem 10. Let P be a blind quantum computing protocol on N qubits with NT isolated traps in
the states |+θt〉 at a set of positions T chosen uniformly at random. Assume NT /N is a constant
fraction c. Moreover assume that the computation is encoded in such a way that any Pauli error
with weight less than d will be corrected or an error will be detected. Then the protocol is (1− c

2)
d-

verifiable in general, and (1− c)d-verifiable in the case of purely classical output.

Proof. In order to exploit Theorem 9, we notionally partition the qubits into independent sets
with one single trap qubit in each set. These partitions amount to extra information about the
location of the trap qubits, and hence their inclusion can only serve to increase the probability of
Bob convincing Alice to accept an incorrect state. Thus the bound we obtain with this additional
information is still an upper bound on the probability of Alice accepting an incorrect output when
these partitions are unknown. There are NT many such sets Sx with 1/c many qubits in each set.
We adopt a similar proof strategy to that used to prove Theorem 9, taking

P ν
incorrect = P⊥

⊗

t∈T
|ηνt 〉 〈η

ν
t |

as the projection onto the subspace of incorrect outcomes. Similar to the proof of Theorem 9, only
those Pauli operators contribute to pincorrect where one or both of the following has happened: σi
has produced an incorrect outcome for one or more of the measurement results bi or σi acts non-
trivially on the quantum output. Now due to the error-detection property of the encoding assumed
in the statement of the theorem we need to consider only those σi where |Bi| + |Ci| + |DO

i | ≥ d.
Following the steps of the proof of Theorem 9 we reach

pincorrect = Tr(
∑

ν

p(ν) P ν
incorrect Bj(ν))

≤
∑

i:|Bi|+|Ci|+|DO
i |≥d

Tr





∑

T

p(T )|αi|
2
∏

t∈T





∑

θt,rt

p(θt)p(rt)
(

〈ηνt |σi|t |η
ν
t 〉
)2









=
∑

i:|Bi|+|Ci|+|DO
i |≥d

∑

T

p(T )|αi|
2
∏

t∈T





∑

θt,rt

p(θt)p(rt)
(

〈ηνt |σi|t |η
ν
t 〉
)2



 .

Here we can exploit the structure we have introduced through the sets Sx

pincorrect ≤
∑

i:|Bi|+|Ci|+|DO
i |≥d

NT
∏

x=1

∑

tx,θtx ,rtx

p(tx)p(θtx)p(rtx)|αi|
2
〈

ηνtx
∣

∣σi|tx
∣

∣ηνtx
〉 )2

.
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where tx is taken to be the location of the trap qubit in set Sx. Rearranging the above and substi-
tuting in the values of p(tx), p(θtx), and p(rtx) we obtain

pincorrect ≤
∑

i:|Bi|+|Ci|+|DO
i |≥d

|αi|
2

NT
∏

x=1

∑

tx,θtx ,rtx

c

16

( 〈

ηνtx
∣

∣σi|tx
∣

∣ηνtx
〉 )2

.

Note that within each set the position of the trap is chosen uniformly at random and so the
probability of detection by that trap corresponds to the bound obtained for Theorem 9. Going
through the steps of the proof of Theorem 9 we obtain

pincorrect ≤
∑

i:|Bi|+|Ci|+|DO
i |≥d

|αi|
2

NT
∏

x=1

c

2

(

2|Aix|+ 2|Dix/D
O
ix|+ |BO

ix|+ |CO
ix|
)

=
∑

i:|Bi|+|Ci|+|DO
i |≥d

|αi|
2

NT
∏

x=1

c

2

(

2

c
− 2|DO

ix| − |Bix| − |Cix| − |Bix/B
O
ix| − |Cix/C

O
ix|

)

,

where we use the additional x subscript on sets |Aix|, ..., |Dix| to indicate subsets of the respective
sets, subject to the restriction that the elements are also in Sx. For convenience we define wix =
|Bix|+ |Cix|+ |DO

ix| and wi = |Bi|+ |Ci|+ |DO
i |. Thus we obtain

pincorrect ≤
∑

i:wi≥d

|αi|
2

NT
∏

x=1

c

2

(

2

c
− wix − |Bix/B

O
ix| − |Cix/C

O
ix| − |DO

ix|

)

≤
∑

i:wi≥d

|αi|
2

NT
∏

x=1

(

1−
cwix

2

)

≤
∑

i:wi≥d

|αi|
2

NT
∏

x=1

(

1−
c

2

)wix

=
∑

i:wi≥d

|αi|
2(1−

c

2
)
∑NT

x=1 wix

=
∑

i:wi≥d

|αi|
2(1−

c

2
)wi

≤
∑

i:wi≥d

|αi|
2(1−

c

2
)d

≤ (1−
c

2
)d.

In the case of purely classical output this bound can be improved, since |BO
i | = |CO

i | = |DO
i | = 0.

Going through the same steps with this additional constraint gives

pincorrect ≤
∑

i:wi≥d

|αi|
2

NT
∏

x=1

(1− cwix)

≤ (1− c)d.
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We can now present the final contribution of this paper, a new scheme for blind quantum
computing which has all the previously described properties: correctness, universality, blindness
of angles, input, output and computation and more importantly verifiability with exponentially
small probability of error. Roughly speaking, universality and correctness will be obtained by using
dotted-complete graph states (similar to Protocol 5). In order to achieve verification we exploit the
idea of dummy qubits (similar to Protocol 3) to create, blindly, out of a dotted-complete graph state
K̃3N three disconnected smaller dotted-complete graph states K̃N . Then we use two of these graph
states to create O(N) isolated trap qubits at random positions (similar to Protocol 6). The final
step is to perform the actual computation over the remaining dotted-complete graph state in such
a way that the stated property in Theorem 10 is also satisfied. That is, to have the measurement
pattern encoded in such a way that any Pauli error with weight less than d, will be either corrected
or detected. Such an encoding exists through the fault tolerant one-way quantum computing scheme
of [9]. All that is needed is to create a three dimensional cluster state from the dotted-complete
graph state and proceed with the fault tolerant computation scheme of Raussendorf, Harrington
and Goyal [8, 9].

We first give a concrete protocol for choosing the required parameters for the Raussendorf,
Harrington and Goyal scheme, given the desired security threshold for the verification, see Protocol
7. This will fix the size of the dotted-graph state, N , required for the actual computation. However
as stated above, we will start with a dotted-complete graph state of size 3N and will break it into
three smaller dotted-complete graph states of size N each, see Figure 5. We will refer to these
graphs as the white trap graph, the black trap graph and the computation graph. In the white trap
graph all the vertices in P (K̃N ) will become isolated traps (called white traps) by choosing all
the vertices in A(K̃N ) to be dummy qubits. Similarly in the black trap graph all the vertices in
A(K̃N ) will become isolated traps (called black traps) by choosing all the vertices in P (K̃N ) to be
dummy qubits. We have to choose both type of vertices (A(K̃3N ) and P (K̃3N )) to be potentially
isolated traps otherwise Bob could choose to cheat on one type rather than the other one. In order
to make the position of traps random, Alice will choose a random partition of P (K̃3N ) into three
equal size sets, and will choose appropriate dummy qubits (similar to Lemma 2) to obtain the
three disconnected graphs. Note that this will lead to random positions for trap qubits, however
the positions of trap qubits will be also correlated with each other and we will take care of this
issue when we present the proof of the verification. The above procedure is formalised in Protocol
7 and finally Protocol 8 presents a hiding protocol that is universal, verifiable and blind.

As a high level overview of the fault-tolerance scheme, qubits are encoded topologically as
chains of defects (qubits to be measured in the Z basis) of finite thickness and separation (referred
to as the scale parameter) which trace out a path through the three dimensional structure of the
resource state. The encoding forces non-detectable errors to be topologically non-trivial chains,
either connecting or encircling defect chains. Certain Clifford group operations are implemented
directly by braiding these defect chains. For the remaining operations required for universality it
is necessary to implement the gate by first distilling a suitable resource state which is then used
to implement the gate via teleportation (all within the topologically encoded computation). While
the teleportation can be done with Clifford group operations, the distillation is implemented on
a concatenated encoding where at each level of concatenation the corresponding distillation step
is topologically encoded with progressively higher defect thicknesses and scale parameters. At the
lowest level, however, the operations are performed directly on physical qubits, and so the defect
chains are only a single qubit in diameter.

Theorem 11. Assume Alice and Bob follow the steps of Protocol 8, then Alice always accepts the
output and the outcome density operator is correct.
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Protocol 7 Measurement Pattern Choice
In what follows choosing a measurement pattern means fixing the underlying graph state together
with the appropriate angles of computation such that the resulting pattern implements the desired
computation due to universality. Similarly choosing a partial measurement pattern means fixing
the underlying graph state together with a partial set of angles of computation corresponding to a
partial computation, where the rest of angles will be fixed in Protocol 8 where this protocol is called
as a subroutine. Here, we assume that a standard labelling of the vertices of each dotted-complete
graph state is known to both Alice and Bob.

1. Alice chooses security parameter d, then transforms the quantum circuit C corresponding to
her desired computation into (or directly designs) a measurement pattern MComp on a graph
state GL which implements her computation using the encoding for topological fault-tolerant
measurement-based quantum computation due to Raussendorf, Harrington and Goyal [9],
where GL is taken to correspond to the graph state of the 3D lattice L introduced in [9] with
sufficient dimensions Dx, Dy and Dz to implement her computation using an encoding with
parameters as follows:

• Defect thickness d

• Lattice scale parameter λ = 5d

• Distillation of resource states |A〉 and |Y 〉 using L = ⌈log3(d)⌉ levels

• For each concatenation level 1 < ℓ < L the thickness parameter and scale parameter for
that level are chosen as dℓ = 3dℓ−1 and λℓ = λℓ−1, with d1 = 1, λ1 = 5, dL = d and
λL = λ.

2. Alice chooses a partial measurement pattern MReduce which reduces the graph state K̃N to
the graph state GL through Pauli measurements (Theorem 7), where N is the total number
of qubits in L.

3. Alice chooses a partial measurement pattern MP on the graph state K̃N such that every qubit
corresponding to a vertex in A(K̃N ) are set to be dummy qubits. Hence all vertices in P (K̃N )
are isolated traps.

4. Alice chooses a partial measurement pattern MA on the graph state K̃N such that every qubit
corresponding to a vertex in P (K̃N ) is set to be dummy qubits. Hence all vertices in A(K̃N )
are isolated traps.

5. For the graph K̃3N , Alice chooses uniformly at random a partitioning P of the vertices into
three equal sized sets of vertices P1, P2 and P3.

6. Alice takes MP to be the partial measurement pattern where the required vertices in A(K̃3N )
are set to be dummy qubits such that the resulting state is the tensor product of three
graph states of the three disconnected graphs k̃1 = K̃N , k̃2 = K̃N and k̃3 = K̃N , such that
P (k̃i) = Pi.

7. Alice calculates M, her overall measurement pattern on a graph state corresponding to K̃3N

by combining the partial patternMP withMComp andMReduce applied to subgraph k̃1 andMP

and MA applied to subgraphs k̃2 and k̃3 respectively, to obtain a full measurement pattern.
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Protocol 8 Verifiable Universal Blind Quantum Computation

• Alice’s resources
– Alice chooses the pattern M and random partitioning P according to Protocol 7.
– The dummy qubits position, set D chosen according to Protocol 7.
– A sequence of measurement angles, φ = (φi)1≤i≤3N(3N+1)/2 with φi ∈ A, according to the
description of Protocol 7, where φi = 0 for all the trap and dummy qubits. The ordering of
the measurements on P (K̃3N ) is chosen uniformly at random subject to the constraint that
the partial ordering of measurements from MComp determined by flow is preserved. Such a
random ordering is required to hide the position of the trap qubits. The qubits in A(K̃3N )
are measured first in the order that the relevant edge entry appears in the adjacency matrix
of K3N once this random ordering has been taken into account. That is, the site in A(K̃3N )
which is joined by edges to i and j in P (K̃3N ), with i < j in the random ordering imposed

on P (K̃3N ), is measured in position 3N(i− 1) + j − i(i+1)
2 . Note that the measurement order

of the vertices in A should be independent of the computation (and traps), so in the above
we prescribe one such suitable sequence. This is followed by the measurements of P (K̃3N ) in
the randomly chosen order.
– 3N(3N + 1)/2 random variables θi with value taken uniformly at random from A.
– 3N(3N +1)/2 random variables ri and |D| random variable di with values taken uniformly
at random from {0, 1}.
– A fixed function C(i, φi, θi, ri, s) that for each non output qubit i computes the angle of the
measurement of qubit i to be sent to Bob.

• Initial Step
– Alice’s move: Alice sets all the value in s to be 0 and prepares the qubits in the following
form

∀i ∈ D |di〉
∀i 6∈ D

∏

j∈NG(i)∩D Z
dj |+θi〉

and sends Bob all the 3N(3N +1)/2 qubits in the order of the labelling of the vertices of the
graph.

– Bob’s move: Bob receives 3N(3N + 1)/2 single qubits and entangles them according to
K̃3N .

• Step i : 1 ≤ i ≤ 3N(3N + 1)/2

– Alice’s move: Alice computes the angle δi = C(i, φi, θi, ri, s) and sends it to Bob.
– Bob’s move: Bob measures qubit i with angle δi and sends Alice the result bi.
– Alice’s move: Alice sets the value of si in s to be si + ri.

• Verification
Alice accepts if si = ri for all the white and black trap qubits i.
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Figure 5: A graphical depiction of Protocol 8. In this figure we replace the Raussendorf-Harrington-
Goyal encoding in the first step with a simpler computation, as to include a full encoding yields
graphs too large to reasonably draw.

Proof. First we note that it is always possible to choose measurement patterns MP by Lemma 2 and
MReduce by Lemma 1. Further, by the universality of the Raussendorf-Harrington-Goyal encoding,
it is always possible to choose MComp. As the measurements composing MP , MReduce, MP and MA

are composed entirely of Pauli basis measurements, there is no partial time ordering imposed on
the sequence of measurements, and so the times at which these measurements are made have no
effect on the outcome of the protocol. Thus for any honest run of the protocol, the result will be the
same as if the measurements from MP were made first. By construction this measurement pattern
splits the graph state into three separate graph states K̃N .

The dummy qubits in MP and MA correspond to break operations in their respective graphs
by Lemma 4 and hence after the initial step all the trap qubits remain unentangled from the rest.
Recall that for these trap qubits φi = 0, and since the qubit is prepared in the state |+θi〉 and
measured in basis {|+θi〉 , |−θi〉}, the measurement result communicated to Alice is si = ri for all
such qubits. Thus, Alice always accepts, satisfying the first criterion.

By definition MReduce transforms the graph state corresponding to K̃N to the resource state
necessary to implement MComp. Lastly, measuring according to MComp yields the correct output of
C by the correctness of the Raussendorf-Harrington-Goyal protocol.
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Theorem 12. Protocol 8 is blind while leaking at most N .

Proof. The proof is directly obtained from Theorem 5.

In order to prove the verification property, as stated in Theorem 10, we require that the mea-
surement pattern is encoded in such a way that any Pauli error of weight less than d will be either
corrected or detected. We now show that this is true for the Raussendorf-Harrington-Goyal scheme
although this is already implicit in their paper [9], we make it explicit here for completeness. In
what follows, we take L to be the 3D lattice corresponding to the resource state used in [9].

Lemma 5. Let MC be a measurement pattern which implements a computation C on GL, the graph
state corresponding to the lattice L, using the Raussendorf-Harrington-Goyal fault tolerance scheme
with the following parameters

• Defect thickness d

• Lattice scale parameter λ = 5d

• Distillation of resource states |A〉 and |Y 〉 using L = ⌈log3(d)⌉ levels

• For each concatenation level 1 < ℓ < L the thickness parameter and scale parameter for that
level are chosen as dℓ = 3dℓ−1 and λℓ = 3λℓ−1, with d1 = 1, λ1 = 5, dL = d and λL = λ.

Take σ = {σi} to be a set of Pauli operators, such that each σi ∈ {I,X, Y, Z} and acts on qubit i.
Then for any σ, if MC is implemented on state |GL〉, but the output of each measurement result or
unmeasured qubit i is modified by applying σi, then either the computation is correct (corresponding
to a run where all σi = I) or an error is detected when the output is decoded, unless |BL|+ |CL|+
|DO

L | ≥ 2d, where BL = {x : σx = X}, CL = {x : σx = Y } and DO
L = {x : σx = Z and x ∈ O},

and where O is the set of output (unmeasured) qubits.

Proof. In the Raussendorf-Harrington-Goyal scheme, logical qubits are topologically protected
against errors. The two lowest weight topological errors are error cycles around defects and er-
ror chains running between defects. As defects have thickness d, any cross-section forms a rectangle
of dimension at least d× d and thus perimeter at least 4(d+ 1). As an error cycle must fit around
the remaining defect, the minimum error cycle is at least 4d. As the centres of defects are separated
by distance λ, the minimum distance between defects is λ − d and hence for our parameters we
have λ− d = 4d.

The only region where this topological protection breaks down is within the regions used to
distill the resource states |A〉 and |Y 〉. This distillation is performed using a concatenation of L
levels of the Reed-Muller (|A〉) or Steane (|Y 〉) codes. Each level ℓ of distillation is topologically
protected with parameters dℓ and λℓ. As the Reed-Muller and Steane codes are both distance 3,
an error at level ℓ can be caused either by a topological error at that level or not less than 3 errors
at the previous level. However, since at each level ℓ < L we have λℓ − dℓ = 4dℓ and dℓ = 3dℓ−1, the
minimum weight wℓ to create an error at level ℓ is min(4dℓ, 8dℓ−1, 4dℓ−1 + wℓ−1, 3wℓ−1). The four
terms in this last expression account, respectively, for the minimum weight errors in each of the
four possible cases: 1) The error is entirely topological at level ℓ, 2) The error is entirely topological
at level ℓ − 1, 3) the error includes both topological errors at level ℓ − 1 (which in the worst case
affects two qubits with a single weight 4dℓ error chain) and inherited errors from level ℓ − 2, and
4) the case where all errors are inherited from level ℓ− 2.

We then prove that wℓ > 2dℓ by induction, as follows. Assume that at level i we have wi > 2di.
In that case we have wi+1 = min(4di+1, 6di), since by assumption 4di+wi > 6di and 3wi > 6di, and
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clearly 8di > 6di. However, we have di+1 = 3di for all levels except the top level, where dL ≤ 3dL−1.
Thus, in general, 2di+1 ≤ 6di, and hence wi+1 > 2di+1. At the lowest level the error distillation
uses unencoded qubits measured in non-Pauli bases, and so w0 = 1, so w1 = 3 > 2d1 = 2 and thus
by induction on i we obtain the result that wL > 2d as required.

Note, however, that any operation on a measured qubit which is diagonal in the computational
basis (σi ∈ {I, Z}) does not alter the computation. Hence an undetectable logical error is not
created unless the total number of measured sites for which σi ∈ {X,Y } plus the total number of
output qubits for which σi ∈ {X,Y, Z} is equal to or greater than 2d. Thus the outcome is either
correct or when decoded results in a detected error, unless |BL|+ |CL|+ |DO

L | ≥ 2d.

Now we link the above general property of the Raussendorf-Harrington-Goyal scheme to our
specific protocol. To do so, we first introduce the notion of independently detectable errors.

Definition 9. Given a dotted-complete graph state K̃N , a set of output qubits O, a measurement
pattern Mtarget containing only X-Y plane measurements and Z basis measurements, and a set of
single qubit Pauli operators σ = {σi}Ni=1 with σi ∈ {I,X, Y, Z} which represent errors which modify
each measurement result or unmeasured output qubit i by the application of σi, for each location i
we define the set ǫi = {i} for i ∈ P (K̃N ), and ǫi = NK̃N

(i) for i ∈ A(K̃N ). We say that σ contains
k independently detectable errors if and only if there exists a set E of k locations such that

• For all i ∈ E, σi ∈ {X,Y } if i /∈ O or else σi ∈ {X,Y, Z} if i ∈ O, and

• ǫi ∩ ǫj = 0 for all pairs i, j ∈ E.

The intuition behind this definition is that in Protocol 8 the qubits in P (K̃3N ) are independently
randomly distributed between the two trap graphs and the computation graph, and whether or not
a qubit in A(K̃3N ) coincides with a trap or not depends only on the placement of the neighbouring
qubits (which are both in P (K̃3N )). The first condition ensures that the error anticommutes with
some possible measurement of the system, and is hence truly an error, while the second condition
ensures that we are considering only qubits associated with unique subsets of P (K̃3N ), and hence
whether or not they coincide with a trap is uncorrelated. With this definition in place, we can
proceed with proving a corollary to Lemma 5 which links that result with Protocol 8.

Corollary 1. Let MC be a measurement pattern which implements a computation C on graph state
GL of N vertices using the Raussendorf-Harrington-Goyal scheme with parameters

• Defect thickness d

• Lattice scale parameter λ = 5d

• Distillation of resource states |A〉 and |Y 〉 using L = ⌈log3(d)⌉ levels

• For each concatenation level 1 < ℓ < L the thickness parameter and scale parameter for that
level are chosen as dℓ = 3dℓ−1 and λℓ = λℓ−1, with d1 = 1, λ1 = 5, dL = d and λL = λ.

Further, let MReduce be a partial measurement pattern consisting of Pauli Z and Pauli Y mea-
surements on qubits corresponding to the vertices in A(K̃N ) which reduces K̃N to GL up to local
Z-rotations. Let M be the measurement pattern for graph state K̃N produced by applying the partial
pattern MReduce to the qubits corresponding to vertices in A(K̃N ) and MC (with appropriate local
Z-rotations applied) to the qubits corresponding to vertices in P (K̃N ).

Take σ = {σi} to be a set of single qubit Pauli operators, such that each σi ∈ {I,X, Y, Z} acts
on qubit i. Then for any σ, if MC is implemented on state K̃N , but the output of each measurement
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result or unmeasured qubit is modified by applying σi, then either the computation is correct (cor-
responding to a run where all σi = I) or an error is detected when the output is decoded, unless σ
contains at least ⌈2d5 ⌉ independently detectable errors.

Proof. First we note that only qubits in P (K̃3N ) are contained in O, since all qubits in A(K̃3N )
will be measured to make the required resource states. All measurements on qubits associated with
vertices A(K̃N ) are in either the Y or Z basis, allowing any error in the measurement outcome
to be associated with an X error on the underlying qubit. As the generators for the stabiliser of
K̃N are simply the operators Xi

∏

j∈NK̃N
(i) Zj , and each vertex in A(K̃N ) has only two neighbours,

both of which lie in P (K̃N ), an X error on a qubit associated with a vertex in A(K̃N ) is equivalent
to a local error on each of two qubits in P (K̃N ). Thus any local Pauli operator in σi associated
with a vertex in A(K̃N ) can be either replaced by at most two local operators11 acting on qubits
associated with vertices in P (K̃N ) without altering the outcome of the computation, or has no
effect on the computation.

We note that the only Pauli terms which can affect the outcome of the computation are those
which either flip a measurement outcome (X or Y ) or those which act non-trivially upon an
unmeasured qubit (as either X, Y or Z). By Lemma 5, the outcome of the computation is unaltered
unless σ produces such errors on at least 2d sites. To show that this implies the existence of at least
⌈2d5 ⌉ independently detectable errors we will consider the effects of errors on A(K̃N ) and P (K̃N ) in

relation to the resource state for the Raussendorf-Harrington-Goyal scheme, GL. Errors on A(K̃N )
only occur when the qubit in question is measured in the Y basis, since for Z basis measurements
dummy qubits are used and the outcome of Bob’s measurement is ignored. Thus, as we have shown
above, such errors correspond to local Pauli errors at either end of an edge in the GL. Errors in
P (K̃N ), however, correspond simply to errors on single vertices in GL. Therefore, we can consider
any error introduced by σ as corresponding to a subgraph gσ of GL, where i ∈ A(K̃N ) introduces
the vertices in NK̃N

(i) together with a connecting edge, while i ∈ P (K̃N ) simply introduces the
vertex i. Such a subgraph contains all of the qubits in GL which can possibly be affected by local
errors after the measurement of qubits according to MReduce are taken into account (propagating
errors from A(K̃N ) to P (K̃N )).

We note that any connected subgraph gxσ of gσ containing nx vertices necessarily contains at
least nx − 1 edges. Note also that GL is 4-edge-colourable (see Figure 6). Thus, by the pigeonhole
principle, there is at least one colour for that subgraph which corresponds to at least ⌈nx−1

4 ⌉ edges.
As the various subgraphs gxσ are disconnected, we are free to choose the colouring independently
for each, and hence can choose a single 4-edge-colouring for gσ such that it includes at least ⌈nx−1

4 ⌉

edges from each subgraph. We then take the set E to correspond to qubits in A(K̃N ) corresponding
to edges of this colour, as well as to the single vertex in any gxσ for which nx = 1, hence ǫi∩ǫj = 0. By
Lemma 5, this insures that the outcome of the computation is either correct or an error is detected
upon decoding, or σ contains at least

∑

x:nx≥2⌈
nx−1

4 ⌉+
∑

x:nx=1 1 independently detectable errors,
where

∑

x nx ≥ 2d. Note that

∑

x:nx≥2

⌈
nx − 1

4
⌉+

∑

x:nx=1

1 ≥
2d

5
,

and hence the computation is either correct or an error is detected upon decoding, or σ contains
at least ⌈2d5 ⌉ independently detectable errors.

11As Pauli Z operators always commute with Z basis measurements, and anticommute with any measurement in
the X − Y plane, these local operators are always Pauli operators due to the corresponding restriction on Mtarget.
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Figure 6: The unit cell for the lattice corresponding to the Raussendorf-Harrington-Goyal scheme,
GL, complete with one choice of 4-edge-colouring.

The above corollary guarantees that one of the condition of Theorem 10 for the verification
with the amplified security is satisfied. However we cannot yet directly use that theorem since, as
stated before, the position of the traps are not completely random as the position of the black traps
are fixed once we choose the random position assignment of qubits in P (K̃3N ) to each of the three
subgraphs. This is why we have introduced the notion of independently detectable errors. Here we
give a direct proof of verification for Protocol 8 following the same steps as the proof of Theorem
10.

Theorem 13. Protocol 8 is in general (5/6)⌈
2d
5
⌉-verifiable, and in the case of only classical output

is (2/3)⌈
2d
5
⌉-verifiable, where d is the security parameter as described in Protocol 7.

Proof. The proof of this theorem follows the same strategy as Theorem 9, first taking the most
general strategy for Bob, expanding this in terms of Pauli operators, and lastly showing that any
Pauli term which leads to an incorrect outcome is detected with high-probability. We note that
any deviation by Bob from Protocol 8 can be rewritten in the form shown in Figure 4. The proof
of this is identical to the corresponding step in the proof of Theorem 9: Without loss of generality
any deviation by Bob from the protocol can be written in the form of Figure 3. We can treat {δi}
as inputs to the circuit without violating causality, as they do not interact with any other part of
the computation until after bj has been measured, for all j < i. Then simply by reordering the
operators via their commutation relations we obtain the form in Figure 4 as required. As a result,
any deviation by Bob can be written as a single deviation operator Ω which acts upon the quantum
states Bob receives from Alice as well as δi and some private register held by Bob. Similar to the
proof of Theorem 9 the probability of Alice accepting an incorrect outcome density operator is then

pincorrect = Tr

(

∑

ν

p(ν)P ν
incorrectBj(ν)

)

= Tr

(

∑

ν

p(ν)P ν
incorrectΩP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†Ω†

)

=
∑

i,j

αiα
∗
jTr

(

∑

ν

p(ν)P⊥

(

⊗

t∈T
|ηνt 〉 〈η

ν
t |

)

σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σj

)
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where Ω =
∑

αiσi. As Ω is unitary
∑

i |αi|
2 = 1.

By Corollary 1, P⊥ projects out the terms in the above sum where σi does not contain at
least ⌈2d5 ⌉ independently detectable errors on the computation graph. This is a somewhat stronger
condition than we actually need, and so we will consider terms corresponding to any σi which
produces at least ⌈2d5 ⌉ independently detectable errors in total across all three subgraphs (the
computation graph and the two trap graphs). We will denote by I the set of all i for which σi does
not satisfy this condition. Thus we have

pincorrect ≤
∑

i,j /∈I
αiα

∗
jTr

(

∑

ν

p(ν)

(

⊗

t∈T
|ηνt 〉 〈η

ν
t |

)

σiP
((

⊗B |0〉 〈0|
)

⊗ |Ψν〉 〈Ψν |
)

P†σj

)

.

Similar to the proof of Theorem 9, as Bob’s private register is in the fixed initial state ⊗B |0〉 〈0|
and the register containing the angles {δi} contains classical data, it suffices to consider only σi|x
and σj|x ∈ {I,X} across these registers. Then, as before, all terms for which i 6= j go to zero when
the average over ν is taken. Thus,

pincorrect ≤
∑

i/∈I
|αi|

2Tr

(

∑

ν

p(ν)
(

⊗

t∈T
|ηνt 〉 〈η

ν
t |
)

σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σi

)

.

As in the proof of Theorem 10, we introduce notional sets Sx of three qubits each such that exactly
one qubit from each set is on each of the three subgraphs (the two trap graphs and the computation
graph), and where either all of the qubits are in P (K̃3N ) or all of the qubits are in A(K̃3N ) (ensuring
exactly one trap and at least one dummy qubit per set). As every σi in the above sum corresponds
to at least ⌈2d5 ⌉ independently detectable (and hence uncorrelated) errors across these sets Sx, we
have

pincorrect ≤
∑

i/∈I
|αi|

2Tr

(

∑

ν

p(ν)
(

⊗

x

∣

∣ηνtx
〉 〈

ηνtx
∣

∣

)

σiP((⊗B |0〉 〈0|)⊗ |Ψν〉 〈Ψν |)P†σi

)

≤
∑

i/∈I
|αi|

2
∏

x

Tr





∑

tx,rtx ,θtx

1
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(

〈ηνt |σi|t |η
ν
t 〉
)2



 ,

where as before tx denotes the location of the trap qubit in set Sx. Averaging over all values of tx,
rtx and θtx , in general this gives

pincorrect ≤
∑

i/∈I
|αi|

2
∏

x

(

1−
wx

6

)

≤
∑

i/∈I
|αi|

2
∏

x

(

1−
1

6

)wx

=
∑

i/∈I
|αi|

2

(

5

6

)

∑
x wx

≤
∑

i/∈I
|αi|

2

(

5

6

)⌈ 2d
5
⌉

≤

(

5

6

)⌈ 2d
5
⌉
,
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where wx denotes the number of independently detectable errors which fall within set Sx. In the
special case of all classical output, however, the bound can be made tighter, since

∣

∣ηνtx
〉

=
∣

∣rνtx
〉

,
and hence

pincorrect ≤
∑

i/∈I
|αi|

2
∏

x

Tr





∑

tx,rtx

1

6

( 〈

rνtx
∣

∣σi|t
∣

∣rνtx
〉 )2





≤
∑

i/∈I
|αi|

2
∏

x

(

1−
wx

3

)

≤
∑

i/∈I
|αi|

2
∏

x

(

1−
1

3

)wx

=
∑

i/∈I
|αi|

2

(

2

3

)

∑
x wx

≤
∑

i/∈I
|αi|

2

(

2

3

)⌈ 2d
5
⌉

≤

(

2

3

)⌈ 2d
5
⌉
.

8 Conclusions and discussion

We have extended the original blind quantum computing (BQC) protocol presented in [3] with
new concepts of blind preparation of isolated dummy qubits (a qubit prepared randomly in the
set {|0〉 , |1〉} ) and isolated trap qubits (a qubit prepared randomly in the set {|+〉θ}). These two
simple additions lead to an intuitive proof of verification a desired property for any BQC protocol
(also known as authentication). However, in this way only polynomially bounded security could be
achieved. Building upon these ideas, combined with fault-tolerant computation, we presented a new
universal BQC protocol that achieve exponentially bounded security for the verification scheme
using new resource state called the dotted-complete graph state. The new protocol extend the
topological fault-tolerant measurement-based quantum computation scheme due to Raussendorf,
Harrington and Goyal [9] to a blind setting. We note that while consideration of fault-tolerance in
the blind computation itself is beyond the scope of the present work, if Protocol 8 is modified so
as to allow Alice to accept a finite error rate on the trap qubits, the probability of Bob successfully
cheating is exponentially suppressed in the gap between the expected error weight inferred from
trap measurements and our threshold of ⌈2d5 ⌉, and so a fault-tolerant adaptation of this protocol
should be possible.

As mentioned before, a verifiable BQC protocol can be viewed as an interactive proof system
where Alice acts as the verifier and Bob as the prover [4, 3]. This link to the complexity theory
opens up a novel approach to questions such as the open problem of finding an interactive proof
for any problem in BQP with a BQP prover, but with a purely classical verifier. As presented in
[3] any BQC protocol makes progress towards finding a solution by providing an interactive proof
for any language in BQP, with a quantum prover and a BPP verifier that also has the power to
generate random qubits chosen from a fixed set and send them to the prover.
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