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Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers
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We analyze the occurrence of normal-mode coupling (NMC) in bimodal lasers attributed to the collective

interaction of the cavity field with a mesoscopic number of quantum dots (QDs). In contrast to the conventional

NMC, here we observe locking of the frequencies and splitting of the linewidths of the system’s eigenmodes in

the coherent coupling regime. The theoretical analysis of the incoherent regime is supported by experimental

observations where the emission spectrum of one of the orthogonally polarized modes of a bimodal QD micropillar

laser demonstrates a distinct two-peak structure.
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Introduction. The study of cavity quantum electrodynamics

(CQED) in the strong-coupling regime between atomlike

emitters and the confined light field of microcavities has been

a subject of considerable attention. In the traditional CQED,

low-mode volume resonators are used to enhance the coupling

rate g between a single emitter and the field in comparison to

the system damping rates. Prominent realizations of the strong

coupling include experimental demonstrations of reversible

exchange of excitation between a single emitter and the field

from both atomic [1–3] and solid-state [4,5] systems. Typical

evidence of the strong-coupling regime represents splitting of

the two degenerate modes, i.e., normal-mode splitting, which is

a consequence of normal-mode coupling (NMC), e.g., between

the emitter polarization mode and the field mode leading to a

doublet cavity transmission spectrum [6]. In addition, NMC

occurs in exciton-photon and phonon-photon interactions [7]

and optomechanical phenomena [8], where the cavity field

couples to a mechanical mode [9].

In view of the variety of implications of the regime of

coherent coupling (see, e.g., [10]), a different approach to

achieve strong coupling has also attracted much attention.

Instead of reducing the cavity-mode volume to achieve large

g, the number of emitters N interacting with the field

can be increased, leading to the collective strong-coupling

regime, where the coupling rate scales as
√

Ng [11,12].

Various experimental observations of cavity-mode spectra

proportional to
√

Ng due to the collective coherent coupling

with two [13,14] or multiple [15,16] emitters have been made,

including the case of a multimode cavity [17]. In solid-state

systems, the coherent coupling between a cavity mode and an

ensemble of emitters has been achieved in the classical regime

with semiconductor quantum wells [7,18]. However, in the

quantum regime the significant inhomogeneous broadening of

emission from self-assembled quantum dots (QDs) has so far

hindered the observation of collective coherent coupling for

semiconductor-based quantum emitters.
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In many different situations (see, e.g., Refs. [1–7,7–18]),

by convention coherent coupling of two (nearly degenerate)

modes is commonly explained by studying the eigenvalues of

the system,

�± =
ω1 + ω2

2
− i

γ1 + γ2

4

±{[(ω1 − ω2)/2 − i(γ1 − γ2)/4]2 + Ng2}1/2, (1)

where ω1,2 and γ1,2 are the frequencies and decay rates of

the modes, respectively. Analysis of this expression reveals

that in the resonant case (ω1 = ω2) for
√

Ng < |γ1 − γ2|/4

the square-root term is fully imaginary and modifies the decay

rates of the modes. Further, for
√

Ng > |γ1 − γ2|/4 it becomes

real and the frequencies exhibit a splitting attributed to NMC.

Coherent coupling is also relevant to laser physics for

achieving the regime of bistable lasing of two-mode lasers

[19,20]. In particular, in the case of large pump rates when

the strong-coupling regime of the emitter-field interaction

is achieved and the Rabi frequency is larger than the

mode separation, mode locking has been observed [21,22].

Otherwise, bimodal cavities are investigated in the context

of single-photon generation with whispering-gallery-mode

resonators [23,24], where an atom strongly interacts with two

cavity modes.

Here, we show that interaction of the modes of a pas-

sive bimodal microcavity (cavity modes) with a mesoscopic

number of quantum emitters induces unconventional coherent

coupling between these modes in the lasing regime. In

contrast to the conventional NMC described above, here,

in the case of near-resonant cavity modes the eigenmodes

of the total active system (eigenmodes) exhibit frequency

locking, and the effective coupling rate with the emitters
√

Ng

induces splitting of the linewidths of the eigenmodes. Further,

for sufficiently large spectral splitting between the cavity

modes, the incoherent coupling between the modes leads to a

mixing of the “bare” cavity-mode frequencies in the emission

spectrum. We report below the experimental observation of

this mode mixing for bimodal micropillar lasers. Moreover,

our theoretical study shows that in the case of incoherent

coupling and approximately equal mode-QD coupling rates,

1050-2947/2015/91(4)/043840(5) 043840-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.043840


M. KHANBEKYAN et al. PHYSICAL REVIEW A 91, 043840 (2015)

the eigenmode linewidths demonstrate locking, leading to

almost equal values of the coherence times of the cavity-mode

emission. This intriguing and unexpected scenario has been

recently observed for bimodal microlasers [25], where the

inferior mode which exhibits large superthermal intensity

fluctuations indeed has a coherence time of the same order

of magnitude as the dominant lasing mode.

Theoretical model. We consider a system consisting of

two orthogonal cavity modes with the Hamiltonian Hph =
∑

ξ �ωξb
†
ξbξ (ξ = 1,2; bξ is the annihilation operator of the

photon in the ξ th cavity mode) and QDs as gain medium,

where the s-shell transition is resonantly coupled to the

cavity electromagnetic field and the p-shell is pumped at a

constant rate. The QD part of the Hamiltonian consists of

single-particle contributions for conduction- and valence-band

carriers with the energies ε
c,v
j , H 0

carr =
∑

j (εc
jc

†
jcj + εv

j v
†
jvj ),

and the two-particle Coulomb interaction (see [25]). For the

total Hamiltonian of the system the free Hamiltonian terms are

complemented with the interaction energy of the QDs with the

electromagnetic field; the latter in the dipole approximation

reads

HD = −i
∑

ξ,j

gξj (c
†
jvj + v

†
jcj )bξ + H.c., (2)

where the approximation of equal wave-function envelopes for

conduction- and valence-band states is used and the coupling

strengths gξj are assumed to be positive and real.

The coherent features of the output radiation are described

by the (normalized) first-order correlation function

g
(1)
ξ (t,τ ) =

G
(1)
ξξ (t,τ )

〈b†
ξ (t)bξ (t)〉

, ξ = 1,2, (3)

with G
(1)
ξξ ′ (t,τ ) = 〈b†

ξ (t + τ )bξ ′ (t)〉. The coherence times and

the frequency spectra are given, respectively, by

τ c
ξ = 2

∫ ∞

0

dτ |g(1)
ξ (τ )|2,

(4)

Sξ (ω) = 2Re

∫ ∞

0

dτg
(1)
ξ (τ )e−2πiτω.

We restrict ourselves to the case of continuous-wave excitation

and assume that two-time quantities such as the correlation

function g
(1)
ξ (t,τ ) are t-time independent in the steady-state

regime for large enough times t . Therefore, the two-time

evolution problem can be separated into two single-time

problems, which is analogous to the method of the quantum

regression theorem [26]. Then the equations of motion with

respect to the delay time τ can be solved with initial values

given by the stationary steady-state result of the t-time problem

[27]. The Heisenberg equations of motion for expectation

values of the quantities of interest lead to a hierarchy problem

which can be treated by the cluster expansion (see [25,28]).

Further, assuming carrier generation in the p-shell at a fixed

rate we derive a system of Heisenberg equations of motion

and introduce phenomenological dissipative terms, where both

pump and dissipative processes are described by a Lindblad

form [29]. To obtain the dynamical equations of first-order

coherence the cluster expansion up to doublet level is required,

which implies the following factorization [in the following

we omit the dependence on the time t , as bξ (τ ) ≡ bξ (t,τ ),

bξ ≡ bξ (t,0), etc.]

〈c†j (τ )cj (τ )b
†
ξbξ (τ )〉 ≈ 〈c†j (τ )cj (τ )〉〈b†

ξbξ (τ )〉, (5)

where 〈c†j (τ )cj (τ )〉 in the stationary regime is τ -time inde-

pendent. Thus, assuming identical QDs with equal transition

energies and coupling rates gξ ≡ gξj , we obtain the closed

system of linear differential equations for the correlation func-

tions Gξζ ≡ G
(1)
ξζ (τ ) and Pξ (τ ) ≡ Pξj (τ ) = 〈c†j (τ )vj (τ )bξ 〉 in

the rotating-wave approximation and in the frame rotating at

εc
j − εv

j ,

d

dτ
Pξ (τ ) = −ŴPξ (τ ) + Ig1G1ξ (τ ) + Ig2G2ξ (τ ), (6)

d

dτ
G1ξ (τ ) =

(

i�1 −
1

2
κ1

)

G1ξ (τ ) + Ng1Pξ (τ ), (7)

d

dτ
G2ξ (τ ) =

(

i�2 −
1

2
κ2

)

G2ξ (τ ) + Ng2Pξ (τ ), (8)

where �ξ ≡ �ξj = εc
j − εv

j − �ωξ is the detuning of the

cavity modes from the QD transition, and κ1,2 describe cavity-

mode losses. The inhomogeneous broadening is approximated

by the spectral line broadening rate Ŵ in Eq. (6). The excitation

of emitters with a given pump rate is encoded into the steady-

state inversion per QD, I ≡ Ij (t) = 〈c†jcj 〉− 〈v†
jvj 〉, which

represents an important pump-rate-dependent parameter for

the τ dynamics.

Normal-mode coupling. The system of six equations above

consists of two independent subsystems with ξ = 1,2. Auto-

correlation functions of two cavity modes G
(1)
ξξ (τ ) are coupled

to each other indirectly, namely, through coupling to Pξ (τ ),

representing the common gain medium. To provide a simple

understanding of the coupling of the two cavity modes, we

use an approximation of fast relaxation of Pξ (τ ) compared to

the time scale of the dynamics of Gξζ (τ )—typically valid

for semiconductor systems [30]. Then we formally insert

(d/dτ )Pξ (τ ) = 0 into Eq. (6) and reduce Eqs. (6)–(8) to

d

dτ

(

G1ξ

G2ξ

)

= i

(

�1 + iκ̃1/2 −iNIg1g2/Ŵ

−iNIg1g2/Ŵ �2 + iκ̃2/2

)(

G1ξ

G2ξ

)

, (9)

which represents two identical 2 × 2 matrices and character-

izes the coupling of the two cavity modes. The eigenvalues of

the matrix above read

λ± =
�1 + �2

2
+ i

κ̃1 + κ̃2

4

±{[(�1 − �2)/2 + i(κ̃1 − κ̃2)/4]2−(NIg1g2/Ŵ)2}1/2,

(10)

where the notation κ̃ξ = κξ − 2NIg2
ξ /Ŵ reveals that increas-

ing NIg2
ξ /Ŵ effectively reduces the linewidths. Inspection of

Eq. (10) shows that the dependence of the eigenvalues on the

involved parameters behaves quite differently from the case

of conventional NMC, Eq. (1). For �1 = �2 and g1 = g2,

the square-root term of λ± remains imaginary and modifies the

peak widths independently of how large the effective coupling

|NIg1g2/Ŵ| is chosen in comparison with |κ1 − κ2|. In the

case when κ1 = κ2 and g1 = g2, the square-root term leads to
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FIG. 1. (Color online) Peak positions (a),(c) and peak widths

(b),(d) [cf. Eq. (10)] vs �1 for fixed pump strength [(a),(b), I =
0.3] and vs NI [(c),(d), �1 = 115 μeV], N = 42, κ1 = 44 μeV,

κ2 = 36 μeV, �2 = 0, Ŵ = 1.38 meV, g1 = 30.4 μeV, and g2 =
30.3 μeV. The shaded regions indicate incoherent coupling. The

hatched area indicates the range of NI that corresponds to our

experimental results presented below (see Fig. 3). The values of κξ

and �ξ are measured in the experiment, and the values of N , Ŵ, and

gξ are estimated in correspondence to the experiment.

two regimes. For |NIg1g2/Ŵ| < |�1 − �2|/2, the regime of

incoherent coupling, the term is real and modifies the peak

positions of the modes. On the other hand, in the regime

of coherent coupling, i.e., for |NIg1g2/Ŵ| > |�1 − �2|/2, it

becomes imaginary and modifies the peak widths of the modes.

Note that this striking behavior is qualitatively opposite from

that of conventional NMC. Furthermore, since the effective

coupling |NIg1g2/Ŵ| is proportional to |I |, the experimental

observation of the coherent regime of collective coupling

requires |I | to be close to unity.

To demonstrate the unconventional NMC we plot the

real and imaginary parts of the eigenvalues for a coupled

bimodal cavity system in Fig. 1. The dependence on the

detuning �1 (�2 = 0) [Figs. 1(a) and 1(d)] reveals that

in the near-resonant region where the coherent coupling

regime is maintained, a splitting of the imaginary parts of

the eigenvalues (peak widths) is observed. For increasing

detuning between the cavity modes, in the incoherent coupling

regime, the eigenvalues demonstrate splitting in the real parts

(peak positions) and locking of the peaks widths. To illustrate

the dependence on the effective coupling rate the real and

imaginary parts of the eigenvalues are presented as functions

of NI in Figs. 1(c) and 1(d). In the regime of incoherent

coupling, for small effective coupling rate (small N |I |), the

splitting of the peak positions is observed. In the regime of

coherent coupling the splitting of the peak widths increases

for an increasing effective coupling rate, whereas in the case

of the conventional coherent NMC, Eq. (1), the splitting of the

mode resonances increases for increasing N [31].

We would like to note that despite formal similarities the

collective NMC described by Eq. (9) [cf. Eqs. (6)–(8)] is fun-

damentally different from the nonlinear equations of motion

for the field amplitudes of a bimodal laser obtained within

the semiclassical theory [32]. First of all, the semiclassical

theory neglects spontaneous emission and therefore describes

neither the laser fluctuations nor the field coherence times.

Most importantly, the mode coupling in the semiclassical

theory controls only the existence and stability of the dual-

mode operation. But the frequency characteristics of the

modes emerge from the self-consistency equations of wave

equations—and not from the coupling matrix of the system.

FIG. 2. (Color online) Absolute values of the autocorrelation

functions and the frequency spectra (inset, semilogarithmic scale)

for the emission in the basis of the cavity modes for I = 0.65,

�1 = 115 μeV, and an estimated cavity-enhanced QD spontaneous

emission rate of 20 ns−1. Other parameter values are from Figs. 1(c)

and 1(d). The vertical lines mark the passive cavity-mode frequencies.

Spectra. Importantly, the effects discussed above can be

deduced starting with the more general Eqs. (6)–(8). In

the following we use Eqs. (6)–(8) to obtain τ -dependent

expressions for the autocorrelation functions. Note that the

initial values of the quantities Pξ (τ ) and Gζ ξ (τ ) and the values

of the τ -time-independent I (t) of the gain medium are taken

as the stationary solutions of t-time-dependent problem [25].

Figure 2 reveals that in the regime of incoherent coupling

the coherence times of the dominant and inferior modes,

which correspond to the decay rates of |g(1)
1 (τ )| and |g(1)

2 (τ )|,
respectively, are of the same order of magnitude. This coun-

terintuitive behavior, which has been experimentally observed

earlier [see Fig. 2(b) of Ref. [25]], is particularly interesting

considering that the inferior mode features large superthermal

intensity fluctuations with g(2)(0) ≈ 3 [Fig. 2(f) of Ref. [25]].

The spectra of both modes, shown in the inset of Fig. 2,

exhibit a two-peak structure according to the eigenvalues in

Eq. (10). Indeed, for the chosen parameters NI = 27.3, which

correspond to the case of the incoherent coupling, Figs. 1(c)

and 1(d) reveal the splitting of the peak positions and locking

of the widths. Obviously, emission in the basis of the two

cavity modes carries both “bare” frequencies of the passive

cavity modes due to NMC via the common gain medium.

The emission peak positions and widths are established by the

real and imaginary parts of the eigenvalues λ±, since every

mode carries both basis eigenvectors. The mode coupling is

also associated with the oscillations of |g(1)
ξ (τ )| [this is easy

to see in Fig. 2 for |g(1)
2 (τ )| but holds true for |g(1)

1 (τ )|].
In particular, the oscillation amplitudes are attributed to the

corresponding frequency spectra peak heights, whereas the

oscillation frequency is defined by the peak position difference,

which in turn is related to the relative detuning of the cavity

modes. Importantly, the oscillations of |g(1)
ξ (τ )| originate from

mode coupling and need to be distinguished from those

reported in Ref. [33], which arise from the interference of

emission in two different polarization directions.

Experimental realization. Here we present the experimental

investigation of NMC in bimodal lasers, where we study

electrically pumped micropillar lasers based on a doped planar

microcavity sample with a single layer of self-assembled

InGaAs QDs acting as active medium (for technological

details, see Refs. [34,35]). An asymmetry of the cross section
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FIG. 3. (Color online) (a) Injection-current-dependent μEL

emission spectra in 90◦ polarization for 2.1 � Iinj/Ith � 5.5, plotted

relative to the high-energy peak values to compensate for an

injection-current-dependent shift of the emission energy [see (d)].

(b) Calculated frequency spectrum in 90◦ polarization for inversion

values 0.63 � I � 0.67. Parameter values are the same as in Fig. 2.

(c) Calculated inversion (green, crosses) vs injection current and

integrated μEL intensity for 0◦ and 90◦ polarizations. (d) Emission

energy (relative to the reference point 1.366 eV) of the 0◦ component

and the two-mode features in 90◦ detection vs injection current.

of the pillar and/or the upper ring-shaped electrical contact

lifts the degeneracy of the resonator fundamental mode, and

thus two frequency-separated linearly (orthogonally) polarized

cavity modes are supported [36]. The micropillar laser under

study has a diameter of 3.6 μm, and the two modes of 0◦

and 90◦ polarizations and Q factors of 10 000 and 10 800

are split by 115 μeV. The emission has been investigated

at low temperature (10 K) by a microelectroluminescence

(μEL) setup (spectral resolution 20 μeV). A linear polarizer

in combination with a λ/4-wave plate is installed to perform

polarization-resolved measurements.

The input-output dependence of the emission in detection

angles of 0◦ and 90◦ is depicted in Fig. 3(c). The emission

mode in 0◦ polarization shows a threshold current of about

Ith = 4 μA. The smooth transition at threshold and the S-

shaped input-output characteristics indicate the high-β lasing

with β ≈ 0.2 [25]. A similar behavior is observed for emission

in 90◦ polarization up to Iinj
∼= 1.5Ith. At higher injection

currents, saturation and even a decrease of the output intensity

is observed. This anticorrelation between emission of the

dominant mode in 0◦ and the inferior mode in 90◦ polarization

is explained by means of the microscopic semiconductor

model in terms of gain competition [25]. Moreover, the model

allows us to determine the inversion I vs pump rate which

changes from −0.8 to 0.8 for the parameter values used

[see Fig. 3(c)]. The corresponding NI range is indicated in

Figs. 1(c) and 1(d) as the hatched area.

Interestingly, the intensity of emission in 90◦ polarization

increases again for Iinj � 4Ith [see Fig. 3(c)]. To analyze this

feature we study the emission spectra of the laser for different

injection currents. While in the 0◦ orientation emission a

single peak is observed (not shown), for the 90◦ orientation

at injection currents exceeding about 1.5Ith a transition of a

single emission peak into a doublet occurs [see Fig. 3(a)],

where the intensity of the low-energy component rises with

increasing current and dominates for Iinj > 5Ith. This double-

peak feature of the 90◦ orientation emission and its peculiar

current dependence are in very good agreement with the cal-

culated emission spectra presented in Fig. 3(b) for incoherent

collective coupling [37]. Indeed, for the range of the chosen

parameters NI ≈ 26–28, which, according to Figs. 1(c) and

1(d), corresponds to the region of incoherent coupling.

In Fig. 3(d) mode energies of 0◦ and 90◦ polarizations

vs injection current are plotted. At low injection currents the

single-peak emission in both polarization directions corre-

sponds to the bare frequencies of the cavity modes. Moreover,

the low-energy component of the 90◦ emission for low

injection currents coincides spectrally with the 0◦ emission,

but at high excitation currents it approaches the energy of the

high-energy peak in the 90◦ orientation. This clearly shows

that this emission does not originate from possible cross-talk

between the 0◦ and 90◦ components, but is in accordance with

the theoretical prediction in Fig. 1(c), namely, that the peak

positions approach each other with increasing NI .

In summary, we have demonstrated the existence of

collective NMC in bimodal microlasers. In contrast to the

conventional case, here, in the coherent coupling regime, the

increase of the effective coupling rate produces a splitting of

the linewidths instead of the frequencies. In the incoherent cou-

pling regime, increasing effective coupling induces splitting

of frequencies and locking of linewidths. The consequence is

a double-peak structure of the output spectra of the modes

and large coherence times for both dominant lasing and

inferior modes, which we have confirmed experimentally in

QD-based bimodal micropillar lasers. The latter offer unique

possibilities to study collective coupling, since the stimulated

emission of the dominant mode leads to clamping of the carrier

density with large inversion (I ≈ 0.8), while the inferior

mode experiences collective coupling mediated by multiple

inverted emitters. Note that the unconventional NMC is not a

semiconductor effect, but can be observed in the case of the

collective weak interaction of two modes with a mesoscopic

number of atoms. We expect to observe further interesting

effects related to NMC in bimodal lasers in the coherent

coupling regime which could be accessed by using micropillar

cavities with small mode splitting and larger inversion rate

and/or number of involved QDs.
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