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Abstract With the ever-increasing growth of the World
Wide Web, there is an urgent need for an efficient information
retrieval system that can search and retrieve handwritten doc-
uments when presented with user queries. However, uncon-
strained handwriting recognition remains a challenging task
with inadequate performance thus proving to be a major hur-
dle in providing robust search experience in handwritten doc-
uments. In this paper, we describe our recent research with
focus on information retrieval from noisy text derived from
imperfect handwriting recognizers. First, we describe a novel
term frequency estimation technique incorporating the word
segmentation information inside the retrieval framework to
improve the overall system performance. Second, we out-
line a taxonomy of different techniques used for address-
ing the noisy text retrieval task. The first method uses a
novel bootstrapping mechanism to refine the OCR’ed text
and uses the cleaned text for retrieval. The second method
uses the uncorrected or raw OCR’ed text but modifies the
standard vector space model for handling noisy text issues.
The third method employs robust image features to index the
documents instead of using noisy OCR’ed text. We describe
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these techniques in detail and also discuss their performance
measures using standard IR evaluation metrics.

1 Introduction

The need for easy access to a vast repository of both historical
and contemporary handwritten documents (e.g. handwritten
medical records, historical manuscripts, personal notes) has
led to an ever-increasing demand for an efficient information
retrieval system that is able to search and retrieve handwrit-
ten documents when presented with user queries. Over the
recent years, the retrieval methods have improved the quality
of document search in a dramatic fashion. However, these
methods are predominantly applicable to documents with
ASCII text or machine-printed document images where the
task of automatic word recognition is relatively easier. We are
interested in recognition of unconstrained handwritten doc-
uments, which is a significantly more challenging task due
to the large variations in writing styles and document image
quality. The methods developed for ASCII text and machine-
printed documents are rendered ineffectively due to low OCR
accuracy. In this paper, we present an overview of our own
research in information retrieval and extraction from noisy
OCR’ed text extracted from unconstrained handwritten doc-
uments. Specifically, our focus is on handwritten medical
forms (Fig. 1 [8]) that prove to be a very complex and chal-
lenging domain for any automatic recognition or retrieval
system. The challenges of automatic transcription lies in
three respects: (1) large variability in handwriting samples
given the multiple authors even with a single document, dif-
ferent response format and choice of text in the case of emer-
gency medical conditions, (2) poor image quality, and (3)
a large lexicon (dictionary) of medical words that can be
around 5,000 words. In this paper, we outline three separate
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Fig. 1 The text in a handwritten medical form [8]

research directions for tacking this problem in form of OCR
correction-based retrieval methods, modified vector model-
based methods and keyword spotting-based methods.

The rest of the paper is organized as follows. Sec-
tion 2 describes the related work in the area of infor-
mation retrieval from handwritten documents. Section 4
presents OCR model-based document retrieval techniques
and describes a novel term frequency estimation technique
in detail. Keyword spotting-based techniques are presented
in Sect. 5. Conclusions are outlined in Sect. 6.

2 Background

Several works have tried to improve the quality of infor-
mation retrieval on OCR’ed text. Previous work [2,11] has
shown that the IR performance is adversely affected by the
noise present in the OCR output due to low recognition per-
formance. A typical solution to this problem is to correct
OCR errors using post-processing techniques. [14,19,20]
propose different methods of OCR correction for improv-
ing the information retrieval performance. Mittendorf et al.
[19] propose a probabilistic model for OCR errors and use it
to design a term-weighting scheme for information retrieval
from document images. In Ohta et al. [20], specific charac-
ter transformations and character occurrence bi-grams were
used to generate candidate terms for each “true” search term.
Documents retrieved by each candidate term are then eval-
uated for inclusion into the final result set. This approach
results in minor improvements in recall for moderate quality
OCR documents. Jing et al. [14] build a language model that
takes OCR errors into account. This model approximates an
“uncorrupted” version of a particular document for efficient
retrieval.

Due to the poor recognition results in handwritten docu-
ments, it is not feasible to apply probabilistic modeling of
OCR output. Recently, there has been much focus on infor-
mation retrieval from handwritten documents. Lee et al. [16]
propose to use top-k hypothesis from the OCR instead of
using just the top choice. They report that using multiple
recognition choices for retrieval improves the overall recall
of the system. Rath et al. [22] propose an IR model that
assumes independence between each term of the query for
the purpose of computing its similarity with a given doc-
ument. The frequency of each term is computed using the
posterior probability estimated from the word image features.
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Howe et al. [13] use the same IR model as [22], but they do
not use word recognition probabilities. Instead, they model
the ranking as a zipfian distribution where word recognition
probability is inversely proportional to its rank.

As an alternative to OCR-based document indexing and
retrieval techniques, keyword spotting from handwriting has
gained significant research attention lately for solving the
document retrieval task. Keyword Spotting is defined as
an image matching task where the input query is matched
against candidate word images of the document. The word-
level matching scores can then be combined to generate
a document level score that can be used for ranking the
documents in order of query similarity. There are two major
classes of keyword spotting: (i) Unconstrained Keyword
Spotting: also known as “recognition-based keyword spot-
ting” that relies on an OCR (i.e. HMM) to provide prob-
abilistic values for each keyword in the lexicon that can
later be integrated into a document-level ranking score
[10,12,21,25], (ii) Isolated Keyword Spotting: also known as
“recognition free keyword spotting” that is the typical image
matching task for generating the document relevance score
for an input query [5,18,24,26,27].

3 OCR correction-based IR

This technique can be described as a multi-pass technique to
boost recognition and then perform retrieval on the refined
OCR’ed text. In the first pass, an OCR correction model is
employed, which improves the recognition rate of the hand-
written word recognizer. It is generally believed that in con-
text of handwritten word recognition, reducing the size of
lexicon translates to an improvement in word recognition
performance. In our work by Milewski et al. [17], we pro-
pose a lexicon reduction-based strategy for OCR correction
in context of handwritten medical forms. It can be under-
stood as a novel bootstrapping algorithm, where a sequence
of confidently recognized characters from word recognizers
are used to encode the document category that is further used
to reduce the initial lexicon by considering only the category-
specific terms.

First, all the forms that are manually categorized under a
specific topic are used to generate a lexicon of words. These
lexicons are then used to extract phrases from initial word rec-
ognition output using a cohesion-based metric. These phrases
are then encoded into a phrase-category matrix on which
singular valued decomposition (SVD) is performed. The
resultant matrix is then used to compute a topic or category
distribution for every test document. Finally, a second phase
of recognition is performed that uses a reduced lexicon, cor-
responding to document category. In a similar work on OCR
correction, Bhardwaj et al. [3] also use the document topic
information to obtain a refined posterior probability of every
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lexicon term. However, their approach is different from [17]
since instead of reducing the initial lexicon, they create a
re-weighted lexicon for word recognition. In the retrieval
phase, they utilize a two-pass document scoring method for
ranking each document in the collection corresponding to the
input query. First, each document is ranked according to the
frequency of query terms present in it. In cases, where sim-
ilar number of query terms are present, a secondary phase
re-scores these documents using a distance metric d(a;, b;)
that computes the distance between two matched words, a;
and b; such that i and j, respectively, represent the word
position in the document. w;; represents a weight based
on the frequency of occurrences of words a and b in the
document.

1
d(a;,b;) = w;jj ¥ ————— 1
(ai,bj) = w;j * lai — by (D

3.1 Performance measures

The retrieval performance is evaluated using standard
MAP(mean average precision) and R-precision metrics.
MAP denotes the mean value of the average precision of
all queries in the set. R-precision measures the precision of
the retrieval system at a point when the total number of doc-
uments retrieved is R. Figure 2 illustrates the values of these
metrics for different search experiments. ‘OR’ experiments
refer to methods when either of the query terms are searched.
‘AND’ experiments refer to methods when all query terms are
searched. ‘RL’ and ‘CL’ methods refer to reduced lexicon-
and complete lexicon-based methods. A complete lexicon
of 4,570 words is used in the experiment of [17]. Through
the lexicon reduction, the complete lexicon is decomposed
into smaller lexicons of 20 categories, each containing 400 to
1,200 words. The average size of the reduced lexicons is 574.
As seen from the figure, reduced lexicon-based search meth-
ods outperform the complete lexicon-based searches due to
better quality of the recognized text.

MAP and R-prec Comparison Chart

0.4
0.35 Eg‘:r:emsuon
0.3
0.25
0.2
0.15
0.1
0.05 ‘_.
0

AND CL AND RL ORCL OR RL

Fig. 2 Mean Average Precision and R-Precision comparison for cor-
rection based retrieval Model [17]

4 Adapted vector model-based IR
4.1 Classic vector model

In the classic Vector Model [1], the documents are repre-
sented by the vector space of terms. A term is a word from
the vocabulary of all of the documents. Given the vocabulary
{t;}, 1 <i < N, the term frequency tf; ; is defined by

freqi’j
ij =7
J

, i=1,...,N 2)

where freq,-’ j is the term count, i.e., the number of occur-
rences of term #; in document d;;, and L is the total number
of occurrences of all the terms in document d;. The inverse
document frequency (IDF) of a term is defined by

#{d;}

idf; = log —— 91

= 1,...,N 3
#d;|freq; ; > 0} )

where #{-} denotes the number of elements in set {-}. The
IDF of a term shows the importance of the term: a term that
appears in most documents is less important than a term that
appears in only a few documents. A query is also represented
by the vector of terms. The query term frequency (QTF) of
query ¢ is defined as

1, ifterm¢# ising .
Hiq = {O otherwisle i=lL....N @
and the query is represented by vector [t S tfgs - s
th’q].

The similarity between document d; and query ¢ is
defined as

N
sim(d;j. q) = > _tfij idfi - tfig. )

i=1
4.2 Modified vector model

The term count freq; ; is not immediately available from the
document image and need to be estimated. Thus, we mod-
ify the definitions of T F and I DF in Egs. (2) and (3): the
modified T F is

freq, ;
r 1]
Wi =T ©)
and the modified IDF
#{d;
idf! = log td;) @)

max {l,#{dﬂ@ > 0.5}}
where @ is an estimation of freq; ;. Note that here we

require that freq; ; > 0.5 which is equivalent to a rounding
function of the expected value of freq; ;, ie., round
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(freq; ;) > 1. We estimate freq; ; using the its expected
value:

freq; ; = E{freq; ;}, (8)
The text length in Eq. (6) is estimated by

N
Lj= Zfreqi,j ©
i=1

The similarity between document image d; and the query ¢
is given by

N
sim(d;. q) = D _tf]; -idf] - tfig. (10)
i=1
Suppose document d; is represented by the observed
. — —
image features o, and W = wjwy...wy denotes an
. . —
arbitrary segmentation of ¢, where wy, ..., wy are word
images. The expected value of freq; ; is given by

Effreq; ;) = D Pr(W|3) - D> Pr(T W) -#,(T) (1)

T

where T = 7;...77 isa sequence of terms. Pr(l_u>|7) is
the probability that W is a correct segmentation. Pr(7|W)
is the word sequence recognition probability. #;, (7)) is the
number of term #; occurring in sequence T .

Equation (11) can be simplified in some special situations.
W is unique and Pr(w |_0>) = 1, if we assume the correct
segmentation W is known. Thus, Eq. (11) is equivalent to

Effreq; ;) = D Pr(T|W) - #,(7) (12)
T
In addition to the assumption of knowing the correct segmen-
tation, assuming the independence of terms 7y, 12, ..., Tf,
1.€.,
L
Pr(T| W) = [ | Pr(zlwp). (13)
k=1

then Eq. (12) is equivalent to

L
Effreq; ;} = Y Pr(ti|wy) (14)
k=1

Equation (14) is used in [13,22] for retrieval. It is a solution
to Eq. (11) based on the assumptions of perfect word segmen-
tation and independence of terms. In the general case, given
the probability of every single segmentation point and a lan-
guage model (n-gram), we can solve Eq. (11) by dynamic
programming.

4.3 Estimating term count freq; ;

The observational sequence of a document image can be rep-
resented by a sequence of connected components sorted in
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the reading order. Since the following discussion focuses on
a single document, we can omit the subscript j of d; from
notations like freq; ; without ambiguity.

Given N consecutive connected components ¢y, . . . ¢, and
the set of terms f1, ... fy, we use a dynamic programming-
based algorithm to compute the term count. We assume a
word image is composed of at most C connected components.
The term count of # in sequence ci,...,c;x (0 < k < n)
is denoted by freqf.‘. The probability that the last word of
sequence cy, ..., Ck is term #; is denoted by Af. The proba-
bility that the gap after the connected component ¢ is a true
word gap is denoted by o;. When we define freqi.‘ and oy on
a sequence cy, ..., Cx, we assume oy = ox = 1. Next, we
will present the formulae of estimating term counts when the
language model is a bi-gram. The formulae for higher-order
LM’s can be derived similarly.

When k = 0, the sequence is empty, and thus

E(freq?) =0 (15)

When k = 1, the only possible segmentation is that ¢ is
a word image, and thus

pi - Pr(cilt;)
> piy - Pricilti,)

E(freq)) = (16)

When k = 2, the last word image can be either ¢; or cjc3.
The probability that c; is recognized as ¢; is

SN L pi—i) - Pr(ealt)
SN N piiiy) - Pricalty)

A7)

where p;, , ;, represents the transition probability from term
t;, totermt;, and Pr(c;|t;) is the probability density of obser-
vation ¢ in class t;. The probability that cjc; is recognized
as t; is

pi - Pr(ciealty)

(18)
>N pir  Pr(ciealtiy)

Thus,
E(freq?)
1 Zf\llzl ()“,'1, pi1—>i) -Pr(cea|t))
=oy - (freq; + S - 1
Z”2:1 Zilzl ()“[lpil—>i2) . Pr(C2|[i2)
i - Pr(ciealt;
+(1 —oy)- Npl (cre2lt;) (19)

Zi2=1 Pi> - PI'(C[CQM’Z)
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For an arbitrary k > 0, we can prove that the number of ~ ¥ig 3 Three feature Mk LE~ K\
terms representing a gap between two

E (freq'l'-c )

k—1
c=1
Z{Y I()\k (‘pllﬁl) Pr(ck— c+1 -

. - Ck—1Ck |t
. freqi + i T : : :
S N T pi i) PR - Cktckltiy)

k—c<q<k

[T a —oq))

pi - Pr(cr...ck—1cklt)
[T a-e
0<g<k Z —1 Pip - Pr(er ... ck—1ckltiy)
ifk < C; (20)
and
E(freqf-‘)
c
:Z(’k—c' H (I_Uq)
c=1 k—c<g<k
— > l()»k “Pi—i) - Prck—c+1 ... crorcklti
| freq; T
Z, 1 2 cpll—ng)'Pr(Ck—(‘-H . Cr—1Cktiy)
2= 1= I
ifk>C. @21)
Similarly, we can prove that
1
0 .
W=
k—1
M=o | [T -0y
c=1 k—c<q<k
SN i) Pr(Ckeq - - Cko1klt)
Z,N:l Zi _ )»f “Piy—iy) + Pr(Ck—ct1 ... ck—1cklti,)
2 1=1 1
-Pr(cy...cp—1ck|ti
n H(I—Uq) . NP: (c1 k—1Ck %)
0= <k D i=1 Pip - Pricr ... ck—1ckltiy)
ifl <k<C; (22)
and
C
=Yoo | ] -0
c=1 k—c<q<k
SN O i) Pkt - - ckorcklt)
S N O piyin)  Pr(ck—et - ok ltiy)
2 1=1 1
ifk > C. (23)

The term count freq:? (i=1,2,...,N) are obtained by cal-
culating freqf’s and Af’s recursively for k from O to n using
Eqgs. (15)-(22).

4.4 Estimating word segmentation probability

Word segmentation is defined as the process of segmenting
a line into words. In handwritten lines, the space between

consecutive connected
components. a Euclidean (@)

distance. b Run length distance. ™~
¢ Convex hull distance NJV L %
(c)

words is uneven. Moreover, the same amount of space may
be present between words and between characters within a
word. Such cases arise due to differences in writing styles
and space constraints.

In our word segmentation method, for every gap between
any two consecutive connected components, the probability
of that gap being a between-word gap is estimated. A gap
between two connected components is represented by three
features:

1. Euclidean Distance. This feature is defined as the hor-
izontal distance between the bounding boxes of the two
consecutive connected components of the line image
(Fig. 3a).

2. Minimum Run Length. This feature represents the min-
imum horizontal white run length distance between the
two adjacent connected components of the line image.
There is a little difference between the run length and
Euclidean distances. Run length is only affected by rows
that are common to both the connected components.
However, Euclidean distance between bounding boxes
can also be affected by a particular row unique to one
component (which changes the shape of the bounding
box of the component).

3. Convex Hull Distance. The Euclidean distance between
points at which this line crosses the convex hulls of two
adjacent components is defined as the Convex Hull dis-
tance of the two components.

To eliminate the effect of different text sizes, we compute
the average height of all the components and normalize the
extracted features by dividing them by the average height of
all components in the same line.

The segmentation probability of a gap g is given by the
Bayes’ Rule

Pr(g)p(flg)
Pr(g)p(flg) + Pr(g)p(f12)

where Pr(g) and Pr(g) are the prior probabilities of between-
word gaps and within-word gaps, respectively. f represents
three features of g. p(f|g) is the probability density of the
features of between-word gaps. p(f|g) is the probability
density of the features of within-word gaps. Given a set

0y = Pr(glf) = 24)
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of gap features with the annotation of “between-word” and
“within-word”, we can estimate Pr(g), Pr(g), p(f|g) and
p(flg) as follows. Pr(g) and Pr(g) are estimated from the
ratio of the numbers of between-word and within-word gaps
in the training set.

#{between-word gaps}

P =
r(8) #{between-word gaps} + #{within-word gaps}

(25)
Pr(g) =1—Pr(g) (26)

p(flg) and p(f|g) are estimated non-parametrically using
Parzen window technique with a Gaussian kernel function.

4.5 Estimating word recognition likelihood

We use a lexicon-driven word recognition algorithm [15]
based on character segmentation and dynamic programming
to find the best matching path. First, a word image is seg-
mented into candidate character images. Then the directional
features are extracted from the contours of character images
and matched to every word in the lexicon by searching all
possible segmentations for the minimum sum of Euclidean
distances from the features of the test image and the char-
acter templates in the training set. The minimum Euclidean
distance indicates the similarity between the word image and
the term in the lexicon. The square of the distance is associ-
ated with a pair of a word image w, and a term #; is denoted
by s(w, t;). We can use the Bayes’ rule to verify, if #; is a
genuine match of w:
Pr, (G)p(s(w, ;)|G)

Pr, (G)p(s(w, t;)|G) + Pry, (I p(s(w, t;)|1)

27

Pr;; (Gls(w, 1)) =

where p(s(w, t;)|G) is the likelihood of the genuine match-
ing score, p(s(w, t;)|I) is the likelihood of the imposter
matching score, Pr;, (G), and Pr; (I) are the prior proba-
bilities of genuine and imposter matches, respectively. For
simplicity, we assume those distributions are invariant to dif-
ferent term #;. Thus,

Pr(G)p(s(w. 1;)|G)
Pr(G)p(s(w. )|G) + Pr(1) p(s(w, 1;)|1)
= g(s(w, 1;)) (28)

Pry, (Gls(w. 1)) =

can be denoted by a function g of s(w, #;).

Pr(G), Pr(I), p(s|G) and p(s|I) are estimated from the
scores of all of the terms. We model p(s|G) and
p(s|I) as Gamma distributions. Actually, the matching score
s is a squared sum of distances between character-level fea-
ture vectors and the centers of clusters in the training features.
In other words,

L
s=> D} (29)
=1
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where D; is a character matching distance. If we assume
all the clusters of the training feature vector space are
independent normal distributions, then the squared sum of
the distances can be modeled as a gamma distribution. The
probability density function of the gamma distribution can
be represented by

Fs(s:k, 0) = sk~ ;klj:z), s>0andk 6 >0 (30)
where I"(k) is the gamma function:
o
Tk) = /xk_le_xdx. (31)
0

If k is a positive integer, then I'(k) = (k — 1)!. There is no
closed-form solution for the maximum likelihood estimation
of k and 6 [9]. However, we can use a simple way to esti-
mate the Gamma distribution. First, we can prove that the
mean and variance of the Gamma distribution are k - 6 and
k - 2, respectively. Then, given N genuine matching scores
S1,82,...5N, we can compute the ML estimation of mean
and variance:

r B l N
n= ﬁzsi
i 32)
5= 2 —)°
i=1
Letk -6 = ji and k - 62 = 52, then
, =2
k=14
02
3 (33)
6 =—
i

A Genuine probability/score curve estimated from 5461
genuine matching scores and 1,226,022 imposter matching
scores is shown in Fig. 4.

By Bayes’ rule, the likelihood

Pr(;) - Pr(wlt;)

> Pr(t)) Pr(wlt;)

Pr(ti|w) = 34

Genuine Matching Probability Pr(Genuine|s) vs. Score s

Pr(Genuine|s)
o
[3,]

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S

Fig. 4 Genuine matching probability/score curve estimated from
training set
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On the other hand, we approximately compute the poster-
ior probabilities using

Pr(ti)g(s(w, 1))

Pr(t;|w) = L i=12,... N
SN Pr(t)g(s(w. 1))
(3%5)
From Egs. (34) and (35),
N Pr(t;) Pr(wt;

Pr(w|t;) = 2= Pr) Pr(wiy) - Pr(; |w)

Pr(z;)

= g(s(w, ;) - Z;V:l Prity) Priwls)

> Pr(e)g(s(w. 1))
o g(s(w, 1) (36)

Thus, we can replace the likelihood Pr(cg—c+1 - . . ck|t;) with
g(s(Chk—c+1 - - - Ck, 1)) in Egs. (15-22).

4.6 Search engine based on modified vector model

A search engine for handwritten document is built using the
modified vector model and term count estimation method
discussed in the previous subsections. The flowchart of the
search engine (Fig. 5) shows three phases of the system: pre-
processing, indexing, and document retrieval.

In the preprocessing phase, image enhancement such as
noise filtering and binarization are performed, and text lines
are identified by page segmentation.

Indexing includes word segmentation and recognition
with the estimation of probabilities. We use these probabili-
ties to estimate the term frequency (TF) and inverse document
frequency (IDF) and store the estimated TF and IDF values
for retrieval.

When searching the database for relevant documents, the
user input query is converted to a query vector and the sim-
ilarity of the vector model is calculated for each document.
Documents are ranked in the decreasing order of similarity,
and top documents are returned.

4.7 Computational issues

Only the non-zero values of the TF matrix are needed to be
stored in the index, and thus, the space to store the index and
time complexity of retrieval are both linear in the number of
non-zero values in the TF matrix. Since the TF matrix for
text retrieval is usually sparse, the size of index file and the
retrieval speed are not issues. But the TF matrix is no longer
sparse when indexing document images (using the proposed
method). Practically, we can convert the TF matrix into a
sparse one without affect performance much: we can choose
a threshold THRgparse and turn those elements from the TF
matrix that are less or equal to THRgparse (see circled elements
in Fig. 6b). We set THRparse to 0.002 in our experiments.

Document images

Preprocessing

Preprocessing:
Noise removal
Binarization

Page Segmentation

Line images
Pr o prear 7 erd v e Gl

E=8ie corar tenwnl foxr wor, =m0

Eesender wn s e e 0p o Goac]

!

Word segmentation
& recognition;

2 | Estimate freq(i)j)'s
- S Retrieval
§ freg(ij)'s
— pt: 2.5773
pain: 0.1475 o
abd: 2.1632 back pain J
chest: 0.7846
heent: 0.1243 l
l Convert to QTF
Compute TF/IDF [0...10,..00,0...0]
[0.212,008,..0011]
TF .
. TF-IDF
0.005,0.0012,....0 ol .
g similarity

IDF  [L4.75....1.58]

!

Store
to DB

Fig. 5 Flowchart of the search engine

4.8 Test corpus

Our test corpus consists of the New York State Pre-hospital
Care Reports (PCR forms). In New York State, all patients
who enter the emergency medical system (EMS) are tracked
through their pre-hospital care to the emergency room using
the PCR. The PCR is used to gather vital patient infor-
mation. Retrieval on this data set is quite challenging for
several reasons: (i) handwritten responses are very loosely
constrained in terms of writing style, format of response,
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(=R -1
S = O
w O W
(=Rl
[ -

o
0.005 4.82
0.005 075

0003 16 385
(b)

Fig. 6 TF matrices from text IR and document image IR. The TF
matrix for document image IR can be approximated by a sparse matrix
if we turn the circled elements that are below a threshold to 0. a The TF
matrix from a text IR application. b The TF matrix from a document
image IR application

and choice of text due to irrepressible emergency situations,
(i1) images are scanned from noisy carbon copies and color
background leads to low contrast and low signal-to-noise
ratio (Fig. 7), (iii) medical lexicons of words are very large
(~5,000 entries). This leads to difficulties in the automatic
transcription of forms. The word recognition rate of the forms
using Word Model Recognizer (WMR) [15] is below 30%.
Each PCR contains only about 100 handwritten words on
average, so the content is very short and ordinary IR meth-
ods perform badly, since some of the terms are often absent
from the OCR result.

4.9 Preprocessing and recognition of PCR form images

First, we detect and remove the skew of every PCR form
image as follows.

1. We manually de-skew a form and take it as a template.
Two regions with machine-printed text are cut from the
template image as anchors.

2. We use the anchors to perform registration between the
template and other test images, since we know in advance
the anchors appear in all the images. The positions of two
anchoring regions in any test image are located using
cross-correlation.

3. The skew angle of the test image is obtained by the rel-
ative skewing between the test image and the template.
We de-skew the image by rotating the test image to the
opposite direction.

By aligning the test image to the template image, we can
also obtain the position of each form cell containing a line
of text. The template-matching-based de-skewing and page
segmentation work well on the PCR form images, since they
have a fixed layout and are scanned at the same resolution.
Our approach is applicable to other types of forms as well.
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Fig. 7 A sample PCR form. a The entire PCR form. b A small local
region showing blurred text and background noise. ¢ Fields of interest
in the PCR form

We use the MRF-based document image preprocess-
ing algorithm [6] to binarize the form image and remove
the grid lines from the image. Assuming the binarized
objective image is x and the grayscale image is y, we
solve the maximum a posteriori (MAP) estimation ¥ =
argmax Pr(x|y) using the Markov Random Fields (MRF).

X

An example of binarization and line removal result is shown
in Fig. 8. The MRF-based preprocessing method improves
the word recognition accuracy from 18.7% (obtained by the
PCR form preprocessing algorithm in [17]) to 28.6%.

We use 1,099 between-word gaps and 5,138 within-word
gaps to train the word gap classifier using the method pre-
sented in Sect. 4.4. The classifier is evaluated on a test
set of 791 between-word gaps and 4,369 within-word gaps.



Handwritten document retrieval strategies

153

Pr B PR 2 enl pave
DAk PatN . (o Ha 27 OmKeeG  Wran Da (utadOw
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Fig. 8 An example of the binarization and line removal result. a The
original grayscale image. b The bnarized image. Grid lines are removed

and broken strokes are fixed

Recall-Precision Curve for Word Gap Classification
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Fig. 9 The performance of word segmentation (recall-precision curve)

If we take probability py as a threshold to determine the
category of a gap, we can compute the recall and precision
values obtained from the given test deck. Thus, a precision-
recall curve (Fig. 9) is obtained by taking various values of
threshold, pi.

The WMR handwritten word recognizer is trained using
21,054 character images collected from the handwriting on
the letters provided by the US Postal Service [15]. A lexicon
of 4,551 English words is generated from the ground truth of
783 PCR forms.

Abi-gram LM is trained from the above 783 forms. A word
recognition rate of 28.6% is obtained on the PCR forms.

4.10 Evaluation metrics of IR test

The IR tests are evaluated in terms of mean average precision
(MAP) and R-Precision [1]. The mean average precision is
obtained in the following way:

1. For each query, check the returned documents starting
from rank 1. Whenever a relevant document is found,
record the precision of the documents from the one with
rank 1 to the current one. The average value of the
recorded precisions for the query is the average preci-
sion of the query.

2. The mean value of the average precisions of all the que-
ries is the mean average precision of the test.

R-Precision of a query is the mean value of precisions
computed for each query when R documents are retrieved,
where R is the number of relevant documents. The mean
value of the R-Precisions of all queries is the R-Precision
of all of the queries. For example, suppose 100 documents
are relevant to query g1, and 30 of the top 100 retrieved
documents are relevant to the query, then the R-Precision
of query gq; is 30/100=30%. Suppose the R-Precision of
another query g» is 20%, then the R-Precision of g1 and ¢»
is 30+4-20%)/2 =25%.

In addition to the mean average precision and R-Precision,
the performance of the IR system can also be visualized using
a 11-point precision. First, the 11 interpolated precisions at
recalls 0, 0.1, ..., 1 are calculated for each query. Then, the
average precision of all of the queries at each of the 11 recalls
is calculated. Finally, we get 11 precisions.

4.11 IR tests

The document images used in our IR tests are 342 PCR forms
with manually transcribed ground truth and coordinates of
each word. We have 28 queries and manual annotation of
relevance of the 342 forms to these queries. These 342 PCR
forms are different from the 791 forms used in the training
of the word recognizer and LM. The queries used in our IR
tests are shown in Table 1.

We compare the performances of the following 7 IR tests:

Tests 1-4: IR tests on OCR’ed text

We apply the classic vector model on OCR’ed
text. First, we apply word segmentation to
the 342 form images as follows. For any m
(m < 16) consecutive connected components
CyCq+1---Cqtm> SUPPOSE 041,04, ..., and
044+m are gap category probabilities obtained
by the gap classification algorithm presented

in Sect. 4.4, then the probability of the

Table 1 28 query phrases used in our IR tests

“Head pain” “Emesis” “Breath difficulty short”
“Trachea” “Lung” “Chest pain”
“Fracture” “Rib fracture” “Head fracture”
“Ankle fracture” “cancer” “Trauma”
“Glucose” “Diabetes” “Foot”
“Tender” “Hurts” “Ambulate”
“Cardiac” “Dizzy dizzyness “Cardiac monitor”
dizziness”
“Wrist” “Arthritis” “Shoulder pain”
“Syncope” “Mri” “Blind”
“Dementia”
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Test 5:

Test 6:

concatenation c¢,;Cq441...C4+m being a word
imageisoy_1-(1—=0y)-...-(1=041m—1)-Ogim-

We recognize all the word images with the
word segmentation probability above 0.3. The
OCR’ed text is composed of the top-S word rec-
ognition candidates of every word image. The
parameter S = 1, 3, 7, and 15 in four separate
tests. IR tests based on the classic VM are per-
formed on the OCR’ed text of 342 form images.
UMASS TF (vector model)

We apply the modified vector model to 342
form images for document retrieval. The term
counts are estimated from handwriting recog-
nition (HR) results using Eq. (12) by assum-
ing perfect word segmentation and identical
independent distribution (i.i.d.) of terms, i.e.,

L

Effreq; ;} = Z Pr(zi|wy)
k=1

(37)

We use the same word segmentation method in
Test 1-4.

UMASS TF (probabilistic model)

We apply the probabilistic IR model [13,22] to
342 form images for document retrieval. In this

Fig. 10 The MAP and

R-Precision values of 7 IR tests.
a Original MAP’s and

MAP’s and R-Precisions

0.25

model, the doc-query similarity is defined as

sim(dj, q) = I (38)

I<i<N, tfiq4=1

tfi’j,

and the term count is estimated by Eq. (37).
We use the same word segmentation method in
Test 1-4. The difference between [13,22] and
our implementation is the way word recognition
probabilities Pr(zx|wy) are estimated.
Proposed TF (vector model)

We apply the modified vector model to 342 form
images for document retrieval. The term counts
are obtained using Eqgs. (15)-(22).

Test 7:

The MAP and R-Precision values of the above IR tests are
compared in Fig. 10a. A trivial average precision of 4.76%
is obtained by generating random retrieval results for the
28 queries. We amend the metrics by subtracting the triv-
ial AP from the MAP and R-Precision values. The amended
metrics show the incremental improvement from the triv-
ial result. The amended MAP and R-Precision values of the
above IR tests are compared in Fig. 10b. Tests 1—4 show that
the improvement of using more word recognition candidates
(S = 3,7, and 15) compared to the result of IR test on top-1
word recognition text is very slight. Even a naive estimation

MAP and R-Precision Values of IR Tests

[CMAP_BR-Prec] 0.2049 02143
R-Precisions. b Amended 0.2 4 ]
0.1674 875

0.1491 0.1614 0.1609  0.1577 0.18446%
0.157 ¢ 41 0.1269 0.1241 0.1
0.1
0.05 -

0 ; . . . . .
OCR'ed Text OCR'ed Text OCR'ed Text OCR'ed Text VM + PM + VM +
(s=1) (8=3) (8=7) (8=15) UMASS TF UMASS TF Proposed TF
(a)
Amended MAP and R-Precision Values of IR Tests
0.2
0.184 |DAmended @Amended 0.1573 0.1667
0.164 | _MAP R-Prec Y
0.14 - 0.1198 199 1159
Saal s 0.1138 0.1133 1197 .
0.1 0.07 0.0805 s
0.08 0.06 i 0.06
0.06 4
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0.02 4
0 : . . . s
OCR'ed Text OCRled Text OCR'ed Text OCR'ed Text VM + PM + VM +
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of the term counts (Eq. 37) improves the IR performance
compared to the tests based on OCR’ed text. But the use of
the word segmentation probabilities and the language model
(Test 7) resulted in better IR performance than the estimation
method that only uses isolated word recognition results.

The interpolated 11-point precision curves of tests 1
(OCR’ed text, S = 1),5 (VM +isolated word estimation) and
7 (VM +word sequence estimation) are shown in Fig. 11a.
The IR performance of building the index on the ground truth
text is also shown in Fig. 11a. Tests 5 and 7 produce simi-
lar precisions at low recall (around 0), but Test 7 produces
significantly higher precisions at higher recalls.

For better comparison, the above 11-point precision
curves can also be amended this way: we first get two addition
precisions at each recall level: trivial precision and ground-
truth precision, and then normalize the recall-precision
coordinates so that the trivial precision is always 0 and the
ground-truth precision is always 1. The trivial precision is
defined as the precision obtained by ranking all the docu-
ments randomly:

average number of relevant documents per query

Precirivial =
number of documents

(39)

The ground-truth precision Precyyq at a recall level is the
precision obtained by IR test performed on the index built
on ground-truth text. The amended precision of an original
precision p is defined as

p — Precyivial
p — Precyum

Precamended = x 100% (40)

The amended 11-point precision curves in Fig. 11b show
that the proposed method obtained improvement at almost all
recall levels but especially improved the precisions at high
recall rates (>50%). The two existing methods perform very
poorly at high recall levels by giving nearly zero precisions.
But the proposed method still obtained about 10% precision
at the recall level of 100%.

5 Word spotting-based IR

The notion of word spotting [22] has been introduced as an
alternative to OCR-based information retrieval solutions. It
can be defined as an information retrieval task that finds all
occurrences of a typed query word in a set of handwritten
or machine-printed documents. This section presents some
of our keyword spotting approaches for handwritten medical
forms as well as multilingual documents.

11-Point Average Precision

---------------- . —~—OCRed Text (S=1)
0.9 —x—UMASS TF
""""""" S P d TP
g 08 o N —— e
(3]
j<
o
[0)
o))
5
>
L
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(@)
11-Point Average Precision (Normalized by Truth and Trivial Precision)
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® 074
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Fig. 11 The 11-point average precision curves of tests 1, 5 and 7.
a Original recall-precision curves. b Amended recall-precision curves

5.1 Probabilistic word spotting model

Huaigu et al. [8] describe a keyword spotting model that pro-
vides an improved retrieval performance by combining the
word recognition likelihood and word segmentation prob-
ability in a probabilistic framework. Given a series of con-
secutive connected components ¢y, ¢2, . . ., ¢, and a possible
word image w represented by ¢;, ¢j41,...¢; (1 <1, j <n),
their model represents the similarity between w and a query
word g by:

sim(w, )

=o0i-1-(I-0)-...-(1=0j_1)-0;-Pr(qglw)  (41)
where oy (1 < k < n — 1) is the probability of the gap
between cx—1 and ¢, being a between-word gap, ogp =0, =1,
and Pr(g|w) is the word recognition probability. The gaps
are assumed to be independent, and therefore, the word
segmentation probability can also be represented as o;_1 -
(1 — O‘,') st (l — 0./_1) c0j.

Figure 12 shows the average precision curve of the pro-
posed method that outperforms traditional keyword spotting
approaches assuming perfect word segmentation.
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Fig. 12 11-point average

Recall-Precision Curves of 4 Experiments Using Different Similarity Functions

precision curves of Tests 1-2 [8]

Precision

5.2 Feature-based word spotting model

Bhardwaj et al. [4] propose an image feature-based keyword
spotting solution for multilingual documents. They describe
an indexing process that extracts moment features from input
word images and stores the feature values as indexes. The
features are computed using a geometrical moment equation
that is invariant under image translation and scale transfor-
mations.

Zx Zy(X*)p(y Y f(x,y)
Moo

For the retrieval process, they represent all the query
words and candidate words as traditional vector space model.
Cosine similarity is used to compute similarity between the
query images and indexed images on moment feature space.
Finally, all the candidate word images are ranked in order
of their similarity with the query image. Since the similar-
ity values are computed on feature space, it’s not robust to
larger image variation and lower image quality. To address
this issue, they use relevance feedback mechanism to re-rank
all the candidate word images. This mechanism re-formu-
lates the query feature vector by adjusting the values of the
individual moment orders present in the query vector. The
relevance feedback mechanism assumes a user input after
the presentation of the initial results. A user enters either a 1
denoting a result to be relevant or O denoting a result to be
irrelevant. The new query vector is computed as follows:

(42)

Mpq =

o =R j=NR
Gnew = V-Gota + T Z i — |NR| Z d (43)

where o, 8, and y are term re-weighting constants. R denotes
a relevant result set, and N R denotes a non-relevant result
set.

Table 2 describes their results on 3 different scripts before
and after applying relevance feedback (RF).

6 Conclusion

Information retrieval from handwritten documents is a chal-
lenging task primarily due to lower word recognition rates
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Table 2 Average precision rate for word spotting in all 3 Scripts [4]

Script Before RF After RF
English 66.30 69.20
Hindi 71.18 74.34
Sanskrit 87.88 92.33

in the case of unconstrained handwritten documents when
compared to machine-printed document images. Traditional
information retrieval techniques therefore fail to perform effi-
ciently in case of noisy OCR’ed text. In this paper, we pre-
sented some of our existing methods that deal with retrieval
from noisy OCR’ed text. We discussed three approaches that
address this issue in different ways. First approach refines the
OCR output and then performs retrieval over the cleaned text.
The second approach uses the uncorrected OCR’ed text, but
modifies the traditional retrieval model to account for OCR
errors. The third approach uses image-processing techniques
to compute similarity between query and word images and
retrieves them accordingly. Each of the discussed approaches
have their own merits or pitfalls and have been applied to dif-
ferent applications. Our future work will focus on exploring
techniques leading to higher IR performance on handwrit-
ten documents including combining the benefit of all OCR
correction methods with modified retrieval, integrating the
stemming technique into the language model used in OCR,
as well as broader applications such as the detection of out-
of-vocabulary (OOV) items—name identities and so on—in
noisy text.
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