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Abstract
The conventional computing method based on the von Neumann architecture is limited by a series of problems such as 
high energy consumption, finite data exchange bandwidth between processors and storage media, etc., and it is difficult to 
achieve higher computing efficiency. A more efficient unconventional computing architecture is urgently needed to overcome 
these problems. Neuromorphic computing and stochastic computing have been considered to be two competitive candidates 
for unconventional computing, due to their extraordinary potential for energy-efficient and high-performance computing. 
Although conventional electronic devices can mimic the topology of the human brain, these require high power consumption 
and large area. Spintronic devices represented by magnetic tunnel junctions (MTJs) exhibit remarkable high-energy efficiency, 
non-volatility, and similarity to biological nervous systems, making them one of the promising candidates for unconventional 
computing. In this work, we review the fundamentals of MTJs as well as the development of MTJ-based neurons, synapses, 
and probabilistic-bit. In the section on neuromorphic computing, we review a variety of neural networks composed of MTJ-
based neurons and synapses, including multilayer perceptrons, convolutional neural networks, recurrent neural networks, 
and spiking neural networks, which are the closest to the biological neural system. In the section on stochastic computing, 
we review the applications of MTJ-based p-bits, including Boltzmann machines, Ising machines, and Bayesian networks. 
Furthermore, the challenges to developing these novel technologies are briefly discussed at the end of each section.

Keywords Magnetic tunnel junction · Neuromorphic computing · Unconventional computing · Spintronic neuron · 
Spintronic synapse · Stochastic switching

1 Introduction

Modern computers, based on von Neumann architecture 
that solves numerical problems in a serial, deterministic, 
and highly precise way, have been extensively developed 
for decades and are still the mainstream of the fashion for 

information processing at present. However, the emergence 
of big data with increasing volume and complexity chal-
lenged the von Neumann computing paradigm, in that shut-
tling such information between the processor and the storage 
inevitably causes substantial energy consumption. Therefore, 
in the context of seeking a solution for the “von Neumann 
bottleneck” [1], novel computing paradigms beyond von 
Neumann architecture, i.e., unconventional computing, are 
desired. Contrary to the von Neumann paradigm that gives 
out guaranteed and accurate results, approximate comput-
ing [2] employs redundant computation and returns approxi-
mate results that are sufficient for their objectives such as 
recognition, classification, prediction, optimization, and so 
on. Such emerging paradigms are expected to achieve high 
performance and energy-efficient computing when involv-
ing big data processing, in that 1) the approximate comput-
ing uses many low-precision or probabilistic calculations, 
and thus is inherently resilient to errors, 2) most paradigms 
for approximate computing are in parallel that would ben-
efit for calculation speed, and 3) some of the approximate 
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computing associated paradigms are designed for storing 
information locally where it is processed so that extricating 
from the large energy dissipation caused by commuting data 
between processor and memory.

Among approximate computing, bio-inspired computing 
has recently attracted much interest due to its massive par-
allelism, high energy efficiency, adaptivity to varying and 
complex inputs, and inherent tolerance to fault and varia-
tion. Therefore, bio-inspired computing is especially useful 
for unstructured data processing such as recognition, one 
of the purposes of machine learning. The direct strategy 
for bio-inspired computing design is emulating the human 
brain, namely Neuromorphic computing [3]. Neuromorphic 
computing is based on a variety of artificial neural networks 
(ANNs) which are composed of the following two elemen-
tary units: artificial neurons and synapses. Synapses func-
tion as connectors with different variable weights (i.e., con-
nection strength) to update and deliver information. While 
neurons that are interconnected by synapses receive signals 
from other neurons and emit spikes to the subsequent neu-
rons if activated. Choosing a proper neural network for a 
particular computing task is one of the key issues associated 
with neuromorphic computing. Specifically, the rudimen-
tary classification tasks that require differentiating binary 
states can be handled by the first generation of ANN [4], 
also called “perceptron”. A perceptron is the simplest ANN 
that constitutes one layer of neurons for inputs and another 
layer of neurons for outputs and the two layers are connected 
by synapses. As shown in Fig. 1(a), however, the single per-
ceptron can only solve classification problems in a linear 
way and thus function analogously to AND, NAND, and 
OR gate. Therefore, one of the second-generation ANNs, 
the multi-layer perceptron (MLP) [5] or deep neural net-
work (DNN) [6] in which hidden layers play an important 
role has been proposed for solving the nonlinear classifica-
tion problems which are analogous to XOR gate shown in 
Fig. 1(b). In DNN, neurons in one layer are fully connected 
by neurons in the neighboring layer and information would 
be delivered unidirectionally. Additionally, by adapting 

the mode that how neurons are connected and interacted, 
other multi-layered neural networks have been proposed to 
perform computation tasks with upgraded efficiency. For 
example, the convolutional neural network (CNN) [7] would 
be advantageous for image recognition due to the coopera-
tion among the convolutional layer, max pooling layer, and 
fully connected layer that consist of the CNN. The data pro-
cessed in the DNN and the CNN are time-independent or 
static, while recurrent neural network (RNN) [8] concerns 
processing sequence data. RNN not only allows for cycles 
that could achieve related data among adjacent time steps, 
but also has differing levels of connectivity; therefore, RNN 
is very desirable for sound recognition, natural language pro-
cessing, computer vision, etc.

Compared to biological neural networks, the first- and 
second-generation ANNs are much more computationally 
driven and would be in the category of non-spiking neural 
networks (non-SNN), whereas in recent years, researchers 
started to design an ANN that could replicate biological 
behavior closely in that biological neural systems would 
inherently process information with high efficiency. Conse-
quently, the third-generation ANN, the spiking neural net-
works (SNN) [9], would be more biomimetically driven and 
has attracted much attention. In additional to the potential 
for saving energy, SNN offers a platform for realizing spike-
timing-dependent plasticity (STDP) [10], one of the most 
efficient unsupervised learning algorithms and is capable of 
training data online. It is worth noting that the capabilities 
of the spiking neuromorphic system have not been realized 
by training and learning mechanisms comprehensively and 
the superiority of computing performance for the SNN and 
non-SNN is still under debate.

On the other hand, stochastic computing exploits random-
ness, and its physics rules are also competitive for solving 
problems that neuromorphic computing concerns. The unit 
of stochastic computing is a random number generator with 
a tunable output probability, which is called a probabilis-
tic-pit (p-bit) [11]. For machine learning, the Boltzmann 
machine (BM) [12] is widely used as the architecture of 

Fig. 1  a The classification prob-
lem can be solved by finding 
a straight line whose function 
is Y = w1X1 + w2X2, where wi 
is weight, Xi is input (i = 1, 2) 
and Y is output. The logic is 
analogous to AND, NAND, and 
OR gate. b The classification 
problem needs to be solved by 
finding a nonlinear line in that 
the two output states cannot be 
separated by any straight line. 
The logic is analogous to the 
XOR gate
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stochastic computing, which is also called “stochastic neural 
networks”. A more commonly utilized Boltzmann model is 
the restricted Boltzmann machine [13]. Compared to a gen-
eral BM, the restricted Boltzmann machine could speed up 
the training rate due to the restricted connection among the 
units. Another typical case of the stochastic neural networks 
is related to Bayesian calculations, i.e., the Bayesian network 
(BN) [14]. BN is a feed-forward neural network, and the 
nodes could be divided into parent and child nodes in terms 
of their causal sequences inherited from events, expecting 
parent-to-child directionality for the data delivery. Further-
more, stochastic computing is also capable of solving the 
computation tasks that adiabatic quantum computing con-
cerns [15]. For example, the Ising model has been applied 
to solve combinatorial optimization problems (COP) such 
as the travel salesman problem (TSP) [16], while inverse 
problems such as integer factorization (IF) [17], which is 
very difficult for conventional computing, can be worked out 
by stochastic networks. Figure 2 summarizes the relationship 
among the aforementioned computing paradigms that will 
be discussed in more detail in this review.

The hardware unit implementation for such unconven-
tional computing paradigms, furthermore, was initially 
supported by typically hundreds to thousands of transistors 
which would be undesirable for unconventional computing 
tasks because of the energy and area requirements. In recent 
years, it has been proposed that a single spintronic device 
would be capable of emulating the behavior of synapse, neu-
ron, and p-bit in that such devices could be engineered to a 
variety of properties such as non-volatility, plasticity, sto-
chasticity, and oscillation, which are key features of the com-
puting units [18]. Magnetic tunnel junctions (MTJs), a typi-
cal structure of spintronic devices, have been investigated 
for not only information storage but also unconventional 
computing. Due to their versatile properties, together with 
the outstanding endurance, and CMOS-technology compat-
ibility, MTJs are promising candidates for the hardware of 

unconventional computing with high performance. Moreo-
ver, the MTJs would be expected in different behaviors to 
cooperate with a particular computing paradigm, and this 
will also be discussed in more detail in this review.

The structure of this review is conducted as follows: in 
Sect. 2, we discuss the hardware based on MTJ for uncon-
ventional computing on the device level, illustrating the 
mechanism for the operation of MTJ-based devices, the 
device features, design principles, and recent works. Then 
we divided the discussion of unconventional computing on 
the architecture level into neuromorphic computing (Sect. 3) 
and stochastic computing (Sect. 4), giving an overview of 
the aspects of computing tasks and applications to which 
these unconventional computing systems have been investi-
gated. Finally, we enumerated some challenges that need to 
be tackled and concluded with promising perspectives for 
unconventional computing.

2  MTJ‑based devices for unconventional 
computing: from mechanism 
to applications

2.1  Mechanism

For magnetic materials, magnetic orders stem from the 
neighboring localized, exchange-coupled electron spins. 
From the perspective of classical physics, magnetic orders 
are regarded as the magnetic moment which is controlled by 
the spin angular momentum. Due to the controllable mag-
netic orders, the device based on magnetic materials could 
achieve information storage, logic computation, and other 
novel functionalities. At an early stage, the magnetic order is 
controlled by a magnetic field, and then, in order to be com-
patible with circuits, people started to manipulate magneti-
zation in electrical ways. Especially, the spin-transfer torque 
(STT) effect [19] plays an important role in electrically 
changing magnetic orders. The spin-polarized conduction 
electrons can change the magnetic moment by exchanging 
the spin angular momenta between the conduction electrons 
and spin electrons. More specifically, the STT effect can be 
experimentally achieved in a structure of a non-magnetic 
spacer sandwiched by two magnetic layers with large/small 
saturation magnetization called pinned/free layer, respec-
tively. When the spin-polarized electrons which are filtered 
by pinned layer reached the free layer, the spin-polarization 
component that is parallel to the magnetization of the free 
layer can be transmitted, while the component which is 
perpendicular to the magnetization would be absorbed and 
thus led to the rotation of the magnetization due to angular 
momentum conservation.

Although STT is difficult to control the magnetization of 
magnetic materials with high resistance, the magnetization 

Fig. 2  The relationship among the unconventional computing para-
digms
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could also be rotated by spin-orbital torque (SOT) [20] 
which does not require electrons to pass through the mag-
nets. The SOT effect originated from spin-orbital coupling 
(SOC) [21], and the principle of SOC can be attributed to 
an effective magnetic field generated by an electrical field. 
A material with broken inversion symmetry could produce a 
net spin polarization due to the asymmetric spin scatterings 
in the bulk, and this is the spin-Hall effect (SHE) [22]. Then, 
the spin-polarized electrons would accumulate at the inter-
face of the material and thus can be absorbed by an adja-
cent ferromagnet in the form of damping-like SOT. Another 
physical explanation is attributed to the Rashba effect [23]; 
electrons pass through an interface with the asymmetrical 
inversion and therefore obtain a spin polarization. The polar-
ized electrons can generate a torque on the adjacent ferro-
magnet via the exchange coupling. Although the SHE and 
Rashba effects are dominant in conventional ferromagnet/
heavy metal heterostructures, these two are not the only ori-
gin of SOT. The other effects, such as the quantum spin-Hall 
effect [24] in topological insulators, which could also gener-
ate SOT, are still under intensive investigation.

In addition to applying the spin torques to manipulate 
magnetizations, the magnetic anisotropy of the magnets can 
be changed and, therefore, control the magnetization align-
ment. This effect is the voltage-control magnetic anisotropy 
(VCMA) [25] that plays an important role in the stochastic 
MTJ. The VCMA-MTJ is important in the computing para-
digms which require stochasticity, and this will be discussed 
in detail later.

Besides, an essential element in spintronic technology in 
the last two decades is the MTJ. The resistance of an MTJ 
depends on the relative orientation of the magnetizations 
in the pinned layer (i.e., reference layer) and the free layer. 
The discovery of the tunneling magnetoresistance (TMR) 
effect [26] is one of the milestones for integrating spin-based 
devices with CMOS technology. Specifically, TMR gives 
a very large magnetoresistance ratio so that it can provide 
enough signal strength to the CMOS sense amplifier [27].

2.2  Applications

2.2.1  Neuromorphic computing

Compared to conventional computing technology, one of the 
strategies for processing data more efficiently and energy-
conserving is to emulate the brain. The brain consists of 
the following two elementary units: synapses, and neurons. 
Synapses operate as connectors of neurons, while neurons 
interconnected by synapses receive signals from other neu-
rons and emit spikes to the subsequent neurons if activated. 
Inspired by the functionality of the brain, neuromorphic 
computing is being intensively developed and has exhib-
ited outstanding performance for computational tasks such 

as classification, recognition, and prediction. Hence, at the 
device level, designing artificial synapses and neurons for 
high-performance neuromorphic computing is of foremost 
importance. In this part, we will explain the MTJ-based syn-
apse and neuron in the aspects of device features, design 
principles, and recent works.

2.2.1.1 Artificial synapses based on MTJ Selecting the type 
of neural network is dependent on the specified applications. 
To be specific, the non-SNN are much more computation-
ally driven, while SNN is proposed to explicitly reproduce 
biological behavior such as STDP. The selected neural net-
work model defines the behavior of the synapse. Therefore, 
the artificial synapse could be classified into synapse for 
non-SNN and synapse for SNN.

For the non-SNNs, the synapses could be regarded as 
an unstable memory device that does not require a 10-year 
retention time. These synapses for non-SNN are required 
to 1) represent the strength of the connection (encoding to 
different weights) between the connected neurons, 2) update 
the weights according to the output of connected neurons to 
realize the learning process or plasticity-like properties, and 
3) keep the connection strength within one iteration (short-
term memory functionality). On the other hand, the synapses 
for SNNs are attempted to emulate biological behavior in a 
further precise way. One of the popular inclusions for more 
complex synapse properties is the STDP mechanism, which 
requires the connection strength to change over time.

Generally, memory devices can be used as the artificial 
synapse because they can memorize and be repetitively 
rewritten. So far, many works apply memory devices to syn-
apses in both non-SNNs and SNNs. For example, floating-
gate transistors are used as analog memory cells for syn-
aptic weights storage [28], [29], while conductive-bridging 
RAM changes the connection strength via electrochemical 
properties [30]. Likewise, memristors based on ferroelectric 
materials [31], [32] and phase change memory [33] have 
been applied in the hardware of synaptic systems due to 
their plasticity-like and especially the STDP-like behavior.

Spintronic devices, additionally, have been considered 
as a competitive candidate for the hardware implementa-
tion of synapses. Spintronic devices can be non-volatile 
and allow for a variety of tunable spin dynamics such as 
intrinsic stochastic switching, the dynamics of domain wall 
(DW), and so on. These various spin dynamics could emu-
late synapses with different behaviors. For instance, because 
uniform and continuous variation of synaptic weights are 
required to guarantee the accuracy of the training [6, 34], 
linear synaptic behavior is desired in non-SNNs that exploit 
supervised learning such as the backpropagation (BP) 
learning rule. Memristor-like behavior that the synaptic 
weights that depend on both input amplitude and duration 
time is required for the SNNs with unsupervised learning, 



Unconventional computing based on magnetic tunnel junction  

1 3

Page 5 of 48 236

especially for STDP learning rules [35], [36]. Spintronic 
devices could emulate the synaptic behavior for both non-
SNNs and SNNs. The spintronic devices not only keep the 
merits of fast operation speed which outperform conduc-
tive-bridging RAM, phase change memory, and some of 
the non-spin-based memristors but also are energy-efficient 
compared to volatile floating-gate transistors.

Due to exhaustive back-and-forth memory-processor 
operations and inevitable leakage current, the early artifi-
cial synapse based on a group of transistors requires inten-
sive energy [37]. The power consumption can be reduced by 
introducing non-volatile memory units into CMOS circuits. 
Compared to pure CMOS circuits, the proposed CMOS/
MTJ-hybrid structures [38], [39] exhibit reduced energy 
consumption and computational latency when performing 
the classification and recognition tasks. Nevertheless, in 
such CMOS/MTJ-hybrid structures, the MTJs just func-
tion as associative memories to store the synaptic weights 
of hardware, which would not fully exploit the versatility 
of MTJs.

For the MTJ-based synapse, however, one of the key 
issues is how to use the binary MTJ to mimic the analog syn-
apse, which would realize a gradual or semi-gradual change 
of synaptic weight and thus achieve high computational 
accuracy. There are mainly two strategies to represent the 
strength of the connection as follows: 1) gradually changed 
the probability of the binary switch (bistate), and 2) gradu-
ally changed states (multi-state).

At the very beginning, the binary MTJ is designed to 
be thermally stable to target 10-year information preserva-
tion by designing the high energy barrier between the dif-
ferent states. As a result, the energy consumption required 
to switch nonvolatile MTJ is relatively high, typically 100 
fJ [40], as compared with 23 fJ per synaptic event [41]. 
Subsequently, if the circuit requires frequent changes in the 
stored information to realize rapid updates for the synaptic 
weights, the MTJs are not energy-efficient [42], [43]. Addi-
tionally, MTJs are required to have a minimum variation, 
which requires severe constraints on nanofabrication. When 
the energy barrier between the two states is comparable to 
thermal energy, changing the state of the MTJ requires less 
power but introduces much noise. For the paradigm of neu-
romorphic computing, on the other hand, the neural net-
works are tolerant to and even could harness noise, vari-
ability, and stochasticity for the computation [44].

Furthermore, in binary MTJs, the resistance cannot evolve 
gradually, but the probability of an MTJ switching during 
a voltage pulse can be tuned gradually by the amplitude 
and duration of the pulse. Using the bistate synapses makes 
learning slower but offers the network increased memory 
stability. Furthermore, given that spin-transfer-torque mag-
neto-resistive random-access memory (STT-MRAM) has 

been intensively developed in both the academic and indus-
trial world, the neuromorphic chips composed of spintronic 
devices would tend to start from STT-MTJ with binary 
switch behavior. STT-MTJs could comprehensively emu-
late the functionality of biological synapses because of their 
intrinsic stochastic switching behavior [45].

Based on this principle, Vincent et al. [46] designed an 
artificial synapse based on a single STT-MTJ. By encoding 
the binary states of the STT-MTJ to the two weights repre-
senting light and dark, as shown in Fig. 3(a), the artificial 
neural network composed of such STT-MTJ artificial syn-
apse is capable of unsupervised learning. When an input 
neuron spikes, a brief read pulse is applied to the crossbar 
and currents will reach the different output neurons simul-
taneously. Then, by design choice, only the inputs coming 
from the P synapses are integrated by the output neurons. 
When an output neuron spikes, other output neurons will be 
inhibited and their internal variable is reset to zero. The syn-
apses in the crossbar architecture successfully counted cars 
via recognizing the change of brightness in lanes, which is 
showed in Fig. 3(b). Due to the inherently stochastic switch-
ing, only two STT-MTJs switch states are enough for the 
presented example.

To further improve the performance of the STT-MTJ as a 
synapse, Locatelli et al. [47] reported strategies to effectively 
control the bit error rate by modulating the programming 
pulse amplitude or duration. Conversely, it is challenging for 
a synapse based on a single binary MTJ to handle complex 
computation tasks. Thus, the analog behavior of an artifi-
cial synapse is desired, resulting that such a synapse could 
exhibit multiple distinguished states corresponding to multi-
ple discrete weights. To realize the analog behavior, embed-
ding such binary-state STT-MTJ to crossbar frameworks has 
been proposed. Fig.  4(a), (b) shows that the optimized STT-
MTJ crossbar synapse with multi-state is constructed by 
stacking several binary-state STT-MTJs [48] or connecting 
in the 2D architecture [49], named compound magnetoresis-
tive synapse (CMS), respectively. The CMSs are offered an 
analog-like weight spectrum that results from different states 
of the individual MTJs leading to a gradual conductance 
modulation. CMSs are advantageous for number recognition 
tasks with high tolerance to fault and variation, nevertheless 
at the cost of device number and integration area. To solve 
this problem, Zhang et al. [49] proposed a 3D crossbar struc-
ture, that each MTJ is sandwiched by the vertical electrodes 
and the horizontal electrodes. The two vertical electrodes 
and the two horizontal electrodes are connected to the post-
neurons and the pre-neurons, respectively.

Compared to STT-MTJs, in principle, SOT-MTJs are 
expected to perform better in terms of energy consumption, 
speed, and endurance [50]. Srinivasan et al. [51] demon-
strated a SOT-MTJ which is a building block of the proposed 
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all-spin SNN which is highly energy-efficient. The synapse 
based on the SOT-MTJ consumes less than 36 fJ per spiking 
event. It is also helpful for realizing the stochastic-STDP 
learning algorithm. The CMS based on the SOT-MTJs has 
also been reported. Such CMS with analog-like behavior 
can handle more complex computation tasks with high 
accuracy while keeping the power consumption low [52]. 
Alternatively, as shown in Fig. 5(a), Ghanatian et al. [53] 
created multiple states by putting multiple SOT-MTJs on 
a shared heavy metal layer but with different cross-section 
areas. Although the SOT-MTJ-based synapses have been 
proposed with progressive significance, the challenge of 
scaling is unavoidable. Therefore, developing an artificial 
synapse based on a single MTJ with multi-state would be 
desirable for reducing the area.

The multi-state synapses are especially desired for SNN, 
which requires the connection strength to evolve con-
tinuously depending on the past activity of the connected 
neurons. The property is plasticity, which allows neural 
networks to learn and reconfigure. Magnetic devices are par-
ticularly well adapted for implementing plasticity [54] due to 
their memory effects and tunability. Embedding a magnetic 
DW in the MTJ structure can be used to implement synaptic 
plasticity. Such memristive behavior has been demonstrated 
in MTJ with more than 15 intermediate resistance states 
[55]. Furthermore, it has also been shown that similar con-
tinuous magnetization variations can be triggered by SOT 

in a magnetic stripe on top of an antiferromagnetic layer 
[56]. Memristive-like features can then be obtained by fab-
ricating a tunnel junction on top of the bilayer stripe. These 
spintronic memristors could be used as multi-state synapses, 
similar to many strategies proposed for other memristive 
technologies [57], [58]. Moreover, Wang et al. [59] proposed 
a compact model of a synapse based on current-induced 
DW motion MTJ (CIDWM-MTJ), driven by the SOT, the 
CIDWM-MTJ exhibited reduced threshold current and a 
faster DW motion of 400 m/s compared to CIDWM-MTJ 
driven by the STT [60]. Cooperated with a peripheral cir-
cuit, the CIDWM-MTJ with low power consumption and 
high speed would be promising for high-performance SNN 
applications [61]. Besides, Siddiqui et al. [62] designed a 
linear synapse shown in Fig. 5(b) based on nine MTJs with a 
shared free layer to realize multilevel linear synaptic weight 
generation, which would be favorable for DNN applications. 
Lourembam et al. [63] reported a strategy for formatting 
and stabilizing metastable magnetic domains by the voltage 
pulse in the MTJ, combining binary switch and spin textures 
to achieve the four-state synapse by using only a single MTJ 
shown in Fig. 5(c). The MTJ was fabricated without any of 
the domain-wall pinning methods and, therefore, can alter-
natively realize metastable multi-domain states. Hong et al. 
[64] demonstrated a dual-domain-and-dual domain MTJ to 
realize the eight-state synapse.

Fig. 3  The ANN is composed of binary STT-MTJs that function as 
synapses. a Schematic of the crossbar architecture. Read operation 
occurs when an input neuron spikes and STDP (write) operation 
occurs when an output neuron spikes. Waveforms (1) and (2) are 

applied concurrently. b The final state of the MTJs is organized as the 
input pixels in the image. White is P, black is AP state. Every sub-
image represents one output neuron. The figures are adapted from 
Ref. [46] with the authors’ permission
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2.2.1.2 Artificial neurons based on MTJ The typical behav-
ior of a neuron is to accumulate charge when the neuron’s 
membrane potential changes. The neuron would generate a 
spike when its membrane potential reaches a threshold.

McCulloch-Pitts Neuron model [65] is used in most 
ANNs. For this model, the output of neuron j is governed 
by the following equation:

(1)yi = f

(

N
∑

i=0

wijxi

)

where yj is the output value, f is an activation function, 
N is the number of inputs into neuron j, wi,j is the weight 
of the synapse from neuron i to neuron j, and xi is the 
output value of neuron i. In this neuron model, firstly, the 
neuron would integrate the weighted outputs of the pre-
neurons through synapses. Next, this linearly combined 
integration is processed by the activation function of the 
neuron and then emits output to the next neuron. The 
activation function plays a key role in data processing. 
Choosing the activation function is heavily dependent on 

Fig. 4  The crossbar structure 
based on MTJ-array synapse for 
realizing multi-level weights. 
a multi-state synapse using 
several binary-state stacked 
STT-MTJs. The figures are 
adapted from Ref. [48] with 
the authors’ permission. b 
STT-MTJ crossbar synapse con-
nected in parallel

Fig. 5  The MTJ-based synapse for realizing multi-level weights. a 
SOT-MTJs on a shared heavy metal layer but with different cross-sec-
tion areas. b MTJs with a shared free layer. c A single MTJ combin-

ing binary switch and spin textures to achieve the four-state synapse. 
The figures are adapted from Ref. [53, 62], and [63] with the authors’ 
permission, respectively
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the particular neural networks and the different activation 
functions can be realized by the behaviors of the devices.

For artificial neurons applied in non-SNN, there are a 
variety of implementations of the traditional McCulloch-
Pitts neuron model. The perceptron composed of CMOS 
[66], which implements a simple thresholding function, is 
commonly used in hardware implementation. As shown 
in Fig. 6(a), the simplest activation function is the step 
function [41], and the neuron hardware for this activa-
tion function requires less area utilization and would not 
be computationally intensive. However, the mainstream 
learning algorithms such as the BP algorithm are gradi-
ent-based. As the step function is not differentiable and 
not suitable for this algorithm, the other hardware-based 
activation functions, including the ramp-saturation func-
tion [67], linear [68], and piecewise linear [69] functions 
shown in Fig. 6(b), (c), have been implemented to match 
the gradient-based learning algorithm. As the complexity 
of the activation function is increased, i.e., from linear to 
nonlinear function, the overall accuracy of the learning 
process is increased, in that nonlinear activation functions, 
shown in Fig. 6(d) such as the basic sigmoid function [70] 
and the hyperbolic tangent function [71], gives derivatives 
with continuous variation offering a high resolution for the 
gradient-based learning algorithm.

Nonlinear activation functions, unfortunately, would 
cause complexity in computation and hardware implemen-
tation, The MTJ-based neuron could alleviate this challenge 
due to its nonlinear dynamics. For example, the motion of 
DWs could realize neural-like integration and thresholding. 
Besides, thresholding can be achieved by using a stand-
ard MTJ, which switches only if the amount of current it 

receives is above the critical current. The neurons together 
with the activation functions mentioned above are mainly for 
the non-SNN which is computationally intensive, and when 
the neurons are activated, they would not necessarily return 
to their initial states.

On the other hand, for artificial neurons applied in SNN, 
the behavior of fire means that when the neurons are acti-
vated, they would emit spikes and then back to their initial 
state spontaneously. A simple set of spiking neuron models 
belongs to the integrate-and-fire family, which is a set of 
models that vary in complexity from relatively simple (the 
basic integrate-and-fire) to those approaching complexity 
levels near that of the Izhikevich model [72] and other more 
complex biologically-inspired models. In general, the neu-
ron models where action potentials are described as events 
are called “integrate-and-fire” models. Integrate-and-fire 
models have two separate components that are necessary 
to define their dynamics: 1) an equation that describes the 
evolution of the membrane potential, and 2) a mechanism 
to generate spikes. Although the “integrate-and-fire” models 
are still less biologically realistic but produce enough com-
plexity in behavior to be useful in spiking neural systems. 
The simplest integrate-and-fire model maintains the current 
charge level of the neuron. Furthermore, there is a leaky 
integrate-and-fire (LIF) [73] implementation that expands 
the simplest implementation by introducing a leak term to 
the model, which leads to the potential for a neuron to decay 
over time. The LIF models use the following two ingredi-
ents: 1) a linear differential equation to describe the evolu-
tion of the membrane potential, and 2) a threshold for spike 
firing. It is one of the most popular models used in neuro-
morphic systems. Spin-torque nano-oscillators are specific 
types of MTJ, and the oscillation amplitudes have memory 
due to finite magnetization relaxation, which can imitate 
the leaky integration of neurons [74], [75]. Moreover, the 
next level of complexity of the neuron model is the general 
nonlinear integrate-and-fire method, including the quadratic 
integrate-and-fire model that is used in some neuromorphic 
systems [76]. These have also been used in neuromorphic 
systems. Nonetheless, the models aforementioned make use 
of the fact that neuronal action potentials of a given neuron 
always have roughly the same form, and no attempt is made 
to describe the shape of an action potential. If the shape 
of an action potential is always the same, the shape can-
not be used to transmit information, i.e., rather information 
is contained in the presence or absence of a spike. As a 
result, action potentials are reduced to events that happen 
at a precise moment in time. Alternatively, another level of 
complexity is added with the adaptive exponential integrate-
and-fire model [77].

In addition to the previous analog-style spiking neuron 
models, there are also implementations of digital spiking 
neuron models. The dynamics in a digital spiking neuron 

Fig. 6  Plots of activation functions for neurons. a Step function. b 
Ramp-saturation function. c Piecewise linear function. d Nonlinear 
activation function
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model are usually governed by a cellular automaton, rather 
than a set of nonlinear or linear differential equations. A 
hybrid analog/digital implementation has been created for 
neuromorphic implementations [78], as well as implementa-
tions of resonate-and-fire [79] and rotate-and-fire [80] digital 
spiking neurons. A generalized asynchronous digital spiking 
model has been created to enable the exhibition of nonlin-
ear response characteristics [81]. Digital spiking neurons 
have also been utilized in pulse-coupled networks [82], and 
a neuron for a random neural network has been exploited in 
hardware [83].

2.2.2  Stochastic computing

Conventional computing is based on the binary representa-
tion of information in terms of “0” and “1”, as known as 
“bits”. These bits of information are processed and stored 
by stable deterministic devices like the MOSFETs or MTJs 
with stable magnets having energetic barriers of the order 
of 40–60 times the thermal energy at room temperature. 
Probabilistic spin logic (PSL) is a new paradigm of com-
puting [84] that relies on probabilistic bits (p-bits for short) 
that fluctuate randomly between 0 and 1, with probabilities 
that can be tuned by an input. Besides, exploiting physics 
properties to do computation has become increasingly attrac-
tive in recent years, because such computation can naturally 
converge, which is governed by the physical laws instead of 
complex algorithms. In the field of physics-inspired com-
puting, stochastic computing has gained significant interest 
due to its excellent performance in solving non-determinis-
tic polynomial (NP)-hard problems. The unit of stochastic 
computing is p-bit which is realized by several devices with 
non-deterministic behavior. In this part, we will illustrate 
the device features, design principles, and recent works of 
the MTJ-based p-bits.

2.2.2.1 P‑bit based on  MTJ Compared to the traditional 
deterministic von Neumann approach, stochastic computing 
would endow improved efficiency for solving computation-
ally hard problems such as the COP [85] and factorization 
[17]. For stochastic computing, a large number of independ-
ent sources of the stochastic signal are needed, in that they 
are often based on Markov chain Monte Carlo techniques 
such as Gibbs sampling [86]. Therefore, energy-efficient, 
high-density hardware for generating true-random noise 
sources is of significance.

P-bits are evolved from random number generators 
(RNGs) and the key feature of the p-bits is the tunability of 
the probability for their outputs, i.e., concerning the inputs, 
the outputs of hardware that function as a p-bit should obey 
a specific probability distribution, generally, the sigmoidal-
like probability distribution. The ideal p-bit behavior is 
described by the following two equations:

where Eq. (2) represents the state of the ith p-bit (given 
by mi) as a function of its input Ii. “r” is a random number 
with a uniform distribution between – 1 and 1, that captures 
the stochastic aspect of the output. Equation (3) provides 
the expression for the input Ii in terms of the connection 
strengths Jij of other p-bits in the network to the ith p-bit and 
the local bias hi. This is analogous to the concept of a Binary 
stochastic neuron (BSN) used in the field of stochastic neural 
networks [12].

MTJs have been integrated into CMOS technologies for 
memory applications, and they are engineered to have sta-
ble magnetic states. However, MTJs could become naturally 
fluctuating if choosing proper materials or geometry, result-
ing in such MTJs being one of the natural candidates for 
p-bit hardware. Evaluating the speed of such fluctuation is 
essential because it relates to the speed of computation in 
a stochastic computing scheme [87]. Stochastic fluctuation 
has been reported in superparamagnetic MTJs [17, 88], [89] 
with low uniaxial anisotropy and energy barriers, operating 
in the millisecond time regime. For the superparamagnetic 
MTJs, the fluctuation rate follows an Arrhenius-like rela-
tion [90]:

where the magnetization of a uniaxial anisotropy nano-
magnet has two stable directions along its anisotropy axis: 
“Up” and “Down” for nomination. The two states are sepa-
rated by an energy barrier, EB, which stabilizes the magneti-
zation in one of the states. τ0 is called the attempt time, a 
material-dependent parameter of the nanomagnet. An expo-
nential increase in fluctuation speed is expected upon reduc-
ing the energy barrier EB, with a frequency scale set approxi-
mately by the attempt frequency of 1/τo ∝ αγHk, where α is 
the Gilbert damping coefficient, Hk is the anisotropy field, 
and γ is the gyro-magnetic ratio. However, because both 
energy barrier EB = mHk/2 where m is the total moment of 
the macro-spin, and attempt frequency 1/τo reduce with the 
decreasing of Hk, the fluctuation speed of superparamagnetic 
MTJs is largely limited.

A potential approach to increase the fluctuation speed, 
consequently, is to exploit easy-plane anisotropy that can 
allow magnetic fluctuation confined in the plane and mean-
while keep high-speed fluctuation dynamics [91]. In the 
works [92], the energy barrier is determined by the shape 
of the MTJ. A low relative energy barrier could be achieved 
by constructing a circular in-plane junction. The attempt 
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frequency for this magnetization configuration is then 
related to the free layer’s easy-plane anisotropy field, which 
can be remarkably higher than the easy-axis anisotropy field 
Hk, thus endowing a faster fluctuation speed. Furthermore, 
nanosecond fluctuation in the in-plane MTJs [93]-[94] has 
been achieved by investigating the mechanism for control-
ling relaxation time.

Introducing the VCMA effect to the MTJs is another strat-
egy for achieving fast fluctuation speed. By applying voltage 
pulses, the magnetic anisotropy of the free layer would be 
switched between the in-plane and out-of-plane directions 
together with the thermal noise, achieving the random fluc-
tuation of the magnetization without reducing the energy 
barrier. The VCMA-MTJs [95], [96] with stochasticity have 
been applied as not only true random number generators 
(TRNGs) but also p-bits the output probability could be 
tuned by the amplitude and the enduring time of the voltage 
pulses.

Besides the stochastic binary-switching MTJs, spin torque 
nano-oscillator (STNO) could also be operated as hardware 
of p-bit, exploiting intrinsic frequency fluctuation caused by 
thermal noise [97]. Cooperated by a peripheral circuit, the 
digital p-bit based on STNO would be able to act as a p-bit 
array by time division multiplexing, which overcomes the 
limitation of calibration and coupling connections encoun-
tered by synchronous p-bit arrays. More details of the appli-
cations of MTJs to stochastic computations will be discussed 
in Sect. 4.

3  Neuromorphic computing

In the previous section, MTJ-based artificial synapses and 
neurons were introduced. Facing the challenge of the Von 
Neumann bottleneck and the decline of Moore's Law [98], 
more efficient neuromorphic computing emerges as the 
times require, which is inspired by the human brain and can 
process and store the data simultaneously. Spintronic devices 
provide a feasible approach to building neuromorphic com-
puting systems, due to their intrinsic dynamics being akin 
to biological synapses and neurons. Additionally, their low 
energy consumption, non-volatility, high speed, and poten-
tial for pure spin current transport make them one of the 
most promising candidates [99], [100].

Inspired by the human brain, ANN was created to 
mimic the functionality of the human brain to store and 
process information. Similar to the human brain, ANNs 
also consist of many synapses and neurons. As mentioned 
in Sect. 2.1, synapses and neurons are the fundamental 
building blocks of the brain. Among them, synapses are 
related to the formation of memory, while neurons are 
related to the information processing [101].

In the nervous system of the human brain, each 
synapse is a specialized junction with two neurons, 
which allows a neuron to transmit electrical or chemi-
cal signals to another neuron, as shown in Fig. 7(a). 
The information is transformed from the axon of the 
pre-neuron to the dendrite of the post-neuron through 
a synapse. In conventional ANN, there are generally 
two types of synapses: one requires multilevel memory, 
while another one relies on stochastic binary memory 
devices. As we have mentioned, one compact MTJ is 
sufficient to imitate the functionalities of the biologi-
cal synapse.

Neurons play an essential role in producing and trans-
mitting action potentials in neural networks. Their func-
tionalities are intricate and plenteous [88]. However, in the 
conventional ANN, an artificial neuron is a mathematical 
function based on a model of biological neurons. Each 
neuron takes inputs, weighs them separately, sums them 
up, and passes this sum through a nonlinear function to 
produce output, where the nonlinear activation func-
tions are extracted from the complex neural mechanisms 
[101]. The same as artificial synapses, MTJs exhibit great 
potential for mimicking artificial neurons. According to 
the characteristics of MTJ switching, the neuron models 
can be distinguished into two categories: deterministic and 
stochastic neurons [47].

The content for this section is organized as follows: 
First, the development and recent progress of neuromor-
phic computing are reviewed, including the MTJ-based 
single perceptron, multi-layered perceptron, conventional 
neural network, and recurrent neural network. The encod-
ing approaches and learning methods are highlighted. The 
last part concludes the topic and envisions the challenge 
and prospects.

3.1  Artificial neural networks

In this part, several different neural networks are introduced, 
including MLP, CNN, RNN, and oscillator neural networks. 
From multi-layered perceptron to CNN, by increasing the 
number of layers or changing the network architecture, it is 
possible to build and perform tasks such as image recogni-
tion with a large number of neurons and synapses based 
on MTJs. In addition, RNNs and oscillator neural networks 
show potential for time-domain signal processing. ANN 
based on magnetic nano-oscillator and RNN will be dis-
cussed separately.

3.1.1  The perceptron based on MTJ

The development of neural networks has mainly gone 
through three periods: The first generation is a perceptron 
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capable of binary operations. The second generation is an 
MLP and CNN with hidden layers, and the third generation 
is the event-driven SNN.

The concept of perceptron has a landmark effect on the 
development of the neural network. The single-layer percep-
tron model was proposed by Frank Rosenblatt in 1958 [102]. 
A perceptron is implemented as a binary classifier, which 

Fig. 7  a Schematic of biological neuron and synapse. b Diagram of 
perceptron with its weights, input function, activation function, and 
output. c Architecture of MTJ-based MLP for recognizing the hand-

written digit. d The neuron model based on MTJ used in (c). The fig-
ures are adapted from Ref. [110] with the authors’ permission
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decides whether an input belongs to a specific class. As 
shown in Fig. 7(b), a perceptron consists of four main parts 
including input values, weights, net sum, and an activation 
function. During the learning process, the input values are 
multiplied by their weights. Additionally, all of these multi-
plied values are added together to create the weighted sum. 
The weighted sum is, after that, applied to the activation 
function, producing the perceptron's output, and only when 
the weighted sum exceeds a certain threshold, the neuron 
is activated. To ensure the output is mapped between (0, 1) 
or (− 1,1), the step function is chosen to be the activation 
function. In addition to the step function, the activation func-
tion also includes the sigmoid function ( f (x) = 1∕(1 + e−x) ) 
[103], the ReLU function ( ReLU(x) = max(0, x) ) [104], the 
tanh ( tanh(x) = (1 − e−2x)∕(1 + e−2x) ) [105], and so on. 
Since the step function is not differentiable at x = 0, which 
makes it unusable for BP. The sigmoid function is the most 
widely used class of activation functions, with an exponen-
tial shape, which is the closest to a neuron in the physical 
sense. The output range of the sigmoid is (0, 1), which has 
good properties and can be represented as probability or 
used for input normalization. However, sigmoid also has 
its own shortcomings. The first point, the most obvious, is 
saturation. Specifically, in the process of BP, the gradient of 
the sigmoid will contain a factor, once the input falls into 
the saturation region at both ends, the factor will become 
close to 0, resulting in the gradient becoming very small 
in BP. At the same time, the network parameters may not 
even be updated, making it difficult to train effectively. This 
phenomenon is called gradient disappearance. The sigmoid 
network will produce gradient disappearance within 5 layers. 
The second point is the offset phenomenon of the activation 
function. The output values of the sigmoid function are all 
greater than 0 so that the output is not the mean value of 0, 
which will cause the neurons in the latter layer to get the 
non-zero mean signal of the previous layer as input. To over-
come this problem, the tanh function is proposed. Compared 
to the sigmoid function, its mean of output is 0, making it 
converge faster than the sigmoid and reducing the number 
of iterative updates. However, like sigmoid, the gradient will 
vanish. The ReLU function is proposed to solve the satura-
tion of sigmoid and tanh. When x > 0, there is no saturation 
problem. Consequently, ReLU can keep the gradient from 
decaying when x > 0, thereby alleviating the problem of gra-
dient disappearance.

3.1.2  Multi‑layered perceptron and convolutional neural 
network

Nevertheless, the perceptron has only the output layer neu-
rons for activation function processing, that is, only one layer 
of functional neurons, which limits its learning ability. In 
1969, Minsky and Papert [106] proposed that the perceptron 

can only solve linearly separable problems, that is, if there is 
a plane that can separate the two types of modes, the learn-
ing process of the perceptron will definitely converge. Nev-
ertheless, for nonlinear separable problems, the perceptron 
learning process will have fluctuations and cannot obtain 
a suitable solution, which makes the perceptron unable to 
solve even simple nonlinear separable problems such as 
XOR. After a downturn for the first generation of AI, multi-
ple layers of functional neurons are considered. This led to 
the concept of MLP [107] [108], [109], also known as the 
neural networks (NN), in the 1980s. Unlike the single per-
ceptron, MLP has multiple hidden layers, and it is capable 
of solving both linearly and nonlinearly separable problems.

Figure 7(c) shows an MLP built by voltage-controlled 
stochastic MTJs [110]. The structure of the stochastic neuron 
model is an MTJ, which consists of CoFeB/MgO/CoFeB lay-
ers, as shown in Fig. 7(d). Its stochastic switching behavior 
is attributable to the VCMA effect by altering bias voltages. 
The electric bias changes the switching probability between 
the stable parallel (P) and antiparallel (AP) states, which 
can be probed readily by measuring the time average of the 
resistance or voltage across the MTJ. More importantly, the 
switching probability curves under various external current 
densities resemble a commonly used activation function, the 
sigmoid function. The MLP composed of MTJs has trained 
to recognize the handwritten digits from the MNIST dataset 
with about 95% accuracy.

As the problems that need to be solved become more 
complex, more hidden layers will be needed, such as speech 
recognition often requiring 4 layers. However, it is also com-
mon for image recognition problems to require 20 layers, 
leading to the number of trainable parameters increasing 
dramatically. For example, assuming that the input picture 
is a 1 K × 1 K picture, the implicit layer has 1 M nodes, and 
there will be  1012 weights that need to be adjusted, which 
will easily lead to overfitting and local optimal solution 
problems. In this case, the learning efficiency of MLP is 
limited, therefore, the concept of DNN is proposed [111], 
and new architectures start to be used to improve computa-
tional efficiency. Typical representatives of new architec-
tures include the CNN and the RNN, which are widely used 
neural network architectures nowadays.

As shown in Fig. 8(a), CNN [7, 112], [113] is widely 
used in image recognition, and its architecture includes 
different types of layers, including the convolutional lay-
ers, max pooling layers, and fully connected layers. The 
convolutional layer is used to find features. The features 
of the image can be extracted through the convolution 
operation so that some features of the original signal can 
be enhanced, and the noise can be reduced. The pool-
ing layer is used to reduce the amount of data processing 
while retaining useful information. Sampling will neglect 
the specific position of a feature, because after a certain 
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Fig. 8  a The architecture of CNN for image recognition. b The archi-
tecture of STT-computing in memory which implements the con-
ventional operation. c XNOR-Net topology with STT-computing in 

memory as conventional layers. d The accelerator for BCNN and the 
main compute flow for convolutional layers of BCNN. The figures are 
adapted from Ref. [114], with the authors’ permission
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feature is found, its position is no longer important, and 
only the relative position of this feature and other features 
is necessary. At last, the fully connected layer is used to 
make classification judgments.

The input layer reads in a simple regularized image. The 
units in each layer take as input a set of small local neighbors 
in the previous layer. Through the local perception field, neu-
rons can extract some basic visual features, such as directed 
edges, end-points, corners, and so on. These features are 
then used by higher-level neurons, and basic feature extrac-
tors that apply to a part also tend to apply to the entire image. 
By using this feature, CNN uses a group of units distributed 
in different positions of the image but with the same weight 
vector to obtain the features of the image and form a feature 
map. At each location, the units from different feature maps 
get their own types of features. Different units in a feature 
map are restricted to perform the same operation on local 
data at various locations in the input map. This operation is 
equivalent to convolving the input image with a small ker-
nel. A convolutional layer usually contains multiple feature 
maps with different weight vectors, so that multiple different 
features can be obtained at the same location. Once a feature 
is detected, its absolute position in the image becomes less 
important as long as its relative position with respect to other 
features has not changed. Therefore, each convolutional layer 
is followed by a pooling layer. The pooling layer performs 
local averaging and down-sampling operations, reducing the 
resolution of the feature map and reducing the sensitivity of 
the network output to displacement and deformation. The 
role of the fully connected layer is mainly for classification. 
The features obtained through the convolution and pooling 
layers above are classified at the fully connected layer. The 
fully connected layer is a fully connected neural network. 
The proportion of feedback from each neuron is different. 
Finally, the classification results are obtained by adjusting 
the weights and the network.

In the overall system architecture, one CNN subarray 
output could relate to a long interconnect and amplifier to 
one or more inputs of another CNN subarray. Connections 
between CNN subarrays are programmed with multiplexers. 
Direct connections between layers speed up deep CNNs. 
CNN makes full use of the local information in the image. 
There are inherent local patterns in images (such as con-
tours, boundaries, human eyes, noses, mouths, etc.) that can 
be exploited, and it is clear that the concepts in image pro-
cessing should be combined with neural network techniques. 
For CNNs, not all neurons can be directly connected, but 
through the “convolutional kernel” as a mediation. The same 
convolutional kernel is shared within all images, and the 
image retains its original positional relationship after the 
convolution operation.

MTJs have been widely used to build CNNs [114–116]. 
Pan et  al. [114] proposed a multilevel cell-based 

STT-MRAM computing in-memory accelerator for a binary 
convolutional neural network (BCNN). Fig. 8(b) shows the 
architecture of STT-computing in memory used in this 
paper. The modified sensing circuit is designed for logic 
and full-addition operation. In the meanwhile, the mode 
controller decides the exact working mode. In this archi-
tecture, one cell is composed of two MTJs and two bits are 
stored in one cell. The addition operation of the two bits 
is implemented within the unit, which reduces the number 
of required transistors and reduces the power consumption. 
Fig. 8(c) shows the XNOR-Net topology and XNF-Net is 
used as the fully connected layer. The convolution operation 
can be implemented by the above-mentioned STT-comput-
ing in memory. As shown in Fig. 8(d), first, the process of 
input preprocessing is performed, i.e., batch normalization 
and binarization of the input, corresponding to the path of 
the blue arrow (input data flow) in Fig. 8(d). The process 
of weight preprocessing is shown by the path of the purple 
arrow (weight data flow) on the left side of Fig. 8(d), and the 
weights are binarized. The preprocessed inputs and weights 
are fed into the proposed convolutional layers. The weights 
stored in the computing in-memory array are shared, as we 
mentioned as one of the advantages of CNNs. The green and 
orange arrows in the convolutional layers represent binary 
AND operations and bit counting operations, respectively. 
The trained scale factor and convolution result are passed to 
the multiplier in the APU, and the convolution calculation is 
completed. The final pooling operation further reduces the 
number of parameters.

Above all, CNN greatly reduces the trainable param-
eters while ensuring the depth of the network. For image 
recognition applications [117, 118], CNN can efficiently 
extract image features by convolution operations and per-
form tasks such as classification or recognition. Nonethe-
less, the deepening of its layers cannot reflect the effect in 
temporal sequence and is no longer suitable for processing 
time-domain problems such as speech recognition. Facing 
this, RNNs are proposed [119], which incorporate feedback 
operations.

3.1.3  Recurrent neural network

Although the fully connected neural network can predict 
something, the input of the previous data and the input of 
the latter data are completely independent, which makes 
it impossible to deal with the data with sequence infor-
mation. In many scenarios, yet sequence information is 
indispensable. For instance, to guess what the next word 
of the text is, usually information from the front part of 
the text needs to be used, because all the content in the 
text does not exist alone. In order to solve the “current 
output of a sequence is also related to the previous output” 
problem, RNN was proposed [120], as an important branch 
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of artificial neural network. It contains a feedback mecha-
nism in the hidden layer to achieve effective processing of 
sequence data. It is also known as a feedback neural net-
work. RNNs have the powerful ability to store and process 
contextual information, and they have been widely used 
in recognition [121], natural language processing [122], 
computer vision [123] and other fields.

From the viewpoint of neuroscience, RNN aims at mim-
icking, in a reductionist scheme, how the human brain pro-
cesses information. In this context, RNN assumes that the 
neurons are embedded in a randomly connected complex 
network whose intrinsic activity is modified by external 
stimuli. The persistent neural network activity makes the 
information processing of a given stimulus occur in the 
context of the response to previous excitations. The gen-
erated network activity is projected into other cortical 
areas that interpret or classify the outputs. It was this bio-
inspired view that motivated one of the original RNN con-
cepts. The main inspiration underlying RNN is the insight 
that the brain processes information generating patterns of 
transient neuronal activity excited by input sensory signals 
[124]. Information processing using a single dynamical 
node as a complex system.

Figure 9(a) shows the network structure of RNN. Through 
the loop connection on the hidden layer, the network state 
of the previous moment can be transmitted to the current 
moment; meanwhile, the state of the current moment can 
also be transmitted to the next moment. At time t, the hid-
den unit h receives data from two aspects, i.e., the value of 
the hidden unit at the previous moment of the network ht−1, 
and the current input data xt, and the output is calculated at 
the current moment through the value of the hidden unit. 
The input xt−1 at time t − 1 can then influence the output 
at time t through a loop structure. The forward calculation 
of RNN is carried out in time series, and the parameters in 
the network are updated using the time-based BP algorithm. 
Wsh is the weight matrix from the input unit to the hidden 
unit. Whh is the connection weight matrix between hidden 
units. Why is the connection between the hidden unit and 
the output unit weight matrix. by and bh are the bias vec-
tors. The parameters required in the calculation process are 
shared. As a result, RNN can process sequence data of any 
length. The calculation of ht requires ht−1, the calculation 
of ht−1 requires ht−2, and so on. Therefore, the state at a 
certain moment in the RNN depends on all the states in the 
past. RNN can map sequence data to sequence data output. 
However, the length of the output sequence is not necessarily 

Fig. 9  a The typical diagram of RNN, and the connection to the next 
step, which is represented by the dashed line. b MTJ-based RNN for 
the Chinese character recognition. The red lines show the connections 
from every MTJ to output nodes with adjustable weights. The black 
lines show the feedback connections that transport the output signal 

to every MTJ in the RNN. c The difference between RNN and RC. d 
Schematic of a RC system using the spin dynamics in MTJs with S1 
as the pinned layer and S2 as the free layer. The figures are adapted 
from Ref. [125, 126] with the authors’ permission
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the same as the length of the input sequence. According 
to different task requirements, there will be various corre-
spondences. As shown in Fig. 9(b), an RNN consisting of 40 
MTJs is trained for the Chinese character recognition [125]. 
The black lines show the feedback connections where the 
information is transported, and the red lines are connections 
between output nodes and every MTJ.

Reservoir computing is a computing framework derived 
from the theory of recurrent neural networks. Reservoir is a 
stationary, nonlinear system with internal dynamics that map 
input signals into a higher-dimensional computational space 
[120, 126, 127]. The architectural comparison of RNN and 
RC is shown in Fig. 9(c). RNN consists of input, intermedi-
ate, and output, and the information of the intermediate layer 
recursively propagates itself. The state of the middle layer 
is determined by the current input and the state of the past 
middle layer, that is, the middle layer in RNN has a memory 
effect. All weight matrices for the input (Win), middle (W) 
and output (Wout) are trained to obtain the desired output. 
However, when the middle layer has sufficient memory 
effects and non-linearities, computation can be achieved 
only by optimizing the output matrix (Wout). This led to the 
concept of RC being proposed. The typical structure of RC 
consists of an input layer, an output layer, and a dynamic 
reservoir, as shown in the lower part of Fig. 9(c). The input 
layer feeds the input signals to the reservoir via fixed-weight 
connections which are randomly initialized. The reservoir 
maps the input signals into higher dimensions before pro-
cessing them. This requires the reservoir to be sufficiently 
complex, nonlinear, sparsely populated, self-organized in 
a certain manner and capable of short-term memory. The 
reservoir usually consists of a large number of randomly 
interconnected nonlinear nodes, constituting a recurrent 
network, that is, a network that has internal feedback loops. 
Under the influence of input signals, the network exhibits 
transient responses. These transient responses are read out at 
the output layer via a linear weighted sum of the individual 
node states. The objective of RNN is to implement a specific 
nonlinear transformation of the input signal or to classify the 
inputs. Classification involves the discrimination between a 
set of input data, for example, identifying features of images, 
voices, time series, and so on. The only part of the system 
that is trained is the output layer weights with fixed connec-
tions. As shown in Fig. 9(d), RC based on MTJs has been 
proposed [126], where the MTJs are driven by STT.

Macrospin simulation is conducted for the spin-dynamics 
in MTJs, for RC. RNN can be seen as a neural network that 
passes on time, and its depth is the length of time. As we 
have mentioned, the “gradient disappearance” phenomenon 
is about to appear again, but on the timeline. As a result, 
RNNs have the problem of not being able to solve long-term 
dependencies. In order to solve the above problems, long 

short-term memory is proposed, which realizes the memory 
function in time through switching the cell door and prevents 
the gradient from disappearing.

In addition to ordinary MTJs, STNOs [18, 74] are used 
as the building blocks of neural networks, due to their sev-
eral unique features. The structure of STNO is shown in 
Fig. 10(a). According to the principle of STT [128], the 
oscillation frequency of the STNO can be controlled by 
adjusting the input voltage [129]. In a biological neural 
network, synapses cannot be completely separated from 
neurons. the neuron-synapse relationship in STNO-based 
neural networks can better reflect this biological relation-
ship. Further, the relationship between the oscillation fre-
quency of STNO and the applied current or magnetic field 
is highly nonlinear, leading to a direct implementation of 
nonlinear activation functions. In addition, STNOs can be 
coupled by means such as direct exchange, magnetic fields, 
or currents, which gives them the potential to scale to large 
networks. As shown in Fig. 10(b), a single STNO is used 
to process the speech file using time multiplexing [130]. A 
single oscillator can simulate 400 neurons by periodically 
assigning time intervals to each neuron's state and using 
finite relaxation times to simulate coupling between neu-
rons. This RC network can achieve a recognition rate of up 
to 99.6% for MNIST TI-46 speech digits. The upper part of 
Fig. 10(c) shows a coupled STNO-based neural network for 
vowel recognition [131]. The first neural layer consists of 
two individual neurons A and B. The input is represented 
by the frequency through two microwave signals fA, and fB. 
Changing the bias currents of the STNOs can change the 
intrinsic frequencies of the oscillators. The second layer 
is composed of 4 full-connected neurons. The lower part 
of Fig. 10(c) shows the specific implementation method of 
the above network. If the i-th neuron in the second layer is 
synchronized with neuron A in the first layer, the equality 
of their frequencies simulates a strong synaptic coupling. 
On the contrary, neuron A and neuron i with independent 
dynamics and frequencies simulate weak synaptic coupling 
between them. The strength of these synapses can be tuned 
by changing the bias current of each oscillator in the second 
layer. In many applications [130–133], STNO exhibits good 
stability as well as reliability and can achieve complex func-
tions with fewer devices and higher energy efficiency.

Above all, the first-generation neural network, also known 
as the perceptron, was proposed around 1950. It has only 
two layers, the input layer and the output layer, which are 
mainly linear structures. It cannot solve linearly insepara-
ble problems, and it cannot do anything with slightly more 
complicated functions, such as the XOR operation. In order 
to solve the defects of the first-generation neural network, 
Rumelhart, Williams et al. proposed the second-generation 
neural network i.e., MLP, around 1980. Compared to the 
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first-generation neural network, the second-generation has 
multiple hidden layers, which can introduce some nonlin-
ear structures and solve the defect that the nonlinear prob-
lem could not be solved before. To conquer the problem 
of increasing the number of hidden layers and increas-
ing the parameters sharply, CNN was proposed, which 
greatly improved the computational efficiency. To solve 
the sequence correlation problem, RNNs are proposed, and 
because the neurons are continuously interconnected, the 
second-generation neural network generally supports the BP 
[134] learning method, which is another enormous improve-
ment in learning efficiency.

3.2  Spiking neural network

The neural networks mentioned above are usually fully con-
nected, receiving continuous values and outputting continu-
ous values. Although contemporary neural networks have 
achieved breakthroughs in many fields, they are biologically 
imprecise and do not essentially mimic the mechanisms of 
the human brain. Therefore, the third generation of a neural 
network, SNN, was proposed [9, 135], and uses models that 
best fit biological neuron mechanisms to perform compu-
tations and aims to bridge the gap between neuroscience 
and machine learning. Compared to the previous two gen-
erations of neural networks, SNNs are closer to biological 

neuron mechanisms. SNNs use spikes, which are discrete 
events that occur at points in time, rather than the usual 
continuous values in ANNs. Each peak is represented by a 
differential equation representing a biological process, the 
most important of which is the neuron's membrane potential. 
Essentially, once a neuron reaches a certain potential, a spike 
occurs, and neurons that subsequently reach that potential 
are reset. Furthermore, SNNs are usually sparsely connected 
and take advantage of special network topologies.

Neurons in an ANN communicate with each other using 
activations encoded with high precision and continuous val-
ues and only propagate information in the spatial domain 
(i.e., layer by layer). As can be seen from the above equa-
tions, the multiply-and-accumulate of inputs and weights is 
the main operation of the network. However, in the SNN, 
communication between spiking neurons is through binary 
events, rather than continuous activation values. The spikes 
from the previous neuron are transmitted to the dendrites 
through synapses and finally processed by soma. The equa-
tions of SNN are shown as follows,

(5)�
du(t)

dt
= −[u(t) − ur1] +

∑
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wj
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)

Fig. 10  NC with STNOs. a The structure of STNO. When a d.c. cur-
rent Idc is applied, the magnetization of FL gives an oscillating volt-
age due to the oscillating magnetoresistance. b The neuron model in 
RNN. Using time multiplexing in pre- and post-processing, a single 
STNO gives state of the art performance as a reservoir in a reservoir 
computing scheme, here recognizing the particular spoken digit as 
‘1’. c Upside: schematic of RNN for vowel recognition. Downside: 

the input is represented by the frequencies of two microwaves applied 
through a strip line to the oscillators. I1–4 represent the bias currents 
and they can manipulate the natural frequencies of 4 STNOs. These 
STNOs can be tuned so that the synchronization pattern between the 
oscillators corresponds to the desired output. The figures are adapted 
from Ref. [130, 131] with the authors’ permission
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where t represents the time step, τ is a constant, and u and 
s represent the membrane potential and output peak. ur1 and 
ur2 are the resting potential and the reset potential, respec-
tively. wj is the weight of the jth input synapse. tk

j
 is the 

moment when the kth pulse of the jth input synapse fires 
(i.e., the state is 1) within the integration time window Tw. 
K(t − tk

j
) is the kernel function representing the delay effect. 

Tw is the integration time window. uth is a threshold, which 
means whether to fire once or not.

When the membrane potential u(t) (that is, the implicit 
potential of soma) is higher than the threshold uth, the spik-
ing neuron is regarded as fired, at which time the output 
potential s(t) is set to 1, and then u(t) returns to the reset 
potential ur2. When u(t) is lower than uth, it does not fire, and 
the output remains at 0 at this time. At each time step, the 
update process of u(t) satisfies a differential equation, as 
shown above. At each time step, the value of u(t) should drop 
by a value as large as u(t)-ur1, where ur1 is the resting poten-
tial. In the meanwhile, at each time step, the value of the 
membrane potential u(t) should rise by a value, the value of 
which is related to the j input synapses of this neuron, and 
the weight of each input synapse is wj, and the contribution 
of this synapse to the rise in membrane potential 
is
∑

tk
j
∈S

Tw
j

K(t − tk
j
) , i.e., in STw

j
 pulses, if the input pulse at 

time tk
j
 is the fire state (ie, 1 state), then K(t − tk

j
) is calculated 

once and accumulated.
Unlike ANNs, SNNs use sequences of spikes to trans-

mit information, and each spiking neuron experiences rich 
dynamic behaviors [135, 136]. Specifically, in addition to 
information propagation in the spatial domain, history in 
the temporal domain also has a close influence on the cur-
rent state. As a result, neural networks typically have more 
temporal generality and lower accuracy than neural networks 
that primarily propagate through space and activate continu-
ously. Since spikes are only fired when the membrane poten-
tial exceeds a threshold, the overall spike is usually sparse. 
Furthermore, since spikes are binary, i.e., 0 or 1, if the inte-
gration time window Tw is adjusted to 1, the multiplication 
between the input and the weights can be eliminated. For the 
above reasons, SNN networks can generally achieve lower 
power consumption compared to computationally intensive 
ANN networks.

Although SNN has many advantages such as biological 
proximity, low power consumption, etc. There has long been 
a debate about the utility of SNNs as computational tools in 
AI and neuromorphic computing [137, 138], especially com-
pared to ANN. Over the past few years, these doubts have 
slowed down the development of neuromorphic computing, 

s(t) = 1, u(t) = ur2, ifu(t) ≥ uth

s(t) = 0, ifu(t) ≤ uth

and with the rapid progress of deep learning, researchers 
have tried to alleviate this problem at the root, people want 
to strengthen the SNN by means such as improving the 
training algorithm [136, 139], [139–141] to alleviate this 
problem.

3.2.1  Biological synapses based on MTJs

In general, learning in the neural network is achieved by 
adjusting synaptic weights. Traditional ANNs mainly rely on 
gradient descent-based BP algorithms [139, 142], while in 
SNN, because the function of the spiking neuron is usually 
a non-derivable differential equation, it is extremely difficult 
to implement BP in SNN. There are three mainstream ways 
of SNN implementation: The first is to convert traditional 
ANN to SNN without considering any SNN characteristics 
[143]. However, the trained network is fully converted into 
a binary spike-based network. For input, the input signal 
needs to be encoded as a pulse train. All neurons need to 
be replaced with corresponding spiking neurons, and the 
weights obtained from training need to be quantified. The 
second method is BP [144]. Although it is true that the spike 
function of the spiking neuron cannot be directly derived to 
calculate the gradient, researchers have come up with many 
methods to estimate the gradient of the changing parameters 
in the network for BP, including Spikeprop [145], Slayer, 
etc. Although these algorithms are still controversial, they 
do reduce the training complexity of SNNs to some extent. 
The third is using STDP [146]. The principle is to use STDP 
to adjust the weights, thresholds, synaptic delays, and other 
parameters of the SNN during the training process and 
obtain parameters that meet the requirements of the indica-
tors (such as classification, recognition accuracy, etc.) and 
the training process is completed. Lastly, the parameters are 
fixed and the trained SNN is obtained. Compared to the pre-
vious two approaches, STDP is closer to the actual situation 
in biology. It has been the most widely used method so far. 
Its key feature is that if presynaptic neuron activity (electri-
cal impulse release) precedes postsynaptic neuron activity, 
it will cause an increase in the strength of synaptic con-
nections. Nevertheless, if the presynaptic activity lags the 
postsynaptic activity, inhibition will result in weakening the 
synaptic connection. The effect of such temporal sequenc-
ing of presynaptic and postsynaptic activities on synaptic 
transmission has been thought to be directly related to brain 
learning and memory functions.

The learning method of biological neurons is unsuper-
vised learning. Consequently, the initial training of SNN 
is considered to be unsupervised. The Hebb rules [146] 
provide a firm theoretical basis for the direct training of 
SNNs, which state that the strength of synaptic connections 
between two neurons changes as the neuron state changes. 
Extended from Hebb's rule, the STDP mechanism [147] not 
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only is the basis for the realization of biological learning 
and memory functions but also becomes the basic training 
principle of SNN. Long-term potentiation and long-term 
depression in synaptic transmission function are shown in 
Fig. 11(a). STDP studies the relationship between the time 
interval between pre-neuron and post-neuron firing and the 
strength of the synaptic connection between the two. When 
a post-neuron excites a spike sequence, if the excitation time 
is later than the arrival time of the spike from the previous 
neuron, the synaptic connection strength between the two is 
enhanced. The smaller the time difference, the greater the 
strength and the synaptic connection. The weight value is 
closer to the long-term potentiation in the upper half of the 
ordinate; on the contrary, if the excitation time is earlier than 
the arrival time of the pulse from the previous neuron, the 
synaptic connection strength between the two will be weak-
ened. STDP can be expressed by the following equation:

where τ+ and τ- are time constants, and A+ and A- repre-
sent the maximum magnitudes of the synaptic value for the 
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different time domains of s between the arrival and firing 
of neuron pulses before and after the synapse, respectively.

Spintronic devices have great potential to realize STDP 
[51, 148, 149]. The switching probability of the MTJ con-
forms to the relationship between the time and weight of the 
STDP [10]. The most used two-terminal MTJs [150] can be 
utilized to implement STDP, following its essential physi-
cal properties. The parameters associated with the heating 
and the switching pulses are summarized in the left part of 
Fig. 11(b), a high-current pulse is used to generate heat and 
a switching pulse is applied to the MTJ after interval Δt. The 
two terminals of the MTJ are connected to pre-neurons and 
post-neurons, respectively. The relationship between switch-
ing probability and t is shown on the right side of Fig. 11(b). 
When no external stimulus is applied to both terminals of 
the MTJ, the initial voltage is 0 V. When the pre-neuron 
fires, a high-current short-duration pulse is applied to the 
MTJ. According to Joule's law, this pulse generates heat, 
which results in the rapid rise of temperature as shown in 
Fig. 11(c). Before the spike of post-neuron arrives, the tem-
perature of the MTJ will gradually decrease, after interval 
Δ t, the post-neuron fires and a low-current long-duration 
pulse is applied to the MTJ, at which point the switching 

Fig. 11  a The typical STDP curve. If the presynaptic neuron spikes 
just before the postsynaptic neuron, the synaptic weight increases, 
and if the postsynaptic neuron spikes just before the presynaptic neu-
ron, the synaptic weight decreases. b Left side: The heating pulse and 
the switching pulse applied on the MTJ and their time interval. Right 
side: The MTJ-based synapse following STDP, which is consist of 
two nanomagnets separated by a nonmagnetic spacer (MgO). The red 

curve is the switching probability of the artificial synapse as a func-
tion of pulse width. c The temperature (the red curve) response to the 
current pulse (the gray curve). The inset is the relationship of switch-
ing probability and temperature. d Experimental results of the pro-
posed MTJ and its STDP behavior wherein the switching probability 
can be adjusted by changing the input pulses. The figures are adapted 
from Ref. [150], with the authors’ permission
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probability is measured. Since the switching probability has 
a strong linear relationship with the amplitude of thermal 
fluctuations, as shown in the inset of Fig. 11(c). If the device 
temperature is assumed to be constant within t2, the final 
measured switching probability is related to Δ t, as shown 
in Fig. 11(b). The switching probability decreases with the 
increase of Δt and the curve can be seen as the first quadrant 
of the STDP behavior. In contrast, when the post neuron is 
activated first, Δt is negative and the switching probability is 
negative, which also decreases as t increases, corresponding 
to the third quadrant of STDP behavior. It is worth noting 
that the negative value of the switching probability is due to 
the different switching directions from the previous condi-
tion. Fig. 11(d) shows the final realization of imitating STDP 
behavior with MTJ, which exposes the fact that MTJ is very 
suitable for implementing STDP.

3.2.2  Biological neurons based on MTJs

Biological neural networks possess complex action poten-
tial generation dynamics and network dynamics, while the 
network dynamics of SNNs are greatly simplified. The 
membrane potential of postsynaptic neurons is modulated 
by presynaptic neurons, which generate action potentials or 
spikes when the membrane potential exceeds a threshold. 
The earliest model to describe this phenomenon was pro-
posed by Hodgkin and Huxley in 1952, namely the Hodgkin-
Huxley model [151]. Since then, many models have been 
proposed, including Izhikevich model [72], LIF [152] neu-
ron, etc. Although the Hodgkin-Huxley neuron model can 
accurately express various dynamic characteristics of bio-
logical neurons, it has too many parameters and too complex 

four-dimensional nonlinear differential equations, making it 
difficult to simulate large-scale networks. In the Izhikevich 
neuron model, when the membrane potential changes from 
the resting potential state to the fired state after being stimu-
lated, the existence of the bifurcation mechanism makes the 
neuron fired. Although the model can realize various forms 
of pulse firing, its differential equation is still nonlinear. It 
is difficult to obtain the analytical expression of the state 
variable, and only approximate numerical simulation can be 
carried out. The Integrate-and-Fire (IF) [152] neuron model 
is defined as: when the magnitude of the accumulated mem-
brane potential reaches a fixed threshold, a spike is sent to 
all neurons after the synapse. This gives the neuron model a 
higher level of abstraction. Meanwhile, the differential equa-
tion of the IF model is linear, and the LIF neuron model is a 
more simplified version that only considers leakage currents.

Figure 12(a) shows the equivalent circuit of the LIF 
neuron model [153]. The equivalent circuit shows that the 
membrane capacitance Cm and the membrane resistance Rm 
are connected in parallel inside the neuron model. If the 
presynaptic neuron sends a spike to the soma, a correspond-
ing current I will be generated at the synapse connected to 
it. The current is used in two parts. One part will be used to 
charge the membrane capacitor Cm, which is equivalent to 
the process of accumulating voltage, and the other part will 
flow away from the membrane resistor Rm, which is equiva-
lent to the leakage current. Once the accumulated voltage 
value on the neuron's membrane capacitance Cm exceeds 
the preset firing threshold, the neuron will fire a spike to the 
next neuron connected with the synapse. The first-order dif-
ferential equation for the membrane potential V of the LIF 
model is as follows:

Fig. 12  a An equivalent circuit 
of an LIF neuron model. b The 
non-volatile LIF neuron based 
on elastic coupling between 
the FE-DW and FM-DW. The 
position of the FM-DW repre-
sents the membrane-potential, 
while the switching activity 
of the MTJ emulates the firing 
behavior of the neuron. c The 
LIF behavior of the neuron. 
The upside is the input voltage 
spike train received by the 
neuron. The downside shows 
the FM-DW position which 
acts as the membrane potential. 
The figures are adapted from 
Ref. [157], with the authors’ 
permission
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where τm = CmRm is the membrane time constant, and 
I is the sum of the synaptic currents received from the 
firing behavior of the previous group of neurons con-
nected to each synapse. When the accumulated value of V 
exceeds the threshold Vth, a spike will be fired. The spike 
continues to conduct backwards with the connection of 
the neuron, and the membrane potential will be reset to 
Vreset. At this time, regardless of whether another pulse is 
received or not, the pulse will not be re-excited, and it is 
known as the refractory period. However, when V is less 
than the threshold Vth, the neuron will not emit a spike, 
and V will gradually decrease to Vreset. Due to its simple, 
linear, and event-driven characteristics, the LIF model 
has become the mainstream and the most widely used in 
SNN studies.

Much effort has been put into implementing LIF model 
[154–157]. CMOS-based spiking neurons often suffer from 
high leakage power consumption. The large-scale sparsity 
exhibited by SNNs makes non-volatile spintronic devices 
with zero standby power an excellent candidate. In addi-
tion, spintronic devices are also thought to exhibit neuronal 
behaviors [157]. As shown in Fig. 12(b), the LIF neuron is 
implemented with ferromagnetic domain wall (FM-DW) and 
a ferroelectric domain wall (FE-DW). The connection of the 
FM-DW to the underlying FE-DW allows for purely voltage 
control of the FM-DW. A 90°domain wall is in between the 
domains pointing in-plane (a-domains) and those pointing 
out-of-plane (c-domains). When a positive current is applied 
to the metal connect layer, the a-domain expands, and the 
c-domain decreases, causing the FM-DW to move toward 
the + x direction. Conversely, when a small negative volt-
age is applied, the c-domain expands, and the a-domain 
decreases, resulting in DW motion in the − x direction, 
which mimics the leakage behavior of neurons. As shown 
in Fig. 12(c), this structure simulates the leakage and firing 
of the LIF model well. The right terminal of the FM layer 
under the MTJ section can be regarded as the free layer of 
the MTJ. When the FL is P (AP) to the pinning layer, the 
MTJ is in a low-resistance state (high-resistance state). The 
reference MTJ is used to divide voltage, it needs to guarantee 
the output terminal shows a spike goes high when the lower 
MTJ is in a low-resistance state. The voltage-driven motion 
of the FM-DW enables the simulation of the behavior of 
biological neurons as the resistance of the MTJ changes. 
Due to ferroelectric materials being usually insulators, the 
negative voltage used to generate leakage behavior does not 
induce any short-circuit leakage current. Meanwhile, DW is 
non-volatile [158], which makes the DW-based LIF model 
exhibit low energy consumption.

(7)�m
dV

dt
= −(V − Vreset ) + RmI

3.2.3  Implementations of spiking neural network

The biological proximity and non-volatility exhibited by 
spintronic devices make them one of the candidates for 
implementing SNNs [99, 100]. There have been many stud-
ies successfully constructing the synapses and neurons 
needed to realize SNN with MTJs [150, 157]. As shown 
in Fig. 13(a), the SNN consists of three parts: pre-neurons, 
post-neurons, and the synapses as their connect junctions 
[159]. In the spintronic neuron shown in Fig. 13(b), during 
the writing process, the applied current integrates the resist-
ance of the MTJ to the threshold value and then the neuron is 
fired. Noting that the path for the write current being gated 
off during the read mode. The neuron's response at this time 
can be obtained by applying a read current, additionally, 
the reset current is applied to initialize the neuron. These 
neurons are event-driven [51] and their working mode fol-
lows the cycles like the ones mentioned above. Figure 13(c) 
shows the use of a three-terminal SOT-MTJ as a synapse, 
which exhibits the STDP characteristics. Therefore, the pre-
viously proposed synapses and neurons can be connected in 
a crossbar array as shown in Fig. 13(d), composing the SNN 
architecture. This MTJ-based SNN has been used to learn 
the MNIST dataset with 200 neurons, achieving high energy 
efficiencies with an average energy consumption of 1.6 fJ.

3.3  Challenges for neuromorphic computing

The emergence of SNN facilitated the development of neu-
romorphic computing. In terms of learning methods, unsu-
pervised learning mainly includes STDP learning methods 
based on Hebbian Rule, while supervised learning has devel-
oped representative learning methods such as the Remote 
Supervisor Method. In recent years, IT giants such as Apple, 
Google, Intel, and IBM have begun to enter the field of AI 
chips. IBM started the research and development of neuro-
morphic hardware as early as 2011 and announced in 2014 
that the TrueNorth chip consists of 100 million neurons 
and 256 million synapses. It breaks through the architec-
tural bottleneck of traditional computers when dealing with 
large-scale problems and further moves towards brain-like 
computing. Intel's Loihi chip is also a representative product 
for the development of neuromorphic hardware. Although 
SNN is favored for its advantages of low power consump-
tion, high efficiency, and event-driven processing, its devel-
opment and application are not smooth, and there are still 
many challenges.

The simulation of the real biological nervous system is 
too complicated: The working principle of the biological 
neural network has been generally grasped by researchers 
in many years of research. However, the neural network in 
the real biological body is too complex, and its structural 
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details are still mysteries. Designing neuromorphic comput-
ing systems based on real biological nervous systems is a 
huge challenge.

It is challenging to apply to practical scenarios: If an arti-
ficially designed SNN is used, according to its characteris-
tics, it is generally more suitable for continuous recognition 
and inference of dynamic scenes. However, in the actual 
application process, how to make full use of the low power 
consumption, high-speed and event-driven characteristics 
of the SNN is complicated. In addition, the application and 
development of SNN also depend on the development of 
neural computing chips, because the new structure and com-
puting mode of SNN cannot achieve the theoretical results 
on traditional chips.

Difficulty in training and learning: For the direct training 
of SNNs, most of the supervised learning methods are based 
on gradient settings, lacking biological rationality. Another 
way to obtain a trained SNN model is to use the trained 
traditional neural network. Although the transformation 
is performed directly, it is limited by the loss of precision 
caused by many aspects. Therefore, compared to the current 
relatively mature artificial neural network, the training and 
learning of the SNN on the real large deep network still have 
a long way to go.

Application accuracy is low on more complex tasks: 
SNNs have been controversial for a long time, one of the 
reasons is that their performance in application accuracy is 
often inferior to traditional AI networks. Both the encoding 
and training-learning issues mentioned above may lead to an 
impact on the accuracy of their application on more complex 
tasks. Therefore, how to improve the application accuracy of 
the SNN while retaining the original advantages and charac-
teristics of the SNN is also a major challenge for the future 
development of the SNN.

To sum up, as the third-generation neural network tech-
nology, SNN has very prominent features and advantages 
nevertheless its development is also full of challenges.

4  Stochastic computing

In the previous section, we briefly introduced stochastic 
computing and its computational unit, p-bit. Based on vari-
ous connection manners of p-bits, different network struc-
tures have been built to solve several kinds of hard com-
putational problems. For example, the use of symmetric 
connected BMs and Ising machines (IMs) are favored for 
solving the IF and COP, respectively. On the other hand, 
BNs with asymmetric connected structures, i.e., directed 

Fig. 13  a Schematic of SNN consisting of pre-neurons and post-
neurons interconnected by synapses. The input image is encoded into 
spike trains by the neurons. b The left side shows the schematic of 
the spintronic neuron consisting of a reference MTJ (upside) and a 
neuron-MTJ (downside), both of which are initialized to the high-

resistance state. The right side is the timing diagram illustrating the 
various operation modes of this MTJ-HM neuron. c Schematic of the 
MTJ-HM synaptic bit cell. d The whole architecture of SNN con-
structed using the spintronic neuron and synapses. The figures are 
adapted from Ref. [148], with the authors’ permission
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connections between p-bits, can be used to perform Bayes-
ian inference. From the perspective of stochastic computing, 
this section provides an overview of the recent development 
of the above three networks which consist of MTJ-based 
p-bits, including the elaboration of the working principle of 
networks, the hardware implementation process of networks, 
current challenges as well as future directions.

4.1  Boltzmann machines for invertible logic

Standard binary Boolean logic circuitry and memories uti-
lize stable and deterministic units to represent information. 
For example, the on and off states of a transistor or the rela-
tive magnetization orientations of a non-volatile nanomagnet 
can be used to represent binary states 0 and 1. This deter-
ministic feature makes computational circuits directional in 
nature: once a logic gate is fabricated, its input and output 
ports will be determined, and the circuit is only capable of 
operating in the input-to-output forward mode. This intrinsic 
directionality poses a challenge to conventional Von Neu-
mann architecture-based computers in solving some com-
putational tasks, such as NP problems [160]. To address 
this issue, the invertible logic [17, 84, 161] has been widely 
studied in recent years. Compared to the deterministic bit 
used in traditional binary logic circuits, the building block 
of invertible logic makes use of an unstable and probabilis-
tic unit called p-bit. Logic circuits made from such proba-
bilistic devices possess various novel characteristics: 1) as 
the entire combinational logic circuits can operate both in 
forward and reverse modes, the functions of circuits become 
more diverse, which provides more design space, and 2) 
hardware costs could be greatly reduced for certain arith-
metic computing tasks. For instance, an invertible multiplier 
can integrate the functions of multiplication, division, and 

product factorization into a single module, while similar 
functions require multiple sets of complex multiplier and 
divider circuits under conventional single-direction circuits. 
3) Many hard computational problems like IF [162] and 
Boolean Satisfiability (SAT) [163] can be solved efficiently 
with invertible logic.

4.1.1  Boltzmann machine‑based invertible logic

BM [164] is a term that often appears in the context of 
machine learning, which describes a network of stochastic 
spin glass. Figure 14(a) shows its general structure: 1) each 
node is fully connected to other nodes in the network, for 
example, a1 is connected to all other nodes in the network, 
and 2) there are interactions between nodes. The strength of 
interactions is represented by the weight matrix Jij, and each 
element in J represents the intensity of the coupling between 
two nodes. Such a bidirectional connection makes a diago-
nally symmetric weight matrix with all diagonal elements 0.

Invertible logic is exactly based on BMs with bidirec-
tional configuration. Figure 14(b) shows a BM-based invert-
ible AND gate composed of three nodes with the connection 
defined by matrices JAND and hAND. In this logic, each node 
or spin is represented by a probabilistic device with bipo-
lar output, namely a p-bit [84]. A generic p-bit is shown in 
Fig. 14(c), and it exhibits an “S” shape input–output rela-
tionship described in Eq. (2).

Equation (2) originates from the physical mechanism of 
the p-bit itself and Eq. (3) describes the role of the synapse. 
Note that it is necessary to ensure that the transmission time 
tsynapse is much smaller than the fluctuation time tpbit of p-bits 
so that the signal produced by the former p-bit can trans-
mit to other latter p-bits before the next change in its state. 
The extremely long transmission time will cause a failure 

Fig. 14  a A graphical repre-
sentation of an example BM. b 
A BM-based invertible AND 
gate defined by weight matrix 
JAND and hAND with three p-bits 
mA, mB and mC. c A generic 
p-bit structure and its sigmoidal 
response. Figure(c) is adapted 
from Ref. [84] with the authors’ 
permission
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of the system. The energy of invertible logic is represented 
by Hamiltonian H:

At a certain temperature (a given I0), each p-bit of the 
network is updated sequentially in every round of iteration. 
After some operation time, the whole system will be stabi-
lized at the thermal equilibrium state. The statistical result 
of different spin configurations can be verified using the 
Boltzmann law:

It can be seen intuitively from the above equations that 
the final probability distribution of the system has nothing 
to do with the initial values of p-bits but is governed by 
the energy of the network which is closely related to the 
spin configurations. These configurations are determined 
by the biases of p-bits and the coupling strength between 
p-bit pairs. For example, the invertible AND gate con-
sists of three p-bits, resulting in that there are a total of  23 
spin configurations, and for each configuration, there is 
a corresponding energy state. Assume I0 = 1, the table in 

(8)H({m}) = −I0

(

∑

i<j

(Jijmimj) +
∑

i

himi

)

(9)P({m}) =
exp(−H)

∑

i,jexp(−H)

Fig. 15(a) lists all 8 possibilities. It can be noticed that by 
encoding appropriate JAND and hAND, spin configurations 
matched with the truth table of the AND gate filled with 
green can have the equal and lowest energy, − 3. There 
are three operation modes of invertible AND gate, i.e., 
free mode, forward mode, and reversed mode. For the free 
mode shown in Fig. 15(a), none of the nodes of the AND 
gate is clamped. Therefore, states that accord with the truth 
table have the highest and almost equal possibilities ~ 25%. 
By clamping the inputs  mA and mB, the invertible AND 
gate can operate in the forward mode. For example, clamp 
inputs  mA and mB to 0 and 1, respectively. As a result, 
mC = 0 has the highest possibility, which can be seen in 
Fig. 15(b). Fig. 15(c) shows the most striking feature of 
the invertible AND gate. By clamping the output mC to 0, 
there are three possible solutions (A,B,C) = (0,0,0), (0,1,0) 
and (1,0,0) with almost equal possibilities ~ 33.3%. The 
statistical results of invertible AND operating in these 
three modes match with the analytical Boltzmann law 
calculated by Eq. (8) and Eq. (9). Therefore, to design a 
well-functioning invertible logic with a specific function, 
h and J coefficients need to be carefully designed. There 
is no learning process in BM-based invertible logic. Once 
h and J are determined, they will no longer change, which 
is different from BMs for machine learning purposes.

Fig. 15  An example of an invertible AND gate with three operation 
modes: free mode, forward mode, and reverse mode and correspond-
ing simulation results. a Free mode: do not clamp any nodes of the 

AND gate. b Forward mode: clamp inputs mA and mB to 0 and 1, 
respectively. c Reverse mode: clamp the output mC to 0
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4.1.2  From small‑scale invertible building blocks 
to large‑scale invertible logic

Like the very large-scale integrated circuits, a striking fea-
ture of invertible logic is its composability [161, 165, 166]. 
Any arbitrarily large-scale invertible logic [167], like sin, 
cos, matrix product, etc., can be obtained by logical syn-
thesis using small invertible networks. Commonly used 
small building blocks are invertible NOT, invertible AND, 
invertible OR gates, invertible half adders, and invertible full 
adders, etc. Complicated networks consisting of these build-
ing blocks have been demonstrated to find applications in 
solving IF [17, 84, 161, 165, 168], SAT [168, 169], training 
of neural networks [170] and machine learning [171, 172].

The equal footing [173] of every p-bit in invertible logic 
is the underlying reason for the bidirectional operations of 
BM-based invertible logic. Consequently, when designing 
small BM-based invertible logic, careful design of J and 
h is necessary. As defined in Eq. (8), these two matrices 
define the energy of the network, thereby determining the 
final Boltzmann distribution at the thermal equilibrium state. 
The ground-state spin logic [174, 175] has been proposed 
for the quantum system, which provides a compact design 
of h and J for the invertible AND gate. Camsari et al. [84] 
presented a mathematical transformation approach that can 
encode the truth table of any logic to the configuration of 
BMs. However, the shortcoming of this approach is that even 
for a simple gate, auxiliary p-bits are required, and the trans-
formation process involves a series of matrix operations. 
Onizawa et al. [176] proposed a general method to design 
a compact J and h with the minimum number of nodes for 

small invertible building blocks using Linear Programming 
(LP). By solving the LP problem using the off-the-shelf LP 
toolkit for Python [177] or MATLAB, the configurations 
of small invertible logic can be easily obtained so that a 
configuration library for all the small invertible logic can 
be created efficiently. The key idea of such an approach is 
for any given logic, there is a specific truth table. The target 
of LP is to map states in the truth table to the lowest sys-
tem energy so that appropriate J and h could be found. The 
detailed steps are as follows:

1) First, as shown in Fig. 16(a), convert logical values 1 and 
0 to bipolar format, i.e., + 1 and − 1.

2) As shown in Fig. 16(b), set the energy of all states in 
the truth table equal to Emin, while the energy of other 
non-desirable states is larger than Emin.

3) Use LP to maximize d (the difference between the low-
est energy level and the second lowest energy level) to 
obtain appropriate J and h for small invertible logic.

Figure 16(c) shows a configuration library of commonly 
used small invertible logic using such an LP approach. 
Note that for the invertible half adder and invertible full 
adder, both have two possible configurations, namely two 
J and h choices. The configuration for other invertible 
combinational logic circuits such as the 3-input/1-output 
invertible AND gate, invertible multiplier, and ripple carry 
adder with more complicated energy profiles cannot be 
directly solved by LP but needs to be constructed from 
the configuration library. Fig.17(a) shows an example of a 
composite 3-input/1-output invertible AND gate which is 

Fig. 16  Steps to design invertible logic. a Convert logical values 1 
and 0 to bipolar format + 1 and − 1. b Map the states that accord with 
the truth table to the lowest network energy state, other invalid states 

have higher energy. Then use LP to solve this set of equations. c A 
configuration library of small invertible logic. The figures are adapted 
from Ref. [176, 178] with the authors’ permission
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composed of two basic 2-input/1-output invertible AND 
gates. The key point in the merging process is that the 
output of the AND1 is the input of the next-level AND2, 
which means the size of final J and h are not 6 × 6 and 
1 × 6 . In fact, due to the introduction of this common node 
or called an auxiliary node, the size of both matrices is 
reduced ( 5 × 5 for J, 1 × 5 for h). The auxiliary node is a 
bridge connecting the two building blocks. Large-scale 
invertible logic composed of more basic logic requires 
more auxiliary bits. As a result, more merging processes 
are required and such a merging process is time-consum-
ing if done manually [178]. Much attention has to be paid 
to locate the position of auxiliary bits so that the J and h 
of smaller modules can be superimposed correctly. Kato 
et al. [167] proposed an automatic conversion tool from a 
gate-level netlist to an invertible logic circuit netlist using 
a standard hardware description language, which enhances 
the efficiency of merging greatly. Figure 17(b) shows the 
logic schematic and graph representations of an integer 
factorizer (or invertible multiplier) and SAT solver circuits 
designed for IF and SAT, respectively. As we can see, they 
are combinational logic circuits that are also composed of 
basic logic such as invertible AND gates, invertible half 
adders, invertible full adders, invertible NOT gates, and 
invertible OR gates. The graphs depict the connectivity 
among p-bits in these two large-scale networks.

4.1.3  Stochastic MTJs for implementation of BM‑based 
Invertible logic

The hardware implementation of most BM-based invert-
ible logic circuits is within the framework of stochastic 
computing using stochastic spintronic devices or proba-
bilistic CMOS-based devices. This section mainly surveys 
recent progress on stochastic spintronic devices, more 
precisely, the stochastic MTJs. In most previous stud-
ies on nanomagnets, the deterministic property of nano-
magnets is utilized. Deterministic nanomagnets normally 
have high EB and are resistant to thermal noise. There-
fore, they have been widely used in memory devices. The 
non-volatile MTJs made from nanomagnets with high EB 
have binarized resistance states which can be used to store 
binary information 0 and 1 for more than 10 years. On 
the other hand, it can be predicted that as the energy bar-
rier decreases, the nanomagnets will be more susceptible 
to ambient temperature. As a result, the stochasticity of 
MTJs based on nanomagnets with low EB (< 5 kBT) will get 
stronger. The variables in BMs can be represented by such 
stochastic MTJ-based p-bits. Moreover, by connecting a 
certain number of p-bits in terms of J and h described 
in the previous section, the invertible logic can be con-
structed. These invertible networks can be used to solve 
IF and SAT.

Fig. 17  a A composite 3-input/1-output invertible AND gate is com-
posed of two basic 2-input/1-output invertible AND gates. b Logic 
schematics and graph representations of an integer factorizer and an 

SAT solver based on invertible logic. The figures are adapted from 
Ref. [165] with the authors’ permission
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Camsari et al. [84] proposed a three-terminal p-bit for 
implementing invertible logic. As shown in Fig. 18(a), it is 
composed of a giant spin Hall effect (GSHE)-driven MTJ 
for tunable random number generation and two inverters for 
amplification. Note that the nanomagnets used in such MTJ 
have a circular shape rather than the usual elliptical ones. 
There is no preferred easy axis in circular nanomagnets. 
As a result, the shape anisotropy, and the energy barrier of 
nanomagnets approximately equals 0, which makes the mag-
netization of MTJ constantly fluctuate. The magnetization 
of the free layer can be pinned by a spin current generated 
from an injecting charge current and the probability of pin-
ning can be tuned by the magnitude of the charge current 
flowing through the GSHE layer. Fig. 18(b) shows the fitted 
sigmoidal response of such p-bits and the real-time output 
waveforms under three charge currents with different mag-
nitudes. Every point in the fitted curve corresponds to a time 
average of the real-time output voltage. This work utilized a 
passive resistor network to implement the interconnections 
among p-bits as shown in Fig. 18(c). Fig. 18(d) shows an 
example of an invertible AND gate built from the proposed 
p-bits. The conductance Gij and Gi in the resistive network 
are matched with the discrete values of previously defined 
matrices JAND and hAND, respectively. The function of invert-
ers is to reverse the direction of the charge current so that the 
negative values in matrices can be represented.

Faria et al. [179] and Debashis et al. [180] demonstrated 
that unstable magnets with a fraction of kBT can be used 
to implement p-bits through numerical simulation results 
and experimental evidence, respectively. Based on the 
GSHE-driven stochastic MTJ, Faria et al. investigated the 

performance differences between in-plane anisotropy mag-
net-based p-bit and perpendicular anisotropy magnets-based 
p-bit. They discovered that the former p-bit design could 
provide a much faster fluctuation rate and the fluctuation is 
more telegraphic than nanomagnets with perpendicular ani-
sotropy. Debashis et al. comprehensively studied the design 
of stochastic nanomagnets to find the most suitable way for 
implementing p-bits. By comparing three methods, i.e., 
reducing the anisotropy, reducing the net magnetic moment, 
or initializing the hard axis, the authors found the scaling of 
anisotropy provides a more effective way for implementing 
voltage-controlled p-bit.

The other p-bit design under the MTJ framework is based 
on the stochastic STT-MTJ. Fig. 19 shows two possible 
p-bit designs and their relevant applications. As shown in 
Fig. 19(a), Borders et al. [17] proposed a p-bit consisting 
of a stochastic MTJ, an NMOS transistor, a comparator, 
and a resistor. This 1 T-1MTJ structure is very similar to 
a conventional MRAM cell. The only difference is that in 
the p-bit design, the free layer is replaced with a nanomag-
net with a relatively high EB of 15kBT rather than the tradi-
tional nanomagnet with high EB used in memory devices. 
Fig. 19(b) depicts its sigmoidal input–output relationship. In 
a p-bit network, all p-bits are electrically connected by the 
synapse module which is composed of a digital-to-analog 
converter (DAC) and microcontroller. The target function, J 
and h are programmed inside the microcontroller in advance. 
As shown in Fig. 19(c), when the system is operating, for 
a specific p-bit, all digital output voltages {VOUT} from 
other p-bits are collected and converted into an analog volt-
age {VIN}. Then {VIN} is fed into the gate terminal of the 

Fig. 18  a A possible three-terminal p-bit to serve as the building 
block of invertible logic. b The sigmoidal response of such GSHE-
driven p-bit. Three bias points are chosen to illustrate that each point 
in the yellow fitting curve corresponds to a time-averaged output 
under certain bias voltages. c A passive resistor network is used to 

represent the interconnection strength among p-bits. For a certain 
p-bit, it receives feedback currents from all connected p-bits. d Cir-
cuit schematic of an invertible AND gate. The figures are adapted 
from Ref. [84] with the authors’ permission
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NMOS transistor so that the magnitude of charge current 
and induced STT current flowing through the stochastic MTJ 
can be controlled by the gate voltage. Therefore, the proba-
bilistic switching characteristic of magnetization is tunable. 
In this work, a printed circuit board with eight p-bits shown 
in Fig. 19(d) has been fabricated and an IF task using such 
an asynchronous network has been demonstrated. The fac-
torization results 945 = 63 × 15 can also be observed from 
Fig. 19(d).

Furthermore, Zhang et al. [97] reported another p-bit 
design based on STT, but the underlying mechanism of the 
proposed STNO-based p-bit is different from that of the 
previous work. In this work, the authors leveraged the anti-
damping STT to balance with the Gilbert damping term so 
that a stable oscillation can be sustained, and its structure is 
depicted in Fig. 19(e). Due to the existence of thermal noise, 
the number of oscillations exhibits a Gaussian distribution 
under a certain sampling time. By setting a threshold to the 
counter, a digital p-bit exhibiting the sigmoidal response 
shown in Fig. 19(f) is obtained. Fig. 19(g) shows the sche-
matic of a time division multiplexing circuit, in which dif-
ferent p-bits are coupled using a customized coupling rule. 
The simulation results for a 6-bit factorization 35 = 5 × 7 are 
shown in Fig. 19(h).

As the size of invertible logic becomes larger and larger, 
more p-bits are required, and the corresponding circuit 
implementations will become much more complicated. One 
possible solution to reduce the number of required p-bits is 
to utilize the many-body interactions [17, 181]. An example 

of a 4-bit invertible adder using three-body interactions has 
been reported in Ref. [181]. It not only reduces the number 
of required p-bits but also simplifies the energy landscapes 
of invertible logic by reducing the number of energy levels 
so that the solution-seeking process can be sped up. This 
brings benefits to the subsequent simulated annealing algo-
rithm design because in this case, the system becomes intrin-
sically easier to get into the global minimum energy state 
due to a simpler energy profile. Besides, parallel annealing 
has also been demonstrated to solve IF and SAT with a faster 
convergence rate [165, 169].

Apart from stochastic MTJ-based p-bits, CMOS-based 
p-bit designs have also been extensively studied. Before the 
MTJ-based implementation of p-bits, Pervaiz et al. [173] 
used microcontrollers to emulate p-bits. The sigmoidal 
electrical response of p-bits is programmed into the micro-
controllers. Together with a weighted logic composed of a 
microcontroller and a DAC, a BM-based 4-bit × 4-bit invert-
ible multiplier and a 4-bit invertible ripple carry adder have 
been demonstrated. This work takes the first step toward 
implementing p-bits with nanodevices. Pervaiz et al. [182] 
presented a generalized tile of weighted p-bits using a 
field-programmable gate array (FPGA). A comparison 
between FPGA-based p-bit and MTJ-based p-bit in terms 
of energy consumption and required transistors number is 
presented in Ref. [17]. FPGA-based p-bits normally consist 
of linear feedback shift registers (LFSRs), look-up tables, 
and digital comparators. Only consider one LFSR, more 
than a thousand transistors are required and the consumed 

Fig. 19  Two p-bit designs based on stochastic STT-MTJ. a–d: design 
1. e–h: design 2. a Schematic of p-bit 1 which is composed of a sto-
chastic STT-MTJ, an NMOS transistor, a comparator, and a resistor. b 
The sigmoidal response of p-bit 1. c Diagram of a general probabilis-
tic circuit based on p-bit 1. d A photograph of a printed integer fac-
torizer circuit. e Schematic of p-bit 2 which is composed of an STNO, 

a Schmitt trigger, a counter, and a threshold circuit. f The sigmoidal 
response of p-bit 2. g Diagram of a time division multiplexing proba-
bilistic circuit based on p-bit 2. h Simulation result of an integer 35. 
The figures are adapted from Ref. [17, 97] with the authors’ permis-
sion
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energy for generating a random bit is 20fJ, while for MTJ-
based 1 T/1MTJ structure p-bit, the number of transistors 
and the energy consumption per random bit are 4 and 2fJ, 
respectively.

4.2  Ising machines for combinatorial optimization

COP [183] is closely related to the daily life of human 
beings and can be found in various real-world applications 
such as logistics, vehicle routing, human resource alloca-
tion, circuit design [184–187], etc. Compared to the knot 
counting method of the primitive people in ancient times, 
highly integrated and powerful computers in modern soci-
ety have provided great convenience for humans to solve 
various hard computational problems like COP, but despite 
this, Von Neumann architecture-based conventional com-
puters still show limitations: the increase in problem size is 
accompanied by the growth in the number of signals need 
to be processed. As a result, the number of solutions also 
increases substantially, which leads to an exponential growth 
in computational complexity. Considering an extreme case, 
the amount of information that needs to be stored is even 
much larger than the storage space of the computer when 
the size of COP is sufficiently large, so the data processing 
becomes an impossible task.

To address the above issues, many heuristic algorithms 
have been proposed. Compared with brute force search-
ing methods, such as the resource-consuming exhaustive 
method, a well-designed heuristic approach can always 
provide acceptable solutions for COP with higher accuracy 
and shorter computational time. However, this complicated 
algorithm requires higher demands on hardware implemen-
tation. On the other hand, researchers are committed to 
finding efficient computational models, among which, the 
physics-inspired Ising model [188] has entered the vision 
of researchers and has been researched extensively in recent 
years due to its simple structure, intuitive mapping, nature-
friendly hardware implementation, and great potential in 
solving the COP efficiently.

4.2.1  Ising model

Ising model is a mathematical model describing the behavior 
of coupled magnetic spins in ferromagnetic systems [188] 
shown in Fig. 20(a). It is composed of discrete spins si that 
only can take values + 1(upward state) or − 1(downward 
state), interactions between pairs of spins Jij and external 
magnetic field hi. The total energy of the whole system H, 
which is determined by the spin configurations, is defined as:

H = −
∑

i<j Jijsisj −
∑N

i=1
hisi . (10).

The principle of solving COP using Ising model is to 
map the optimal solutions of a specific problem to the spin 
configurations with the lowest energy state. The schematic 
energy profile of the Ising model is shown in Fig. 20(b). To 
do this, the constraints and objective functions of specific 
COP need to be translated into the Ising model by program-
ming the interactions among spins and biases. Once this 
problem is mapped, the system will tend to evolve towards 
lower energy with an appropriate annealing scheme and 
the configurations of spin states will update continuously. 
Finally, it will converge into a stable energy state. For 
example, if the interaction coefficients Jij between pairs of 
spins (ignore couplings between spins and applied magnetic 
fields) are all programmed to + 1, it can be predicted that in 
order to reduce the energy, the final spin configuration must 
be parallel, and all spins are in + 1 states. Conversely, real-
world COP normally has much more complicated energy 
profiles. As shown in Fig. 20(b), such an energy profile has 
a global energy minimum state and multiple local energy 
minimum states. Note that if there is no external disturbance, 
during the evolution process towards a lower energy state, 
the system has a very high probability to enter one of the 
local energy minimum states and cannot jump out, resulting 
in a wrong solution.

4.2.2  Ising machine

IMs are the hardware implementations of the Ising 
model and the carrier to solve COP. Various IMs based 
on different physical mechanisms have been extensively 

Fig. 20  a Ising spin model. b 
Energy profile of an Ising model 
system. The energy is deter-
mined by the spin configura-
tions. The figures are adapted 
from Ref. [189] with the 
authors’ permission
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studied, including Quantum-based [190], Optical-based 
[191, 192], and Electrical LC-based [193, 194], but these 
approaches also have their problems. D-wave quantum 
annealing IMs use qubits to represent spins [190]. Its 
fatal shortcoming is that a cryogenic cooling system is 
required to operate normally, which brings high energy 
consumption and extremely low energy efficiency. Opti-
cal-based IMs use coherent light to represent spins and 
the coupling between spins is implemented by FPGA. 
Although this system achieves room-temperature opera-
tion, it requires kilometer-long optical fibers [191, 192], 
which poses a great challenge for miniaturization. Elec-
trical LCs can be used as oscillators to implement IMs 
and the device size is greatly reduced [193, 194]. The 
binary states of spins are implemented by binarized 
phases of oscillators and couplings are encoded to the 
resistive network. The speed of this approach is in the 
millisecond scale, but still can be accelerated. MTJ-based 
IMs, more precisely, stochastic MTJ-based and STNO-
based Ising solvers, are promising candidates for solving 
the above issues due to the following desired and unique 
characteristics: 1) the inherent randomness in stochas-
tic MTJs or STNO enables the solver trapped in local 
minimum to jump out of these undesired solutions, 2) 
the energy landscape of the system can be explored on 
nanosecond timescales because such nanodevices can 
operate in the GHz frequency range, thereby speeding up 
the process of solution searching, and 3) various simple 
hardware implementation choices for couplings between 
Ising spins including electrical methods and magnetic 
methods. In this article, we focus on MTJ-based IMs. 
Typical COP solved by this approach like MAX-CUT, 
graph coloring problems, and TSP are surveyed. For 
other hardware implementations of IMs, interested read-
ers can refer to Ref. [195] for comparisons in terms of 
their standard performance metrics, like the ground-state 
success probability and time-to-solution.

4.2.3  Stochastic MTJs for Ising model‑based combinatorial 
optimization

4.2.3.1 Simulated annealing‑based In recent years, 
nanomagnets with low EB have attracted the attention of 
researchers. The decrease in the energy barrier of nanomag-
nets makes the inherent randomness brought by the ther-
mal noise more and more severe. MTJs made from such 
nanomagnets with low EB are called stochastic MTJs, which 
exhibit an “S” shape input–output relationship and can be 
leveraged to make natural annealers.

Using stochastic MTJs to solve COP can be traced back 
to Ref. [16]. In this proof-of-concept work, the proposed 
SHE-based stochastic MTJ works in the telegraphic noise 
region. It utilizes the superparamagnet to serve as the mate-
rial of the free layer. The energy barrier of such nanomag-
nets is comparable to kBT. Each superparamagnetic MTJ is 
implemented to represent a spin cell in the Ising model and 
the electrical response of such a cell is shown in Fig. 21(a) 
and the time-averaged magnetization can be tuned by the 
injecting current. Due to the controllable stochasticity, a 
naturally simulated annealing process is enabled. As shown 
in Fig. 21(b), by continuously increasing the magnitude of 
the controllable current between pairs of spin cells, a room-
temperature implementation of a 16-city TSP has been dem-
onstrated [16]. In this work, the system gradually converges 
to a local energy minimum state with appropriate simulated 
annealing. A not ideal but acceptable solution is found by 
reading the magnetization states of the 4 × 4 SHE-MTJs 
array. The flipping rate of the superparamagnetic MTJ is on 
a nanosecond timescale, which enables the system to explore 
the energy landscape with GHz frequency. As a preliminary 
work towards natural IMs, this work proves the great poten-
tial of superparamagnets in solving COP with high speed 
and ultralow power consumption, while the drawback of 
using superparamagnets is also obvious because they are 
extremely susceptible to process variation, which poses big 

Fig. 21  a Sigmoidal response of a stochastic MTJ. Each point in the sigmoidal fitting curve is obtained by the time-averaged magnetization. b 
Through simulated annealing, a 16-city TSP can be solved. The figures are adapted from Ref. [16] with the authors’ permission
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challenges to device fabrication and reading circuit design. 
The reading circuits need to be designed appropriately to 
minimize the reading currents. Therefore, the possible pin-
ning effect on the free layer arising from the reading current 
can also be minimized.

The above issues limit the application prospects of MTJ 
in solving COP. To mitigate this, Shim et al. [189, 196] still 
used a SHE-driven MTJ to work as the Ising cell but replaced 
its superparamagnetic free layer with a higher-energy-barrier 
one, and its structure is shown in Fig. 22(a). The thermal 
noise-induced stochasticity is still applied to serve as the 
entropy source. In this work, the authors used the charge cur-
rent injected into the heavy-metal layer underlying the MTJ 
to manipulate the in-plane magnetic anisotropy. As shown 
in Fig. 22(b), for a specific MTJ, the majority vote function 
is implemented with multiple current sources and switches. 
Based on the nearest neighbor, the amount of charge cur-
rent injecting, namely the results of votes, to a specific cell 
is determined by the states of surrounding spin cells. More 
votes correspond to a higher switching probability of mag-
netization. Therefore, the next spin configuration of MTJs 
is determined by the vote results. Fig. 22(c) shows the well-
designed schematic of an Ising spin. Reference resistor RREF 
serves as a voltage divider and cooperates with the output 
inverter to binarize the voltage levels. For the majority vote 
function part, CMOS logic gates together with series of tran-
sistors are used.

With the implementation of functions “Annealing” and 
“Majority Vote”, several classical COP have been demon-
strated. Fig. 23(a) demonstrates the solution process of a 
MAX-CUT problem which aims at finding two mutually 
exclusive subsets of spins by connecting edges to maximize 
the summation of weights along the edges. It can be noticed 
that from point (c) to (d), there is an abrupt energy drop. 
This phenomenon implies that the system evolves from a 
local energy minimum state to a global energy minimum 
state with an appropriate simulated annealing algorithm. 
This annealing process is realized by increasing the mag-
nitude of coupling currents between spins. In other words, 
annealing means the behavior of stochastic MTJs transits 
from a stochastic manner to a more deterministic manner. 
Another example is a very famous NP-complete problem 
called graph coloring which is described as: is it possible to 
assign m-colors for n-vertices so that two adjacent vertices 
have the same color? For this problem, a total number of 
m × n spins are required to represent the spin configuration 
for the problem. Similarly, the target of an n-city TSP is to 
find the shortest possible route to visit each city exactly once 
and returns to the origin city. The list of cities and distances 
between each pair of cities are known. A total of n × n spins 
are required to solve such a problem. The simulation results 
for these two typical hard computational problems are shown 
in Fig. 23 (b) and (c), respectively. For the graph coloring 
problem, the author fixed the number of colors to 3, but 

Fig. 22  a Three-terminal stochastic SHE-MTJ-based Ising cell. b 
Majority vote function implemented with multiple current copy 
branches. The switching probability of a selected MTJ is mapped to 

the amount of injecting charge current. c Detailed circuit design dia-
gram of an Ising cell. The figures are adapted from Ref. [189, 196] 
with the authors’ permission
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the number of vertices is up to 6. For each subproblem, the 
author runs a thousand times to obtain an average iteration 
number when the system reaches an energy minimum state. 
For a 29-city TSP, the system with a natural annealing pro-
cess converges quickly after 1431 rounds of iteration. Even 
though the final suggested route for the salesman to travel is 
not the optimal but it is reasonable and acceptable.

Apart from using charge currents to implement inter-
actions, a voltage-based method has also been studied. 
Sharmin et al. [197] proposed a voltage-controlled Ising 
cell that utilizes the magnetoelectric effect of the mul-
tiferroics to minimize the current flowing through the 
network. This voltage-controlled IM can mitigate the 

scalability issue with the increasing size of the prob-
lem. Fig. 24(a) shows the structure of the proposed volt-
age-controlled nanodevice and its sigmoidal electrical 
response. This proposed Ising cell is based on a multi-
ferroic Oxide/CoFeB heterostructure with manipulation 
of magnetization states + 1 and − 1 through the voltage 
drop. Fig. 24(b) shows how it is coupled with other cells. 
The output the former Ising cell is directly cascaded to 
the input terminal of the latter Ising cell. All other cells 
are coupled in this way. As a result, there is no need to 
amplify the output signal using additional CMOS ampli-
fier circuits, but the complicated structure puts forward 
higher requirements for subsequent fabrication processes.

Fig. 23  Three NP problems can be solved by the SHE-MTJ-based 
Ising machine. a MAX-CUT. With appropriate interaction design, the 
system evolves toward the lower energy state and with enough itera-
tions (450th here), a solution with the lowest energy is obtained. b 
Graph coloring problems. A total number of m × n spins are required 

to for a problem with m-colors for n-vertices. c TSP. The spin con-
figurations are constantly updating during the iteration process and 
finally a route is suggested. The figures are adapted from Ref. [189, 
196] with the authors’ permission

Fig. 24  a Structure of an Ising cell based on a voltage-controlled 
nanodevice and its electrical response. The input voltage, namely the 
write process, is applied across the multiferroic oxide/CoFeB hetero-
structure in which the magnetization state of the CoFeB layer can be 

manipulated to represent the + 1 and − 1 states. b Implementation of 
couplings among Ising cells. The figures are adapted from Ref. [197] 
with the authors’ permission
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In addition to advances in simulations, Safranski et al. 
[93] and Hayakawa et al. [94] provided experimental evi-
dence of nanosecond scale fluctuations for stochastic-MTJ 
with low EB, which marks a milestone towards hardware 
implementation of the Ising model. Furthermore, Borders 
et al. [17] experimentally demonstrated the solving of an 
IF problem with STT-based stochastic MTJs serving as the 
hardware spin cells. They fabricated a printed circuit board 
with eight stochastic MTJ-based p-bits which are intercon-
nected through a microcontroller and a DAC; a factoriza-
tion result of an integer up to 945 has been demonstrated. 
IF can be categorized as an NP-intermediate problem, and 
the solution principle of this kind of problem is similar 
to COP. Therefore, this work is a good reference for the 
subsequent use of stochastic MTJs with low EB to solve 
large-scale COP.

4.2.3.2 Parallel annealing‑based Parallel annealing [198] 
is the other annealing algorithm that has the potential in 
faster minimizing the system energy to obtain optimal or 

near-optimal solutions. Different from simulated annealing, 
parallel annealing makes use of a set of replicas of the p-bit 
network with well-designed discrete fixed temperature levels 
rather than only one network with decreasing temperature 
levels. As shown in Fig. 25(a), the higher temperate replica 
suffers more severe thermal fluctuations, thus it can explore 
a larger range of spin configurations. This is reflected in the 
fact that state 1 has a larger fluctuation energy range. Mean-
while, the lower temperate replica is also fluctuating but in a 
small range. Once the high-temperature replica finds a spin 
configuration whose energy is lower than the low-temperate 
one, the spin states between them will exchange.

Grimaldi et al. [169] applied parallel annealing to a sto-
chastic MTJ-based Ising model. Firstly, based on the mac-
rospin model, Fig. 25(b) shows the real-time magnetiza-
tion fluctuations of a stochastic MTJ with thermal noise 
comparable to the energy barrier. The solving process of a 
MAX-3SAT with 70 variables and 700 clauses is demon-
strated using 771 p-bits with parallel annealing. The simu-
lation results are shown in Fig. 25(c). Four replicas with 

Fig. 25  a Illustration of parallel tempering with two replicas at low-
and high-temperature levels. b Real-time magnetization state of a 
stochastic MTJ. c Simulation results of a MAX-3SAT with 70 vari-
ables and 700 clauses using parallel annealing. Four replicas with 
the pseudo-temperature I0 = 0.10, 0.15, 0.20, and 1.50 are used. d 

Simulation results of an SAT “uf20-01.cnf” using parallel annealing. 
Four replicas with the pseudo-temperature β = 0.30, 0.35, 0.40, and 
1.50 are used The figures are adapted from Ref. [165, 169] with the 
authors’ permission
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four different temperate levels are adopted and the solver 
obtains the optimal solution within 60 ns. This ultrafast 
solution-finding process is enabled by the parallel updating 
of p-bits which is different from the sequentially updating of 
p-bits in the simulated annealing scheme. Aadit et al. [165] 
also confirmed the superiority of parallel annealing over 
simulated annealing in solving IF and SAT. The authors 
solved the same SAT “uf20-01.cnf” using these two anneal-
ing schemes. Figure 25(d) shows the optimal solution is 
achieved only after 100 iterations by a 4-replica parallel 
annealing. Although the parallel annealing algorithm can 
converge faster to find the solution for solving factorization 
and COP, as discussed above, multiple replicas cost more 
computational resources.

4.2.4  Spin torque nano‑oscillators for Ising model‑based 
combinatorial optimization

The other kind of IMs that can be used to solve COP utilize 
a completely different mechanism of the MTJ, namely the 
oscillation of the magnetization. The free layer of such MTJ 
is made of nanomagnet with a high energy barrier, which 
mitigates the aforementioned issues for MTJ state reading 
and difficulties in device fabrication. Nevertheless, com-
pared to the stochastic MTJ, which directly uses the rela-
tive orientation of magnetization to the reference layer to 
intuitively represent the upward + 1 and downward -1 states 
of spins, the STNO-based Ising cell requires an additional 
phase binarization step.

4.2.4.1 Phase binarization by injection locking The phase 
binarization of the oscillator is usually achieved by sub-
harmonic injection locking. As shown in Fig.  26, in the 
coupled oscillator network, a perturbation signal with a 
frequency of 2finj (finj is comparable to fSHNO) is injected 
into each oscillator which has a natural frequency of fSHNO. 
Then, the frequency of each oscillator will change from 
fSHNO to finj with two stable phase-locked states. After this 

step, the oscillator no longer has an analog phase but stabi-
lizes at some discrete phase points, that is 0 and π, and thus 
this bistate can be used to represent the two states of the 
spin. For an oscillator in a coupled oscillator network, in 
addition to external signal perturbations, it is also perturbed 
by the oscillators connected to it. The dynamics of its phase 
change with time can be accurately captured by the Kura-
moto model [199]:

where {ϕi} represents the phase of the ith oscillator and 
{Jij} represents the coupling between oscillator i and oscil-
lator j. The global parameter K adjusts the overall coupling 
strength between oscillators. Ks modulates the coupling 
strength from external perturbation. It can be observed that 
a perturbation signal with a frequency of ω1 = 2πf1 intro-
duces a coupling term with a period of π (i.e., sin(2φ)) to 
the phase dynamics, while the period of the coupling term 
from other oscillators is 2π.

To see the evolution from the energy aspect, there is an 
energy-like Lyapunov Function associated with Eq. (11):

A global Lyapunov function is a quantity like the 
energy term in the Ising system. When {ϕi} settle at these 
discrete points, that is, ϕi(t) is either = 0 or = π, the last 
term of Eq. (12) is a constant offset term (cos 0 or cos 
2π = 1). Ignore this constant term, the mapping relation-
ship between the Lyapunov function and Hamiltonian is:

(11)

d

dt
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n
∑
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)
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∑
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Fig. 26  Illustration of subhar-
monic injection locking. Cou-
pled oscillators are stabilized at 
one of the binary phases under 
subharmonic injection locking. 
The figures are adapted from 
Ref [193] with the authors’ 
permission
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If K = 0.5 is chosen, the global Lyapunov function in 
Eq. (13) exactly matches the Ising Hamiltonian at these 
discrete phases. It implies that just like the configura-
tions of spins keep flipping towards lower system energy, 
oscillators will interact with each other, and their phases 
are continuously changing to minimize the energy and 
finally settle into stable phases so that the solution to the 
mapped problem can be obtained. Detailed derivation for 
the dynamics of an oscillator under subharmonic injec-
tion locking from a single oscillator to coupled oscillator 
network is presented in [193].

4.2.4.2 Spin torque nano‑oscillators‑based Ising 
machines Albertsson et al. [200] demonstrated the feasibil-
ity and superiority of implementing IMs using MTJ-based 
STNOs shown in Fig. 27(a) using a numerical simulation 
model: the solution-searching speed for specific MAX-
CUT problems can be accelerated to the order of ns and the 
nanoscale size of Ising cell provides a solution for the min-
iaturization of IMs. When using the developed numerical 
model for oscillator network simulation, there is no need to 
define the type of coupling. Although this makes the model 
more general, it also implies the impossibility to use the 
model to study the impact of various coupling designs on the 
system’s performance. Moreover, this work implemented 
the annealing process by modulating the coupling strength 

between the external perturbation signal and spins, but it 
does not introduce the phase noise term. Therefore, the sys-
tem is more likely to fall into these undesired local minima 
states when dealing with COP with complex energy pro-
files. This conclusion is confirmed by the simulation results 
shown in Fig.  27(b) when solving a MAX-CUT problem. 
The increase in the problem size significantly reduces the 
success probability of the IMs to obtain the optimal solution 
and the near-optimal solution.

McGoldrick et al. [201] developed a general analyti-
cal framework that not only can capture the dynamics of 
injection locking for STNOs shown in Fig. 27(c) with large 
oscillation angles but also models the phase noise using the 
impulse sensitivity function approach [202]. Previously, 
models in Ref. [203] can only explain injection locking 
with a small procession angle. Same to the treatment when 
dealing with the thermal fluctuations in Ref. [204], the ther-
mal noise is treated as an effective field in STNO. Moreo-
ver, the authors emulated the fundamental features of the 
oscillators required for IMs and analyzed the performance 
of STNO networks at the circuit level. Results show that 
to solve the same 100-size MAX-CUT problem, the STNO 
scheme can achieve several orders of improvements in solu-
tion time and energy efficiency. Furthermore, due to proper 
modeling of phase noise existing at room temperature, as 
shown in Fig. 27(d), solver operating at 300 K has higher 

Fig. 27  a Illustration of an STNO. b As the size of the MAX-CUT 
problem increases, the success probability of obtaining the solution 
(green) and a sub-optimal solution (purple) decreases substantially 
when no phase noise exists. c Top view of 3-terminal SHNO. d With 

thermal noise, the success probability of obtaining the solution can be 
improved greatly. The figures are adapted from Ref. [200, 204] with 
the authors’ permission
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success probability than the one working at 0 K Besides, it 
is found that the success probability of solutions is expected 
to scale with the array size of the coupled oscillator network 
as shown in Fig. 27(d).

From an experimental perspective, a 2 × 2 phase-bina-
rized SHNO array has been experimentally demonstrated to 
solve a MAX-CUT problem [205], and an 8 × 8 SHNO 2D 
array has been fabricated for neuromorphic computing appli-
cation [132]. The schematic presentation of SHNO arrays 
are shown in Fig. 28.

At present, the problems solved by SHNO-based IMs 
are relatively simple, only involving the MAX-CUT prob-
lem and the problem size is small. For other problems that 
require a more complicated coupling design, more theo-
retical and experimental verifications are needed. On the 
other hand, common coupling mechanisms between SHNOs 
and STNOs include electrical coupling, spin-wave, direct 
exchange, and dipolar. The coupling mechanism between 
spins shown in Fig. 28 is difficult to be programmed, espe-
cially for weighted coupling strength. Normally, a general-
purpose IM requires an all-to-all coupling, which requires a 
careful design of the couplings. These experimental realiza-
tions of such an SHNO network represent a significant mile-
stone toward SHNO-based IMs. How to encode coupling 
strength in an easier way, such as how to realize electri-
cal coupling between oscillators in experiments, still needs 
follow-up research.

4.3  Bayesian networks for bayesian inference

BN [206] is a directed probabilistic graphical model that has 
been widely applied to understand the causal dependencies 
[207] among events. It aims to efficiently solve common but 
hard computational probabilistic tasks in real life, such as 
a series of problems with inherent causality represented by 
medical treatment decisions [208] and weather forecasting 

[209]. In a BN, random variables, the directionality, and 
strength of dependencies among random variables are rep-
resented by nodes, edges, and a set of conditional probability 
tables (CPTs), respectively. Nodes can be divided into parent 
and child nodes in terms of their causal sequences inherited 
from events. Edges map such parent-to-child directionality, 
while CPTs encode the strength of such dependencies. The 
implementation of Bayesian inference [210] in BNs, spe-
cifically, the process of deriving the posterior probability 
based on the prior probability and the likelihood function 
(derived from the probability model) requires substantial 
floating-point representations and operations. It makes con-
ventional computing paradigm-based computers encounter 
a bottleneck in the pursuit of efficient inference with low 
resource consumption and fast computing speed. Moreover, 
as the size of BN grows, the dependencies between parent 
nodes and child nodes become more complicated. There-
fore, the computational complexity increases greatly, and 
the calculation of conditional probabilities becomes intrac-
table. To solve the above issues, researchers are committed 
to finding nature-friendly devices and circuits that can rep-
resent random variables and perform associated probability 
operations.

4.3.1  A classical four‑variable Bayesian network

BN is a fusion of probability theory and graph theory 
[211]. It uses the language of graph theory to reveal the 
structure of the problem intuitively while it uses the 
principles of probability theory to solve inference and 
learning problems according to problem structure. Such a 
combination can be seen in a classical BN with 4 random 
variables [206]. The four variables represent four random 
events—whether the weather is cloudy “C”, whether the 
weather is rainy “R”, whether the sprinkler is on “S” and 
whether the grass is wet “W”. By decomposing joint prob-
abilities into a series of simple modules, the computing 
difficulty can be reduced in BN. The causality between 
nodes can be obtained from the direction of edges, and 
CPT describes the dependencies between parent and child 
nodes in the format of conditional probability.

Based on BNs, assuming that the grass has been 
observed to be wet (observed evidence), Bayesian infer-
ences can be implemented. In this case, there are two 
hidden causes: the sprinkler is on, or it is raining. The 
posterior probability can be estimated using Bayes' rule 
as defined:

where P(S) is prior probability, that is, a judgment on 
the probability of the event “sprinkler is on” before the 

(14)P(W) =
P(S)P(S)

P(W)

Fig. 28   A 2 × 2 phase-binarized STNO array. The figure is adapted 
from Ref. [200] with the authors’ permission
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occurrence of the event “grass is wet”, P(S|W) is the pos-
terior probability, that is, the reassessment of the prob-
ability of the event “sprinkler is on” after the occurrence 
of the event “grass is wet”, P(W|S)/P(S) is called likeli-
hood function, which is an adjustment factor.

4.3.2  Stochastic MTJs for RNGs in Bayesian networks

Various schemes have been developed for direct hardware 
implementation of BNs. Under the CMOS-based framework, 
there are stochastic digital circuits with digital logic gates 
[212–214] and analog probabilistic computing circuits with 
stochastic devices [215–217]. A comprehensive overview 
of related CMOS-based BN hardware implementation can 
be found in Ref. [218], which pays more attention to the 
improvements in circuit implementation, architecture design, 
and algorithm optimizations. Moreover, emerging nanode-
vices, especially the stochastic MTJs, provide a compact and 
low hardware-cost solution to replace the core elements for 
randomness generation in BNs due to their unique stochas-
tic feature. Fig. 29(a) shows a diagram of the traditional 
stochastic bitstream generator (SBG) in which the random 
bitstreams are generated utilizing two core modules: RNGs 
and comparators. In most of the previous work, LFSRs [219] 
are popular to function as RNGs. After the comparison pro-
cess, random bitstreams with 50% ratios of 0 s and 1 s are 
generated, while this approach consumes a mass of transis-
tors and the bitstreams generated are pseudo-random. The 

former problem brings a lot of area and energy consumption, 
while the latter implies that the computing accuracy using 
BNs will be degraded due to the correlation among bits in a 
bitstream. In Ref. [220–222], TRNG circuits using stochastic 
MTJs have been proposed, which utilize the inherent ran-
domness of nanomagnets. Note that these stochastic MTJ-
based RNG modules need to be cooperated with peripheral 
CMOS circuits to function as an SBG. Although the above 
designs have great potential in replacing LFSRs that require 
up to thousands of transistors, the tunable randomness nature 
of stochastic MTJs, i.e., the tunable output ratios of 1 s and 
0 s, is not fully exploited. Also, the potential of SBGs in 
solving practical problems such as Bayesian inference is not 
reflected in these works.

The novel MTJ-based circuit proposed by Ref. [223, 224] 
can solve the above issues and demonstrates its application 
in data fusion and BN with higher speed and low hardware 
cost, in which the authors make full use of the “S” shape 
relationship between the input pulse voltage level and the 
switching probability of the stochastic MTJ. The schematic 
of the proposed SBG circuit, illustrated in Fig. 29(b), is com-
posed of a write circuit and a read circuit. The writing part 
includes two stages: resetting to AP state and switching from 
AP to P state. 1 MTJ and 4 multiplexers (MUX) are used. 
The basic workflow and principle are as follows: 1) set Write 
En of MUX2 and MUX3 to 1 so that the circuit works in a 
write operation, 2) set Rst.0 to 1 and Wrt.1 to 0 to make sure 
the reset stage is on and the current direction is shown as 

Fig. 29  a Diagram of the traditional SBG using an RNG and a com-
parator. b Stochastic MTJ-based SBG composed of MTJ and Mul-
tiplexers. By controlling the write and read processes, random bit-
streams are generated. c Stochastic MTJ-based system for Bayesian 

inference. The three core modules of this system are Evidence/ Like-
lihood, SBG matrix and the SC Architecture. The figures are adapted 
from Ref. [223, 224] with the authors’ permission
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the blue arrow, and 3) contrary to previous step setting, set 
Rst.0 to 0 and Wrt.1 to 1 to make sure the circuit work in the 
switching phase. At this time, the current direction is shown 
as the red arrow, flowing from the free layer to the pinned 
layer. The probability of switching from AP to P state can be 
customized in terms of the occurrence probability of a spe-
cific event, which can be achieved by configuring the ampli-
tude or duration of the applied voltage pulse. Such circuits 
can be directly used to work as an SBG to generate random 
bitstreams. Furthermore, such SBG matrix-based Bayesian 
inference systems can be employed by circuit designers to 
reduce power overhead and accelerate inference speed.

However, strictly speaking, the above-mentioned 
approaches are still under the domain of CMOS circuits as 
these random nanomagnet-based RNGs or SBGs cannot be 
manipulated individually in BN. As a result, they are not 
able to be directly used as stochastic nodes to represent sto-
chastic variables as well as reflect the dependencies among 
nodes. Subsequent complicated CMOS arithmetic circuits 
shown in Fig. 29(c) are required with such a stochastic com-
puting paradigm to implement the inference task. The mag-
nitude of input voltage is proportional to the likelihood. The 
SBG matrix translates the input voltages to stochastic bit-
streams. The stochastic computing architecture implements 
the inference process based on the input data processed by 
the SBG matrix. This module is constructed by multiple 
logic gates. In this review paper, we focus on the nanomag-
nets-based beyond-CMOS stochastic devices, expanding 
only using the random characteristics of nanomagnets as 
RNGs or SBGs to building blocks that can directly build 
BNs. These nanomagnet-based units can be independently 
engineered through underlying physical mechanisms to 
directly represent stochastic variables and couplings among 
them. We give descriptions of several different schemes for 
representing random variables, edges and CPTs, as well as 
their respective advantages and drawbacks.

4.3.3  Stochastic MTJs for direct implementation 
of Bayesian networks

Behin-Aein et al. [225] presented a proof-of-concept hard-
ware implementation of a 3-variable BN using experimen-
tally benchmarked models of nanomagnets. In this work, 
each stochastic variable is represented by a stochastic MTJ-
based p-bit shown in Fig. 30(a). The CPT reflecting the 
dependencies between nodes corresponds to the ensemble 
average of the magnetization orientations after the initiali-
zation and relaxation process of the nanomagnets. In this 
preliminary work, the authors demonstrated the structure 
of a carrot-stick-performance BN shown in Fig. 30(b). Such 
a simple 3-node BN is often used for employee incentive 
policies in enterprises. Although details about how to trans-
late real-world problems like this to such nanomagnet-based 

building blocks are not given, the authors make predictions 
about the underlying physical mechanisms that could poten-
tially be exploited to directly implement BN, including how 
to write, how to read states of variables and how to imple-
ment interactions.

Faria et al. [14] reported a design framework for imple-
menting BN in hardware, including 1) how to translate 
real-world BN to a behavioral model PSL with a set of 
mapping rules and associated formula expressions, and 
2) how to map PSL to electronic circuit elements. Table 1 
reports all the information on translating a graphical 
model of BN to real electronic elements in which PSL is a 
bridge between BN and real circuits, defined by the h and 
J coefficients. In PSL, the binarized magnetization ori-
entations of nanomagnets represent the random variable, 
which corresponds to high and low levels binarized by the 
inverter in electronic elements. The conditional dependen-
cies between random variables represented by CPT can be 
explained by Eq. 15(a) and 15 (b): there is a child node mi, 
and its output is governed by input Ii by Eq. 15(a). Then, 
15(b) describes Ii is obtained by summing the weighted 
states of each node connected to mi and its own bias. Given 
the precondition of mj = 1 (by applying sufficiently large 
current or voltage), the probability of mi = 1 can be cal-
culated from the above two equations. The direction from 
the parent node to the child node represented by edges 
can be implemented by the directivity in real circuits 
when connecting the input and output terminals of p-bits. 
Figure 30(c) shows the circuit of a building block, i.e., 
a p-bit in this work, which is composed of a stochastic 
MTJ, an operational amplifier, two inverters, and resis-
tive elements. By sampling its time-averaged output, the 
occurrence probability of a particular event can be readily 
obtained. Please refer to Eqs. 16(a, b) and Eqs. 17(a–e) 
for the mapping from PSL to circuits. A set of translation 
process examples of zero-parent nodes, one-parent nodes, 
and two-parent nodes from BN to PSL to the circuit are 
also shown in Fig. 30(d).

Based on the inherent randomness of stochastic nano-
magnets, Debashis et al. [226] proposed another novel p-bit 
design which is made of stochastic MTJs with perpendicular 
anisotropy and worked as the building block of the network. 
Figure 30(e) shows the ring-like structure of the proposed 
stochastic device which utilizes the GSHE originating from 
the SOC in heavy metal rather than spin transfer torque in 
previous work. Due to the design differences of underlying 
physical mechanisms, the translating process is slightly dif-
ferent from the previous case. More specifically, although 
both two pieces of work change the weights and local bias 
by changing the conductance or voltage, the subsequent cur-
rent change in Ref. [14] directly leads to a strong change in 
the STT effect. However, in Ref. [226], the reversal of mag-
netization is indirectly affected by changing the magnetic 
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field generated from the injected current flowing through 
the Oersted ring. Figure 30(f) shows an experimental dem-
onstration of a four-variable BN, in which stochastic devices 
are initialized and sampled by a pulse sequence, and all of 
them are electrically interconnected. Any given correlations 
can be captured by designing the weights and biases.

Shim et al. [227] developed a SOT-driven stochastic MTJ 
along with peripheral CMOS circuits to act as the building 
block, the variable of Bayesian inference engine. As shown 
in Fig. 30(g), a voltage pulse sequence with a fixed phase 
difference is injected into the input of the building block. 
Due to the “S” shape switching probability with respect to 
the input current, the probabilistic information is encoded 

Fig. 30  Various p-bit designs based on stochastic-MTJs for direct 
implementation of BN. a–b: design 1. c–d: design 2. e–f: design 3. 
g–h: design 4. a A proof-of-concept p-bit based on a stochastic MTJ 
to represent a stochastic variable in BN. b A carrot-stick-performance 
BN based on design 1. c Schematic for p-bit design 2, which is com-
posed of a stochastic STT-MTJ, an operational amplifier, two invert-
ers, and resistive elements. d Examples of the translation process 

from BN to PSL to electronic elements based on design 2. e Sche-
matic of p-bit design 3 based on an Oersted-ring assisted stochastic 
MTJ. f Circuit schematic of a 4-node BN using design 3. g Schematic 
for p-bit design 4 based on stochastic SHE-MTJ. h Circuit schematic 
of a 4-node BN using design 4. The figures are adapted from Ref. 
[14, 225–227] with the authors’ permission
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into the system and following pulse-based arithmetic will 
implement the inference. Fig. 30(h) shows the complete cir-
cuit schematic of a typical four-node BN case and demon-
strates its efficiency in solving such inference tasks by using 
a direct mapping approach.

Furthermore, Zand et al. [228, 229] realized a model of 
a deep belief network using stochastic MTJ-based p-bits. 
The developed inference simulator is based the restricted 
Boltzmann machines and can be trained to recognize hand-
written digits.

It should be noted that when using the above p-bits 
as building blocks to build BN, the update sequence of 
p-bits needs to be appropriately designed to make sure 
the network operates correctly. In the previous context 
of BM-based invertible logic, all p-bits have an equal 
footing. Therefore, the final statistical results, i.e., the 
Boltzmann distribution, presented at thermal equilib-
rium will not be affected even if the p-bits are randomly 
updated in each round of iteration. In BN, on the other 
hand, the story is different. The inherent causal rela-
tionship between events implies that the status of p-bits 
representing parent nodes and child nodes are differ-
ent. As a result, it is necessary to ensure BN is updated 
sequentially and in order from the parent node to the 
child node. Otherwise, the circuit will not operate appro-
priately. Faria et  al. [230] systematically studied the 
underlying causes and influencing parameters of such 
phenomena. A design criterion for designing autono-
mous and asynchronous BN circuits without any clocks 
or sequencers based on the p-bit of 1 T-1MTJ adopted 
in Ref. [14] is expounded. The signal transmission delay 
on synapse-like interconnection elements must be much 
smaller than the p-bit response time (the sum of the 
retention time and flipping time of the stochastic MTJ). 
In Ref. [226, 227], the sequential update order from the 
parent node to a child node is guaranteed by the timing 
of pulses injected into p-bits. The other main contri-
bution of this work is that a behavioral model called 
parallel PSL for autonomous BN is developed, which 
provides a valuable reference to future clockless BN 
design based on emerging nanodevices.

4.4  Challenges and future directions for stochastic 
computing

In this section, we review recent research progress on 
stochastic nanodevices, especially the stochastic MTJ 
which can be used as a p-bit (a building block) to build 
complicated networks, in several typical applications of 
stochastic computing. Compared to CMOS-based imple-
mentations, stochastic MTJs are favored by researchers 
due to their inherent stochasticity and other desirable 
properties. These nature-friendly properties and good Ta
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compatibility with the CMOS process make stochastic 
MTJs one of the most promising candidates to directly 
implement probabilistic networks based on the stochastic 
computing paradigm. For example, in BM-based Invert-
ible logic and IMs, the tunable stochasticity of stochas-
tic MTJs makes it possible to implement the natural 
annealing process. Therefore, the hardware overhead of 
additionally implementing the annealing algorithm can 
be reduced. In BNs, stochastic MTJs can directly rep-
resent stochastic variables and conditional dependencies 
between events can also be easily mapped. Furthermore, 
stochastic MTJs provide a compact and low hardware cost 
solution which consumes much less area and power in 
stochastic bitstreams generation compared with CMOS-
based SBG. However, there still exist several challenges 
ahead for direct hardware implementation of probabilistic 
networks using stochastic MTJ-based p-bit devices.

On the device-circuit level, although low barrier nano-
magnets enable much faster flips of states and hence, the 
process of network exploring all the spin configurations 
can be accelerated, stochastic MTJs with low EB not only 
pose difficulties to the fabrication process but also the 
circuit design, because a very limited energy barrier 
results in a very small critical current [231]. Therefore, 
the current flowing through the read circuit needs to be 
designed to be as small as possible to minimize its nega-
tive pinning effect on the switching of the free layer. On 
the other hand, nanomagnets are vulnerable to process 
variation, which implies even tiny differences in energy 
barrier may bring great change to device stochasticity. 
This undesirable change in stochasticity can be overcome 
for small-scale networks, but with the increase in network 
size, scalability emerges as the most important issue, 
because these negative effects can be accumulated and 
may eventually lead to a specific stochastic MTJ being 
unable to operate at its originally designed operating 
point, thus leading to malfunction of the whole network.

On the algorism level, with an increase in the problem 
size, a design scheme that can simplify the coefficients 
for BM-based invertible logic and IM is imperative to be 
developed, which is reflected in a more reasonable design 
of h and J when mapping the problem ready to be solved 
to the p-bits-based probabilistic network so that simpler 
energy profile, fewer p-bits required and reduced com-
putational complexity are obtained. Recently, a design 
scheme based on many-body interactions has been dem-
onstrated to be one of the promising solutions to solve 
the above issues [17, 181]. However, how to directly 
implement the multiple couplings among p-bits based on 
STT-MTJs, SOT-MTJs or oscillation-based MTJs requires 
further research. Furthermore, for large-size problems, 
the accuracy of the solution can be improved by anneal-
ing algorithms, but most of the current works adopt the 

simplest linear simulated annealing schedule. Other more 
advanced annealing schedules, like the design of a univer-
sal algorithm that can automatically adjust the annealing 
speed according to the energy profile of the networks, still 
need further discussion.

5  Conclusion

We review the MTJ-based neural networks of neuromor-
phic computing and several typical applications of MTJ-
based stochastic computing. First, the fundamentals and 
research progress of MTJ-based neurons, synapses, and 
p-bits at the device level are introduced. The magnetiza-
tion of the MTJ can be regulated by STT, SOT, or VCMA, 
and thus the resistance changes due to the presence of 
TMR. The STT-MTJ was first considered as an artificial 
synapse, and its switching probability can be adjusted 
from 0 to 100% by the amplitude of the pulse at a fixed 
pulse width, which enables it to implement the STDP 
rule. However, SOT-MTJ exhibits better stability and 
lower energy consumption. For an artificial neuron, what 
it needs to achieve is to accumulate charge and fire when 
the voltage reaches the threshold. MTJs exhibit an extraor-
dinary ability to mimic this integrated and fire process. In 
addition, MTJ-based neurons have nonlinear dynamics, 
giving them excellent biological proximity. For p-bits, the 
naturally stochastic fluctuation of MTJs makes them one of 
the promising candidates. VCMA-MTJs with stochasticity 
has been implemented as TRNGs and p-bits.

In the section about neuromorphic computing, the neu-
ral networks based on MTJs are reviewed. There are three 
generation neural networks: The first generation is the sin-
gle perceptron whereas it has only one layer of functional 
neurons, which makes it unable to solve non-linearly sepa-
rable problems. The addition of one or more hidden layers 
between the input and output layers led to the birth of the 
second generation of neural networks and the concept of 
MLP. Facing the dramatic increase in parameters caused by 
the increase in the number of layers, CNN was proposed. 
MTJ-based CNNs are used to identify datasets such as 
MNIST, CIFAR-10, and ImageNet with high accuracy and 
low power consumption. In addition, to solve the sequence 
problem, RNNs are proposed. Building RNN and RC with 
MTJs is feasible and STNO exhibits high energy efficiency. 
The third generation is the event-driven SNN. Compared to 
the previous two generations, SNNs are closer to the nervous 
system in the human brain. Meanwhile, their high computing 
efficiency and low energy consumption highlight their excel-
lent potential for efficient information processing. With the 
characteristics of non-volatility and high energy efficiency, 
MTJs can realize learning rules such as STDP and models 
such as LIF, which perfectly meet the requirements of SNN 
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for devices. Nonetheless, like all nascent technologies, the 
development of SNN is controversial and SNN still faces 
problems such as difficulties in practical use, difficulties in 
training and learning and low accuracy in complex tasks.

In addition, we review stochastic computing with the 
MTJs used as p-bits. The stochasticity and other desir-
able properties exhibited by the stochastic MTJ and its 
compatibility with CMOS technology make it a promis-
ing candidate for the p-bit. In application examples such 
as BMs, BN, etc., MTJ exhibits highly energy-efficient, 
compact, and low-cost solutions. Nevertheless, MTJ-
based stochastic computing also faces some problems. The 
switching speed and energy barrier of MTJ are a pair of 
contradictory indicators. To achieve fast switching, a small 
energy barrier is required. Nevertheless, a small energy 
barrier will lead to a small critical current, which brings 
difficulties to circuit design. Affected by the manufactur-
ing process, it is difficult for the MTJs in the network to 
have a completely uniform energy barrier, and a slight 
difference may have a huge impact on the final results. 
In addition, the mechanism of coupling between p-bits 
based on STT-MTJ, SOT-MTJ, and VCMA-MTJ is still 
unclear. Implementing more complex annealing schedules 
or even a general annealing algorithm also needs to be 
further investigated.
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