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Abstract

Free energy calculations are central to understanding the structure, dynamics and function of 

biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of 

the main sources of error. Many enhanced sampling techniques have been developed to address 

this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), 

including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been 

discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review 

enhanced sampling methods that do not require predefined system-dependent CVs for 

biomolecular simulations and as such do not suffer from the hidden energy barrier problem as 

encountered in the CV-biasing methods. These methods include, but are not limited to, replica 

exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space 

random walk and accelerated molecular dynamics. While it is overwhelming to describe all details 

of each method, we provide a summary of the methods along with the applications and offer our 

perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling 

methods for accurate biomolecular free energy calculations.
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 1. Introduction

Ever since the first simulation of bovine pancreatic trypsin inhibitor (BPTI) in 1977[1], 

molecular dynamics (MD) has embraced a new era for its wide applications in 

computational modeling of biomolecules[2]. The simulated systems range from proteins to 

membrane lipids and nucleic acids. Based on a molecular force field model, MD solves the 

Newton’s equations of motion for all atoms in the system along time. From the atomic 

trajectory, one is able to extract structural and dynamical information on the biomolecules 

that can be compared and used to interpret experimental data obtained from nuclear 

magnetic resonance (NMR)[3–5] and neutron scattering[6, 7]. MD simulations have been 
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also found use in refinement of structures determined by cryo-electron microscopy[8, 9], X-

ray crystallography[10–12] and NMR[13, 14].

In addition, MD simulations have been used to calculate free energies that determine the 

behavior of biomolecules at or near equilibrium. In the simplest form, the free energy of 

biomolecules in a canonical ensemble is calculated as F = −kBT ln Q, where kB is the 

Boltzmann’s constant, T is the system temperature and Q is the system partition function. 

Free energies describe the spontaneity of biomolecular transitions from one configuration 

state to another. They are central to understanding the structure, dynamics and function of 

the biomolecules. Examples include ligand binding to proteins, conformational change of 

large proteins during enzyme catalysis or cell signaling, and permeation of small-molecule 

drugs through cell membrane as discussed in a long list of previous review articles[15–18].

Whereas MD simulations provide a detailed picture of the biomolecular dynamics in 

atomistic detail, current MD simulations are often limited to tens of microseconds for 

average-sized proteins or even shorter timescales for larger systems[19]. Different functional 

states of biomolecules are often separated by high energy barriers (e.g., 8–12 kcal/mol) and 

structural transitions across the energy barriers take place over milliseconds or even longer 

timescales[20, 21]. Therefore, there remains a large gap between the MD simulation 

timescales and those of biological processes. This often leads to insufficient sampling or 

unconverged simulations of the biomolecules. It has been described as one of the main 

sources of error in biomolecular free energy calculations[15, 17, 18].

 2. Why unconstrained enhanced sampling simulations are needed

To overcome the insufficient sampling problem of free energy calculations, many enhanced 

sampling techniques have been developed during the last several decades as reviewed 

earlier[22–27]. The first class of these methods is based on biasing collective variables 

(CVs) of biomolecules. They include the widely used umbrella sampling[28, 29], blue moon 

sampling[30], adaptive biasing force[31, 32], metadynamics[33, 34], conformational 

flooding[35], string method[36, 37], λ-dynamics[38], adiabatic free energy dynamics[39], 

temperature accelerated MD[40] and targeted MD[41–43].

The above enhanced sampling methods greatly improve the convergence of free energy 

calculations, but they require predefined CVs and often suffer from hidden energy barriers. 

In Figure 1, a hidden energy barrier is illustrated for enhanced sampling simulations that are 

based on biasing CVs. Without the loss of generality, there are two local energy minimum 

states for a given system along the y direction. If only x is defined as the CV, apparently 

converged sampling of the free energy surface along the x direction will be obtained from 

the corresponding enhanced sampling simulations, but not for the hidden energy barrier 

along the y direction. Therefore, when important CVs are missed during the simulation 

setup, the CV-biasing enhanced sampling methods often suffer from insufficient sampling of 

the hidden energy barrier(s), which leads to poor convergence of the simulations. Abrams 

and Bussi noted in their recent review[22] that: “the drawback of all CV-biasing approaches 

is the risk that the chosen CV space does not provide the most faithful representation of the 

true spectrum of metastable subensembles and the barriers that separate them. Guaranteeing 
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that sampling of CV space is not stymied by hidden barriers must be of paramount concern 

in the continued evolution of such methods”.

Improved enhanced sampling methodology has been developed to address the “hidden 

barrier” issue, notably the orthogonal space random walk (OSRW)[44, 45], the essence of 

which is to perform a simultaneous random walk in the orthogonal space along the 

directions of a CV and its generalized force. Moreover, there exists a second class of 

enhanced sampling methods that do not require predefined system-dependent CVs and as 

such do not suffer from the hidden barrier problem as encountered in the CV-biasing 

methods, such as replica exchange (RE)[46, 47] or parallel tempering (PT)[48], self-guided 

molecular/Langevin dynamics (SGMD and SGLD)[49–52], essential energy space random 

walk (EESRW)[53–55] and accelerated molecular dynamics (aMD)[56, 57]. Compared with 

the CV-biasing enhanced sampling methods, these methods are advantageous to explore 

biomolecular configurations without the need for a priori knowledge. They provide 

unconstrained enhanced sampling to explore biomolecular structural transition pathways 

(e.g., protein folding and ligand binding) and identify possible unknown intermediate 

configuration states of the biomolecules.

 3. Unconstrained enhanced sampling methods

Here, we consider a list of unconstrained enhanced sampling methods, including the RE/PT, 

SGMD/SGLD, EESRW and aMD. It is not possible to describe all details of each method in 

this review. Instead, we provide a summary of the methods along with their applications and 

offer our perspectives.

 3.1 Replica Exchange/Parallel Tempering

As illustrated in Figure 2, Replica Exchange/Parallel Tempering (RE/PT) methods are based 

on running multiple copies (replicas) of parallel MD (or Monte Carlo) simulations at 

different temperatures and exchanging system configurations (or equivalently exchanging 

temperatures) between pairs of replicas at a certain frequency to achieve enhanced sampling. 

The replicas are exchanged between each pair of neighboring temperatures at a probability 

that meets the Metropolis criterion. It ensures that the generalized ensemble of the system 

satisfies a detailed balance and converges towards an equilibrium distribution. Meanwhile, 

the replica exchanges avoid the trapping of biomolecules in local energy-minimum 

configurations as simulated at low, room temperature and facilitate barrier crossing events in 

the biomolecules.

Consider a system of N atoms with positions r ≡ {r1, ⋯, rN} and momenta p ≡ {p1, ⋯, 

pN}. In the canonical ensemble at temperature T, each state x ≡ (r,p) is weighted by the 

Boltzmann factor:

(1)

where β = 1/kBT with kB as the Boltzmann constant and H(r,p) is the system Hamiltonian 

that is given by the sum of the potential energy V(r) and kinetic energy K(p).
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In RE/PT, the generalized ensemble consists of M non-interacting replicas of the original 

system in the canonical ensemble, each at a different temperature Tm (m = 1, ⋯, M). There 

is a one-to-one correspondence between the replicas and temperatures. The label i (i = 1, ⋯, 

M) for replicas is a permutation of the label m (m = 1, ⋯, M) for temperatures, i.e., i = i(m) 

≡ f(m), and vice versa m = m(i) ≡ f−1(i). f(m) is a permutation function of m and f−1(i) is its 

inverse. Let  stand for a “state” in the generalized ensemble. Each 

“substate”  is specified by the coordinates r[i] and momenta p[i] of N atoms in replica i at 

temperature Tm: . Because the replicas are non-interacting, the weight 

factor for the state X in this generalized ensemble is given by the product of the Boltzmann 

factors of each replica:

(2)

To help the biomolecules escape from local energy minimum states, we exchange a pair of 

replicas with neighboring temperatures at probability w(X → X′). Such replica exchange 

needs to satisfy a detailed balance in order to converge towards an equilibrium distribution:

(3)

This can be met when one uses the Metropolis criterion to calculate the exchange 

probability:

(4)

where Δ = (βn − βm)[V(r[i]) − V(r[j])], and i, j, m and n are related by the permutation 

functions before the exchange: i = f(m), j = f(n).

Compared with the simulated tempering (ST)[58, 59] and mulicanonical algorithms 

(MUCA)[60] that perform random walk in the temperature and potential energy spaces, 

respectively, the RE/PT methods are advantageous with a priori known weight factors. 

Canonical ensemble properties are readily obtained from the RE/PT simulations. Many 

variants of the RE/PT methods have been also developed for further enhanced sampling[47], 

such as the replica-exchange multicanonical algorithm[61, 62], replica-exchange simulated 

tempering[63], multicanonical replica-exchange[61], simulated tempering replica-

exchange[63] and ab initio replica-exchange[64]. Moreover, multidimensional extension of 

REMD, multidimensional replica-exchange[65], has led to the development of the replica 

exchange umbrella sampling[66] and Hamiltonian REMD[67, 68] methods.

Instead of using spatial CVs, the RE/PT methods are based on exchanging temperature 

between parallel MD or Monte Carlo simulations. This allows for unconstrained 
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conformational sampling of the biomolecules, which has enabled a wide range of 

applications, for example, in conformational transitions of Argon fluid[69] and peptides[70, 

71], protein folding[46, 72–74], protein structural refinement[75], ligand binding free energy 

calculations[65], DNA base stacking[76], nucleic acid conformational change[67], etc.

However, it has been noted that the RE/PT methods do not work for processes with the first-

order phase transitions. Moreover, the number of replicas required for converged RE/PT 

simulations is proportional with the square root of the system number of degrees of freedom. 

This suggests that for systems of increasing size, a significantly larger number of replicas 

are needed are needed to run the simulations. This often requires expensive computational 

resources. One solution for this is to first run a short RE/PT simulation to determine the 

mulitcanonical weight factor and then perform with this weight factor a regular 

multicanonical simulation with high statistics. This is reflected in the replica-exchange 

multicanonical algorithm[61, 62] and replica-exchange simulated tempering method[63, 77].

 3.2 Self-guided molecular/Langevin Dynamics

Self-guided molecular dynamics (SGMD)[49, 50] was developed to improve the 

conformational searching efficiency of MD simulations. It is based on the rationale that the 

conformational searching efficiency is often limited by slow systematic motions. To 

accelerate these systematic motions, a self-guiding force was introduced into the Newton’s 

equation of motion:

(5)

where mi is the mass of atom i, r̈i is the acceleration of atom i with altered systematic 

motion, fi is the atom instantaneous force derived from force field, gi is the guiding force 

calculated as:

(6)

where λ is a guiding factor and tL is the local averaging time. Moreover, bonded 

substructures were defined in SGMD to describe the local structural rigidity of a 

molecule[50]. It was suggested that most of the atomic motions due to bonded interactions 

within each substructure are fast. In contrast, systematic motions that result from non-

bonded interactions between atoms of different substructures are generally slow. Thus the 

self-guiding force was applied to enhance these systematic motions only. With this, SGMD 

was shown to greatly improve the sampling of conformational transitions in the alanine 

dipeptide and a 16-residue synthetic polypeptide that undergoes conformational change 

between a fully extended conformation and a folded helix[50].

However, several drawbacks were found during applications of SGMD. Among those noted 

by Wu and Brooks[51], the self-guiding force results in an unwanted alteration of the 

conformational distribution in SGMD simulations. Moreover, the guiding force derived from 

Miao and McCammon Page 5

Mol Simul. Author manuscript; available in PMC 2017 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the local average of actual forces may not be sufficient to enhance conformational searching 

in stochastic dynamics simulations. To address these issues, the local average of friction 

forces that appear in a Langevin dynamics (LD) simulation was proposed to calculate the 

guiding force instead, which led to the development of the self-guided Langevin dynamics 

(SGLD) method. In SGLD, the self-guiding force was introduced into the Langevin 

equation:

(7)

where pi is the momentum of atom i, fi is the atom instantaneous force derived from the 

force field, γi is the collision frequency and Ri is the random force that is related to γi and 

the system temperature T by 〈Ri(0) Ri(t)〉 = 2mikBTγiδ(t), where kB is the Boltzmann 

constant and δ(t) is the Dirac delta function. In the case that the time derivative of 

momentum can be dropped from the Langevin equation (i.e., high friction regime), the 

guiding force gi is calculated as:

(8)

where λ is a guiding factor that controls the strength of the guiding force. 〈pi〉L denotes local 

average of pi over time tL and can be calculated efficiently during simulation via:

(9)

The local averaging acts like a low frequency filter that reduces the high frequency 

components of the motion while keeping its low frequency contributions. The parameter, ξ, 

is an energy conservation factor used to cancel net energy input from the guiding force: 

.

According to Eqn. (7), when the collision frequency and random force are equal to zero, 

SGLD is then reduced to SGMD. In this context, MD and LD are special cases of SGMD 

and SGLD, respectively, when the guiding force is zero. Up to date a list of SGLD variants 

has been developed using different formula of the guiding force (see Ref. [78] for details). 

Particularly, SGMD calculates the guiding force with nonbonded interactions as described 

above [49, 50], SGLD uses momenta[51] and is also referred to as SGLDp, and SGLDfp 

uses both forces and momenta[79]. In the most recent development of SGLD, the self-

guiding force is modified according to a generalized Langevin equation using 

 to sample exactly the NVT and NPT ensembles, i.e., 

SGLD-GLE[52].
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Along with the theoretical development of the SGMD and SGLD methods, they have been 

applied for enhanced sampling of a wide range of systems, such as peptide conformational 

change[50], surface adsorption of complementary peptides[80], flexible fitting of 

biomolecular structures into electron microscopic density maps[81], protein folding and 

conformational rearrangements[49, 51], molecular docking[82], ligand binding[83, 84], 

crystallization and phase transitions[85], and so on.

 3.3 Essential Energy Space Random Walk

Essential Energy Space Random Walk (EESRW)[53, 54] is an enhanced sampling method 

based on scaling perturbations of the biomolecular essential potential energy. Here, the 

essential potential energy Us is defined as the sum of the energy terms that determine the 

local conformations of a region of interest. In case that the solute in a solution system is 

selected as the target region, Us can be decomposed to two parts: the self-energy component 

Uss that is calculated as the sum of self-interaction terms within the solute except for the 

bond, angle and improper energy terms and the interaction energy component Use that is 

calculated as the sum of all the interaction terms between the solute and solvent. The sum of 

the remaining energy terms gives the environmental energy component Ue with the system 

total energy U0 = Us + Ue. Provided the Us essential energy, a biasing potential is added to 

the biomolecular system to flatten its energy surface for enhanced sampling[53, 54]:

(10)

where U0 is the original system potential energy, Us is the essential potential energy and 

fm(Us) is a relatively small Gaussian-shaped repulsive potential calculated similar to the 

metadynamics[33, 34] approach:

(11)

where τ is the frequency at which the Gaussian repulsive potential is added, h is the 

Gaussian height and w is the Gaussian width. EESRW has been implemented in CHARMM 

and successfully applied to accelerate conformational transitions in the alanine dipeptide, 

leucine sidechain and a “pentanelike” biomolecular model system[53, 54].

However, the Uss and Use essential energy components were found to fluctuate in various 

magnitudes with even opposite directions during many conformational transitions of 

biomolecules (e.g., alanine dipeptide). A one-dimensional potential biasing scheme in the 

original EESRW method is not able to capture such energy fluctuations effectively. To 

resolve this issue, EESRW was generalized to a two-dimension-EESRW (2D-EESRW) 

scheme[55], in which the modified system potential is given by:

(12)
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where Uss and Use are the essential self-energy and interaction energy components, 

respectively, and fm(Uss, Use) is the negative of the free energy G(Uss, Use) that is obtained 

from the free energy profile along (Uss, Use). Similar to Eqn. (11), the fm(Uss, Use) term is 

calculated by repetitively adding a relatively small Gaussian-shaped repulsive potential:

(13)

where τ is the frequency at which the Gaussian repulsive potential is added, h is the 

Gaussian height, and wss and wse are the widths of Gaussians corresponding to the essential 

potential energies Uss and Use, respectively.

The 2D-EESRW was shown to accelerate conformational sampling of the alanine dipeptide 

and aspartate-arginine peptide model systems[55]. Compared with the original EESRW, the 

2D-EESRW simulations exhibit significantly higher rates of conformational transitions in 

the model systems. It was also suggested that the EESRW methods could be extended to 

higher dimension schemes when three or more essential energetic terms are needed to 

account for their distinct interplays during biomolecular conformational transitions.

 3.4 Accelerated Molecular Dynamics (aMD)

Figure 3 depicts the central idea of the original Accelerated Molecular Dynamics (aMD) that 

was developed as a potential-biasing method for enhanced sampling[56]. It accelerates the 

conformational sampling of biomolecules often by adding a non-negative boost potential to 

the potential energy surface when the system potential is lower than a reference energy[56, 

86, 87]:

(14)

where V(r) is the original potential, E is the reference energy, and V* (r) is the modified 

potential. The boost potential, ΔV(r)is given by:

(15)

where α is the acceleration factor. As the acceleration factor α decreases, the potential 

energy surface is flattened and biomolecular transitions between the low-energy states are 

increased (Figure 3).
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In aMD, the boost potential was initially applied to only the dihedral energy term based on 

the finding that the dihedral torsions are determining factors of the protein 

conformations[56]. This “dihedral-boost” was found, however, to be still insufficient for 

conformational sampling of many biomolecules. Thus another boost was added to the 

system total potential energy, which accelerates diffusion of the solvent molecules and 

provides further enhanced sampling of the biomolecules. This led to the development of 

“dual-boost” aMD[86].

In addition, a number of different forms of aMD have been developed to improve the 

sampling statistics of bimolecular configurations, including the windowed aMD designed to 

protect the high-energy barriers[88], adaptive aMD[89], rotatable aMD or RaMD[90] and 

selective aMD[91]. With the enhanced sampling power, aMD has also been combined with 

many other techniques, including the thermodynamic integration[92], replica exchange[93–

95], constant pH MD[96] and ab initio MD [97, 98], for various classical and quantum 

computational simulations of biomolecules.

A wide range of applications has shown that aMD works well for enhanced sampling of 

biomolecules[87]. For example, aMD simulations provide significant speed-up of the 

peptide conformational transitions[56, 99, 100], lipid diffusion and mixing[101], 

conformational transitions in proteins[89, 102–105], protein folding[106, 107] and protein-

ligand binding[108]. Notably, hundreds-of-nanosecond aMD simulations are to capture 

millisecond-timescale events in both globular and membrane proteins[109–112].

While aMD is powerful for enhanced conformation sampling, its accuracy (particularly 

reweighting) for free energy calculations has attracted lots of attention[113]. In theory, 

frames of aMD simulations can be reweighted by the Boltzmann factors of the 

corresponding boost potential (i.e., eΔV/kBT) and averaged over each bin of selected reaction 

coordinate(s) to obtain the canonical ensemble, an algorithm termed “exponential average”. 

However, exponential reweighting is known to suffer from large statistical noise in practical 

calculations[87, 111, 113, 114] because the Boltzmann reweighting factors are often 

dominated by a very few frames with high boost potential. To reduce the energetic noise, the 

RaMD[90] and selective aMD[91] methods were developed to apply boost potential to only 

rotatable dihedrals or certain regions of the simulated system. Alternatively, scaled MD 

flattens the biomolecular potential energy surface with a scaling factor[114], a similar notion 

used in EESRW[53, 54]. It enables population-based reweighting and significantly improves 

the free energy calculations. However, scaled MD does not allow selective acceleration of 

biomolecular conformational changes like aMD.

Overall, the boost potential in aMD simulations of proteins is on the order of tens to 

hundreds of kcal/mol, which is much greater in magnitude and wider in distribution than that 

of CV-biasing simulations (e.g., several kcal/mol in metadynamics). It has been a long-

standing problem to accurately reweight aMD simulations and recover the original free 

energy landscapes, especially for large proteins[108, 111]. A recent study showed that when 

the boost potential follows near-Gaussian distribution, cumulant expansion to the second 

order provides improved reweighting of aMD simulations compared with the previously 

used exponential average and Maclaurin series expansion reweighting methods[115]. The 
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reweighted free energy profiles are in good agreement with the long-timescale cMD 

simulations as demonstrated on alanine dipeptide and fast-folding proteins[107]. However, 

such improvement is limited to rather small systems (e.g., proteins with less than ~35 amino 

acid residues)[107]. In simulations of larger systems, the boost potential exhibits 

significantly wider distribution and does not allow for accurate reweighting.

In order to achieve both unconstrained enhanced sampling and accurate energetic 

reweighting for protein simulations, Gaussian Accelerated Molecular Dynamics (GaMD) 

was developed by applying a harmonic boost potential instead to smoothen the system 

potential energy surface[57]. As shown in Figure 4, when the system potential V(r)⃑ drops 

below a threshold energy E, the energy surface is modified by adding a boost potential as:

(16)

where k is the harmonic force constant. The two adjustable parameters E and k are 

automatically determined by applying the following three criteria. First, for any two 

arbitrary potential values V1(r⃑) and V2(r⃑) found on the original energy surface, if 

V1(r)⃑<V2(r)⃑, ΔV should be a monotonic function that does not change the relative order of 

the biased potential values, i.e., . Secondly, if V1(r)⃑ < V2(r)⃑, the potential 

difference observed on the smoothened energy surface should be smaller than that of the 

original, i.e., . By combining the first two criteria and 

plugging in the formula of V*(r)⃗ and ΔV, we obtain:

(17)

where Vmin and Vmax are the system minimum and maximum potential energies. To ensure 

that Eqn. (17) is valid, k has to satisfy: . Let us define 

, then 0 < k0 ≤ 1. Thirdly, the standard deviation of ΔV needs to be 

small enough (i.e., narrow distribution) to ensure accurate reweighting using cumulant 

expansion to the second order[115]: σΔV = k(E−Vavg)σV ≤ σ0 where Vavg and σV are the 

average and standard deviation of the system potential energies, σΔV is the standard 

deviation of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for accurate 

reweighting. When E is set to the lower bound E = Vmax according to Eqn. (17), k0 can be 

calculated as:

(18)
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Alternatively, when the threshold energy E is set to its upper bound , k0 is set to:

(19)

if  is calculated between 0 and 1. Otherwise, k0 is calculated using Eqn. (18), instead of 

being set to 1 directly as described in Ref. [57].

By adaptively adding a harmonic boost potential to smoothen the system energy surface, 

GaMD provides both unconstrained enhanced sampling and free energy calculation of 

biomolecules. Important statistical properties of the system potential, such as the average, 

maximum, minimum and standard deviation values, are used to calculate the simulation 

acceleration parameters. After the threshold energy E is calculated using Eqn. (17), the 

effective harmonic constant k0 in the range of 0 to 1 determines the magnitude of the applied 

boost potential. With greater k0, higher boost potential is added to the original energy 

surface, which provides enhanced sampling of biomolecules across the decreased energy 

barriers (Figure 4). The boost potential follows Gaussian distribution and accurate 

reweighting is obtained through cumulant expansion to the second order. Without the need to 

set predefined CVs, GaMD enables unconstrained enhanced sampling of the biomolecules. 

As demonstrated earlier, free energy profiles obtained from GaMD simulations allow us to 

identify distinct low energy states and characterize the protein folding and ligand binding 

pathways quantitatively[57].

 4. Future directions

It remains a grand challenge to bridge the gap between the timescales of MD simulations 

and those of biological processes in the near future. Enhanced sampling, especially the 

unconstrained methods as discussed in this review, will continue to help computational 

modeling of biomolecules. Along with the theoretical development, there is a need to extend 

their applications to systems of increasing size and complexity that are more relevant to 

biological studies and computer-aided drug design. Most currently simulated systems are 

often limited to short peptides (e.g., alanine dipeptide) and small proteins. We need to reach 

for larger systems of biological and pharmaceutical interest, e.g., functional enzymes, 

membrane proteins, cellular protein complexes, virus particles, etc.

While the enhanced sampling methods discussed above have been found successful in 

various applications, they often suffer from one or more limitations. In most cases, it will be 

beneficial to combine two or more of the above techniques for further enhanced sampling. 

For example, it has been shown that the combination of RE with ST and MUCA in the 

REXST and REMUCA algorithms is able to reduce the computational cost without 

requiring too many MD replicas in the pure RE simulations. Based on a potential-biasing 

approach, GaMD mainly accelerates transitions across enthalpic energy barriers. 

Improvement for its application to systems with high entropic barriers is still needed. On this 

regard, GaMD can be potentially combined with the RE/PT algorithms like in 
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REXAMD[93, 94] for further enhanced sampling. Notably, the combination of parallel 

tempering and metadynamics (PT-MetaD)[116] has been shown to facilitate enhanced 

sampling of biomolecules over entropic barriers. Moreover, the REXAMD that combines RE 

and aMD methods have been found helpful in free energy calculations. Similarly, one can 

combine GaMD that provides improved reweighting and RE for more accurate free energy 

calculations. In addition, we can use the essential potential energy as described in the 

EESRW method to improve the potential-biasing sampling methods such as GaMD.

Finally, in order to obtain accurate free energy calculations, rigorous error analysis 

(particularly the reweighting) is still needed for the enhanced sampling methods. Take the 

reweighting of aMD/GaMD simulations as an example. Because the boost potential ΔV is 

physically equivalent to nonequilibrium work W, reweighting of aMD simulations for 

calculating free energies can be expressed by the Jarzynski equality[117]: e−βΔF = 〈e−βΔV〉. 

When the three ΔF estimators and different aMD reweighting techniques examined in Refs. 

[118] and [115] are compared, the mean work estimator is found equivalent to the 

approximation using Maclaurin series expansion, the fluctuation-dissipation (FD) theorem 

estimator corresponds to the cumulant expansion to the 2nd order (also referred to as the 

“Gaussian approximation”[18]) and the Jarzynski estimator corresponds to direct 

“exponential average” calculation. Detailed analysis showed that in the near-equilibrium 

regime, the mean work estimator gives comparatively larger errors and the Jarzynski 

estimator is more accurate than the FD estimator when the number of W (or ΔV) data points 

N≤16. However, the FD estimator gives the smallest error with increasing N (see Figure 4 in 

Ref. [118]). This is consistent with our previous aMD reweighting study that shows the 

cumulant expansion to the 2nd order is the most accurate compared with the Maclaurin series 

expansion and exponential average, for which the number of ΔV values N used for aMD 

reweighting is on the order of 102−106[115]. In summary, the bias and error of free energy 

calculations were examined rigorously in Ref. [118]. Similar error estimates need to be 

performed for GaMD simulations, as well as the other enhanced sampling methods, when 

they are applied for free energy calculations.

 5. Conclusions

Enhanced sampling has been found highly useful in the last several decades for exploring 

the configuration space of biomolecules and improving the convergence of free energy 

calculations. In this review, we focused on the enhanced sampling methods that do not 

require predefined system-dependent CVs for biomolecular simulations and as such do not 

suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. 

These methods are based on generalized ensemble simulations of temperature (for RE/PT), 

local average force (SGMD and SGLD) and potential energy (EESRW, aMD and GaMD). 

This allows for generally unconstrained enhanced sampling of biomolecules, particularly the 

pathways during their biological function such as protein folding and ligand binding. While 

theoretical and computational work is still needed to improve the sampling statistics and 

accuracy, wider applications are expected for the unconstrained enhanced sampling methods 

in free energy calculations of biomolecules and computer-aided drug design.
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Fig. 1. 
Illustration of an example hidden energy barrier along the y direction between two local 

energy minima.
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Fig. 2. 
Schematic illustration of Replica Exchange Molecular Dynamics (REMD): a number of M 

(e.g., 4 as shown here) non-interacting replicas of MD runs are performed in the canonical 

ensemble, each at a different temperature Tm (m = 1, ⋯, M). At a certain simulation time 

interval, we exchange each pair of replicas with neighboring temperatures at a probability 

that meets the Metropolis criterion. The generalized ensemble of the system then satisfies a 

detailed balance and converges towards an equilibrium distribution during the simulation.
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Fig. 3. 
Schematic illustration of Accelerated Molecular Dynamics (aMD): a non-negative boost 

potential is added to biomolecular potential surface when the system potential is lower than 

a threshold energy E. As the acceleration factor α decreases, the potential energy surface is 

flattened more and transitions between different low-energy states become increased.
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Fig. 4. 
Schematic illustration of Gaussian Accelerated Molecular Dynamics (GaMD): when the 

threshold energy is set to the maximum potential (E = Vmax), the system potential energy 

surface is smoothened by adding a harmonic boost potential that follows Gaussian 

distribution. The effective harmonic constant k0 in the range of 0 to 1 determines the 

magnitude of the applied boost potential. With greater k0, higher boost potential is added to 

the original energy surface in conventional molecular dynamics (cMD), which provides 

enhanced sampling of biomolecules across decreased energy barriers.
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