
whether these instructions should be executed. For good perfor-
mance, control-dependent instructions must be executed before
their dependences are resolved.

Most state-of-the-art microprocessors exploit ILP through super-
scalar techniques [14][16][19]. Although superscalar machines
exhibit a good instruction per cycle (IPC) rate, complicated hard-
ware is required since they rely on dynamic instruction scheduling
through hardware to exploit ILP. This complication imposes pen-
alties on both hardware amount and cycle time. Furthermore, a
run-time scheduler is unable to achieve sophisticated instruction
scheduling due to complexity limits.

Very long instruction word (VLIW) machines, on the other hand,
can potentially overcome these problems. In VLIW machines, in-
struction scheduling is optimized by the compiler, and consequent-
ly they need only simple hardware. The compiler fundamentally
has the ability to optimize schedule code through analyzing critical
paths from a large window of instructions and using sophisticated
instruction heuristics for scheduling. Yet, pure compiler-based ap-
proaches [7][15] to speculative execution have greatly limited
instruction scheduling due to limited ability to handle side effects
of speculative execution.

Thus some hardware support for side effect handling is necessary
to make the best use of the compiler’s scheduling ability. Many
mechanisms have been proposed (e.g. guarding [8] and boosting
[17]). They reduce constraints in speculative code motion, but still
do not allow the compiler to have enough freedom for scheduling.

In this paper, we propose a cost-effective architectural support for
unconstrained speculative execution. Our mechanism, referred to
as predicating, introduces the optimal combination of predication
and speculation. An instruction is predicated with its control-
dependent branch conditions. The side effects caused by specula-
tive execution are buffered with its predicate. This buffered
predicate efficiently commits or squashes the side effects and ap-
propriately handles exceptions caused by the speculative execution.
Predication allows the simple in-order issue machine to execute
instructions in multiple basic blocks simultaneously, and the pred-
icated state buffering mechanism provides the compiler with
unconstrained speculative code motions. Section 2 reviews specu-
lative execution and related work. Section 3 proposes the predicat-
ing architecture. In this section, we also briefly describe our
instruction scheduling algorithm. Section 4 shows evaluation
results. Finally, Section 5 concludes this paper.

Abstract
Speculative execution is execution of instructions before it is known
whether these instructions should be executed. Compiler-based
speculative execution has the potential to achieve both a high in-
struction per cycle rate and high clock rate. Pure compiler-based
approaches, however, have greatly limited instruction scheduling
due to a limited ability to handle side effects of speculative
execution. Significant performance improvement is, thus, difficult
in non-numerical applications. This paper proposes a new archi-
tectural mechanism, called predicating, which provides uncon-
strained speculative execution. Predicating removes restrictions
which limit the compiler’s ability to schedule instructions. Through
our hardware support, the compiler is allowed to move instructions
past multiple basic block boundaries from any succeeding control
path. Predicating buffers the side effects of speculative execution
with its predicate, and the buffered predicate efficiently commits or
squashes the side effects. The mechanism also provides a specula-
tive exception handling scheme. The scheme, called the future
condition, properly postpones speculative exceptions and efficient-
ly restarts the process. We show that our mechanism can be
implemented through a modest amount of hardware with little
complexity. The evaluation results show that our mechanism sig-
nificantly improves performance, and achieves a 2.45x speedup
over scalar machines.

1 Introduction
Limit studies of available instruction-level parallelism (ILP)
[10][20] show that, in non-numerical applications, a basic block
has a very limited amount of ILP. Thus just adding extra function
units does not necessarily improve performance. The primary rea-
son of this limitation is existence of control dependence constraints.
The limit studies show that the amount of available ILP dramati-
cally increases if the control dependences are eliminated. Specula-
tive execution is execution of instructions before it is known

Unconstrained Speculative Execution
with Predicated State Buffering
Hideki Ando, Chikako Nakanishi, Tetsuya Hara, Masao Nakaya

System LSI Laboratory
Mitsubishi Electric Corporation

4-1 Mizuhara, Itami, Hyogo, 664 Japan

　　　　　　　　　　　　　　　

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that cop-
ing is by permission of the Association of Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific
permission.
ISCA’95, Santa Margherita Ligure Italy
 1995 ACM 0-89791-698-0/95/0006...$3.50

22nd ISCA, pp.126-137, June 1995

- 1 -

exception. If a speculative exception occurs, immediate handling
like non-speculative exception handling incorrectly terminates the
program or decreases performance because it is unknown whether
that handling is necessary or not. Thus, handling of speculative ex-
ceptions should be postponed until the result of the excepting
instruction is found to be really necessary. Although a compiler can
transform an illegal code motion to legal, a compiler cannot trans-
form an unsafe code motion to safe. Therefore, a compiler must
conservatively schedule instructions which may cause an exception.

Since exceptions occur infrequently, one may think that the adverse
effect of unsafe code motions is negligibly small. This is not the
case in speculative execution. Suppose that a load instruction de-
references a pointer to a next element in a loop program which
traverses a linked list. If the load instruction is speculatively exe-
cuted, it attempts to dereference a NULL pointer in the last
iteration, and thus an exception occurs. This type of speculative
code motion is quite effective for performance improvement be-
cause dereferences are often in a critical path. As a result, aggres-
sive unsafe code motions considerably increase the frequency of
exceptions.

Besides postponing handling, there is one more requirement for the
handling of speculative exceptions: restarting the process. That is,
if a caused speculative exception is non-fatal, the process should be
restarted after the handling. This restart problem includes two dif-
ficult problems. The first problem is to select instructions which
must be re-executed. Just re-execution of the excepting instruction
is not sufficient. The speculative instructions which are directly or
indirectly dependent upon the excepting instruction must be re-
executed since they used polluted operands. This re-execution of
the speculative instructions is termed recovery from a speculative
exception. The second problem exists in the recovery process. To
preserve the program semantics, all of the operands of the re-
execution instructions in the recovery process must be available.
That is, if the compiler moves an unsafe instruction, operand reg-
isters of succeeding instructions which may be re-executed must be
live until the commit point of that unsafe instruction. This increases
the number of live registers, and thus puts pressure on the compiler
register allocation.

For more understanding of these problems, consider the following
program segment:

i1’: r1 = load r2;
i2 : r3 = r3 + 1;
i3’: r4 = r1 + r5;
i4’: r6 = r4 & 1;
i5 : branch LAB if (r3)

where instructions i1’, i3’, and i4’ are speculative instructions
upon branch instruction i5, while instruction i2 is a non-
speculative instruction. If speculative instruction i1’ causes an
exception, exception handling must be postponed until branch in-
struction i5 is executed. In other words, the handling of the
exception must be postponed until the exception is committed. If
the exception is committed, the exception is handled; otherwise the
exception is squashed. Since instruction i3’ used corrupted regis-
ter r1 and instruction i4’ used the corrupted result of instruction
i3’, they must be re-executed. Instruction i2 must not be re-
executed because the re-execution of instruction i2 destroys the
semantics. The compiler must not re-allocate registers r2 and r5
until the exception commit point even though no instructions refer

2 Background
Three types of constraints exist in exploiting ILP: resource con-
flicts, data dependences, and control dependences. Reducing
constraints is necessary to increase exploitable ILP. Speculative
execution is a technique to remove control dependences among
these constraints. In this section, we will review issues in specula-
tive execution, and then describe existing architectural techniques.

2.1 Speculative Execution

An instruction is said to be control-dependent upon a conditional
branch if it is unknown whether that instruction should be executed
or not unless that branch is determined. Consider the following
example:

i1: if (r1)
i2: r2 = load r3;

else
i3: r4 = r2 + r3;

We do not know whether instruction i2 or i3 should be executed
or not until branch instruction i1 is executed. Speculative execu-
tion allows instruction i2 and/or i3 to be executed before the
execution of branch instruction i1 is completed. In static instruc-
tion scheduling, the compiler moves instruction i2 and/or i3
above branch instruction i1 for speculative execution.

There are two problems in the speculative code motions. The first
problem is to preserve program semantics. A code motion is said to
be illegal if the moved operation changes the original program
semantics. In the example above, the code motion of instruction i2
above instruction i1 is illegal because instruction i2 overwrites
register r2 whose previous value is necessary for instruction i3.
Similarly, an illegal code motion exists on memory locations. The
compiler can transform the illegal code motion on a register to legal
through register renaming. In register renaming, the compiler as-
signs a register which is not live on the side-effects causing path as
the destination register. The compiler then inserts an instruction
which copies the value from the newly assigned register to the
original destination register. In the example above, the compiler
can speculatively move branch instruction i2 above instruction i1
through register renaming as the following:

i2’: r5 = load r3;
i1 : if (r1)
i4 : r2 = r5;

else
i3 : r4 = r2 + r3;

where register r5 is not live on the path to the ELSE part. The
destination register of instruction i2 is renamed into a dead regis-
ter (r5) in instruction i2’, and copy instruction i4 which copies
the result into the original register is inserted. This renaming tech-
nique, however, cannot be applied to illegal code motion on a
memory location.

The second problem is to handle an exception caused by a specu-
lative operation. A code motion is said to be unsafe if the moved
operation may cause an exception. In the example above, the code
motion of instruction i2 above branch instruction i1 is unsafe be-
cause the load instruction may cause an exception. An exception
caused by a speculative instruction is termed a speculative

- 2 -

however, does not provide a solution for the general scheduling
model which allows code motions from both paths of a branch.

Boosting [17] provides unconstrained speculative code motions in
a trace, a predicted single path of control flow. Boosting labels a
speculative instruction with the number of its dependent branches.
The result of speculative execution is buffered in a shadow register.
If all dependent branches of a speculative instruction are found to
be correctly predicted, the buffered result is committed; otherwise,
the result is squashed. Boosting also properly handles speculative
exceptions with a compiler assist. A one-bit shifter records out-
standing speculative exceptions. That is, if a speculative exception
occurs, the machine sets a location in the shifter, which corre-
sponds to the number of dependent branches of the instruction. If a
branch is found to be correctly predicted, the shifter is shifted. If the
bit is popped out from the shifter, then the speculative exception is
detected. If a speculative exception is detected (or committed), all
data in shadow registers are discarded, and the machine then calls
an exception handler. The handler refers to a jump table with the
address of the exception commit point. Each entry of the jump table
points to a recovery code [18] associated with each commit point.
The compiler generates the recovery code which contains instruc-
tions the machine needs to re-execute for each commit point. The
machine executes the recovery code in user mode. During the exe-
cution, the original exception occurs again. After the handling the
exception, the recovery code completes by jumping to the predicted
target of the branch which committed the exception. Boosting pro-
vides a good support for unconstrained speculative scheduling.
Yet, scheduling is still limited in a trace which is a single control
flow. For the speculative exception handling problem, the recovery
code and the jump table double the size of the original code.

3 Predicating
In this section, we propose an architectural mechanism called
predicating. Predicating provides the compiler with unconstrained
speculative code motions. Specifically, the compiler is allowed to
move instructions up from any path across multiple basic block
boundaries. This ability is quite effective for non-numerical appli-
cations where branches are not predictable. In the following
subsections, we first describe our execution model and mechanism.
We then briefly describe our instruction scheduling algorithm. The
mechanism of handling speculative exceptions is discussed next.

3.1 Execution Model

Our execution model has two machine states: a sequential state and
speculative state. The sequential state consists of the results of in-
structions whose control dependencies are all resolved; the specu-
lative state consists of the results of instructions which have at least
one unresolved control dependence. The result in the speculative
state has its predicate which is a commit condition to the sequential
state.

The instruction is predicated with its control-dependent conditions.
At the issue point, the predicate of the instruction is evaluated. If
the predicate evaluates to true, the instruction is executed and
writes the result into the sequential state. This is non-speculative
execution. If the predicate evaluates to false, the instruction is sim-
ply squashed because the execution is no longer necessary. In the
last case, at least one branch condition of the predicate is not de-
termined, that is, the value of the predicate is not specified. In this

to the value in these registers because these values may be used in
the re-execution.

2.2 Existing Mechanisms

The guarded instruction architecture [8] predicates a branch-
dependent instruction with its dependent branch condition. The
predicated instruction is referred to as a guarded instruction.
Guarded instructions are issued and executed even if the value of
the predicate is unknown. Before the instruction reaches the write-
back stage in the pipeline, the value of the predicate is specified. If
the predicate evaluates to true, the result is committed; otherwise
the result is squashed. The compiler must schedule guarded instruc-
tions so that its predicate will be specified before the instruction
writes the result. Although the guarded instruction architecture al-
lows speculative execution, it is severely limited. That is, specula-
tive state is allowed to live only in the pipeline. Control depen-
dences still exist in the form of data dependences in terms of
predicate operand availability. We term this type of speculative
execution squashing speculation. Squashing speculation is found
in a number of work [2][6][13].

The non-excepting instruction architecture [5] supports the han-
dling of speculative exceptions. It labels an unsafe instruction as a
non-excepting instruction. A non-excepting instruction has the
same operation as the normal instruction associated with the non-
excepting instruction, but never signals an exception. If the non-
excepting instruction causes an exception, it just completes the ex-
ecution and marks the result to indicate that instruction caused an
exception. If a normal instruction uses the polluted result later, the
hardware signals the exception. The non-excepting architecture
provides a solution for postponing speculative exception handling.
Yet, the recovery problem still remains. First, the original except-
ing address is unknown when the hardware detects the postponed
speculative exception. Second, it is difficult to select instructions
which must be re-executed, and the availability of every operand of
instructions which are re-executed cannot be guaranteed.

The sentinel scheduling architecture [12] extends the non-
excepting instruction architecture to solve the problem stated
above. The sentinel scheduling architecture labels every specula-
tive instruction with a speculative modifier. If an unsafe instruction
causes a speculative exception, the excepting instruction writes the
excepting address into the destination register, instead of writing a
polluted result, and marks the register. If some time later a specu-
lative instruction refers to the marked register, it just copies the
excepting address and mark into its destination register. The spec-
ulative exception is detected if a non-speculative instruction or
some explicit special instruction refers to the marked register. This
checking instruction is called a sentinel. If the exception is detect-
ed, the machine identifies the original excepting instruction by the
excepting address stored in the marked register. The recovery is
performed by re-executing all speculative instructions from the ex-
cepting point until the exception commit point. Although the
sentinel scheduling architecture provides a good solution for post-
poning speculative exceptions and specifying the original except-
ing instruction, the recovery problem still partly remains. Operand
availability of re-execution instructions must be preserved by the
compiler’s register allocation. Bringmann et al. [3] have proposed
an architectural technique for this recovery problem in a specific
scheduling model (superblock scheduling [4]) where speculative
code motions are allowed in a single likely path. This technique,

- 3 -

predicate. In order to keep the cost reasonable, only a single shad-
ow register is provided for each sequential register. This may cause
a storage conflict among the writes of the results with different
predicates, but this conflict has little impact on performance be-
cause it rarely occurs1. Figure 2 shows the configuration of our
register file. Each entry of the register file contains two values, one
predicate, and three flags. One of two data storages stores specula-
tive data, and the other stores non-speculative data. Flag W indi-
cates which storage stores speculative data. Flag V indicates that
the speculative data indicated by flag W is valid. Flag E indicates
that there exists an outstanding speculative exception.

The result of speculative execution is written into storage indicated
by flag W of the destination entry. At the same time, flag V is set
and the predicate is written. Each entry of the register file has ded-
icated hardware which evaluates the predicate stored in its entry.
The commit action is done by updating flags V and W according to
the result of the evaluation. If the predicate evaluates to true, flag W
is flipped and the flag V is reset. This action commits the specula-
tive data. If the predicate evaluates to false, flag V is reset. This
action squashes the speculative data.

So far, we have assumed that the predicate can be a general form of
a boolean expression. The hardware required to evaluate a general
predicate is obviously unacceptable in both hardware amount and
signal delay time. To reduce these costs to a reasonable level, we
limit the expression to an ANDed operation with negation. For ex-
ample, we allow predicates c1&c2 or c1&!c2, but do not allow

case, the instruction is executed, but writes the result into the spec-
ulative state. Unlike non-speculative writes, those speculative
writes label the result with the predicate for later commit. The pred-
icate of the result in the speculative state is evaluated every cycle
by referring to the branch conditions. During cycles in which the
predicate is unspecified, the result is held continuously. If the pred-
icate evaluates to true, the result is committed; if the predicate
evaluates to false, the result is squashed.

If an instruction causes a speculative exception, the exception is not
handled immediately but the instruction simply writes the corrupt-
ed result into the speculative state. When the instruction writes the
corrupted result, the instruction also marks the result to indicate
that the result is corrupted. Since this write is speculative, the cor-
rupted result is predicated like non-corrupted results. In other
words, outstanding exceptions are buffered with the predicate. If
later the predicate of the outstanding exception evaluates to true,
hardware detects the exception. The machine then starts to recover
the corrupted machine state through re-execution of instructions.
During the re-execution, the original exception occurs again, and
this time it is handled. The re-execution is completed when the re-
execution reaches the original exception detected point.

3.2 Architecture

An instruction in the predicating architecture has the following
format:

predicate ? operation

Semantically, the result of the execution specified by the operation
part is valid if and only if the commit condition specified by the
predicate part is true.

Figure 1 illustrates the organization of the predicating architecture
with N-instruction issue. The architecture differentiates itself from
conventional VLIW machines by including a control path, predi-
cated register file, and predicated store buffer.

The control path evaluates the predicate of instructions which are
executed in the datapath by referring to the branch conditions
stored in the condition code register (CCR). If the control path an-
swers "true," the result of the execution in the datapath is commit-
ted; if the control path answers "false," the result of the execution
in the datapath is squashed.

The register file consists of sequential registers and shadow
registers. The sequential register contains the sequential state; the
shadow register contains the speculative state. If the predicate eval-
uates to true in the control path, the result is written into the
sequential register; if the predicate evaluates to false in the control
path, the write of the result is squashed; and if the predicate evalu-
ates to an unspecified value, the result is written into the shadow
register. An instruction explicitly specifies whether it should fetch
operands from the sequential registers or the shadow registers. Un-
like the shadow register in boosting [17], the shadow register in
predicating has full control dependence information associated
with the stored data. When an instruction writes the result into the
shadow register, the instruction also writes its predicate into the
predicate storage associated with the destination register.

Theoretically, multiple shadow registers for each sequential regis-
ter are required because each sequential register can potentially
have a number of speculative states which have a different

I-cache

predicate operation

decoder xN

CCR

control path
xN

predicate

data

register file

datapath
xN

D-cache

I-register
xN

predicate

data

store buffer

Figure 1: Hardware organization (N-instruction issue)

　　　　　　　　　　　　　　　
1. Our evaluation shows that a single shadow register model lowers just 0 - 1% per-
formance under an infinite shadow register model.

- 4 -

In the scheduling for predicating architecture, the compiler groups
some basic blocks, referred to as a region [1], for predicated
execution. Our scheduler basically moves instructions within the
region. A region is a control flow graph (CFG) which includes a
header block, and the header block dominates all other blocks in the
region. The header block is the only entry, and there exist one or
more exits. Our region selection algorithm grows a region (candi-
date) from a seed block (usually a loop head) which is an initial
region in the direction of the edges in the CFG. The region is grown
if the growth to the next block of the current region is considered
beneficial. We use a heuristics which is a function of static branch
predication to drive this region growth. After choosing blocks as
the region, the compiler duplicates the blocks (if necessary) so that
the header is able to dominate them.

The control transfer within the region is removed by predicating
instructions. Thus, once the control is transferred to the top of a
region, the machine sequentially executes instructions in the
region. If the condition for exiting the current region is met, the
control is transferred from the middle or bottom of the region to a
target region.

Within a region, the compiler has no restriction in terms of specu-
lative code motions. Although we implement code motions across
region boundaries in some limited form, code motions are basically
limited within a region. This greatly simplifies the instruction
scheduling and reduces the cost of calculating instruction
availability. Furthermore, this limitation implies that the specula-
tive state built in a region depends only upon branch conditions
which are specified in the current region. That is, the speculative
state is never live beyond the current region, and is definitely com-
mitted or squashed in the current region. With this property, the
speculative state is said to be closed in the region. This property has
significant benefits in handling speculative exceptions. We will
discuss these further in Section 3.5. Since the speculative state is
closed in a region, all branch conditions are reset to an unspecified
value by the hardware on an exit from the current region.

As described in the previous subsection, we limit the expression of
a predicate to an ANDed operation. This limits the CFG of a region.
Obviously, if any block in a region has only a single path from the
header block, the predicate limitation is satisfied. If there exists a
join block which has multiple paths from the header block, and if
the join block has an equivalent2 block which has a single path
from the header block, then the region is also subject to the predi-
cate limitation since the control dependence of the join block is the
same as the control dependence of the equivalent block. Otherwise,
the join block is duplicated so that the region is able to be subjected
to the predicate limitation.

3.4 Example

We will now present a small example. Figure 3 shows a scalar code
before scheduling. Jump instructions for both branch paths are in-
serted for explanation. Figure 4 lists the scheduled code of the
region hatched in Figure 3 for a 2-issue machine. The suffix .s of
a register in an instruction specifies a shadow storage of the
register. The suffix for a destination register is assigned just for
convenience since the control path assigns it at run-time, and thus

c1|c2 (a branch condition has a name cn, where n specifies the
n-th entry of CCR). We encode the predicate in a vector where each
entry is associated with a branch condition. Each entry has a bool-
ean value which is necessary to let the predicate be true. For
example, suppose CCR has three entries to hold three branch con-
ditions c1, c2, and c3. We encode a predicate c1&!c2&c3 to
{1,0,1}. Since we allow a value of "don’t care" for a condition,
a predicate c1&c3 is encoded to {1,X,1}. The restriction in the
predicate expression makes the evaluation of a predicate quite
simple. Intuitively, just a match operation between the encoded
predicate and the content in CCR evaluates the predicate. For ex-
ample, if CCR holds {1,0,1}, a predicate c1&!c2&c3 evalu-
ates to true because the predicate is encoded to the same vector.
Since we allow a value of "don’t care" for a branch condition in a
predicate, the associated branch condition is masked in the match
operation. In addition, the predicate evaluating hardware checks
whether the unmasked branch condition has an unspecified value or
not. If at least one unmasked branch condition is not specified, the
predicate evaluates to an unspecified value regardless of the match
operation result.

The store buffer is organized as a FIFO buffer, and both speculative
and non-speculative data are buffered before the D-cache write.
Like the register file, the data in an entry is predicated and the pred-
icate has hardware to evaluate itself. Each entry also has three
flags: W, V, and E. Flag W indicates that the data in that entry is
speculative; flag V indicates the data is valid; and flag E indicates
that there exists an outstanding speculative exception. When an in-
struction writes data into the tail of the store buffer, flag V is set. If
a store instruction is speculative, that is, the predicate evaluates to
an unspecified value in the control path, flag W is set when the
instruction appends the data. If the data in the head of the store
buffer is valid and non-speculative, the data is written into the D-
cache. If the predicate in an entry evaluates to true, the data in that
entry is committed, that is, flag W is reset; if the predicate in an
entry evaluates to false, the data in that entry is squashed, that is,
flag V is reset.

3.3 Instruction Scheduling

The instruction scheduling scheme is strongly related to the predi-
cating mechanism. To further explain our mechanism, we describe
our instruction scheduling algorithm. Since a comprehensive de-
scription of the scheduling algorithm is beyond the scope of this
paper, we describe only what is related to our mechanism.

　　　　　　　　　　　　　　　
2. Block X is said to be equivalent to block Y if block X dominates block Y and block
Y post-dominates block X.

W V

0

31

n c1&c2 1 1 1234 56780

Epredicate values

CCR

Figure 2: Predicated register file

- 5 -

i14: store(r7) = r5
i15: r2 = r2 - 1
i16: r7 = r2 << 1
i17: j L8

i6: r6 = load(r3)
i7: c1 = r5 < r6
i8: j L4 if c1 == t
i9: j L5 if c1 == f

i10: r5 = load array
i11: c2 = r2 < 0
i12: j L6 if c2 == t
i13: j L7 if c2 == f

t

t

f

f t f

i1: r1 = load(r2)
i2: r3 = r1 + 1
i3: c0 = r3 < r4
i4: j L2 if c0 == t
i5: j L3 if c0 == f

L1

L2 L3

L4

i18: r1 = r1 + 1i21: r3 = load(r2)

i20: r6 = r4 << 1i19: r5 = r5 & 1

region

L8 L5

L6 L7

Figure 3: Scalar code example

(1) i1 : alw ? r1 = load(r2); i15: c0&c1 ? r2.s = r2 - 1;
(2) i10: !c0 ? r5.s = load array; i14: c0&c1 ? store(r7) = r5;
(3) i2 : alw ? r3 = r1 + 1; i16: c0&c1 ? r7.s = r2.s << 1;
(4) i6 : c0 ? r6 = load(r3); i3 : alw ? c0 = r3 < r4;
(5) i11: alw ? c2 = r2 < 0; - : alw ? nop;
(6) i7 : alw ? c1 = r5 < r6; i12: !c0&c2 ? j L6;
(7) i9 : c0&!c1 ? j L5; i17: c0&c1 ? j L8;
(8) i13: !c0&!c2 ? j L7; - : alw ? nop;

Figure 4: Scheduled code for two-issue machine

cycle

1

2

3

4

5

6

7

r1

c0&c1 r2

r7

sb1

c0&c1

c0&c1

r3

F

c0 c1 c2

T

!c0 r5

T

CCR

r5r6

r2,r7

sb1

sequential

state write

speculative state

write commit squash

Table 1: Machine state transition

- 6 -

which depend upon the commit point. The operands of the re-
execution instructions are re-generated by this re-execution. Thus,
compiler’s scheduling constraints which are due to preserving the
availability of the operands are significantly reduced3.

Since the instructions which must be re-executed are those specu-
lative instructions which depend upon the commit point, they exist
only between the top of the current region and the commit point.
This is true because the speculative state is closed in the region. To
choose instructions to be re-executed and identify the original ex-
cepting instruction, two conditions are saved on the commit: the
current condition and future condition. The current condition is a
set of branch conditions immediately before the commit point; the
future condition is a set of branch conditions at the commit point.
At the point right after the exception commit, instructions between
the top of the current region and the commit point fall into the fol-
lowing three categories:

1. Instructions whose predicate evaluates to true or false with the
current condition must not be re-executed since the instructions
of true predicate have already updated the sequential state and
the instructions of false predicate should not update any state.

2. Instructions whose predicate evaluates to true or false with the
future condition may need to be re-executed. We re-execute all
instructions in this category as speculative instructions. Since
the value of the predicate is known with the future condition, a
caused exception is handled only if the predicate evaluates to
true with the future condition; otherwise, the exception is
ignored.

3. Instructions whose predicate evaluates to an unspecified value
with the future condition are speculatively re-executed as
before.

When the speculative exception is committed, we suppress the up-
date of CCR; instead, the new value for CCR is written into a
special register called the future CCR. Thus, at this point, CCR
holds the current condition and the future CCR holds the future
condition. The mechanism then rolls the process back and initiates
re-execution. This re-execution will eventually reach the original
commit point of the exception and the branch conditions will be-
come those in the future CCR.

The roll-back point is the top of the region. To supply this address
in the recovery process, the instruction address is always saved into
a special register called a region program counter (RPC) by hard-
ware when the control is transferred to a target region from the
previously executed region. The machine sets the content in RPC to
PC to roll back the process. In the re-execution, if the predicate of
an instruction evaluates to true or false in the control path, the in-
struction is squashed; otherwise (i.e., if the predicate evaluates to
an unspecified value) the instruction is executed. Since the original
speculative exception is not handled yet, the instruction causes the
exception again during the re-execution. If the predicate of the ex-
cepting instruction evaluates to true with the future condition, the
exception is handled; if the predicate evaluates to false, the excep-
tion is squashed; otherwise the exception is buffered like the
speculative exception in the normal execution mode.

it is not encoded into an instruction word. The latency of a load
instruction is two cycles; the latency of all other instructions is one
cycle. Table 1 represents a machine state transition when the ma-
chine executes the scheduled code. The columns of the sequential
state and speculative state indicate registers (e.g. r2) and store
buffer entries (e.g. sb1) where a write, commit, or squashing oc-
curs in each cycle. In particular, the column of a write into the
speculative state also indicates a predicate which is written along
with data. The column CCR indicates the transition of each branch
condition (c0, c1, and c2). All values are initially unspecified.

In the first cycle, instructions i1 and i15 are executed. The pred-
icate of instruction i1 is alw (which means "always"), so the
execution is non-speculative. Therefore, the instruction writes the
loaded data into the sequential state of register r1. The actual write
occurs at the second cycle because the latency of load instructions
is two cycles. In contrast, the execution of instruction i15 is spec-
ulative since both branch conditions of the predicate c0&c1 are not
specified yet. Therefore, the instruction writes the result into the
speculative state of register r2 along with its predicate. In the sec-
ond cycle, instruction i10 is executed. It writes the loaded data
into the speculative state of register r5 in the next cycle since the
value of its predicate is not specified yet. The execution of instruc-
tion i14 is also speculative. This appends data to the store buffer
(sb1). In the third cycle, non-speculative instruction i2 writes the
result into register r3. Instruction i16 writes the result into the
speculative state of register r7.

In the fourth cycle, instruction i3 defines the branch condition c0
to true. Notice that the predicate of a condition-set instruction is
"alw" regardless of its control dependence because the compiler
does not re-allocate an entry of CCR. Predicate !c0 evaluates to
false in the next cycle. As a result, the speculative data in register
r5 is squashed. Also, the execution of instruction i6 is committed
during the execution (notice its latency is two cycles) since its pred-
icate c0 evaluates to true. In the sixth cycle, instruction i7 defines
branch condition c1 to true. Thus, predicate c0&c1 evaluates to
true in the next cycle. As a result, the speculative data in registers
r2 and r7, and in the store buffer entry sb1 are committed. Jump
instruction i12 is squashed because its predicate evaluates to false.
In the seventh cycle, the control is transferred to the next region
(L8) by instruction i17.

3.5 Handling Speculative Exceptions

Our mechanism of handling speculative exceptions buffers specu-
lative exceptions with a predicate label until the commit point. The
buffering is accomplished by setting flag E in the destination entry
of the instruction which caused the speculative exception. If the
predicate evaluates to true in a later cycle, the outstanding specu-
lative exception is detected. Although this postpones speculative
exceptions until the commit point, we need to provide a mechanism
to recover the machine state. Our mechanism provides proper and
efficient recovery.

If one or more predicates of the buffered speculative exceptions
evaluate to true, the detection of speculative exceptions is signaled.
The speculative state is then invalidated. This ensures the precise
interrupt point. That is, instructions semantically before the except-
ing instruction are completed, but instructions after the excepting
instruction are not. This invalidation of the speculative exception
simplifies the recovery of the machine state. The instructions which
must be re-executed are simply those speculative instructions

　　　　　　　　　　　　　　　
3. Scheduling is restricted when a non-speculative instruction in a join block attempts
to overwrite a register which has been referred by a speculative unsafe instruction. The
compiler duplicates the join block to avoid this constraint (if beneficial). Refer to the
related discussion in Section 4.2.2.

- 7 -

is initiated; that instruction attempts to read the operand in the re-
execution, but fetches the wrong operand. We solve this problem
through the operand fetch hardware. That is, when an instruction
attempts to read a shadow register which holds invalid data, the
operand fetch hardware simply reads the sequential register instead
of the shadow register. This is correct because the operand was
committed before the detected point of the speculative exception,
and any succeeding instruction which may overwrite the register of
that operand is not committed yet because any instruction which
depends upon re-execution instructions are not committed yet. This
modification inserts just one gate into the address decoder of the
register file. Further description is omitted to conserve space.

4 Evaluation Results
We evaluated the performance in cycle counts. The base machine is
the MIPS R3000 [9]. The benchmark programs listed in Table 2
include three SPEC benchmark programs and three UNIX utilities.
We used pixie to obtain the R3000 cycles. Pixie is a utility that
collects dynamic statistics for programs that run on MIPS machines.
The statistics include the cycle counts when we run a program on a
MIPS machine. The memory system is assumed perfect.

The starting point of the evaluation is the optimized MIPS assem-
bly code. That is, we compile the benchmark programs into
assembly code by the MIPS compiler with optimization, and the
assembly programs are the source for counting cycles of both
R3000 and our machine. For R3000, we compile the assembly code
by the MIPS compiler again, and count the cycles by pixie. For our
machine, the assembly code is scheduled by our instruction sched-
uler, and we count cycles using the trace information of the R3000
code by pixie. The speedup over R3000 is calculated by the total
number of the R3000 cycles divided by the total number of the
evaluated cycles.

If not explicitly specified, our base VLIW machine is assumed to
have four ALUs, four branch units, two load units, and one store
unit. CCR is assumed to have four entries. Up to four instructions
can be issued in parallel. The latencies of the instructions are simi-
lar to those of R3000. The latency of branch instructions is assumed
to be reduced using a branch target buffer (BTB) [11]. Since the
predicated execution eliminates a significant number of branches,
the amount of branch penalties is also reduced with given size of
BTB. We optimistically assume the branches which are predictable
using BTB impose no penalty while other branches such as register
indirect jumps impose a one-cycle penalty. This optimistic assump-
tion increases the evaluated performance a few percent according
to our cycle-by-cycle simulation. The latency of load instructions is
two cycles; the latency of other instructions is one cycle.

This execution control slightly modifies the normal execution
control. To differentiate this execution from the normal execution,
our machine has an execution mode which we call a recovery
mode. The recovery mode is completed when the process reaches
the original commit point of the speculative exception. Since the
commit of outstanding speculative exceptions is one cause of ex-
ceptions, the exception address is saved in the exception program
counter or EPC like other usual exceptions. Thus, the end of the
recovery mode is detected by comparing PC with EPC. The recov-
ery mode finishes with copying the future condition to CCR.

We will present a simple example. Figure 5 lists the code segment
of a region. Assume that the machine issues a single instruction per
cycle. Consider instruction i2 defines c0 to true and then instruc-
tion i4 causes an exception. Since i4 is a speculative instruction,
the exception is not handled; instead, flag E of destination register
r3 is set. Similarly, instruction i5 causes an exception, thus set-
ting flag E of register r5. In the seventh cycle, instruction i7
defines c1 to true. Since the predicate of register r3 evaluates to
true, the outstanding exception is detected. The mechanism then
suppresses the update of CCR and writes the new value for CCR
into the future CCR. At this point, CCR holds {1,U} and future
CCR holds {1,1} (each element represents c0 and c1 ,
respectively. U represents an unspecified value). The machine
switches from the normal mode to recovery mode, and rolls the
process back to the top of the region using RPC. Re-execution is
then initiated. During the re-execution, instructions i1, i2, and i3
are squashed because the predicate of these instructions evaluates
to true by referring to CCR (remember only speculative instruc-
tions are issued during the recovery mode). Instruction i4 is
re-executed because its predicate evaluates to an unspecified value
by referring to CCR. This instruction causes an exception again.
Since its predicate evaluates to true by referring to future CCR, this
exception is handled this time. Although instruction i5 is also re-
executed and causes an exception, it is not handled because its
predicate is evaluated to false by referring to future CCR. Instruc-
tion i6 is then re-executed, and re-generates the speculative state
of register r7. The recovery mode ends when the process reaches
the point i7, which is the original speculative exception commit
point.

As described in Section 3.4, an instruction word explicitly specifies
the state of a source operand (i.e., whether the operand exists in the
speculative state or not). Since the operand state is not necessarily
preserved between normal execution and re-execution, we need to
guarantee the ability to fetch a correct operand in both execution
modes. Specifically, an instruction which fetches desired data by
specifying the speculative state fetches a wrong operand in the re-
execution if the following sequence is taken: that instruction fetch-
es the speculative operand, and completes the execution; later the
operand is committed, and some instruction causes a speculative
exception; the speculative exception is detected, and re-execution

i1: c0 ? r1.s = r2
i2: alw ? c0 = r3 < 0
i3: c0 ? r2 = load(r2)
i4: c0&c1 ? r3.s = load(r4)
i5: c0&!c1 ? r5.s = load(r6)
i6: c0&c1 ? r7.s = r7 + r3.s
i7: alw ? c1 = r2 > r8

Figure 5: Code segment

Table 2: Benchmark program
　　　　　　　　　　　　　　　　　　　　　 　 　 　
Program Lines R3000 Remarks

Cycles　　　　　　　　　　　　　　　　　　　　　　　 　 　
compress 1,557 21.3M Data compression
eqntott 3,441 1,351.6M Boolean equation minimization
espresso 13,511 1,119.9M Optimization of PLA structure
grep 430 15.8M String search
li 7,429 1,245.5M Lisp interpreter
nroff 7,276 56.0M Formatting document　　　　　　　　　　　　　　　　　　　　　　　 　 　

- 8 -

line squashing. This model allows the compiler to schedule unsafe
instructions so that the instruction can be squashed in the pipeline
before the write. That is, the pipeline control squashes the side ef-
fect of the speculative exception. This squashing model exhibits the
performance in squashing speculation stated in Section 2.2. Al-
though this model requires the minimum support for speculative
execution, the speedup is limited to 1.45x over the scalar machine,
or 1.14x over the global scheduling model.

The trace scheduling model picks up a trace in the program and
moves instructions within the trace. This scheduling model is su-
perior to our global scheduling model in terms of the window size
of scheduling. Unlike the global scheduling which iteratively
moves instructions between adjacent basic blocks, the trace sched-
uling knows the critical paths across several basic blocks. This
prior knowledge can put the highest priority on the instructions in
the critical path. Furthermore, the branch instructions which fall
into the next block in the trace are eliminated. This simply reduces
the path length. Our trace scheduler speculatively moves instruc-
tions using register renaming and pipeline squashing. The trace
does not include any loop back edge since the trace begins with the
loop head and ends in the loop tail. Yet, our trace scheduler at-
tempts to move instructions from the trace head to the trace tail by
some iterative and backtracking algorithm since code motions
along a loop back edge are expected to be beneficial. The achieved
speedup is 1.78x over the scalar processor, or 1.40x over the global
scheduling model.

The region scheduling model allows code motion in a region de-
scribed in Section 3.3. Since the code motion is not restricted in the
trace, this scheduling model uses the larger window of scheduling
and is expected to have benefits for branch-unpredictable
applications. An instruction is predicated with a branch condition,
and the model employs simple predicated execution [13]; if the
condition referred to by the predicate is false, the instruction is
squashed. Like the previous two models, this model supports
squashing speculation. Thus, this model needs the least hardware to
support speculative predicated execution. Although the compiler is
given more freedom in instruction scheduling than the trace sched-
uler, the speedup over the trace scheduling model is not significant.
Since speculative execution is restricted with limited hardware sup-
port, the additional scheduling ability is not beneficial. It is inter-
esting that the additional ability significantly improves the perfor-
mance if our predicated state buffering mechanism is introduced
(described later).

4.2 Speculative Execution Models with Predi-
cating Mechanism

We next evaluate augmented models which employ our predicating
mechanism, in which the speculative state is buffered. Two imple-
mentation options are proposed and evaluated in this subsection.

4.2.1 Implementation Options

The region predicating model fully supports predicating. In this
model, unrestricted speculative code motions are allowed. The
most complex part in the predicating mechanism is the hardware to
evaluate a predicate. As described in Section 3.2, the evaluation of
a predicate is a masked match operation between two vectors, the
predicate and CCR. The signal delay of this operation never affects
the cycle time adversely because it is only a three-gate delay: XOR

In this section, we first evaluate restricted speculative execution
models as a base experiment. These models need the smallest
amount of hardware to support speculative execution. We then
evaluate augmented architectures with the predicating mechanism.
Two options of implementation are discussed. Since our mecha-
nism needs additional hardware, we also evaluate the amount of the
additional hardware.

4.1 Restricted Speculative Execution Models

We evaluate several speculative execution models by incremental-
ly adding hardware supports and scheduling techniques. First, we
evaluate machines without the predicated state buffering
mechanism. In this machine, the instruction scheduler is limited in
speculative code motions. Figure 6 shows speedup for four differ-
ent speculative execution models.

The global scheduling model speculatively moves illegal register
instructions across basic block boundaries using register renaming,
but does not move illegal memory instructions or unsafe
instructions. To eliminate the data dependences upon the replaced
copy instruction, copy propagation [1] optimization is applied after
register renaming. Furthermore, we eliminate the copy instruction
if the copied variable is no longer used [1]. In this model, as in
percolation scheduling [15], our scheduler iteratively applies sev-
eral transformations between adjacent basic blocks to increase IPC
until no more improvement is found. Delete transformation which
deletes a basic block without any instructions except a jump in-
struction, and node duplication on an instruction movement from a
join block are also applied as in percolation scheduling. Loop un-
rolling and procedure inlining are not applied. Since this model
does not need any hardware support for speculative execution, the
evaluated performance is one in pure compiler-based approaches.
As shown in Figure 6, the speedup over the scalar machine is only
1.27x as a geometric mean.

The squashing model supports speculative execution through pipe-

compress eqntott espresso grep li nroff
1.0

1.5

2.0

2.5

3.0

3.5

global scheduling (1.27)

squashing (1.45)

trace scheduling (1.78)

region scheduling (1.80)

sp
ee

du
p

Figure 6: Performance of restricted speculative execution

- 9 -

since the predicate of an instruction can be encoded with the num-
ber of branch conditions the instruction is dependent upon. For this
semantics, the compiler may change the condition-set instruction
from the original scalar code. Consider the following original sca-
lar code:

set c1 if r1 < r2;
branch LAB if c1;
r3 = r4 + r5;

If the branch is predicted to be untaken, our predicating scheduler
converts the above code as follows:

alw ? set c1 if r1 ≥ r2;
c1 ? r3 = r4 + r5;

Notice that the condition that sets c1 is changed for the semantics.

The encoded predicate is converted into the vector form of the re-
gion predicating model at run-time. The rest of the execution
mechanism is the same as the mechanism of the region predicating
model. Our vector-form predicate for buffered speculative results is
superior to a counter-type predicate, where a counter is used to
represent a predicate. In this representation, the encoded predicate
in an instruction word sets an initial value of the counter on a spec-
ulative write. The counter is decremented if a condition-set
instruction sets a branch condition. In this mechanism, the predi-
cate looses precise control dependence information because the
counter cannot specifically represent which branch condition is set.
Thus, in this mechanism, the condition-set instructions must be ex-
ecuted sequentially. However, reordering of condition-set instruc-
tions is allowed in our vector form representation of a predicate.

4.2.2 Performance Evaluation

Figure 7 compares the speedup for two augmented models de-
scribed above with two other conventional models, the global
scheduling model (previously described) and the boosting model.
This boosting model is similar to the implementation of boosting
described in [18]. The boosting model allows unconstrained spec-
ulative code motions within a trace by labeling a speculative
instruction and its result with the number of its dependent branches.
Basic blocks are maintained from the scalar code. Our boosting
scheduler5 removes any restriction in speculative code motions
from our global scheduler if the code motion is along a predicted
path. Boosting imposes hardware cost similar to that in predicating
since shadow structures are required. As shown in Figure 7, the
boosting model achieves 1.74x speedup over the scalar processor,
or 1.37x over the global scheduling model through the sufficient
hardware support for speculative execution.

The trace predicating model achieves 2.24x speedup over the scalar
processor, or 1.76x over the global scheduling model. Compared
with the trace scheduling model and boosting model, this perfor-
mance improvement is significant for both. The trace predicating
model has advantages over the trace scheduling model in degrees
of speculative execution freedom, and has advantages over boost-
ing in path length reduction through branch elimination and

gate for comparison of each entry + OR gate for masking + AND
gate for obtaining total match. The evaluated result of a predicate is
used to flip the flags associated with a shadow register. The total
match operation and flipping the flags should be completed within
a half of the cycle time in our implementation. This signal delay
obviously never affects the cycle time4.

Additional transistors are needed to implement the predicated reg-
ister file. The additional storages for the speculative state need 76%
of the transistors of an 8-read, 4-write, normal register file with 32
registers. Furthermore, the commit hardware including the storages
for predicates, predicate evaluation hardware, and a few flags con-
tains 31% of the transistors of a normal register file. As a result, the
predicated register file contains 107% more transistors than a nor-
mal register file. Although the number of transistors required by the
register file for predicating is almost doubled, this hardware in-
crease is acceptable since a register file contains just a few percent
of the total transistors in current high-end microprocessors.

Additional bits are required for instruction encoding. The predicate
part in an instruction word needs 2xK bits, where K is the number
of branch conditions the architecture defines. Furthermore, one bit
for each source register is necessary to specify the speculative state.
For cost-effective performance, K needs to be three or four (dis-
cussed later). Thus, about one byte extension is required for
instruction encoding.

The trace predicating model is another way to implement
predicating. In this model, the compiler’s ability is limited in a
trace, though the compiler still takes advantage of the hardware
support of predicating. This model has benefits in terms of the size
of an instruction word; the predicate part needs only log2K bits,

　　　　　　　　　　　　　　　
4. Register file read is another possible critical path, but just a single gate is inserted
into the address decoder to select one of two word lines for sequential and shadow
registers.

　　　　　　　　　　　　　　　
5. The scheduling algorithm described in [18] is more efficient than our boosting
scheduler in terms of the bookkeeping ability. We believe that this inefficiency has
little impact on the performance in our evaluation where the machine has abundant
resources.

compress eqntott espresso grep li nroff
1.0

1.5

2.0

2.5

3.0

3.5
global scheduling (1.27)

boosting (1.74)

trace predicating (2.24)

region predicating (2.45)

sp
ee

du
p

Figure 7: Performance comparison of predicating speculative
execution with conventional speculative execution

- 10 -

full-issue machines over the scalar processor: a two-issue machine
(left bar), four-issue machine (middle bar), and eight-issue machine
(right bar). The lowest portion of each bar represents speedup when
the compiler is allowed to speculatively move instructions past one
dependent condition. Each of three portions above the lowest por-
tion of each bar represents the increase in speedup when the
compiler is allowed to speculatively move instructions past two,
four, and eight dependent conditions. As shown in Figure 8, ag-
gressive support for speculative execution is required for a machine
with abundant resources. More specifically, the hardware support
for speculative execution past two conditions is almost enough to
fill issue slots of the two-issue machine, while the hardware sup-
port for speculative execution past four conditions is needed to best
use the abundant resources of the four-issue machine. Speculative
execution past eight conditions or eight duplications of resources,
however, produces little impact on performance in our current
evaluation. We believe that other compilation techniques which
expose more parallelism (e.g. loop unrolling) may be required to
exploit more parallelism.

5 Conclusions
In this paper, we have proposed architectural support which pro-
vides unconstrained speculative execution. Our mechanism, predi-
cating, removes restrictions which limit the compiler’s ability to
schedule instructions. With predicating hardware support, the com-
piler is allowed to move instructions past multiple basic block
boundaries from any control path. The collapsed block from mul-
tiple basic blocks after instruction scheduling is just like a basic
block, though it contains instructions with different control
dependences. This semantics is that the machine executes instruc-
tions in multiple basic blocks simultaneously by simple in-order
execution. Our predicated state buffering simplifies the instruction
issue and the handling of side effects caused by the speculative
execution. Our key idea is that the side effect of speculative exe-

reordering of condition-set instructions.

The region predicating model achieves 2.45x speedup over the sca-
lar processor, or 1.93x over the global scheduling mode. The
performance improvement over the trace predicating model varies
among benchmark programs. This is primarily due to static branch
prediction accuracy. The limitation in the trace predicating model
causes little impact on performance if the branches are extremely
predictable. Table 3 shows the prediction accuracy for successive
multiple branches in the benchmark programs [2]. As shown in
Table 3, grep and nroff are extremely branch-predictable while
other benchmark programs are not. For example, the prediction ac-
curacy for four successive branches in grep is 90%, while the
prediction accuracy for four successive branches in compress is
only 56%. For grep and nroff, region predicating has no benefit
over trace predicating. However, for eqntott and compress, region
predicating considerably improves the performance since branches
are not extremely predictable. Although branches are not extremely
predictable in espresso and li, region predicating shows no im-
provement over trace predicating. We looked through the code, and
found that there seems to be little available ILP to exploit even with
our hardware support for speculative execution.

Region predicating slightly lowers the performance under trace
predicating in grep and li. This arises from a scheduling constraint
caused by dependence which we call commit dependence. If it is
unknown whether an instruction should refer to a speculative or a
non-speculative value, this instruction cannot be scheduled until
the speculative value is committed or squashed. In general, if an
instruction i depends on an instruction j, where the block which
contains j does not dominate the block which contains i, i must
be scheduled after j is committed or squashed. In trace predicating,
commit dependences do not exist because a single trace ensures
that any block is dominated by all preceding blocks in the region,
while, in region predicating, they may exist. Our current compiler
drives region growth using branch prediction so that only benefi-
cial edges of CFG are added into the region. If the compiler finds
that it is beneficial to add only a single entry edge into a join block
and not others, the block is duplicated so that the block has only a
single entry edge; thus instructions in this block never have commit
dependences. Although our current compiler estimates this specu-
lation/dependence trade-off, estimation is inaccurate due to its
simple heuristics, and thus region predicating lowers the perfor-
mance in some cases.

Figure 8 compares the performance improvements for full-issue
machines with various amounts of resources. The full-issue ma-
chine is a machine with fully duplicated resources such as function
units, register ports, and D-cache ports. In Figure 8, three bars for
each benchmark program presents the speedup of three different

compress eqntott espresso grep li nroff
1.0

1.5

2.0

2.5

3.0

3.5

S
pe

ed
up

1 condition

2 conditions

4 conditions

8 conditions

Figure 8: Performance of full-issue machines under various
allowable numbers of branch conditions for speculative code

motions (left bar: 2-issue, middle bar: 4-issue, right bar: 8-issue)

Table 3: Prediction accuracy of successive branches
　　　　　　　　　　　　　　　　　　　　　 　 　 　
#branches 1 2 3 4 5 6 7 8　　　　　　　　　　　　　　　　　　　　　　　 　 　
compress .88 .76 .66 .56 .46 .36 .27 .22
eqntott .87 .77 .68 .61 .56 .53 .50 .49
espresso .85 .72 .62 .54 .47 .41 .36 .33
grep .97 .95 .93 .90 .88 .86 .85 .83
li .88 .77 .68 .61 .55 .49 .43 .38
nroff .98 .96 .94 .93 .91 .89 .88 .86　　　　　　　　　　　　　　　　　　　　　　　 　 　

- 11 -

Processing," In Proc. 13th Int. Symp. on Computer Archi-
tecture, pp.386-395, June 1986.

[9] G. Kane, MIPS RISC Architecture, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

[10] M. S. Lam and R. P. Wilson, "Limits of Control Flow on
Parallelism," In Proc. 19th Int. Symp. on Computer Archi-
tecture, pp.46-57, June 1992.

[11] J. K. F. Lee, A. J. Smith, "Branch Prediction Strategies and
Branch Target Buffer Design," Computer 17 (1), pp.6-22,
January 1984.

[12] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M.
S. Schlansker, "Sentinel Scheduling for VLIW and Super-
scalar Processors," In Proc. Second Int. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pp.238-247, October 1992.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, "Effective Compiler Support for Predicated Ex-
ecution Using the Hyperblock," In Proc. MICRO-25, pp.45-
54, December 1992.

[14] K. Murakami, N. Irie, M. Kuga, and S. Tomita, "SIMP (Sin-
gle Instruction Stream/Multiple Instruction Pipelining): A
Novel High-Speed Single-Processor Architecture," In Proc.
16th Int. Symp. on Computer Architecture, pp.78-85, June
1989.

[15] A. Nicolau, "Percolation Scheduling: A Parallel Compilation
Technique," Computer Sciences Technical Report 85-678,
Cornel University, May 1985.

[16] J. E. Smith and A. R. Pleszkun, "Implementation of Precise
Interrupts in Pipelined Processors," In Proc. 12th Int. Symp.
on Computer Architecture, pp.36-44, June 1985.

[17] M. D. Smith, M. S. Lam, and M. A. Horowitz, "Boosting
Beyond Static Scheduling in a Superscalar Processor," In
Proc. 17th Int. Symp. on Computer Architecture, pp.344-
355, May 1990.

[18] M. D. Smith, M. A. Horowitz, and M. S. Lam, "Efficient
Superscalar Performance Through Boosting," In Proc. Fifth
Int. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pp.248-259, October 1992.

[19] R. M. Tomasulo, "An efficient Algorithm for Exploiting
Multiple Arithmetic Units," IBM Journal, 11(1):25-33, Jan-
uary 1967.

[20] D. W. Wall, "Limits of Instruction-Level Parallelism," In
Proc. Fourth Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pp.272-282,
April 1991.

cution is buffered with its predicate, and the buffered predicate ef-
ficiently commits or squashes the side effect. Furthermore, we have
proposed an efficient mechanism for handling speculative
exceptions. The scheme, called the future condition, not only prop-
erly postpones the handling of speculative exceptions but also
efficiently restarts the process with little penalty on the register and
memory system.

We have shown that predicating requires only simple hardware.
The predicate which labels the buffered speculative state is evalu-
ated with a simple match operation. Thus, the cycle time is not
adversely affected. We have also developed an instruction sched-
uler to quantify effectiveness of various speculative execution
supports for good performance. The evaluation results show that
our mechanism significantly improves performance. The four-issue
machine achieves 2.45x speedup over the scalar machine, or 1.93x
speedup over the global scheduling without speculative execution
supports. Our mechanism is an effective mechanism that efficiently
supports unconstrained speculative execution, where code motions
past multiple basic blocks from any control path are allowed.

Acknowledgment
We thank the anonymous reviewers for their helpful comments.
We also especially thank to Monica Lam for her helpful suggestion
in our final paper revision. Finally, we thank Yasutaka Horiba and
Tadashi Sumi for their encouragement.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Princi-

ples, Techniques, and Tools, Addison-Weslay Publishing
Company, Reading, Massachusetts, 1986.

[2] H. Ando, C. Nakanishi, H. Machida, T. Hara, S. Kishida, and
M. Nakaya, "Speculative Execution and Reducing Branch
Penalty in a Parallel Issue Machine," In Proc. Int. Conf. on
Computer Design, pp.106-113, October 1993.

[3] R. A. Bringmann, S. A. Mahlke, R. E. Hank, J. G. Gyllen-
haal, and W. W. Hwu, "Speculative Execution Exception
Recovery using Write-back Suppression," In Proc. MICRO-
26, pp.214-223, December 1993.

[4] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W.
W. Hwu, "IMPACT: An Architectural Framework for
Multiple-Instruction-Issue Processors," In Proc. 18th Int.
Symp. on Computer Architecture, pp.266-275, May 1991.

[5] R. P. Colwel, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and
P. K. Rodman, "A VLIW Architecture for a Trace Schedul-
ing Compiler," In Proc. Second Int. Conf. on Architectural
Support for Programming Languages and Operating Sys-
tems, pp.180-192, April 1987.

[6] K. Ebcioglu and A. Nicolau, "A Global Resource-
Constrained Parallelization Technique," In Proc. Third Int.
Conf. on Supercomputing, pp.154-163, June 1989.

[7] J. A. Fisher, "Trace Scheduling: A Technique for Global Mi-
crocode Compaction," IEEE Trans. on Computers ,
C-30(7):478-490, July 1981.

[8] P. Y. T. Hsu, and E. S. Davidson, "Highly Concurrent Scalar

- 12 -

