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ABSTRACT

Licence plates and traffic signs detection and recognition

have a number of different applications relevant for trans-

portation systems, such as traffic monitoring, detection of

stolen vehicles, driver navigation support or any statistical

research. A number of methods have been proposed, but

only for particular cases and working under constraints (e.g.

known text direction or high resolution).

Therefore a new class of locally threshold separable de-

tectors based on extremal regions, which can be adapted by

machine learning techniques to arbitrary shapes, is proposed.

In the test set of licence plate images taken from different

viewpoints 〈−45o, 45o〉, scales (from seven to hundreds of

pixels height) even in bad illumination conditions and partial

occlusions, the high detection accuracy is achieved (95%).

Finally we present the detector generic abilities by traffic

signs detection.

The standard classifier (neural network) within the detector

selects a relevant subset of extremal regions, i.e. regions

that are connected components of a thresholded image.

Properties of extremal regions render the detector very robust

to illumination change and partial occlusions. Robustness to

a viewpoint change is achieved by using invariant descriptors

and/or by modelling shape variations by the classifier.

The time-complexity of the detection is approximately

linear in the number of pixel and a non-optimized imple-

mentation runs at about 1 frame per second for a 640× 480
image on a high-end PC.

I. INTRODUCTION

Text detection and recognition in general, and licence plate

detection and recognition in particular, in images and videse-

quences have a number of different applications relevant for

transportation systems, such as [6], [5] traffic monitoring,

detection of stolen vehicles, driver navigation support etc.

Localisation (detection) is typically the critical problem [6],

since commercial systems for recognition of printed text are

available (e.g. [1]). Published methods such as operate under

rather restrictive constraints, e.g. the orientation of the text

(licence plate) is known. Ezaki [5] describes three methods

of automatic detection based on morphogical operations and

edge detection, but region of interest have to be usually man-

ually choosen and the text is expected to be viewed frontally.

In [2], Chen et al. propose an automatic text detection method

for moving motor vehicles, but it assumes that region of

interest and the text direction is given by movement of vehi-

cle. The partially affine and illumination invariant detection

method based on morphological operations is proposed in

[3] but the experiments include only images with closed-

look with high resolution of LP (character height about 50

pixels) and the view invariance is presented in a quite limited

range.

As a main contribution of the paper, we propose a general

approach for text and licence plate detection. By general

we mean: insensitive to geometric changes induce by the

change of viewpoint (scaling, rotation, affine deformation),

illumination insensitive and robust to occlusion. The detector

is based on the concept of extremal regions [4], which are

arbitrary threshold-separable region.

In presented experiments (Section III) 95% detection ac-

curacy is achieved on licence plate dataset in

• the horizontal 〈−45o, 45o〉 and the vertical 〈−30o, 30o〉
range of viewpoints, respectivelly and

• scales from the height of 7 pixels up to height appro-

priate to the image rows and

• illumination changes from over-illuminated images to

the night images and

• even partially occluded LPs by hand or by other cars.

In our work, the objects of interest (e.g. sign) is decom-

posed into the spatial configuration of category-specific ex-

tremal regions (e.g. letters), i.e. a subset of extremal regions

that is selected by machine learning methods and is likely

to correspond to a letter or digit. In the detection stage, we

first independently detect all character-like extremal regions

and the longest linear spatial configuration of these region is

labeled as text or licence plate. Further processing such as

character recognition follows.

A robust category-specific detector of extremal regions can

be implemented as follows. Enumerate all extremal regions,

compute efficiently a description of each region and classify

the region as relevant or irrelevant. In a learning stage,

the classifier is trained on examples of regions – letters

from given category (i.e. font, digits, capital etc.). Such

detection algorithm is efficient only if features (descriptors)

for each region are computed in constant time. We show

there is a sufficiently discriminative class of ’incrementally

computable’ features on extremal regions satisfying this

requirement.

The features are only scale invariant, the viewpoint invari-

ance in defined range is achieved by training the classifier for

different views from the given range. This fact let the detector



Fig. 1. Licence plate detection in unconstrained conditions.

to be trained for special cases with high accuracy of detection

or to be trained for general text detection. In a special case

like detection of licence plates on the car waiting in front

of the bar, the classifier can be trained only for such special

position of licence plate to the camera and appropriate font

of capital letters and digits. The detection in more general

cases is limited by ability of classifier to conceive the number

of different examples. Therefore accuracy is decreasing with

generalization of the problem.

The rest of the paper is organised as follows. First, the

structure of the algorithm for category-specific extremal

region detection is presented. We show that CSER are

efficiently selected by interleaving enumeration of extremal

regions and classification of their incrementally computable

features. The class of incrementally computable features is

studied next, necessary conditions for the class are found

and examples of such features are given (Section II-A). We

than apply the method to two well known problems of text

detection and license plate recognition (Section III). The

paper is summarised in Section IV.

Fig. 2. The detection is implemented as interleaved enumeration of
extremal regions, computation of incremental features and classification.

II. CATEGORY-SPECIFIC EXTREMAL REGION DETECTION

Our objective is to select from the set of extremal regions

those with shape belonging to a given text category. The

model of the text is acquired in a separate training stage. Let

us assume for the moment that the learning stage produced

a classifier that, with some error, is able to assign to each

extremal region one of two labels: ’interesting’, i.e. is a

component of our category, or ’non-interesting’ otherwise.

The detection of category-specific extremal regions can be

then arranged as three interleaved steps: (1) generate a new

extremal region, (2) describe the region and (3) classify it.

The interleaved computation is schematically depicted in

Figure 2.

Extremal regions are connected components of an image

binarised at a certain threshold. More formally, an extremal

region r is a contiguous set of pixels such that for all pixels

p ∈ r and all pixels q from the outer boundary ∂r of region

r either I(p) < I(q) or I(p) > I(q) holds. In [4], it is shown

that extremal regions can be enumerated simply by sorting

all pixels by intensity either in increasing or decreasing order

and marking the pixels in the image in the order. Connected

components of the marked pixels are the extremal regions.

The connected component structure is effectively maintained

by the union-find algorithm.

In this process, exactly one new extremal region is formed

by marking one pixel in the image. It is either a region

consisting of a single pixel (a local extremum, a region

formed by a merge of regions connected by the marked pixel,

or a region that consisting of union of an existing region and

the marked pixels. It is clear from this view of the algorithm

that there are at most as many extremeral regions as there are

pixels in the image. The process of enumeration of extremal

regions is nearly linear in the number of pixels 1 and runs

at approximately 10 frames per second on 2.5 GHz PC for

a 700 × 500 image.

To avoid making the complexity of the detection process

quadratic in the number of image pixels, the computation

1The (negligibly) non-linear term is hidden in the ”maintenance of
connected component structure”.



of region description must not involve all of its pixels.

Fortunately, a large class of descriptors can be computed

incrementally in constant time even in the case of a merge

of two or more extremal regions (the other two situations

are special cases). Importantly, combinations of incremen-

tally computable features include affine and scale invariants.

Incrementally computable features are analysed in Section

II-A.

The final step of the CSER detection, the selector of

category-specific regions, is implemented as a simple clas-

sifier (NN, adaboost) trained on examples of regions -

components of the category of interest. The classifier selects

relevant regions in constant time. The overall process of

marking a pixel, recalculating descriptors and classifying is

thus constant time. The choice of classifier is arbitrary and

any other classifier such as SVM could replace it.

At this point it is interesting to compare the proposed

CSER detection process with the seminal face detection

method of Viola and Jones [7]. Viola and Jones use cascaded

Adaboost to classify (in principle) every rectangular window

of a predetermined size using features computed in constant

time from the integral image. There are strong analogies. In

both cases, the number of classifications made is equal to

the number of pixels in the image (which is equal both to

the number of rectangular windows of fixed and the number

of extremal regions). In both cases, features describing the

classified regions are computed in constant time. In the

Viola-Jones approach the assumption is that the object from

the category (faces) are well represented in a rectangular

window. In our case, the assumption is that the category

of interest has components that are extremal regions. The

difference in the adopted classifier is superficial.

A. Incrementally Computable Region Descriptors

In the CSER detection process we are given two or more

disjoint regions r1 and r2. By marking a pixel in the image,

these regions merge to form a new extremal region. The new

region is the union of r1 ∪ r2 (we use r. to identify both the

region and its set of pixels). The following problem arises:

what image features computed on the union of the regions

can be obtained in constant time from some characterisation

g of r1 and r2?

For example, let us suppose that we want to know the

second central moment of the merged region. It is known

that the second central moment (moment of inertia) can be

computed in constant time from the first and second (non-

central) moments and first and second (non-central) moments

can be updated in the merge operation in constant time. A

region descriptor (feature) φ will be called incrementally

computable if the following three functions exists: a char-

acterising function g : 2Z2

→ Rm, a characterisation update

function f : (Rm,Rm) → Rm, and a feature computation

function φ : Rm → Rn, where m is constant, n is the

dimension of the feature and Z2 is the image domain.

For each region, the characterising function g returns the

information necessary for computing feature φ in a real

vector of dimension m. The dimension m of the charac-

teristic vector depends on the feature, but is independent of

region size. Given the characterisation returned by g, the n-

dimensional feature of interest (region descriptor) is returned

by φ. Function f computes the characterisation of the merged

region given the characterisation of the regions r1, r2.

For efficiency reasons, we are looking for features with

the smallest characterisation dimension m∗. An incremental

feature is a triplet of functions (g∗, f∗, φ∗) defined as

g∗ = arg min
g

{dim(g(2Z2

))} subject to

φ(g(r1 ∪ r2)) = φ(f(g(r1), g(r2))).

Example 1. Minimum intensity I of all pixels in a region is

an incrementally computable feature with dimension m∗ =
1. Given regions r1 and r2 with pixels ri

1 ∈ r1, r
j
2 ∈ r2, the

description of the union regions r1, r2 is

φ(g(r1 ∪ r2)) = 1
︸︷︷︸

φ

. min
︸︷︷︸

f

{min
ri
1
∈r1

I(ri
1)

︸ ︷︷ ︸

g(r1)

, min
r

j

2
∈r2

I(rj
2)

︸ ︷︷ ︸

g(r2)

}

Example 2. The center of gravity (m∗ = 2) of a union of

regions r1, r2 with pixels ri
1, r

j
2 for i = 1...k1, j = 1...k2 is

φ(g(r1 ∪ r2)) =
1

k1 + k2
︸ ︷︷ ︸

φ










k1∑

i=1

ri
1

︸ ︷︷ ︸

g(r1)

+
︸︷︷︸

f

k2∑

j=1

r
j
2

︸ ︷︷ ︸

g(r2)










.

In this paper we use the following incrementally computable

features: normalized central algebraic moments with m∗ ∼
(k)2 where k is an moment order (calculation based on

algebraic moments), compactness with m∗ = 2 (using the

area and the border), Euler number of a region with m∗ = 2,

Entropy of cumulative histogram with m∗ = 2. Features that

we are not able to compute incrementally are e.g. the number

convexities and the area of convex hull.

All of the extremal regions can be enumerated and classi-

fied in linear time with respect to number of point in image.

The algorithm A1 of fast feature enumeration is shown

below. I is the image and R,R∗ are set of current extremal

regions (appropriate to the threshold T ) and set of CSER

(subset of extremal regions), respectively.



A1 - The algorithm of the CSER detection

1) T = 1, R∗ = ∅ and R = ∅.

2) For all pixels p such that I(p) = T

a) Append pixel - If ∃!ri ∈ R, i = 1..n, p ∈
∂ri then ri = ri ∪ p.

b) Merge regions - If ∃ri, rj ∈ R, i, j =
1..n, i 6= j, p ∈ ∂ri ∧ p ∈ ∂rj then

ri = ri ∪ rj ∪ p ∧R = R\rj .

c) New region - If ¬∃ri ∈ R, i, j = 1..n, p ∈
∂ri then rn+1 = p, R = R∪ rn+1.

3) For each new or changed regions r ∈ R recompute

features. The regions ri with positive classification

are CSER

R∗ = R∗ ∪ ri

4) If T < Tmax then T = T + 1 and continue at 2,

else end.

III. EXPERIMENTS - APPLICATIONS OF CSER

DETECTION

A. Licence plate detection

At least in constrained condition, licence plate detection,

as demonstrated e.g. by the London congestion charge

system, is more an engineering than a research problem.

Here we demonstrate that an unconstrained licence plate

detector is developed easily (and without ad hoc tricks) using

CSERs. By ’unconstrained detector’ we mean viewpoint and

illumination independent and robust to occlusion.

Fig. 3. Licence plate detection and recognition. Detected CSER are
highlighted by blue color, the appropriate longest linear configuration
is highlighted by green color. Then the detected LP is normalized and
recignized by standart OCR method.

The category of licence plates is modelled as a linear con-

stellation of CSERs. Information about the rectangular shape

of the place as a whole is not exploited. The feed-forward

neural network for CSER selection was trained by a standard

back-propagation algorithm on approximately 1600 charac-

ters semi-automatically segmented from about 250 images

acquired in unconstrained conditions. The region descriptor

was formed by scale-normalised algebraic moments of the

characteristic function up the fourth order, compactness and

entropy of the intensity values. Intentionally, we did not

restrict the features to be either rotation or affine invariant

and let the neural network with 15 hidden nodes to model

(a)

θ\φ 0o 15o 30o 45o

0o 2.6 2.8 2.8 3.0

10o 3.2 3.2 3.2 3.8

20o 3.2 3.6 4.0 7.8

30o 7.6 8.4 15.2 26.5

(b)

Fig. 4. (a) False negative rate (missed CSER on licence plates) as a
function of viewing angles φ (elevation) , θ (azimuth); in percentage points.
(b) An Example of a syntheticaly warped licence plate to φ, θ equal to
(0o, 0o), (0o, 45o), (30o, 0o) and (30o, 45o).

feature variability. Counterexamples were obtained by ten

rounds of bootstrapping. In each round, he CSER detector

processed the 250 training images and the false positives

served as negative examples in the next round of training.

The detection of licence plates proceeds by in two steps.

First, relevant CSER selected as described above. Second,

linear configurations of regions are found by Hough trans-

form. We impose two constraints on the configurations: the

CSER regions must be formed from more than three regions

and the regions involved must have a similar height.

Detection Rate. On an independent test set of 70 uncon-

strained images of scenes with licence plates the method

achieved 98% detection rate with a false positive appearing

in approximately 1 in 20 images. Example of detected licence

plates and the type of data processed are shown in Figure 1.

Speed. The detection time is proportional to the number

of pixels. For a 2.5 GHz PC the processing took 1.1 seconds

for a 640×480 image and 0.25 seconds for 320×240 image.

Robustness to viewpoint change was indirectly tested by

the large variations in the test data where scales of licence

plates differed by a factor of 25 (character ’heights’ ranged

from approximately 7-8 to 150 pixels) and the plates were

viewed both frontally and at acute angles. We also performed

systematic evaluation of the CSER detector. Images of li-

cence plates were warped (see Figure 4b) to simulate a view

from a certain point on the viewsphere. The false negative

rates of the CSER detector (with approximately 10 false

positive regions per street background image) are shown in

Table 4(a). The CSER detector is stable for almost the whole

tested range. Even the 27% false negative at the 30o-45o

elevation-azimuth means that three quarters of characters on

the licence plate are detected which gives high probability

of licence plate detection.

Robustness to illumination change was evaluated in a

synthetic experiment. Intensity of images taken in daylight

was multiplied by a factor ranging from 0.02 to 1. As shown

in Figure 6, the false negative (left) and false positive (right)

rates were unchanged for both the detector of CSER (bottom)



and whole licence plates (top) in the (0.1, 1) range! For the

0.1 intensity attenuation, the image has at most 25 intensity

levels, but thresholds still exist that separate the CSERs.

Moreover, if the region is well threshold separable (i.e. we

explicitly know that there is a wide scale of thresholds

which separate object from background) then we can add a

constraint of detection stability. This fact was not used in any

of these experiments to demonstrate the power of method.

Therefore we are able to detect LPs in the night scenes even

partially overlighted by light sources in Fig.5b The classifier

output for character-like region and non-character region is

shown in Fig.5a.

Fig. 5. (a) The classifier output for character-like region and non-character
region. The Figure shows that classification of letter is robust to illumination
change. The growing region is classified as character over a very large range
of thresholds (40–160). (b) Licence plate detection in night shows brightness
invariance of proposed method.

Robustness to occlusion as demonstrated in Figure 1b is

a consequence of modelling the object as a configuration of

local component. Occlusion of some components does not

imply the object is not detected.

Another (almost same) application of CSER detection

arises from segmentation of letters in detected and nor-

malized licence plates 7. The LPs are detected even if a

few letters missing, but we are looking for the complete

segmentation which is input of optical character recognition

(OCR). In a similar way, we use CSER detector trained on

normalized letters (i.e. the build-in classifier is trained only

for letters in frontal position). In the segmention problem we

achieved FP=FN=1.6% accuracy.

Fig. 6. Licence plate detection in images with attenuated intensity.

Fig. 7. Licence plate characters segmentation via CSER

B. Traffic signs detection by thresholding in the given direc-

tion

In this experiment we outlined the way how to use the

proposed detector for color images. The extremal regions are

defined for scalar function of a total ordering of pixels. In the

case of gray level image the scalar function is the intensity

of pixels in the case of color image the scalar function is

λ : R3 → R which assigns the scalar value for each triplet

of RGB components.

In the task of traffic signs detection we defined total

ordering by

λ(RGB) =
1 − R + B

2
,

where R and B are components of unit color vector (red

and blue).

The results and the scalar function transformation of

original image are shown in Fig.8. In this task we do not

have enough regions for post-filtering of FP in a way of linear

constellation constraints. Therefore we present the detector

as rapid pre-selector with small value of FN.



Again in this experiment we notice both brightness and

scale invariance of the detector. The rotation invariance is

provided by training of internal classifier on the rotated

examples. Moreover we note presence of blur robustness

in comparism with other approaches due to the fact that

extremality of the region is not usually significantly changed

by bluring.

Fig. 8. Traffic signs detection results: First row shows traffic signs original
image, then image thresholded in RB direction (i.e. from red to blue color)
and detected regions. Other rows shows different images and the detected
regions.

In future experiments we will show that the direction of

thresholding can be object of machine learning methods too

(i.e. that we are able to learn the transformation from color

to threholdable image).

IV. CONCLUSIONS

We presented a detector that can be adapted by ma-

chine learning methods to detect arbitrary locally threshold-

separable regions from a given category (e.g. letters, signs).

The detector selects a category-relevant subset of extremal

regions. Properties of extremal regions render the detector

very robust to illumination change. Robustness to viewpoint

change can be achieved by using invariant descriptors and/or

by modelling shape variations by the classifier.

We showed high effectivity of proposed method in the

problem of robust, view point and scale invariant licence

plate detection. The training and test views included 25-

fold change of scale and views form acute angles. We used

approximately 250 training images (i.e. 1600 characters).

Results have been verified on testing set which consists of 70

licence plates. We missed only one licence plate and three

plates where found in the image without any plates (e.g.

bushes). In the other words, false negative rate was 1.5%

and false positive rate was 4%. These results were achieved

without any post-processing based on character recognition.

Additionaly, we used the detector for character segmentation

from normalized licence plates with FP=FN=1.5%.

The experiment of traffic signs detection presents the pro-

posed detector application for color images. An interesting

results were shown in the experiments but we noted high rate

of false positive due to the number of different fonts. The

false positive rate could be decreased by additional suceeding

region filtering by strong classifier.

In the future work we want to show that direction of

threholding could be find by methods of machine learning,

i.e. that we are able to learn the colors of regions we

are looking for and use it for such thresholding which

locally separate them from their backgrounds and make them

detectable in the presented way like CSER.

The time-complexity of the detection is approximately

linear in the number of pixel and the current implementation

runs at about 1 frame per second for a 640 × 480 image on

a high-end PC.
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