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Abstract— As face recognition applications progress from con-
strained sensing and cooperative subjects scenarios (e.g., driver’s
license and passport photos) to unconstrained scenarios with
uncooperative subjects (e.g., video surveillance), new challenges
are encountered. These challenges are due to variations in
ambient illumination, image resolution, background clutter, facial
pose, expression, and occlusion. In forensic investigations where
the goal is to identify a “person of interest,” often based on
low quality face images and videos, we need to utilize whatever
source of information is available about the person. This could
include one or more video tracks, multiple still images captured
by bystanders (using, for example, their mobile phones), 3D
face models, and verbal descriptions of the subject provided by
witnesses. These verbal descriptions can be used to generate a
face sketch and provide ancillary information about the person
of interest (e.g., gender, race, and age). While traditional face
matching methods take single media (i.e., a still face image,
video track, or face sketch) as input, our work considers using
the entire gamut of media collection as a probe to generate a
single candidate list for the person of interest. We show that the
proposed approach boosts the likelihood of correctly identifying
the person of interest through the use of different fusion schemes,
3D face models, and incorporation of quality measures for fusion
and video frame selection.

Index Terms— Unconstrained face recognition, uncooperative
subjects, media collection, quality-based fusion, still face image,
video track, 3D face model, face sketch, demographics

I. INTRODUCTION

As face recognition applications progress from constrained

imaging and cooperative subjects (e.g., identity card dedupli-

cation) to unconstrained imaging scenarios with uncooperative

subjects (e.g., watch list monitoring), a lack of guidance

exists with respect to optimal approaches for integrating face

recognition algorithms into large-scale applications of interest.

In this work we explore the problem of identifying a person

of interest given a variety of information source about the

person (face image, surveillance video, face sketch, 3D face

model and demographic information) in both closed set and

open set identification modes.

Identifying a person based on unconstrained face image(s)

is an increasingly prevalent task for law enforcement and

intelligence agencies. In general, these applications seek to

determine the identity of a subject based on one or more probe

images or videos, where a top 50 ranked list retrieved from
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Fig. 1. A collection of face media for a particular subject may consist of
(a) multiple still images, (b) a face track from a video, (c) a forensic sketch,
(d) a 3D face model of the subject derived from (a) or (b), and demographic
information (e.g., gender, race, and age). The images and video track shown
here are from [2], [3]. The sketch was drawn by a forensic sketch artist after
viewing the face video. In other applications, sketches could be drawn by an
artist based on verbal description of the person of interest.

the gallery (for example) may suffice for analysts (or forensic

examiners) to identify the subject [1]. In many cases, such a

forensic identification is performed when multiple face images

and/or a face track1 from a video of a person of interest are

available (see Fig. 1). For example, in investigative scenarios,

multiple face images of an unknown subject often arise from

an initial clustering of visual evidence, such as a network

of surveillance cameras, the contents of a seized hard drive,

or from open source intelligence (e.g., social networks). In

turn, these probe images are searched against large-scale face

repositories, such as mug shot or identity card databases.

High profile crimes such as the Boston bombings relied

on large amounts of manual labor to identify the person of

interest:

"It’s our intention to go through every

frame of every video [from the marathon

bombings]," Boston Police Commissioner

Ed Davis2

While other routine, but high value, crimes such as armed

robberies, kidnappings, and acts of violence require similar

1A “face track” is a sequence of cropped face images which can be assumed
to be of the same person. We use the terms face track and video track
interchangeably in this paper.

2http://www.washingtonpost.com/world/national-

security/boston-marathon-bombings-investigators-

sifting-through-images-debris-for-clues/2013/04/16/

1cabb4d4-a6c4-11e2-b029-8fb7e977ef71_story.html
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Fig. 2. Forensic investigations by law enforcement agencies using face images typically involve six main stages: obtaining face media, preprocessing,
automatic face matching, generating suspect list, human analysis, and forensic reporting.
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Fig. 3. Schematic diagram of a person identification task in which we have face media collection as input.

identifications, only a fraction of the manual resources are

available to solve these crimes. Thus, it is paramount for

face recognition researchers and practitioners to have a firm

understanding of optimal strategies for combining multiple

sources of face information, collectively called face media,

available to identify the person of interest.

While forensic identification is focused on human-driven

queries, several emerging applications of face recognition

technology exist where it is neither practical nor economical

for a human to have a high degree of intervention with the

automatic face recognition system. One such example is watch

list identification from surveillance cameras, where a list of

persons of interest are continuously searched against streaming

videos. Termed as open set recognition,3 these challenging

applications will likely have better recognition performance

as unconstrained face recognition algorithms continue to de-

velop and mature [5]. We provide experimental protocols,

recognition accuracies on these protocols using COTS face

recognition and 3D face modeling algorithms, and an analysis

of the integration strategies to improve operational scenarios

involving open set recognition.

A. Overview

In forensic investigations, manual examination of a suspect’s

face image against a mug shot database with millions of

face images is prohibitive. Thus, automatic face recognition

techniques are utilized to generate a candidate suspect list. As

3While a closed-set identification system deals with the scenario where the
person of interest is always someone in the gallery, and always returns a non-
empty candidate list, an open-set identification system allows for the scenario
where the person of interest is not enrolled in the gallery, and so can return
a possibly empty candidate list [4].

shown in Fig. 2, forensic investigations using face images typ-

ically involve six stages: obtaining face media, preprocessing,

automatic face matching, generating a suspect list, human or

forensic analysis, and forensic reporting.4 The available foren-

sic data or media of the suspect may include still face image(s),

video track(s), a face sketch, and demographic information

(age, gender, and race) as shown in Fig. 3. While traditional

face matching methods take a single media sample (i.e., a still

face image, video track, or face sketch) as input to generate

a suspect list, a media collection is expected to provide more

identifiable information about a suspect than a single media.

The proposed approach contributes to forensic investigations

by taking into account the entire media collection of the

suspect to perform face matching and generating a single

candidate suspect list.

In this paper we examine the use of commercial off the

shelf (COTS) face recognition systems with respect to the

aforementioned challenges in large-scale unconstrained face

recognition scenarios. First, the efficacy of forensic identi-

fication is explored by combining two public-domain un-

constrained face recognition databases, Labeled Faces in the

Wild (LFW) [2] and the YouTube Faces (YTF) [3], to create

sets of multiple probe images and videos to be matched

against single gallery images for each subject. To replicate

forensic identification scenarios, we populate our gallery with

one million operational mug shot images from the Pinellas

County Sheriff’s Office (PCSO) database.5 Using this data,

we are able to examine how to boost the likelihood of face

4A more detailed description of this forensic investigation process can
be found at: http://www.justice.gov/criminal/cybercrime/
docs/forensics_chart.pdf

5http://biometrics.org/bc2010/presentations/DHS/

mccallum-DHS-Future-Opportunities.pdf
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identification through different fusion schemes, incorporation

of 3D face models and hand drawn sketches, and methods

for selecting the highest quality video frames. Researchers

interested in improving forensic identification accuracy can use

this competitive baseline (on public-domain databases LFW

and YTF) to provide more objectivity towards such goals.

Most work on unconstrained face recognition using the

LFW and YTF databases has been reported in verification

scenarios [6], [7]. However, in forensic investigations, it is

the identification mode that is of interest, especially the open-

set identification scenario where the person on the watch list

may not be present in the legacy face databases.

The contributions of this work can be summarized as

follows:

• We show, for the first time, how a collection of face media

(image, video, 3D model, demographic data, and sketch)

can be used to mitigate the challenges associated with

unconstrained face recognition (uncooperative subjects,

unconstrained imaging conditions), and boost recognition

accuracy.

• Unlike previous work that reports results in verification

mode, we present results for both open set and closed

set identifications which are encountered in identifying

persons of interest in forensic and watch list scenarios.

• We present effective face quality measures to determine

when the fusion of information sources will help boost

the identification accuracy. The quality measures are also

used to assign weights to different media sources.

• To demonstrate the effectiveness of media-as-input for

the difficult problem of unconstrained face recognition,

we utilize a state-of-the-art face matcher and a separate

3D face modeling SDK.6 The face sketches were drawn

by forensic sketch artists who generated the sketch after

viewing low quality videos. In the absence of demo-

graphic data for LFW and YTF databases, we used

crowdsourcing to obtain the estimates of gender and race.

This allows us to show the contribution of various media

components as we incrementally add them as input to the

face matching system.

The remainder of the paper is organized as follows. In

Section II, we briefly review published methods related to

unconstrained face recognition. We detail the proposed face

media collection as input, and the media fusion method in

Sections III and IV, respectively. Experimental setup and

protocols are given in Section V, and experimental results are

presented in Section VI. Finally, we conclude this work in

Section VII.

II. RELATED WORK

The release of public-domain Labeled Faces in the Wild7

(LFW) database in 2007 has spurred interest and progress

in unconstrained face recognition. The LFW database is a

collection of more than 13, 000 face images, downloaded

from the Internet, of 5, 749 different individuals such as

celebrities, public figures, etc. [2]. The only constraint on these

6We use the Aureus 3D SDK provided by CyberExtruder.
7http://vis-www.cs.umass.edu/lfw/

(a) LFW face images

(b) YTF face video tracks

Fig. 4. Example (a) face images from the LFW database and (b) face video
tracks from the YTF database. All faces shown are of the same subject.

images is that faces could be detected by the Viola-Jones

face detector [8]. Despite this constraint, the LFW database

contains significant variations in facial pose, illumination, and

expression, and many of the face images are occluded. The

LFW protocol consists of face verification based on ten-fold

cross-validation, each fold containing 300 “‘same face” and

300 “not-same face” image pairs.

The YouTube Faces8 (YTF) database, released in 2011, is

the video-equivalent to LFW for unconstrained face matching

in videos. The YTF database contains 3, 425 videos of 1, 595
individuals. The individuals in the YTF database are a subset

of those in the LFW database. Faces in the YTF database

were detected with the Viola-Jones face detector at 24 fps,

and face tracks were included in the database if there were at

least 48 consecutive frames of that individual’s face. Similar

to the LFW protocol, the YTF verification protocol consists

of ten cross-validation folds, each with 250 “same face” and

250 “not-same face” track pairs. Figure 4 shows example face

images and video tracks from the LFW and YTF databases

for one particular subject. In this paper, we combine these

two databases to evaluate the performance of face recognition

on unconstrained face media collections.

We provide a summary of related work on unconstrained

face recognition, focusing on various face media matching

scenarios in Table I (we emphasize that most prior work

has evaluated unconstrained face recognition methods in the

verification mode). While fully automated face recognition

systems are able to achieve ∼99% face verification accuracy

at 0.1% False Alarm Rate (FAR) in constrained imagery

and cooperative subject conditions [25], face recognition in

unconstrained environments remains a challenging problem

[11]. These methods can be grouped into two main categories:

single face media based methods and face media collection

based methods.

Single media based methods focus on the scenario where

both the query and target instances contain only one type of

8http://www.cs.tau.ac.il/˜wolf/ytfaces/
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TABLE I

A SUMMARY OF PUBLISHED METHODS ON UNCONSTRAINED FACE RECOGNITION (UFR). PERFORMANCE IS REPORTED AS TRUE

ACCEPT RATE (TAR) AT A FIXED FALSE ACCEPT RATE (FAR) OF 0.1% OR 1%, UNLESS OTHERWISE NOTED.

Dataset Scenario
(query (size) vs. target (size))

Accuracy
(TAR @ FAR)

Source
S

in
g

le
M

ed
ia

B
a

se
d

U
F

R

FRGC v2.0 Exp. 4
unconstrained vs. constrained

Single image (8,014) vs.
single image (16,028)

12% @ 0.1% Phillips et al. [9]

MBGC v2.0
unconstrained vs. unconstrained

Single image (10,687) vs.
single image (8,014)

97% @ 0.1% Phillips et al. [10]

MBGC v2.0
non-frontal vs. frontal

Single image (3,097) vs.
single image (16,028)

17% @ 0.1% Phillips et al. [10]

MBGC v2.0
unconstrained vs. HD video

Single image (1,785) vs.
single HD video (512)

94% @ 0.1% Phillips et al. [10]

MBGC v2.0
walking vs.walking

Notre Dame:
Single video (976) vs.
single video (976)
UT Dallas:
Single video (487) vs.
single video (487)

Notre Dame:
46% @ 0.1%

UT Dallas:
65% @ 0.1%

Phillips et al. [10]

FRGC v2.0 Exp. 3
3D vs. 3D

Single 3D image (4,007) vs.
single 3D image (4,007)

53% @ 0.1% Phillips et al. [9], [11]

LFW Image-Restricted

(Strict3)

300 genuine pairs, and 300

impostor pairs in each fold1 61% @ 1%2 Simonyan et al. [12]

LFW Image-Restricted

(Outside3)

300 genuine pairs, and 300

impostor pairs in each fold1 93% @ 1%2 Cao et al. [13]

LFW Image-Unrestricted
300 genuine pairs, and 300

impostor pairs in each fold1

Classification:

93%2 Chen et al. [14]

ChokePoint dataset
54 video clips of
29 subjects

Rank-1 acc.:
P1E/P1L/P2E/P2L

91.7%/89.0%
95.3%/97.2%

An et al. [15]

YouTube Celebrities
1,500 video clips of 35
celebrities

Rank-1 acc.:
71%

Kim et al. [16]

YouTube Faces
250 genuine pairs, and 250

impostor pairs1
39% @ 1%2 Mendez-Vazquez et al. [17]

YouTube Faces
250 genuine pairs, and 250

impostor pairs1
63% @ 1%2 Best-Rowden et al. [18]

M
ed

ia
C

o
ll

ec
ti

o
n

B
a

se
d

U
F

R

FRGC v2.0 Exp. 3
Single image & single
3D image (8,014) vs.
single 3D image (943)

79% @ 0.1% Phillips et al. [9]

MBGC v2.0
unconstrained face & iris
vs. NIR & HD videos

Single image & single iris
(14,115) vs. single NIR &
single HD (562)

97% @ 0.1% Phillips et al. [10]

LFW

YouTube Faces

3D face model

Forensic sketch

Demographic information

Single image vs. single image 56.7%

This paper4

Multi-images vs. single image 72.0%
Single video vs. single image 31.3%
Multi-videos vs. single image 44.0%
Multi-images & multi-videos
vs. single image

77.5%

Multi-images, multi-videos,
& 3D model vs. single image

83.0%

Multi-images, multi-videos,
3D model & demographics
vs. single image

84.9%

1There are totally 10 folds, and the final performance is an average across the 10 folds. 2About 40 different methods (e.g., [19]–[24]) have reported performance

on the LFW database, but all of them can be grouped in to single media (single image vs. single image) based UFR method. Due to the limited space, we only

list the most recently reported performance for each testing protocol in this table. Similarly, methods that have reported results on the YTF database are also

single media (single video vs. single video) based UFR method. 3Strict vs. outside: no outside training data is used vs. outside training data is used in the face

alignment, feature extraction, or face matching algorithm. 4The performance of the proposed method reported in this table is the Rank-1 identification accuracy.

face media, such as a still image, video track, or 3D image.

However, the query and target instances can be different media

types, such as single image vs. single video. These methods

can be effective in unconstrained illumination and expression

variation conditions but can only handle limited pose varia-

tions. For example, while ∼97% TAR at 0.1% FAR9 has been

reported in MBGC v2.0 unconstrained vs. unconstrained face

matching, under large pose variations, this performance drops

9True acceptance rate (TAR) vs. false acceptance rate (FAR) is the metric
of choice in face verification scenarios.
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to TAR = ∼17% at 0.1% FAR in MBGCv2.0 non-frontal vs.

frontal face matching (see Table I). Such challenges were also

observed in single image vs. single image face matching in

LFW, and single video vs. single video face matching in YTF

and MBGC v2.0 walking vs. walking databases.

These observations suggest that in unconstrained conditions,

a single face media sample of, especially “low quality”, may

not be able to provide a sufficient description of a face. This

motivates the use of face media collection which utilize any

media that is available for a probe (or query) instance of a

face. One preliminary study is the FRGCv2.0 Exp. 3, where

(i) a single 3D face image and (ii) a collection of single

3D image and a single 2D face image were used as queries.

Results show that the media collection (2D face and 3D face)

improves the face matching performance (79% TAR for 3D

face and 2D face vs. 53% TAR for just the 3D face at 0.1%

FAR) in unconstrained conditions. It is, therefore, important

to determine how we can improve the face matching accuracy

when presented with a collection of face media, albeit of

different qualities, as probe.

III. MEDIA-AS-INPUT

A face media collection can possibly consist of still face

images, face video tracks, a 3D face model, a forensic sketch,

and demographic information. In this section, we discuss how

we use face “media-as-input” as probe and our approach to

media fusion.

A. Still Image and Video Track

Still image and video track are two of the most widely

used media in face recognition systems [4]. Given multiple

still images and videos, we use the method reported in [18] to

match all still images and video frames available for a subject

of interest to the gallery mugshot (frontal pose) images using

a COTS matcher. The resulting match scores are then fused

to get a single match score for either multiple probe images

or video(s).

B. 3D Face Models

One of the main challenges in unconstrained face recogni-

tion is large variations in facial pose [26], [27]. In particular,

out-of-plane rotations drastically change the 2D appearance of

a face, as they cause portions of the face to be occluded. A

common approach to mitigate the effects of pose variations is

to build a 3D face model from a 2D image(s) so that synthetic

2D face images can then be rendered at designated poses

(e.g., [28]–[30]).

In this paper, we use a state-of-the-art COTS 3D face

modeling SDK, namely CyberExtruder’s Aureus 3D SDK, to

build 3D models from 2D unconstrained face images. The 3D

face model is used to render a “pose corrected” (i.e., frontal

facing) image of the unconstrained probe face images. The

pose corrected image can then be matched against a frontal

gallery. We also pose correct “frontal” gallery images because

even the gallery images can have slight variations in pose as

well. Experimental results show that post corrected gallery

images improve the identification performance.

s1 

s4 

s3 

s2 

Probe Gallery 

Original 

Pose 
Corrected 

Pose 
Corrected 

Original 

Fig. 5. Pose correction of probe (left) and gallery (right) face images using
CyberExtruder’s Aureus 3D SDK. We consider the fusion of four different
match scores (s1, s2, s3, and s4) between the original probe and gallery
images (top) and synthetic pose corrected probe and gallery images (bottom).

Fig. 6. Pose corrected faces (b) in a video track (a) and the resulting
“consolidated” 3D face model (c). The consolidated 3D face model is a
summarization of all frames in the video track.

Given the original and pose corrected probe and gallery

images, there are four matching scores that can be computed

between any pair of probe and gallery face images (see Fig. 5).

We use the score s1 as the baseline to determine whether

including scores s2, s3, s4, or their fusion can improve the

performance of a COTS face matcher. A face in a video frame

can be pose corrected in the same manner. The Aureus SDK

also summarizes faces from multiple frames in a video track

as a “consolidated” 3D face model (see Fig. 6).

C. Demographic Attributes

In many law enforcement and government applications, it

is customary to collect ancillary information like age, gender,

race, height, and eye color from the users during enrollment.

We explore how to best utilize the demographic data to boost

the recognition accuracy. Demographic information such as

age, gender and race becomes even more important in comple-

menting the identity information provided by face images and

videos in unconstrained face recognition, due to the difficulty

of the face matching task.

In this paper, we take the gender and race attributes of each

subject in the LFW and YTF face databases as one type of

media. Since this demographic information is not available

for the subjects in the LFW and YTF face databases, we

utilized the Amazon Mechanical Turk (MTurk) crowdsourcing
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service10 to obtain the “ground-truth” gender and race of the

596 subjects that are common in LFW and YTF datasets.11

For gender and race estimation tasks, we submitted 5, 74912

Human Intelligence Tasks (HITs), with ten human workers

per HIT, at a cost of 2 cents per HIT. Finally, a majority

voting scheme (among the responses) is utilized to determine

the gender (Female or Male) and race (Black, White, Asian

or Unknown) of each subject. We did not consider age in

this paper due to the large variations in its estimate by crowd

workers.

D. Forensic Sketches

Face sketch based identification dates back to the 19th

century [33], where the paradigm for identifying subjects using

face sketches relied on human examination. Recent studies

on automated sketch based identification system show that

sketches can also be helpful to law-enforcement agencies to

identify the person of interest from mugshot databases [34]. In

situations where the suspect’s photo or video is not available,

expertise of forensic sketch artists are utilized to draw a

suspect’s sketch based on the verbal description provided by

the eyewitness or victim. In some situations, even when a

photo or video of a suspect is available, the quality of this

media can be poor. In this situation also, a forensic sketch

artist can be called in to draw a face sketch based on the low-

quality face photo or video. For this reason, we also include

the face sketch in a face media collection.

We manually selected 21 low-quality (large pose variations,

shadow, blur, etc.) videos (one video per subject) from the YTF

database (for three subjects, we also included a low quality

still image from LFW), and asked two forensic sketch artists

to draw a face sketch for each subject in these videos.13,14

Examples of these sketches and their corresponding low-

quality videos are shown in Figs. 7 and 14.

IV. MEDIA FUSION

Given a face media collection as probe, there are various

schemes to integrate the identity information provided by

individual media component, such as score level fusion, rank

level fusion and decision level fusion [35]. Among these

approaches, score level fusion is the most commonly adopted.

Some COTS matchers do not output a meaningful match

score (to prevent hill-climbing attacks [36]). Thus, in these

situations, rank level or decision level fusion needs to be

adopted.

In this paper, we match each media (image, video, 3D

model, sketch or demographic information) of a probe to

the gallery and integrate the scores using score level fusion.

Specifically, the score level fusion takes place in two different

layers: (i) fusion within one type of media, and (ii) fusion

10www.mturk.com/mturk/
11Most studies on automatic demographic estimation are limited to frontal

face images [31]; demographic estimation from unconstrained face images
(e.g., the LFW database) is challenging [32].

12This is the number of subjects in LFW.
13Due to the high cost of hiring a sketch artist, our current experiments are

limited to sketches of 21 subjects with poor quality video.
1410 subject for one forensic sketch artist, and 11 subjects for the other.

(c) Forensic

Sketch
(a) Video

(b) Cropped face 

image from video

Fig. 7. An examples of a sketche drawn by an forensic artist by looking
at the low-quality videos. (a) Video shown to the forensic artists, (b) facial
region cropped from the video frames, and (c) sketch drawn by the forensic
artist. Here, no verbal description of the person of interest is available.

across different types of media. The first fusion layer generates

a single score from each media type if its multiple instances are

available. For example, matching scores from multiple images

or multiple video frames can be fused to get a single score.

Additionally, if multiple video clips are available, matching

scores of individual video clips can also be fused. Score fusion

within the ith face media can be generally formulated as

si = F(si,1, si,2, · · ·, si,n), (1)

where si is a single matching score based on n instances of

the ith face media type; F(·) is a score level fusion rule; we

use the sum rule,15 e.g., s = 1

n

∑
si,n, that has been found to

be quite effective in practice [18]. Given the match score of

each face media type, the next fusion step involves fusing the

scores across different types of face media. Again, the sum

rule is used and found to work very well in our experiments;

however, as shown in Fig. 8, face media for a person of interest

can be of different quality. For example, a 3D face model can

be corrupted due to inaccurate localization of facial landmarks.

As a result, matching scores calculated from individual media

source may have different degrees of confidence.

We take into account the quality of individual media type

by designing a quality based fusion. Specifically, let S =
[s1, s2, · · ·, sm]T be a vector of the match scores between

n different media types in a collection of probe and gallery,

and Q = [q1, q2, · · ·, qm]T be a vector of quality values for

the corresponding input media.16 The final matching score

between a probe and a gallery image is calculated by a

weighted sum rule fusion

s =

m∑

i=1

qisi = QTS, (2)

Note that the quality based across-media fusion in (2) can also

be applied to score level fusion within a particular face media

type (e.g., 2D face images).

In this paper, we have considered five types of media in a

collection: 2D face image, video, 3D face model, sketch, and

demographic information. However, since only sketches of 21
persons (out of 596 persons that are common in LFW and

YTF databases) are available, in most of the experiments, we

15The sum and mean rules are equivalent. We use the terms mean and
sum for when normalization by the number of scores is and is not necessary,
respectively.

16Matching scores from the COTS matcher are normalized with z− score

normalization. The quality values are normalized to the range [0, 1].
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(a) Images (b) Video frames

(c) 3D face models (d) Demographic information

QV = 0.6 QV = 0.35

QV = 0.30QV = 0.96 QV = 0.94QV = 0.99

QV of white =1.0

QV of male = 1.0

Fig. 8. Examples of different face media types with varying quality values
(QV) of one subject: (a) images, (b) video frames, (c) 3D face model, and
(d) demographic information. The range of QV is [0,1].

perform the quality-based fusion in (2) based on only four

types of media (m = 4). The quality value measures for

individual media type are defined as follows.

• Image and video. For a probe image, the COTS matcher

assigns a face confidence value in the range of [0, 1],
which is used as the quality value. For each video frame,

the same face confidence value measure is used. The

average face confidence value across all frames is used

as the quality value for a video track

• 3D face model. The Aureus 3D SDK used to build a

3D face model from image(s) or video frame(s) does not

output a confidence score. We define the quality of a 3D

face model based on the pose corrected 2D face image

generated from it. Given a pose corrected face image, we

calculate its structural similarity (SSIM) [37] to a set of

predefined reference images (manually selected frontal

face images). Let IPC be a pose corrected face image

(from the 3D model), and R = {R1,R2, · · ·,Rt} be the

set of t reference face images. The quality value of a 3D

model based on SSIM is defined as

q(IPC) =
1

t

t∑
i=1

SSIM(IPC ,Ri)

= 1

t

t∑
i=1

l(IPC ,Ri)
α · c(IPC ,Ri)

β · s(IPC ,Ri)
γ

(3)

where l(·), c(·), and s(·) are luminance, contrast, and

structure comparison functions [37], respectively; α, β,

and γ are parameters used to adjust the relative impor-

tance of the three components. We use the recommended

parameters α = β = γ = 1 in [37]. The quality value is

in the range of [0, 1].
• Demographic information. As stated earlier, we col-

lected demographic attributes (gender and race) of each

face image using the MTurk crowdsourcing service with

ten MTurk workers per task. Hence, the quality of de-

mographic information can be measured by the degree

of consistency among the ten MTurk workers. Let E =
[e1, e2, · · ·, ek]

T be the collection of estimates of one

specific demographic attribute (gender or race) by k (here,

k = 10) MTurk workers. Then the quality value of this

demographic attribute can be calculated as

q(E) =
1

k
max

i=1,2,···,c
{
∑

(E == i)}, (4)

where c is the total number of classes for one demo-

graphic attribute. Here, c = 2 for gender (Male and

Female); while c = 4 for race (Black, White, Asian, and

Unknown). The notation
∑

(E == i) denotes the number

of estimates that are labeled as class i. The quality value

range in (4) is in [0, 1].

Quality values for different face media of one subject are

shown in Fig. 8. We note that the proposed quality measures

give reasonable quality assessment for different input media.

V. EXPERIMENTAL SETUP

The 596 subjects who have at least two images in the LFW

database and at least one video in the YTF database (subjects

in YTF are a subset of those in LFW) are used to evaluate

the performance of face identification on media-as-input. One

frontal image per subject is placed in the gallery (one with

the highest frontal score from the COTS matcher), and the

remaining images are used as probes. All videos for the 596
subjects are used as probes. Table III shows the distribution of

number of probe images and videos per subject. The average

number of images, videos, and total media instances per

subject is 5.3, 2.2, and 7.4, respectively. We further extend

the gallery size with an additional 3, 653 LFW images (of

subjects with only a single image in LFW). In total, the size

of the gallery is 4, 249. We evaluate five different scenarios

depending on the contents of the probe set: (i) single image

as probe, (ii) single video track as probe, (iii) multiple images

as probe, (iv) multiple video tracks as probe, and (v) multiple

images and video tracks as probe. We also take into account

the 3D face models and demographic information in the five

scenarios.

The state-of-the-art COTS face matcher used in our ex-

periments was one of the top performers in the 2010 NIST

Multi-Biometric Evaluation (MBE) [38]. Though the COTS

face matcher is designed for matching still images, we apply

it to video-to-still face matching via multi-frame fusion to

obtain a single score for the video track [18]. In all cases

where videos are part of the probe media, we use the mean

rule for multi-frame fusion (the max fusion rule performed

comparably [18]).

TABLE III

NUMBER OF PROBE FACE IMAGES (FROM THE LFW DATABASE) AND

VIDEO TRACKS (FROM THE YTF DATABASE) AVAILABLE FOR THE SUBSET

OF 596 SUBJECTS THAT ARE COMMON IN THE TWO DATABASES.

# images or videos per subj. 1 2 3 4 5 6 7+

# subjects (images in LFW) 238 110 78 57 25 12 76
# subjects (videos in YTF) 204 190 122 60 18 2 0

A. Closed Set Identification

In closed set identification experiments, we study the con-

tribution of various media types (e.g., 3D face model, forensic
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TABLE II

CLOSED SET IDENTIFICATION ACCURACIES (%) FOR POSE CORRECTED GALLERY AND/OR PROBE FACE IMAGES USING 3D MODEL. THE GALLERY

CONSISTS OF 4,249 LFW FRONTAL IMAGES AND THE PROBE SETS ARE (a) 3,143 LFW IMAGES AND (b) 1,292 YTF VIDEO TRACKS. PERFORMANCE IS

SHOWN AS RANK RETRIEVAL RESULTS AT RANK-1, 20, 100, AND 200. COMPUTATION OF MATCH SCORES s1, s2, s3, AND s4 ARE SHOWN IN FIG. 5.

LFW Images

R-1 R-20 R-100 R-200

s1 56.7 78.1 87.1 90.2
s2 57.7 77.6 86.0 89.9
s3 63.9 83.4 90.7 93.6
s4 55.6 78.8 88.0 91.9

sum 66.5 85.9 92.4 95.1

(a)

YTF Video Tracks

R-1 R-20 R-100 R-200

s1 31.3 54.2 68.0 74.5
s2 32.3 55.3 67.8 73.9
s3 36.3 58.8 71.3 77.2
s4 31.7 54.4 68.7 76.5

sum 38.8 61.4 73.6 79.0

(b)

sketch, and media fusion scheme) in the proposed face media

collection based matching. To better simulate the scenarios

in real-world forensic investigations, we also provide a case

study on the Boston Bomber to determine the efficacy of using

media, and the generalization ability of our system to a large

gallery with one million background face images.

For all closed set experiments involving still images from

LFW, we input eye locations (from [14]) to the COTS face

matcher to help with enrollment because the COTS matcher

sometimes enrolls a background face that is not the subject

of interest in LFW. Against a gallery of approximately 5, 000
LFW frontal images, we observed a 2–3% increase in accuracy

for Rank-20 and higher by inputting the eye locations. Note

that for the YTF video tracks, there are no available ground-

truth eye locations for faces in each frame. We report closed

set identification results as Cumulative Match Characteristic

(CMC) curves.

B. Open Set Identification

Here, we consider the case when not all probe images or

videos have a true mate in the gallery. This is representative of

a watch list scenario. The gallery (watch list) consists of 596
subjects with at least two images in the LFW database and at

least one video in the YTF database. To evaluate performance

in the open set scenario, we construct two probe sets: (i)

a genuine probe set that contains images matching gallery

subjects, and (ii) an impostor probe set that does not contain

images matching gallery subjects.

We conduct two separate experiments: (i) randomly select

one LFW image per watch list subject to use as the genuine

probe set and use the remaining LFW images of subjects

not on the watchlist as the impostor probe set (596 gallery

subjects, 596 genuine probe images, and 9, 494 impostor probe

images), (ii) use one YTF video per watch list subject as

the genuine probe set, and the remaining YTF videos which

do not contain watch list subjects as the impostor probe set

(596 gallery subjects, 596 genuine probe videos, and 2, 064
impostor probe videos). For each of these two experiments,

we evaluate the following scenarios for the gallery: (i) single

image, (ii) multiple images, (iii) multiple images and videos.

Open set identification can be considered a two step process:

(i) decide whether or not to reject a probe image as not in the

watchlist, (ii) if probe is in the watchlist, recognize the person.

Hence the performance is evaluated based on Rank-1 detection

and identification rate (DIR), which is the fraction of genuine

probes matched correctly at Rank-1, and not rejected at a

given threshold, and the false alarm rate (FAR) of the rejection

step (i.e. the fraction of impostor probe images which are not

rejected). We report the DIR vs. FAR curve describing the

tradeoff between true Rank-1 identifications and false alarms.

VI. EXPERIMENTAL RESULTS

A. Pose Correction

We first investigate whether using a COTS 3D face model-

ing SDK to pose correct a 2D face image prior to matching

improves the identification accuracy. The closed set experi-

ments in this section consist of a gallery of 4, 249 frontal

LFW images and a probe set of 3, 143 LFW images or

1, 292 YTF videos. Table II (a) shows that the COTS face

matcher performs better on face images that have been pose

corrected using the Aureus 3D SDK. Matching the original

gallery images to the pose corrected probe images (i.e., match

score s3) performs the best out of all the four match scores,

achieving a 7.25% improvement in Rank-1 accuracy over the

baseline (i.e., match score s1). Furthermore, fusion of all the

four scores (s1, s2, s3, and s4) with the simple sum rule

provides an additional 2.6% improvement at Rank-1.

Consistent with the results for still images, match scores

s3 and sum(s1, s2, s3, s4) also provide significant increases

in identification accuracy over using match score s1 alone for

matching frames of a video clip. The mean fusion is used on

scores s1, · · ·, s4 or sum to obtain a single score between a

video track probe and a gallery image.

Next, we investigate whether the Aureus SDK consolidated

3D models (i.e., n frames of a video track summarized as a

single 3D face model rendered at frontal pose) can achieve

comparable accuracy to matching all n frames. Table V(a)

shows that the accuracy of sum(s3, s4) (i.e., consolidated 3D

models matched to original and pose corrected gallery images)

provides the same accuracy as matching all n original frames

(i.e., score s1 in Table II (b)). However, the accuracy of the

consolidated 3D model is slightly lower (∼ 5%) than the

mean fusion over all n pose corrected frames (i.e., score s3 in

Table II (b)). This means that the consolidated 3D model built

from a video track is not able to retain all the discriminatory

information contained in the collection of n pose corrected

frames.
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(c) Media Collection

Fig. 9. Closed set identification results for different probe sets: (a) multiple still face images, (b) multiple face video tracks, and (c) face media collection
(images, videos and 3D face models). Single face image and video track results are plotted in (a) and (b) for comparison. Note that the ordinate scales are
different in (a), (b), and (c) to accentuate the difference among the plots.

(a) Probe media collection (image, 3D model, and video track)

(b) Gallery true mate (image and 3D model)

Fig. 10. A collection of face media for a subject (a) consisting of a single
still image, 3D model, and video track improves the rank retrieval of the true
mate in the gallery (b). Against a gallery of 4,249 frontal images, the single
still image was matched at Rank-438 with the true mate. Including the 3D
model along with the still image improved the match to Rank-118, while the
entire probe media collection was matched to the true mate at Rank-8.

B. Forensic Identification: Media-as-Input

A summary of results for the various media-as-input sce-

narios is shown in Fig. 9. For all scenarios that involved

multiple probe instances (i.e., multiple images and/or videos),

the mean fusion method gave the best result. For brevity, all

CMC curves and results that involve multiple probe instances

are also obtained via mean fusion. We also investigated

the performance of rank-level fusion; the highest-rank fusion

performed similar to score-level fusion, while the Borda count

method [35] performed worse.

As observed in the previous section, pose correction with

the Aureus 3D SDK to obtain scores s3 or sum(s1, s2, s3, s4)
achieves better accuracies than score s1. This is also observed

in Figs. 9(a) and 9(b) where scores sum(s1, s2, s3, s4) and s3
provide approximately a 5% increase in accuracy over score

s1 for multiple images and multiple videos, respectively. This

improvement is also observed in Fig. 9(c) for matching media

that includes both still images and videos, but the improvement

is mostly at low ranks (< Rank-50).

Figure 9 shows that (i) multiple probe images and mul-

tiple probe videos perform better than their single instance

(a) Probe image and 3D
model

(b) Gallery image and 3D
model

(c) Probe video tracks

Fig. 11. Having additional face media does not always improve the
identification accuracy. In this example, the probe image with its 3D model (a)
was matched at Rank-5 against a gallery of 4,249 frontal images. Inclusion of
three video tracks of the subject (c) to the probe set degraded the true match
to Rank-216.

counterparts, but (ii) multiple probe videos actually perform

worse than single probe image (see Figs. 9(a) and 9(b)). This

is likely due in part to videos in the YTF database being

of lower quality than the still images in the LFW database.

However, we note that though multiple videos perform poorly

compared to still images, there are still cases where the fusion

of multiple videos with the still images does improve the

identification performance. This is shown in Fig. 9(c); the

best result for multiple images is plotted as a baseline to

show that the addition of videos to the media collection

improves identification accuracy. An example of this is shown

in Fig. 10. For this particular subject, there is only a single

probe image available that exhibits extreme pose. The addi-

tional information provided by the 3D model and video track

improves the true match from Rank-438 to Rank-8. In fact, the

performance improvement of media (i.e., multiple images and

videos) over multiple images alone can mostly be attributed

to cases where there is only a single probe image with large

pose, illumination, and expression variations.

While Fig. 9 shows that including additional media to a

probe collection improves identification accuracies on average,

there are cases where matching the entire media collection can
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TABLE IV

CLOSED SET IDENTIFICATION ACCURACIES (%) FOR QUALITY BASED FUSION (QBF) (a) WITHIN A SINGLE IMAGE, AND (b) ACROSS MULTIPLE IMAGES.

QBF within a single image

R-1 R-20 R-100 R-200

sum 65.7 83.2 90.1 93.5
QBF 66.5 85.9 92.6 95.3

(a)

QBF across multiple images

R-1 R-20 R-100 R-200

sum 79.4 91.1 94.5 96.5
QBF 80.0 91.8 94.5 96.5

(b)

TABLE V

CLOSED SET IDENTIFICATION ACCURACIES (%) FOR MATCHING CONSOLIDATED 3D FACE MODELS BUILT FROM (a) ALL FRAMES OF A VIDEO TRACK OR

(b) A SUBSET OF HIGH QUALITY (HQ) VIDEO FRAMES.

Consolidated 3D Model: All Frames

R-1 R-20 R-100 R-200

s3 33.1 54.1 67.3 72.8
s4 29.4 51.7 64.8 71.1

sum 34.6 56.4 68.2 74.1

(a)

Consolidated 3D Model: Frame Selection

R-1 R-20 R-100 R-200

s3 34.4 56.6 67.8 73.4
s4 29.8 52.4 66.5 72.7

sum 35.9 58.3 69.9 75.1

(b)

Quality values: 0.78, 0.30
SUM rule rank: 202
QBF  rule rank: 149

Quality values: 0.78, 0.87
SUM rule rank: 286
QBF  rule rank: 163

Quality values: 0.86, 0.64
SUM rule rank: 283
QBF  rule rank: 123

Quality values: 0.46, 0.99
SUM rule rank: 7
QBF  rule rank: 1

(a) (b)

Quality values: 0.42, 0.98
SUM rule rank: 95
QBF  rule rank: 150

Quality values: 0.78, 0.67
SUM rule rank: 124
QBF  rule rank: 243

Fig. 12. A comparison of quality based fusion (QBF) vs. simple sum

rule fusion (SUM). (a) Examples where quality based fusion provides better
identification accuracy than sum fusion; (b) Examples where quality based
fusion leads to lower identification accuracy compared with sum fusion.

degrade the matching performance. An example is shown in

Fig. 11. Due to the fairly low quality of the video tracks, the

entire media collection for this subject is matched at Rank-

216 against the gallery of 4, 249 images, while the single

probe image and pose corrected image (from the 3D model)

are matched at Rank-5. This necessitates the use of quality

measures to assign a degree of confidence to each media.

C. Quality-based Media Fusion

In this section, we evaluate the proposed quality measures

and quality-based face media fusion. As discussed in Section

IV, quality measures and quality-based face media fusion can

be applied at both within-media layer and across-media layer.

Tables IV (a) and (b) show the closed set identification

accuracies of quality-based fusion of match scores (s1, · · ·, s4)

of single image per probe and multiple images per probe,

respectively. The performance with sum rule fusion is also

provided for comparison. Our results indicate that the proposed

quality measures and quality based fusion are able to improve

the matching accuracies in both scenarios. Examples where the

quality-based fusion performs better than sum rule fusion are

shown in Fig. 12 (a). Although in some cases the quality-based

fusion may perform worse than sum rule fusion (see Fig. 12

(b)), overall, it still improves the matching performance (see

Table IV).

We have also applied the proposed quality measure for 3D

face model to select high-quality frames that are used to build

a consolidated 3D face model for a video clip. Figure 13 (a)

shows two examples where the consolidated 3D models using

frame selection with SSIM quality measure (see Sec. IV) gets

better retrieval ranks than using all frames. Although, a single

value, e.g., the SSIM based quality measure, may not always

be reliable to describe the quality of a face image (see Fig. 13

(b)), we still find that frame selection slightly improves the

identification accuracy of the consolidated 3D face models at

low ranks (see Table V).

D. Forensic Sketch Experiments

In this experiment, we study the effectiveness of forensic

sketches in a media collection. For each subject with a forensic

sketch, we input the forensic sketch to the COTS matcher to

obtain a retrieval rank. Among the 21 subjects for whom we

have a sketch, sketches of 12 subjects are observed to perform

significantly better than the corresponding low-quality videos.

Additionally, when demographic filtering using gender and

race is applied, we can further improve the retrieval ranks.

Figure 14 shows three examples where the face sketches

significantly improved the retrieval ranks compared to low

quality videos. The retrieval ranks of sketch and low-quality

video fusion are also reported in Fig. 14.

To further demonstrate the efficacy of forensic sketch, we

focus on identification of Tamerlan Tsarnaev, the older brother

involved in the 2013 Boston marathon bombing. In an earlier

study Klontz and Jain [39] showed that while the younger

brother, Dzhokhar Tsarnaev, could be identified at Rank-1

based on his probe images released by the authorities, the
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Probe: Video

Probe: Sketch

Gallery

Matching rank:

3,147(1,956)

Matching rank:

5(4)

Fusion:

29(19)

Probe: Video

Probe: Sketch

Gallery

Matching rank:

372(243)

Matching rank:

12(8)

Fusion:

45(30)

Probe: Video

Probe: Sketch

Gallery

Matching rank:

1,129(755)

Matching rank:

113(80)

Fusion:

194(137)

Fig. 14. Three examples where the face sketches drawn by a forensic artist after viewing the low-quality videos improve the retrieval rank. The retrieval
ranks without and with combining the demographic information (gender and race) are given in the form of #(#).

All Frames:

Rank-3,962

SSIM Frames:

Rank-19

All Frames:

Rank-1,099

SSIM Frames:

Rank-40

All Frames:

Rank-885

SSIM Frames:

Rank-1

All Frames:

Rank-706

SSIM Frames:

Rank-2

All Frames:

Rank-3

SSIM Frames:

Rank-480

All Frames:

Rank-17

SSIM Frames:

Rank-3,009

(a)

(b)

Fig. 13. Retrieval ranks using consolidated 3D face models (built from
video tracks). Frame selection with SSIM quality measure (see Sec. IV) prior
to building the 3D model (a) improves and (b) degrades the identification
accuracy with the consolidated 3D face model. However, overall, frame
selection using the proposed quality measure based on SSIM improves the
COTS matcher’s performance by an average of 1.43% for low ranks 1 to 50.

older brother could only be identified at Rank-236,343 (with

no demographic filtering). Figure 15 shows three gallery face

images of Tamerlan Tsarnaev (1x, 1y, and 1z),17 and his

two probe face images (1a and 1b) were by the FBI during

the investigation.18 Because the probe images of Tamerlan

Tsarnaev are of poor quality, particularly due to wearing of

sunglasses and a hat, we also asked a sketch artist to draw a

sketch of Tamerlan Tsarnaev (1c in Fig. 15) while viewing the

two probe images.19

17See [39] for the sources of the gallery images.
18http://www.fbi.gov/news/updates-on-investigation-into-multiple-

explosions-in-boston
19“I was living in Costa Rica at the time that event took place and while I

saw some news coverage, I didn’t see much and I don’t know what he actually

looks like. The composite I am working on is 100% derived from what I am

able to see and draw from the images you sent. I can’t make up information

that I can’t see, so I left his hat on and I can only hint at eye placement.” -
Jane Wankmiller, forensic sketch artist, Michigan State Police.

Race: White
Gender: Male
Age: 20 to 30

1a 1b 1c

1x 1y 1z

Fig. 15. Face images used in our case study on identification of Tamerlan
Tsarnaev, one of the two suspects of the 2013 Boston Marathon bombings.
Probe (1a, 1b) and gallery (1x, 1y, and 1z) face images are shown. 1c is a
face sketch drawn by a forensic sketch artist after viewing 1a and 1b, and a
low quality video frame from a surveillance video.

To simulate a large-scale forensic investigation, the three

gallery images of Tamerlan Tsarnaev were added to a back-

ground set of one million mugshot images of 324,696 unique

subjects from the PCSO database. Particularly due to the

occlusion of eyes, the probe images are difficult for the

COTS face matcher to identify (though they can be enrolled

with manually marked eye locations), as shown in Table VI.

However, the rank retrieval for the sketch (1c in Fig. 15) is

much better compared to the two probe images (1a and 1b in

Fig. 15), with the best match at Rank-6,259 for max fusion

of multiple images of Tamerlan Tsarnaev (1x, 1y, and 1z) in

the gallery. With demographic filtering [40] (white male in the

age range of 20 to 30 filters the gallery to 54, 638 images of

13, 884 subjects), the sketch is identified with gallery image

1x (a mugshot)20 in Fig. 15 at Rank-112. Again, score fusion

of multiple images per subject in the gallery further lowers

the retrieval to Rank-71. The entire media collection (here,

1a, 1b and 1c in Fig. 15) is matched at Rank-82 against the

demographic-filtered and multiple image-fused gallery.

20http://usnews.nbcnews.com/_news/2013/05/06/

18086503-funeral-director-in-boston-bombing-case-

used-to-serving-the-unwanted?lite
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(c) Large Gallery

Fig. 16. Scenarios of open set and closed set identifications. (a) Open set identification with still face images as the probe, (b) Open set identification with
face video tracks as the probe, and (c) Closed set identification on a large gallery set with one million background face images from the PCSO database; the
black curve denoted with “D.F.” indicates that demographic information (such as gender and race) is also fused with the other face media (images, videos,
and 3D face models). Note that the ordinate scales are different in (a) and (b) to accentuate the difference among the plots.

TABLE VI

RETRIEVAL RANKS FOR PROBE IMAGES (1a, 1b) AND SKETCH (1c)

MATCHED AGAINST GALLERY IMAGES 1x, 1y, AND 1z WITH AN EXTENDED

SET OF ONE MILLION MUG SHOTS (a) WITHOUT AND (b) WITH

DEMOGRAPHIC FILTERING. ROWS MAX AND MEAN DENOTE SCORE

FUSION OF MULTIPLE IMAGES OF THIS SUSPECT IN THE GALLERY;

COLUMNS MAX AND SUM ARE SCORE FUSION OF THE THREE PROBES.

(a) WITHOUT DEMOGRAPHIC FILTERING

1a 1b 1c max sum

1x 117,322 475,769 8,285 18,710 27,673
1y 12,444 440,870 63,313 38,298 28,169
1z 87,803 237,704 53,771 143,389 55,712

max 9,409 117,623 6,259 14,977 6,281
mean 13,658 125,117 8,019 20,614 8,986

(b) WITH DEMOGRAPHIC FILTERING (WHITE MALE, 20-30)

1a 1b 1c max sum

1x 5,432 27,617 112 114 353
1y 518 25,780 1,409 1,656 686
1z 3,958 14,670 1,142 2,627 1,416

max 374 6,153 94 109 106
mean 424 5,790 71 109 82

E. Watch List Scenario: Open Set Identification

We report the DIR vs. FAR curves of open set identification

in Figs. 16 (a) and (b). With a single image or single video

per subject in the gallery, the DIRs at 1% FAR are about

25%, and 10% for still image probe and video clip probe,

respectively. This suggests that a large percentage of probe

images or video clips that are matched to their gallery true

mates at a low rank in a closed set identification scenario, can

no longer be successfully matched in an open set scenario.

Of course, this comes at the benefit of a much lower false

alarms than in the closed set identification. The proposed face

media collection based matching still shows improvement than

a single media based matching. For example, at 1% FAR, face

media collection based matching leads to about 20% and 15%

higher DIRs for still image and video clip probes, respectively.

F. Large Gallery Results

1) Extended PCSO Gallery: In order to simulate the large-

scale nature of operational face identification, we extend the

size of our gallery by including one million face images from

the PCSO database. We acknowledge that there may be a bias

towards matching between LFW gallery and LFW probe im-

ages versus matching PCSO gallery with LFW probe images.

This bias is likely due to the fact that the gallery face images in

LFW are not necessarily frontal with controlled illumination,

expression, etc., while the background face images from PCSO

are mugshots of generally cooperative subjects.

The extended gallery set with 1M face images makes the

face identification problem more challenging. Figure 16(c)

gives the media collection based face identification accuracies

with 1M background face images. A comparison between Fig.

16 (c) and Fig. 9 shows that the proposed face media collection

based matching generalizes well to a large gallery set.

VII. CONCLUSIONS

In this paper, we studied face identification of persons of

interest in unconstrained imaging scenarios with uncooperative

subjects. Given a face media collection of a person of interest

(i.e., face images and video clips, 3D face models built from

image(s) or video frame(s), face sketch, and demographic

information), we have demonstrated an incremental improve-

ment in the identification accuracy of a COTS face matching

system. This is of great value to forensic investigations and

“lights out” watch list operations, as matching the entire

collection outputs a single ranked list of candidate identities,

rather than a ranked list for each face media sample. Evalua-

tions are provided in the scenarios of closed set identification,

open set identification, and identification with a large gallery.

Our contributions can be summarized as follows:

1) A collection of face media, such as image, video, 3D

face model, face sketch, and demographic information,

on a person of interest improves identification accura-

cies, on average, particularly when individual face media

samples are of low quality for face matching.
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2) Pose correction of unconstrained 2D face images and

video frames (via 3D face modeling) prior to matching

improves the identification accuracy of a state of the

art COTS face matcher. This improvement is especially

significant when match scores from rendered pose cor-

rected images are fused with match scores from original

face imagery.

3) While a single consolidated 3D face model can sum-

marize the entire video track, matching all the pose

corrected frames of a video track performs better than

the consolidated model.

4) Quality based fusion of match scores of different media

types performs better than fusion without incorporating

the quality.

5) The value of forensic sketch drawn based on low quality

videos or low quality images of the suspect is demon-

strated in the context of one of the Boston bombing

suspects and YTF video tracks.

Future work involves investigation of more effective face

quality measures to further boost the performance of fusion for

matching a media collection. A reliable face quality value will

prevent forensic analysts from having to attempt all possible

combinations of face media matching. Another important

problem is to improve 3D model construction from multiple

still images and/or video frames.
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