
Vol.:(0123456789)1 3

Applied Physics A (2023) 129:236
https://doi.org/10.1007/s00339-022-06365-4

S.I. : 50TH ANNIVERSARY OF APPLIED PHYSICS

Unconventional computing based on magnetic tunnel junction

Baofang Cai1 · Yihan He1 · Yue Xin2 · Zhengping Yuan2 · Xue Zhang2 · Zhifeng Zhu2,3 · Gengchiau Liang1

Received: 2 November 2022 / Accepted: 24 December 2022 / Published online: 3 March 2023
© The Author(s) 2023

Abstract
The conventional computing method based on the von Neumann architecture is limited by a series of problems such as
high energy consumption, finite data exchange bandwidth between processors and storage media, etc., and it is difficult to
achieve higher computing efficiency. A more efficient unconventional computing architecture is urgently needed to overcome
these problems. Neuromorphic computing and stochastic computing have been considered to be two competitive candidates
for unconventional computing, due to their extraordinary potential for energy-efficient and high-performance computing.
Although conventional electronic devices can mimic the topology of the human brain, these require high power consumption
and large area. Spintronic devices represented by magnetic tunnel junctions (MTJs) exhibit remarkable high-energy efficiency,
non-volatility, and similarity to biological nervous systems, making them one of the promising candidates for unconventional
computing. In this work, we review the fundamentals of MTJs as well as the development of MTJ-based neurons, synapses,
and probabilistic-bit. In the section on neuromorphic computing, we review a variety of neural networks composed of MTJ-
based neurons and synapses, including multilayer perceptrons, convolutional neural networks, recurrent neural networks,
and spiking neural networks, which are the closest to the biological neural system. In the section on stochastic computing,
we review the applications of MTJ-based p-bits, including Boltzmann machines, Ising machines, and Bayesian networks.
Furthermore, the challenges to developing these novel technologies are briefly discussed at the end of each section.

Keywords Magnetic tunnel junction · Neuromorphic computing · Unconventional computing · Spintronic neuron ·
Spintronic synapse · Stochastic switching

1 Introduction

Modern computers, based on von Neumann architecture
that solves numerical problems in a serial, deterministic,
and highly precise way, have been extensively developed
for decades and are still the mainstream of the fashion for

information processing at present. However, the emergence
of big data with increasing volume and complexity chal-
lenged the von Neumann computing paradigm, in that shut-
tling such information between the processor and the storage
inevitably causes substantial energy consumption. Therefore,
in the context of seeking a solution for the “von Neumann
bottleneck” [1], novel computing paradigms beyond von
Neumann architecture, i.e., unconventional computing, are
desired. Contrary to the von Neumann paradigm that gives
out guaranteed and accurate results, approximate comput-
ing [2] employs redundant computation and returns approxi-
mate results that are sufficient for their objectives such as
recognition, classification, prediction, optimization, and so
on. Such emerging paradigms are expected to achieve high
performance and energy-efficient computing when involv-
ing big data processing, in that 1) the approximate comput-
ing uses many low-precision or probabilistic calculations,
and thus is inherently resilient to errors, 2) most paradigms
for approximate computing are in parallel that would ben-
efit for calculation speed, and 3) some of the approximate

Baofang Cai, Yihan He and Yue Xin have contributed equally and
listed alphabetically by their last names.

 * Zhifeng Zhu
 zhuzhf@shanghaitech.edu.cn

 * Gengchiau Liang
 elelg@nus.edu.sg

1 Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117576,
Singapore

2 School of Information Science and Technology,
ShanghaiTech University, Shanghai 201210, China

3 Shanghai Engineering Research Center of Energy Efficient
and Custom AI IC, Shanghai 201210, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00339-022-06365-4&domain=pdf
http://orcid.org/0000-0002-8193-7422

 B. Cai et al.

1 3

236 Page 2 of 48

computing associated paradigms are designed for storing
information locally where it is processed so that extricating
from the large energy dissipation caused by commuting data
between processor and memory.

Among approximate computing, bio-inspired computing
has recently attracted much interest due to its massive par-
allelism, high energy efficiency, adaptivity to varying and
complex inputs, and inherent tolerance to fault and varia-
tion. Therefore, bio-inspired computing is especially useful
for unstructured data processing such as recognition, one
of the purposes of machine learning. The direct strategy
for bio-inspired computing design is emulating the human
brain, namely Neuromorphic computing [3]. Neuromorphic
computing is based on a variety of artificial neural networks
(ANNs) which are composed of the following two elemen-
tary units: artificial neurons and synapses. Synapses func-
tion as connectors with different variable weights (i.e., con-
nection strength) to update and deliver information. While
neurons that are interconnected by synapses receive signals
from other neurons and emit spikes to the subsequent neu-
rons if activated. Choosing a proper neural network for a
particular computing task is one of the key issues associated
with neuromorphic computing. Specifically, the rudimen-
tary classification tasks that require differentiating binary
states can be handled by the first generation of ANN [4],
also called “perceptron”. A perceptron is the simplest ANN
that constitutes one layer of neurons for inputs and another
layer of neurons for outputs and the two layers are connected
by synapses. As shown in Fig. 1(a), however, the single per-
ceptron can only solve classification problems in a linear
way and thus function analogously to AND, NAND, and
OR gate. Therefore, one of the second-generation ANNs,
the multi-layer perceptron (MLP) [5] or deep neural net-
work (DNN) [6] in which hidden layers play an important
role has been proposed for solving the nonlinear classifica-
tion problems which are analogous to XOR gate shown in
Fig. 1(b). In DNN, neurons in one layer are fully connected
by neurons in the neighboring layer and information would
be delivered unidirectionally. Additionally, by adapting

the mode that how neurons are connected and interacted,
other multi-layered neural networks have been proposed to
perform computation tasks with upgraded efficiency. For
example, the convolutional neural network (CNN) [7] would
be advantageous for image recognition due to the coopera-
tion among the convolutional layer, max pooling layer, and
fully connected layer that consist of the CNN. The data pro-
cessed in the DNN and the CNN are time-independent or
static, while recurrent neural network (RNN) [8] concerns
processing sequence data. RNN not only allows for cycles
that could achieve related data among adjacent time steps,
but also has differing levels of connectivity; therefore, RNN
is very desirable for sound recognition, natural language pro-
cessing, computer vision, etc.

Compared to biological neural networks, the first- and
second-generation ANNs are much more computationally
driven and would be in the category of non-spiking neural
networks (non-SNN), whereas in recent years, researchers
started to design an ANN that could replicate biological
behavior closely in that biological neural systems would
inherently process information with high efficiency. Conse-
quently, the third-generation ANN, the spiking neural net-
works (SNN) [9], would be more biomimetically driven and
has attracted much attention. In additional to the potential
for saving energy, SNN offers a platform for realizing spike-
timing-dependent plasticity (STDP) [10], one of the most
efficient unsupervised learning algorithms and is capable of
training data online. It is worth noting that the capabilities
of the spiking neuromorphic system have not been realized
by training and learning mechanisms comprehensively and
the superiority of computing performance for the SNN and
non-SNN is still under debate.

On the other hand, stochastic computing exploits random-
ness, and its physics rules are also competitive for solving
problems that neuromorphic computing concerns. The unit
of stochastic computing is a random number generator with
a tunable output probability, which is called a probabilis-
tic-pit (p-bit) [11]. For machine learning, the Boltzmann
machine (BM) [12] is widely used as the architecture of

Fig. 1 a The classification prob-
lem can be solved by finding
a straight line whose function
is Y = w1X1 + w2X2, where wi
is weight, Xi is input (i = 1, 2)
and Y is output. The logic is
analogous to AND, NAND, and
OR gate. b The classification
problem needs to be solved by
finding a nonlinear line in that
the two output states cannot be
separated by any straight line.
The logic is analogous to the
XOR gate

Unconventional computing based on magnetic tunnel junction

1 3

Page 3 of 48 236

stochastic computing, which is also called “stochastic neural
networks”. A more commonly utilized Boltzmann model is
the restricted Boltzmann machine [13]. Compared to a gen-
eral BM, the restricted Boltzmann machine could speed up
the training rate due to the restricted connection among the
units. Another typical case of the stochastic neural networks
is related to Bayesian calculations, i.e., the Bayesian network
(BN) [14]. BN is a feed-forward neural network, and the
nodes could be divided into parent and child nodes in terms
of their causal sequences inherited from events, expecting
parent-to-child directionality for the data delivery. Further-
more, stochastic computing is also capable of solving the
computation tasks that adiabatic quantum computing con-
cerns [15]. For example, the Ising model has been applied
to solve combinatorial optimization problems (COP) such
as the travel salesman problem (TSP) [16], while inverse
problems such as integer factorization (IF) [17], which is
very difficult for conventional computing, can be worked out
by stochastic networks. Figure 2 summarizes the relationship
among the aforementioned computing paradigms that will
be discussed in more detail in this review.

The hardware unit implementation for such unconven-
tional computing paradigms, furthermore, was initially
supported by typically hundreds to thousands of transistors
which would be undesirable for unconventional computing
tasks because of the energy and area requirements. In recent
years, it has been proposed that a single spintronic device
would be capable of emulating the behavior of synapse, neu-
ron, and p-bit in that such devices could be engineered to a
variety of properties such as non-volatility, plasticity, sto-
chasticity, and oscillation, which are key features of the com-
puting units [18]. Magnetic tunnel junctions (MTJs), a typi-
cal structure of spintronic devices, have been investigated
for not only information storage but also unconventional
computing. Due to their versatile properties, together with
the outstanding endurance, and CMOS-technology compat-
ibility, MTJs are promising candidates for the hardware of

unconventional computing with high performance. Moreo-
ver, the MTJs would be expected in different behaviors to
cooperate with a particular computing paradigm, and this
will also be discussed in more detail in this review.

The structure of this review is conducted as follows: in
Sect. 2, we discuss the hardware based on MTJ for uncon-
ventional computing on the device level, illustrating the
mechanism for the operation of MTJ-based devices, the
device features, design principles, and recent works. Then
we divided the discussion of unconventional computing on
the architecture level into neuromorphic computing (Sect. 3)
and stochastic computing (Sect. 4), giving an overview of
the aspects of computing tasks and applications to which
these unconventional computing systems have been investi-
gated. Finally, we enumerated some challenges that need to
be tackled and concluded with promising perspectives for
unconventional computing.

2 MTJ‑based devices for unconventional
computing: from mechanism
to applications

2.1 Mechanism

For magnetic materials, magnetic orders stem from the
neighboring localized, exchange-coupled electron spins.
From the perspective of classical physics, magnetic orders
are regarded as the magnetic moment which is controlled by
the spin angular momentum. Due to the controllable mag-
netic orders, the device based on magnetic materials could
achieve information storage, logic computation, and other
novel functionalities. At an early stage, the magnetic order is
controlled by a magnetic field, and then, in order to be com-
patible with circuits, people started to manipulate magneti-
zation in electrical ways. Especially, the spin-transfer torque
(STT) effect [19] plays an important role in electrically
changing magnetic orders. The spin-polarized conduction
electrons can change the magnetic moment by exchanging
the spin angular momenta between the conduction electrons
and spin electrons. More specifically, the STT effect can be
experimentally achieved in a structure of a non-magnetic
spacer sandwiched by two magnetic layers with large/small
saturation magnetization called pinned/free layer, respec-
tively. When the spin-polarized electrons which are filtered
by pinned layer reached the free layer, the spin-polarization
component that is parallel to the magnetization of the free
layer can be transmitted, while the component which is
perpendicular to the magnetization would be absorbed and
thus led to the rotation of the magnetization due to angular
momentum conservation.

Although STT is difficult to control the magnetization of
magnetic materials with high resistance, the magnetization

Fig. 2 The relationship among the unconventional computing para-
digms

 B. Cai et al.

1 3

236 Page 4 of 48

could also be rotated by spin-orbital torque (SOT) [20]
which does not require electrons to pass through the mag-
nets. The SOT effect originated from spin-orbital coupling
(SOC) [21], and the principle of SOC can be attributed to
an effective magnetic field generated by an electrical field.
A material with broken inversion symmetry could produce a
net spin polarization due to the asymmetric spin scatterings
in the bulk, and this is the spin-Hall effect (SHE) [22]. Then,
the spin-polarized electrons would accumulate at the inter-
face of the material and thus can be absorbed by an adja-
cent ferromagnet in the form of damping-like SOT. Another
physical explanation is attributed to the Rashba effect [23];
electrons pass through an interface with the asymmetrical
inversion and therefore obtain a spin polarization. The polar-
ized electrons can generate a torque on the adjacent ferro-
magnet via the exchange coupling. Although the SHE and
Rashba effects are dominant in conventional ferromagnet/
heavy metal heterostructures, these two are not the only ori-
gin of SOT. The other effects, such as the quantum spin-Hall
effect [24] in topological insulators, which could also gener-
ate SOT, are still under intensive investigation.

In addition to applying the spin torques to manipulate
magnetizations, the magnetic anisotropy of the magnets can
be changed and, therefore, control the magnetization align-
ment. This effect is the voltage-control magnetic anisotropy
(VCMA) [25] that plays an important role in the stochastic
MTJ. The VCMA-MTJ is important in the computing para-
digms which require stochasticity, and this will be discussed
in detail later.

Besides, an essential element in spintronic technology in
the last two decades is the MTJ. The resistance of an MTJ
depends on the relative orientation of the magnetizations
in the pinned layer (i.e., reference layer) and the free layer.
The discovery of the tunneling magnetoresistance (TMR)
effect [26] is one of the milestones for integrating spin-based
devices with CMOS technology. Specifically, TMR gives
a very large magnetoresistance ratio so that it can provide
enough signal strength to the CMOS sense amplifier [27].

2.2 Applications

2.2.1 Neuromorphic computing

Compared to conventional computing technology, one of the
strategies for processing data more efficiently and energy-
conserving is to emulate the brain. The brain consists of
the following two elementary units: synapses, and neurons.
Synapses operate as connectors of neurons, while neurons
interconnected by synapses receive signals from other neu-
rons and emit spikes to the subsequent neurons if activated.
Inspired by the functionality of the brain, neuromorphic
computing is being intensively developed and has exhib-
ited outstanding performance for computational tasks such

as classification, recognition, and prediction. Hence, at the
device level, designing artificial synapses and neurons for
high-performance neuromorphic computing is of foremost
importance. In this part, we will explain the MTJ-based syn-
apse and neuron in the aspects of device features, design
principles, and recent works.

2.2.1.1 Artificial synapses based on MTJ Selecting the type
of neural network is dependent on the specified applications.
To be specific, the non-SNN are much more computation-
ally driven, while SNN is proposed to explicitly reproduce
biological behavior such as STDP. The selected neural net-
work model defines the behavior of the synapse. Therefore,
the artificial synapse could be classified into synapse for
non-SNN and synapse for SNN.

For the non-SNNs, the synapses could be regarded as
an unstable memory device that does not require a 10-year
retention time. These synapses for non-SNN are required
to 1) represent the strength of the connection (encoding to
different weights) between the connected neurons, 2) update
the weights according to the output of connected neurons to
realize the learning process or plasticity-like properties, and
3) keep the connection strength within one iteration (short-
term memory functionality). On the other hand, the synapses
for SNNs are attempted to emulate biological behavior in a
further precise way. One of the popular inclusions for more
complex synapse properties is the STDP mechanism, which
requires the connection strength to change over time.

Generally, memory devices can be used as the artificial
synapse because they can memorize and be repetitively
rewritten. So far, many works apply memory devices to syn-
apses in both non-SNNs and SNNs. For example, floating-
gate transistors are used as analog memory cells for syn-
aptic weights storage [28], [29], while conductive-bridging
RAM changes the connection strength via electrochemical
properties [30]. Likewise, memristors based on ferroelectric
materials [31], [32] and phase change memory [33] have
been applied in the hardware of synaptic systems due to
their plasticity-like and especially the STDP-like behavior.

Spintronic devices, additionally, have been considered
as a competitive candidate for the hardware implementa-
tion of synapses. Spintronic devices can be non-volatile
and allow for a variety of tunable spin dynamics such as
intrinsic stochastic switching, the dynamics of domain wall
(DW), and so on. These various spin dynamics could emu-
late synapses with different behaviors. For instance, because
uniform and continuous variation of synaptic weights are
required to guarantee the accuracy of the training [6, 34],
linear synaptic behavior is desired in non-SNNs that exploit
supervised learning such as the backpropagation (BP)
learning rule. Memristor-like behavior that the synaptic
weights that depend on both input amplitude and duration
time is required for the SNNs with unsupervised learning,

Unconventional computing based on magnetic tunnel junction

1 3

Page 5 of 48 236

especially for STDP learning rules [35], [36]. Spintronic
devices could emulate the synaptic behavior for both non-
SNNs and SNNs. The spintronic devices not only keep the
merits of fast operation speed which outperform conduc-
tive-bridging RAM, phase change memory, and some of
the non-spin-based memristors but also are energy-efficient
compared to volatile floating-gate transistors.

Due to exhaustive back-and-forth memory-processor
operations and inevitable leakage current, the early artifi-
cial synapse based on a group of transistors requires inten-
sive energy [37]. The power consumption can be reduced by
introducing non-volatile memory units into CMOS circuits.
Compared to pure CMOS circuits, the proposed CMOS/
MTJ-hybrid structures [38], [39] exhibit reduced energy
consumption and computational latency when performing
the classification and recognition tasks. Nevertheless, in
such CMOS/MTJ-hybrid structures, the MTJs just func-
tion as associative memories to store the synaptic weights
of hardware, which would not fully exploit the versatility
of MTJs.

For the MTJ-based synapse, however, one of the key
issues is how to use the binary MTJ to mimic the analog syn-
apse, which would realize a gradual or semi-gradual change
of synaptic weight and thus achieve high computational
accuracy. There are mainly two strategies to represent the
strength of the connection as follows: 1) gradually changed
the probability of the binary switch (bistate), and 2) gradu-
ally changed states (multi-state).

At the very beginning, the binary MTJ is designed to
be thermally stable to target 10-year information preserva-
tion by designing the high energy barrier between the dif-
ferent states. As a result, the energy consumption required
to switch nonvolatile MTJ is relatively high, typically 100
fJ [40], as compared with 23 fJ per synaptic event [41].
Subsequently, if the circuit requires frequent changes in the
stored information to realize rapid updates for the synaptic
weights, the MTJs are not energy-efficient [42], [43]. Addi-
tionally, MTJs are required to have a minimum variation,
which requires severe constraints on nanofabrication. When
the energy barrier between the two states is comparable to
thermal energy, changing the state of the MTJ requires less
power but introduces much noise. For the paradigm of neu-
romorphic computing, on the other hand, the neural net-
works are tolerant to and even could harness noise, vari-
ability, and stochasticity for the computation [44].

Furthermore, in binary MTJs, the resistance cannot evolve
gradually, but the probability of an MTJ switching during
a voltage pulse can be tuned gradually by the amplitude
and duration of the pulse. Using the bistate synapses makes
learning slower but offers the network increased memory
stability. Furthermore, given that spin-transfer-torque mag-
neto-resistive random-access memory (STT-MRAM) has

been intensively developed in both the academic and indus-
trial world, the neuromorphic chips composed of spintronic
devices would tend to start from STT-MTJ with binary
switch behavior. STT-MTJs could comprehensively emu-
late the functionality of biological synapses because of their
intrinsic stochastic switching behavior [45].

Based on this principle, Vincent et al. [46] designed an
artificial synapse based on a single STT-MTJ. By encoding
the binary states of the STT-MTJ to the two weights repre-
senting light and dark, as shown in Fig. 3(a), the artificial
neural network composed of such STT-MTJ artificial syn-
apse is capable of unsupervised learning. When an input
neuron spikes, a brief read pulse is applied to the crossbar
and currents will reach the different output neurons simul-
taneously. Then, by design choice, only the inputs coming
from the P synapses are integrated by the output neurons.
When an output neuron spikes, other output neurons will be
inhibited and their internal variable is reset to zero. The syn-
apses in the crossbar architecture successfully counted cars
via recognizing the change of brightness in lanes, which is
showed in Fig. 3(b). Due to the inherently stochastic switch-
ing, only two STT-MTJs switch states are enough for the
presented example.

To further improve the performance of the STT-MTJ as a
synapse, Locatelli et al. [47] reported strategies to effectively
control the bit error rate by modulating the programming
pulse amplitude or duration. Conversely, it is challenging for
a synapse based on a single binary MTJ to handle complex
computation tasks. Thus, the analog behavior of an artifi-
cial synapse is desired, resulting that such a synapse could
exhibit multiple distinguished states corresponding to multi-
ple discrete weights. To realize the analog behavior, embed-
ding such binary-state STT-MTJ to crossbar frameworks has
been proposed. Fig. 4(a), (b) shows that the optimized STT-
MTJ crossbar synapse with multi-state is constructed by
stacking several binary-state STT-MTJs [48] or connecting
in the 2D architecture [49], named compound magnetoresis-
tive synapse (CMS), respectively. The CMSs are offered an
analog-like weight spectrum that results from different states
of the individual MTJs leading to a gradual conductance
modulation. CMSs are advantageous for number recognition
tasks with high tolerance to fault and variation, nevertheless
at the cost of device number and integration area. To solve
this problem, Zhang et al. [49] proposed a 3D crossbar struc-
ture, that each MTJ is sandwiched by the vertical electrodes
and the horizontal electrodes. The two vertical electrodes
and the two horizontal electrodes are connected to the post-
neurons and the pre-neurons, respectively.

Compared to STT-MTJs, in principle, SOT-MTJs are
expected to perform better in terms of energy consumption,
speed, and endurance [50]. Srinivasan et al. [51] demon-
strated a SOT-MTJ which is a building block of the proposed

 B. Cai et al.

1 3

236 Page 6 of 48

all-spin SNN which is highly energy-efficient. The synapse
based on the SOT-MTJ consumes less than 36 fJ per spiking
event. It is also helpful for realizing the stochastic-STDP
learning algorithm. The CMS based on the SOT-MTJs has
also been reported. Such CMS with analog-like behavior
can handle more complex computation tasks with high
accuracy while keeping the power consumption low [52].
Alternatively, as shown in Fig. 5(a), Ghanatian et al. [53]
created multiple states by putting multiple SOT-MTJs on
a shared heavy metal layer but with different cross-section
areas. Although the SOT-MTJ-based synapses have been
proposed with progressive significance, the challenge of
scaling is unavoidable. Therefore, developing an artificial
synapse based on a single MTJ with multi-state would be
desirable for reducing the area.

The multi-state synapses are especially desired for SNN,
which requires the connection strength to evolve con-
tinuously depending on the past activity of the connected
neurons. The property is plasticity, which allows neural
networks to learn and reconfigure. Magnetic devices are par-
ticularly well adapted for implementing plasticity [54] due to
their memory effects and tunability. Embedding a magnetic
DW in the MTJ structure can be used to implement synaptic
plasticity. Such memristive behavior has been demonstrated
in MTJ with more than 15 intermediate resistance states
[55]. Furthermore, it has also been shown that similar con-
tinuous magnetization variations can be triggered by SOT

in a magnetic stripe on top of an antiferromagnetic layer
[56]. Memristive-like features can then be obtained by fab-
ricating a tunnel junction on top of the bilayer stripe. These
spintronic memristors could be used as multi-state synapses,
similar to many strategies proposed for other memristive
technologies [57], [58]. Moreover, Wang et al. [59] proposed
a compact model of a synapse based on current-induced
DW motion MTJ (CIDWM-MTJ), driven by the SOT, the
CIDWM-MTJ exhibited reduced threshold current and a
faster DW motion of 400 m/s compared to CIDWM-MTJ
driven by the STT [60]. Cooperated with a peripheral cir-
cuit, the CIDWM-MTJ with low power consumption and
high speed would be promising for high-performance SNN
applications [61]. Besides, Siddiqui et al. [62] designed a
linear synapse shown in Fig. 5(b) based on nine MTJs with a
shared free layer to realize multilevel linear synaptic weight
generation, which would be favorable for DNN applications.
Lourembam et al. [63] reported a strategy for formatting
and stabilizing metastable magnetic domains by the voltage
pulse in the MTJ, combining binary switch and spin textures
to achieve the four-state synapse by using only a single MTJ
shown in Fig. 5(c). The MTJ was fabricated without any of
the domain-wall pinning methods and, therefore, can alter-
natively realize metastable multi-domain states. Hong et al.
[64] demonstrated a dual-domain-and-dual domain MTJ to
realize the eight-state synapse.

Fig. 3 The ANN is composed of binary STT-MTJs that function as
synapses. a Schematic of the crossbar architecture. Read operation
occurs when an input neuron spikes and STDP (write) operation
occurs when an output neuron spikes. Waveforms (1) and (2) are

applied concurrently. b The final state of the MTJs is organized as the
input pixels in the image. White is P, black is AP state. Every sub-
image represents one output neuron. The figures are adapted from
Ref. [46] with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 7 of 48 236

2.2.1.2 Artificial neurons based on MTJ The typical behav-
ior of a neuron is to accumulate charge when the neuron’s
membrane potential changes. The neuron would generate a
spike when its membrane potential reaches a threshold.

McCulloch-Pitts Neuron model [65] is used in most
ANNs. For this model, the output of neuron j is governed
by the following equation:

(1)yi = f

(

N
∑

i=0

wijxi

)

where yj is the output value, f is an activation function,
N is the number of inputs into neuron j, wi,j is the weight
of the synapse from neuron i to neuron j, and xi is the
output value of neuron i. In this neuron model, firstly, the
neuron would integrate the weighted outputs of the pre-
neurons through synapses. Next, this linearly combined
integration is processed by the activation function of the
neuron and then emits output to the next neuron. The
activation function plays a key role in data processing.
Choosing the activation function is heavily dependent on

Fig. 4 The crossbar structure
based on MTJ-array synapse for
realizing multi-level weights.
a multi-state synapse using
several binary-state stacked
STT-MTJs. The figures are
adapted from Ref. [48] with
the authors’ permission. b
STT-MTJ crossbar synapse con-
nected in parallel

Fig. 5 The MTJ-based synapse for realizing multi-level weights. a
SOT-MTJs on a shared heavy metal layer but with different cross-sec-
tion areas. b MTJs with a shared free layer. c A single MTJ combin-

ing binary switch and spin textures to achieve the four-state synapse.
The figures are adapted from Ref. [53, 62], and [63] with the authors’
permission, respectively

 B. Cai et al.

1 3

236 Page 8 of 48

the particular neural networks and the different activation
functions can be realized by the behaviors of the devices.

For artificial neurons applied in non-SNN, there are a
variety of implementations of the traditional McCulloch-
Pitts neuron model. The perceptron composed of CMOS
[66], which implements a simple thresholding function, is
commonly used in hardware implementation. As shown
in Fig. 6(a), the simplest activation function is the step
function [41], and the neuron hardware for this activa-
tion function requires less area utilization and would not
be computationally intensive. However, the mainstream
learning algorithms such as the BP algorithm are gradi-
ent-based. As the step function is not differentiable and
not suitable for this algorithm, the other hardware-based
activation functions, including the ramp-saturation func-
tion [67], linear [68], and piecewise linear [69] functions
shown in Fig. 6(b), (c), have been implemented to match
the gradient-based learning algorithm. As the complexity
of the activation function is increased, i.e., from linear to
nonlinear function, the overall accuracy of the learning
process is increased, in that nonlinear activation functions,
shown in Fig. 6(d) such as the basic sigmoid function [70]
and the hyperbolic tangent function [71], gives derivatives
with continuous variation offering a high resolution for the
gradient-based learning algorithm.

Nonlinear activation functions, unfortunately, would
cause complexity in computation and hardware implemen-
tation, The MTJ-based neuron could alleviate this challenge
due to its nonlinear dynamics. For example, the motion of
DWs could realize neural-like integration and thresholding.
Besides, thresholding can be achieved by using a stand-
ard MTJ, which switches only if the amount of current it

receives is above the critical current. The neurons together
with the activation functions mentioned above are mainly for
the non-SNN which is computationally intensive, and when
the neurons are activated, they would not necessarily return
to their initial states.

On the other hand, for artificial neurons applied in SNN,
the behavior of fire means that when the neurons are acti-
vated, they would emit spikes and then back to their initial
state spontaneously. A simple set of spiking neuron models
belongs to the integrate-and-fire family, which is a set of
models that vary in complexity from relatively simple (the
basic integrate-and-fire) to those approaching complexity
levels near that of the Izhikevich model [72] and other more
complex biologically-inspired models. In general, the neu-
ron models where action potentials are described as events
are called “integrate-and-fire” models. Integrate-and-fire
models have two separate components that are necessary
to define their dynamics: 1) an equation that describes the
evolution of the membrane potential, and 2) a mechanism
to generate spikes. Although the “integrate-and-fire” models
are still less biologically realistic but produce enough com-
plexity in behavior to be useful in spiking neural systems.
The simplest integrate-and-fire model maintains the current
charge level of the neuron. Furthermore, there is a leaky
integrate-and-fire (LIF) [73] implementation that expands
the simplest implementation by introducing a leak term to
the model, which leads to the potential for a neuron to decay
over time. The LIF models use the following two ingredi-
ents: 1) a linear differential equation to describe the evolu-
tion of the membrane potential, and 2) a threshold for spike
firing. It is one of the most popular models used in neuro-
morphic systems. Spin-torque nano-oscillators are specific
types of MTJ, and the oscillation amplitudes have memory
due to finite magnetization relaxation, which can imitate
the leaky integration of neurons [74], [75]. Moreover, the
next level of complexity of the neuron model is the general
nonlinear integrate-and-fire method, including the quadratic
integrate-and-fire model that is used in some neuromorphic
systems [76]. These have also been used in neuromorphic
systems. Nonetheless, the models aforementioned make use
of the fact that neuronal action potentials of a given neuron
always have roughly the same form, and no attempt is made
to describe the shape of an action potential. If the shape
of an action potential is always the same, the shape can-
not be used to transmit information, i.e., rather information
is contained in the presence or absence of a spike. As a
result, action potentials are reduced to events that happen
at a precise moment in time. Alternatively, another level of
complexity is added with the adaptive exponential integrate-
and-fire model [77].

In addition to the previous analog-style spiking neuron
models, there are also implementations of digital spiking
neuron models. The dynamics in a digital spiking neuron

Fig. 6 Plots of activation functions for neurons. a Step function. b
Ramp-saturation function. c Piecewise linear function. d Nonlinear
activation function

Unconventional computing based on magnetic tunnel junction

1 3

Page 9 of 48 236

model are usually governed by a cellular automaton, rather
than a set of nonlinear or linear differential equations. A
hybrid analog/digital implementation has been created for
neuromorphic implementations [78], as well as implementa-
tions of resonate-and-fire [79] and rotate-and-fire [80] digital
spiking neurons. A generalized asynchronous digital spiking
model has been created to enable the exhibition of nonlin-
ear response characteristics [81]. Digital spiking neurons
have also been utilized in pulse-coupled networks [82], and
a neuron for a random neural network has been exploited in
hardware [83].

2.2.2 Stochastic computing

Conventional computing is based on the binary representa-
tion of information in terms of “0” and “1”, as known as
“bits”. These bits of information are processed and stored
by stable deterministic devices like the MOSFETs or MTJs
with stable magnets having energetic barriers of the order
of 40–60 times the thermal energy at room temperature.
Probabilistic spin logic (PSL) is a new paradigm of com-
puting [84] that relies on probabilistic bits (p-bits for short)
that fluctuate randomly between 0 and 1, with probabilities
that can be tuned by an input. Besides, exploiting physics
properties to do computation has become increasingly attrac-
tive in recent years, because such computation can naturally
converge, which is governed by the physical laws instead of
complex algorithms. In the field of physics-inspired com-
puting, stochastic computing has gained significant interest
due to its excellent performance in solving non-determinis-
tic polynomial (NP)-hard problems. The unit of stochastic
computing is p-bit which is realized by several devices with
non-deterministic behavior. In this part, we will illustrate
the device features, design principles, and recent works of
the MTJ-based p-bits.

2.2.2.1 P‑bit based on MTJ Compared to the traditional
deterministic von Neumann approach, stochastic computing
would endow improved efficiency for solving computation-
ally hard problems such as the COP [85] and factorization
[17]. For stochastic computing, a large number of independ-
ent sources of the stochastic signal are needed, in that they
are often based on Markov chain Monte Carlo techniques
such as Gibbs sampling [86]. Therefore, energy-efficient,
high-density hardware for generating true-random noise
sources is of significance.

P-bits are evolved from random number generators
(RNGs) and the key feature of the p-bits is the tunability of
the probability for their outputs, i.e., concerning the inputs,
the outputs of hardware that function as a p-bit should obey
a specific probability distribution, generally, the sigmoidal-
like probability distribution. The ideal p-bit behavior is
described by the following two equations:

where Eq. (2) represents the state of the ith p-bit (given
by mi) as a function of its input Ii. “r” is a random number
with a uniform distribution between – 1 and 1, that captures
the stochastic aspect of the output. Equation (3) provides
the expression for the input Ii in terms of the connection
strengths Jij of other p-bits in the network to the ith p-bit and
the local bias hi. This is analogous to the concept of a Binary
stochastic neuron (BSN) used in the field of stochastic neural
networks [12].

MTJs have been integrated into CMOS technologies for
memory applications, and they are engineered to have sta-
ble magnetic states. However, MTJs could become naturally
fluctuating if choosing proper materials or geometry, result-
ing in such MTJs being one of the natural candidates for
p-bit hardware. Evaluating the speed of such fluctuation is
essential because it relates to the speed of computation in
a stochastic computing scheme [87]. Stochastic fluctuation
has been reported in superparamagnetic MTJs [17, 88], [89]
with low uniaxial anisotropy and energy barriers, operating
in the millisecond time regime. For the superparamagnetic
MTJs, the fluctuation rate follows an Arrhenius-like rela-
tion [90]:

where the magnetization of a uniaxial anisotropy nano-
magnet has two stable directions along its anisotropy axis:
“Up” and “Down” for nomination. The two states are sepa-
rated by an energy barrier, EB, which stabilizes the magneti-
zation in one of the states. τ0 is called the attempt time, a
material-dependent parameter of the nanomagnet. An expo-
nential increase in fluctuation speed is expected upon reduc-
ing the energy barrier EB, with a frequency scale set approxi-
mately by the attempt frequency of 1/τo ∝ αγHk, where α is
the Gilbert damping coefficient, Hk is the anisotropy field,
and γ is the gyro-magnetic ratio. However, because both
energy barrier EB = mHk/2 where m is the total moment of
the macro-spin, and attempt frequency 1/τo reduce with the
decreasing of Hk, the fluctuation speed of superparamagnetic
MTJs is largely limited.

A potential approach to increase the fluctuation speed,
consequently, is to exploit easy-plane anisotropy that can
allow magnetic fluctuation confined in the plane and mean-
while keep high-speed fluctuation dynamics [91]. In the
works [92], the energy barrier is determined by the shape
of the MTJ. A low relative energy barrier could be achieved
by constructing a circular in-plane junction. The attempt

(2)mi = sgn
{

tanh
(

Ii
)

−r
}

(3)Ii =
∑

i

Jijmj + hi

(4)� = �0exp(
EB

kBT
)

 B. Cai et al.

1 3

236 Page 10 of 48

frequency for this magnetization configuration is then
related to the free layer’s easy-plane anisotropy field, which
can be remarkably higher than the easy-axis anisotropy field
Hk, thus endowing a faster fluctuation speed. Furthermore,
nanosecond fluctuation in the in-plane MTJs [93]-[94] has
been achieved by investigating the mechanism for control-
ling relaxation time.

Introducing the VCMA effect to the MTJs is another strat-
egy for achieving fast fluctuation speed. By applying voltage
pulses, the magnetic anisotropy of the free layer would be
switched between the in-plane and out-of-plane directions
together with the thermal noise, achieving the random fluc-
tuation of the magnetization without reducing the energy
barrier. The VCMA-MTJs [95], [96] with stochasticity have
been applied as not only true random number generators
(TRNGs) but also p-bits the output probability could be
tuned by the amplitude and the enduring time of the voltage
pulses.

Besides the stochastic binary-switching MTJs, spin torque
nano-oscillator (STNO) could also be operated as hardware
of p-bit, exploiting intrinsic frequency fluctuation caused by
thermal noise [97]. Cooperated by a peripheral circuit, the
digital p-bit based on STNO would be able to act as a p-bit
array by time division multiplexing, which overcomes the
limitation of calibration and coupling connections encoun-
tered by synchronous p-bit arrays. More details of the appli-
cations of MTJs to stochastic computations will be discussed
in Sect. 4.

3 Neuromorphic computing

In the previous section, MTJ-based artificial synapses and
neurons were introduced. Facing the challenge of the Von
Neumann bottleneck and the decline of Moore's Law [98],
more efficient neuromorphic computing emerges as the
times require, which is inspired by the human brain and can
process and store the data simultaneously. Spintronic devices
provide a feasible approach to building neuromorphic com-
puting systems, due to their intrinsic dynamics being akin
to biological synapses and neurons. Additionally, their low
energy consumption, non-volatility, high speed, and poten-
tial for pure spin current transport make them one of the
most promising candidates [99], [100].

Inspired by the human brain, ANN was created to
mimic the functionality of the human brain to store and
process information. Similar to the human brain, ANNs
also consist of many synapses and neurons. As mentioned
in Sect. 2.1, synapses and neurons are the fundamental
building blocks of the brain. Among them, synapses are
related to the formation of memory, while neurons are
related to the information processing [101].

In the nervous system of the human brain, each
synapse is a specialized junction with two neurons,
which allows a neuron to transmit electrical or chemi-
cal signals to another neuron, as shown in Fig. 7(a).
The information is transformed from the axon of the
pre-neuron to the dendrite of the post-neuron through
a synapse. In conventional ANN, there are generally
two types of synapses: one requires multilevel memory,
while another one relies on stochastic binary memory
devices. As we have mentioned, one compact MTJ is
sufficient to imitate the functionalities of the biologi-
cal synapse.

Neurons play an essential role in producing and trans-
mitting action potentials in neural networks. Their func-
tionalities are intricate and plenteous [88]. However, in the
conventional ANN, an artificial neuron is a mathematical
function based on a model of biological neurons. Each
neuron takes inputs, weighs them separately, sums them
up, and passes this sum through a nonlinear function to
produce output, where the nonlinear activation func-
tions are extracted from the complex neural mechanisms
[101]. The same as artificial synapses, MTJs exhibit great
potential for mimicking artificial neurons. According to
the characteristics of MTJ switching, the neuron models
can be distinguished into two categories: deterministic and
stochastic neurons [47].

The content for this section is organized as follows:
First, the development and recent progress of neuromor-
phic computing are reviewed, including the MTJ-based
single perceptron, multi-layered perceptron, conventional
neural network, and recurrent neural network. The encod-
ing approaches and learning methods are highlighted. The
last part concludes the topic and envisions the challenge
and prospects.

3.1 Artificial neural networks

In this part, several different neural networks are introduced,
including MLP, CNN, RNN, and oscillator neural networks.
From multi-layered perceptron to CNN, by increasing the
number of layers or changing the network architecture, it is
possible to build and perform tasks such as image recogni-
tion with a large number of neurons and synapses based
on MTJs. In addition, RNNs and oscillator neural networks
show potential for time-domain signal processing. ANN
based on magnetic nano-oscillator and RNN will be dis-
cussed separately.

3.1.1 The perceptron based on MTJ

The development of neural networks has mainly gone
through three periods: The first generation is a perceptron

Unconventional computing based on magnetic tunnel junction

1 3

Page 11 of 48 236

capable of binary operations. The second generation is an
MLP and CNN with hidden layers, and the third generation
is the event-driven SNN.

The concept of perceptron has a landmark effect on the
development of the neural network. The single-layer percep-
tron model was proposed by Frank Rosenblatt in 1958 [102].
A perceptron is implemented as a binary classifier, which

Fig. 7 a Schematic of biological neuron and synapse. b Diagram of
perceptron with its weights, input function, activation function, and
output. c Architecture of MTJ-based MLP for recognizing the hand-

written digit. d The neuron model based on MTJ used in (c). The fig-
ures are adapted from Ref. [110] with the authors’ permission

 B. Cai et al.

1 3

236 Page 12 of 48

decides whether an input belongs to a specific class. As
shown in Fig. 7(b), a perceptron consists of four main parts
including input values, weights, net sum, and an activation
function. During the learning process, the input values are
multiplied by their weights. Additionally, all of these multi-
plied values are added together to create the weighted sum.
The weighted sum is, after that, applied to the activation
function, producing the perceptron's output, and only when
the weighted sum exceeds a certain threshold, the neuron
is activated. To ensure the output is mapped between (0, 1)
or (− 1,1), the step function is chosen to be the activation
function. In addition to the step function, the activation func-
tion also includes the sigmoid function (f (x) = 1∕(1 + e−x))
[103], the ReLU function (ReLU(x) = max(0, x)) [104], the
tanh (tanh(x) = (1 − e−2x)∕(1 + e−2x)) [105], and so on.
Since the step function is not differentiable at x = 0, which
makes it unusable for BP. The sigmoid function is the most
widely used class of activation functions, with an exponen-
tial shape, which is the closest to a neuron in the physical
sense. The output range of the sigmoid is (0, 1), which has
good properties and can be represented as probability or
used for input normalization. However, sigmoid also has
its own shortcomings. The first point, the most obvious, is
saturation. Specifically, in the process of BP, the gradient of
the sigmoid will contain a factor, once the input falls into
the saturation region at both ends, the factor will become
close to 0, resulting in the gradient becoming very small
in BP. At the same time, the network parameters may not
even be updated, making it difficult to train effectively. This
phenomenon is called gradient disappearance. The sigmoid
network will produce gradient disappearance within 5 layers.
The second point is the offset phenomenon of the activation
function. The output values of the sigmoid function are all
greater than 0 so that the output is not the mean value of 0,
which will cause the neurons in the latter layer to get the
non-zero mean signal of the previous layer as input. To over-
come this problem, the tanh function is proposed. Compared
to the sigmoid function, its mean of output is 0, making it
converge faster than the sigmoid and reducing the number
of iterative updates. However, like sigmoid, the gradient will
vanish. The ReLU function is proposed to solve the satura-
tion of sigmoid and tanh. When x > 0, there is no saturation
problem. Consequently, ReLU can keep the gradient from
decaying when x > 0, thereby alleviating the problem of gra-
dient disappearance.

3.1.2 Multi‑layered perceptron and convolutional neural
network

Nevertheless, the perceptron has only the output layer neu-
rons for activation function processing, that is, only one layer
of functional neurons, which limits its learning ability. In
1969, Minsky and Papert [106] proposed that the perceptron

can only solve linearly separable problems, that is, if there is
a plane that can separate the two types of modes, the learn-
ing process of the perceptron will definitely converge. Nev-
ertheless, for nonlinear separable problems, the perceptron
learning process will have fluctuations and cannot obtain
a suitable solution, which makes the perceptron unable to
solve even simple nonlinear separable problems such as
XOR. After a downturn for the first generation of AI, multi-
ple layers of functional neurons are considered. This led to
the concept of MLP [107] [108], [109], also known as the
neural networks (NN), in the 1980s. Unlike the single per-
ceptron, MLP has multiple hidden layers, and it is capable
of solving both linearly and nonlinearly separable problems.

Figure 7(c) shows an MLP built by voltage-controlled
stochastic MTJs [110]. The structure of the stochastic neuron
model is an MTJ, which consists of CoFeB/MgO/CoFeB lay-
ers, as shown in Fig. 7(d). Its stochastic switching behavior
is attributable to the VCMA effect by altering bias voltages.
The electric bias changes the switching probability between
the stable parallel (P) and antiparallel (AP) states, which
can be probed readily by measuring the time average of the
resistance or voltage across the MTJ. More importantly, the
switching probability curves under various external current
densities resemble a commonly used activation function, the
sigmoid function. The MLP composed of MTJs has trained
to recognize the handwritten digits from the MNIST dataset
with about 95% accuracy.

As the problems that need to be solved become more
complex, more hidden layers will be needed, such as speech
recognition often requiring 4 layers. However, it is also com-
mon for image recognition problems to require 20 layers,
leading to the number of trainable parameters increasing
dramatically. For example, assuming that the input picture
is a 1 K × 1 K picture, the implicit layer has 1 M nodes, and
there will be 1012 weights that need to be adjusted, which
will easily lead to overfitting and local optimal solution
problems. In this case, the learning efficiency of MLP is
limited, therefore, the concept of DNN is proposed [111],
and new architectures start to be used to improve computa-
tional efficiency. Typical representatives of new architec-
tures include the CNN and the RNN, which are widely used
neural network architectures nowadays.

As shown in Fig. 8(a), CNN [7, 112], [113] is widely
used in image recognition, and its architecture includes
different types of layers, including the convolutional lay-
ers, max pooling layers, and fully connected layers. The
convolutional layer is used to find features. The features
of the image can be extracted through the convolution
operation so that some features of the original signal can
be enhanced, and the noise can be reduced. The pool-
ing layer is used to reduce the amount of data processing
while retaining useful information. Sampling will neglect
the specific position of a feature, because after a certain

Unconventional computing based on magnetic tunnel junction

1 3

Page 13 of 48 236

Fig. 8 a The architecture of CNN for image recognition. b The archi-
tecture of STT-computing in memory which implements the con-
ventional operation. c XNOR-Net topology with STT-computing in

memory as conventional layers. d The accelerator for BCNN and the
main compute flow for convolutional layers of BCNN. The figures are
adapted from Ref. [114], with the authors’ permission

 B. Cai et al.

1 3

236 Page 14 of 48

feature is found, its position is no longer important, and
only the relative position of this feature and other features
is necessary. At last, the fully connected layer is used to
make classification judgments.

The input layer reads in a simple regularized image. The
units in each layer take as input a set of small local neighbors
in the previous layer. Through the local perception field, neu-
rons can extract some basic visual features, such as directed
edges, end-points, corners, and so on. These features are
then used by higher-level neurons, and basic feature extrac-
tors that apply to a part also tend to apply to the entire image.
By using this feature, CNN uses a group of units distributed
in different positions of the image but with the same weight
vector to obtain the features of the image and form a feature
map. At each location, the units from different feature maps
get their own types of features. Different units in a feature
map are restricted to perform the same operation on local
data at various locations in the input map. This operation is
equivalent to convolving the input image with a small ker-
nel. A convolutional layer usually contains multiple feature
maps with different weight vectors, so that multiple different
features can be obtained at the same location. Once a feature
is detected, its absolute position in the image becomes less
important as long as its relative position with respect to other
features has not changed. Therefore, each convolutional layer
is followed by a pooling layer. The pooling layer performs
local averaging and down-sampling operations, reducing the
resolution of the feature map and reducing the sensitivity of
the network output to displacement and deformation. The
role of the fully connected layer is mainly for classification.
The features obtained through the convolution and pooling
layers above are classified at the fully connected layer. The
fully connected layer is a fully connected neural network.
The proportion of feedback from each neuron is different.
Finally, the classification results are obtained by adjusting
the weights and the network.

In the overall system architecture, one CNN subarray
output could relate to a long interconnect and amplifier to
one or more inputs of another CNN subarray. Connections
between CNN subarrays are programmed with multiplexers.
Direct connections between layers speed up deep CNNs.
CNN makes full use of the local information in the image.
There are inherent local patterns in images (such as con-
tours, boundaries, human eyes, noses, mouths, etc.) that can
be exploited, and it is clear that the concepts in image pro-
cessing should be combined with neural network techniques.
For CNNs, not all neurons can be directly connected, but
through the “convolutional kernel” as a mediation. The same
convolutional kernel is shared within all images, and the
image retains its original positional relationship after the
convolution operation.

MTJs have been widely used to build CNNs [114–116].
Pan et al. [114] proposed a multilevel cell-based

STT-MRAM computing in-memory accelerator for a binary
convolutional neural network (BCNN). Fig. 8(b) shows the
architecture of STT-computing in memory used in this
paper. The modified sensing circuit is designed for logic
and full-addition operation. In the meanwhile, the mode
controller decides the exact working mode. In this archi-
tecture, one cell is composed of two MTJs and two bits are
stored in one cell. The addition operation of the two bits
is implemented within the unit, which reduces the number
of required transistors and reduces the power consumption.
Fig. 8(c) shows the XNOR-Net topology and XNF-Net is
used as the fully connected layer. The convolution operation
can be implemented by the above-mentioned STT-comput-
ing in memory. As shown in Fig. 8(d), first, the process of
input preprocessing is performed, i.e., batch normalization
and binarization of the input, corresponding to the path of
the blue arrow (input data flow) in Fig. 8(d). The process
of weight preprocessing is shown by the path of the purple
arrow (weight data flow) on the left side of Fig. 8(d), and the
weights are binarized. The preprocessed inputs and weights
are fed into the proposed convolutional layers. The weights
stored in the computing in-memory array are shared, as we
mentioned as one of the advantages of CNNs. The green and
orange arrows in the convolutional layers represent binary
AND operations and bit counting operations, respectively.
The trained scale factor and convolution result are passed to
the multiplier in the APU, and the convolution calculation is
completed. The final pooling operation further reduces the
number of parameters.

Above all, CNN greatly reduces the trainable param-
eters while ensuring the depth of the network. For image
recognition applications [117, 118], CNN can efficiently
extract image features by convolution operations and per-
form tasks such as classification or recognition. Nonethe-
less, the deepening of its layers cannot reflect the effect in
temporal sequence and is no longer suitable for processing
time-domain problems such as speech recognition. Facing
this, RNNs are proposed [119], which incorporate feedback
operations.

3.1.3 Recurrent neural network

Although the fully connected neural network can predict
something, the input of the previous data and the input of
the latter data are completely independent, which makes
it impossible to deal with the data with sequence infor-
mation. In many scenarios, yet sequence information is
indispensable. For instance, to guess what the next word
of the text is, usually information from the front part of
the text needs to be used, because all the content in the
text does not exist alone. In order to solve the “current
output of a sequence is also related to the previous output”
problem, RNN was proposed [120], as an important branch

Unconventional computing based on magnetic tunnel junction

1 3

Page 15 of 48 236

of artificial neural network. It contains a feedback mecha-
nism in the hidden layer to achieve effective processing of
sequence data. It is also known as a feedback neural net-
work. RNNs have the powerful ability to store and process
contextual information, and they have been widely used
in recognition [121], natural language processing [122],
computer vision [123] and other fields.

From the viewpoint of neuroscience, RNN aims at mim-
icking, in a reductionist scheme, how the human brain pro-
cesses information. In this context, RNN assumes that the
neurons are embedded in a randomly connected complex
network whose intrinsic activity is modified by external
stimuli. The persistent neural network activity makes the
information processing of a given stimulus occur in the
context of the response to previous excitations. The gen-
erated network activity is projected into other cortical
areas that interpret or classify the outputs. It was this bio-
inspired view that motivated one of the original RNN con-
cepts. The main inspiration underlying RNN is the insight
that the brain processes information generating patterns of
transient neuronal activity excited by input sensory signals
[124]. Information processing using a single dynamical
node as a complex system.

Figure 9(a) shows the network structure of RNN. Through
the loop connection on the hidden layer, the network state
of the previous moment can be transmitted to the current
moment; meanwhile, the state of the current moment can
also be transmitted to the next moment. At time t, the hid-
den unit h receives data from two aspects, i.e., the value of
the hidden unit at the previous moment of the network ht−1,
and the current input data xt, and the output is calculated at
the current moment through the value of the hidden unit.
The input xt−1 at time t − 1 can then influence the output
at time t through a loop structure. The forward calculation
of RNN is carried out in time series, and the parameters in
the network are updated using the time-based BP algorithm.
Wsh is the weight matrix from the input unit to the hidden
unit. Whh is the connection weight matrix between hidden
units. Why is the connection between the hidden unit and
the output unit weight matrix. by and bh are the bias vec-
tors. The parameters required in the calculation process are
shared. As a result, RNN can process sequence data of any
length. The calculation of ht requires ht−1, the calculation
of ht−1 requires ht−2, and so on. Therefore, the state at a
certain moment in the RNN depends on all the states in the
past. RNN can map sequence data to sequence data output.
However, the length of the output sequence is not necessarily

Fig. 9 a The typical diagram of RNN, and the connection to the next
step, which is represented by the dashed line. b MTJ-based RNN for
the Chinese character recognition. The red lines show the connections
from every MTJ to output nodes with adjustable weights. The black
lines show the feedback connections that transport the output signal

to every MTJ in the RNN. c The difference between RNN and RC. d
Schematic of a RC system using the spin dynamics in MTJs with S1
as the pinned layer and S2 as the free layer. The figures are adapted
from Ref. [125, 126] with the authors’ permission

 B. Cai et al.

1 3

236 Page 16 of 48

the same as the length of the input sequence. According
to different task requirements, there will be various corre-
spondences. As shown in Fig. 9(b), an RNN consisting of 40
MTJs is trained for the Chinese character recognition [125].
The black lines show the feedback connections where the
information is transported, and the red lines are connections
between output nodes and every MTJ.

Reservoir computing is a computing framework derived
from the theory of recurrent neural networks. Reservoir is a
stationary, nonlinear system with internal dynamics that map
input signals into a higher-dimensional computational space
[120, 126, 127]. The architectural comparison of RNN and
RC is shown in Fig. 9(c). RNN consists of input, intermedi-
ate, and output, and the information of the intermediate layer
recursively propagates itself. The state of the middle layer
is determined by the current input and the state of the past
middle layer, that is, the middle layer in RNN has a memory
effect. All weight matrices for the input (Win), middle (W)
and output (Wout) are trained to obtain the desired output.
However, when the middle layer has sufficient memory
effects and non-linearities, computation can be achieved
only by optimizing the output matrix (Wout). This led to the
concept of RC being proposed. The typical structure of RC
consists of an input layer, an output layer, and a dynamic
reservoir, as shown in the lower part of Fig. 9(c). The input
layer feeds the input signals to the reservoir via fixed-weight
connections which are randomly initialized. The reservoir
maps the input signals into higher dimensions before pro-
cessing them. This requires the reservoir to be sufficiently
complex, nonlinear, sparsely populated, self-organized in
a certain manner and capable of short-term memory. The
reservoir usually consists of a large number of randomly
interconnected nonlinear nodes, constituting a recurrent
network, that is, a network that has internal feedback loops.
Under the influence of input signals, the network exhibits
transient responses. These transient responses are read out at
the output layer via a linear weighted sum of the individual
node states. The objective of RNN is to implement a specific
nonlinear transformation of the input signal or to classify the
inputs. Classification involves the discrimination between a
set of input data, for example, identifying features of images,
voices, time series, and so on. The only part of the system
that is trained is the output layer weights with fixed connec-
tions. As shown in Fig. 9(d), RC based on MTJs has been
proposed [126], where the MTJs are driven by STT.

Macrospin simulation is conducted for the spin-dynamics
in MTJs, for RC. RNN can be seen as a neural network that
passes on time, and its depth is the length of time. As we
have mentioned, the “gradient disappearance” phenomenon
is about to appear again, but on the timeline. As a result,
RNNs have the problem of not being able to solve long-term
dependencies. In order to solve the above problems, long

short-term memory is proposed, which realizes the memory
function in time through switching the cell door and prevents
the gradient from disappearing.

In addition to ordinary MTJs, STNOs [18, 74] are used
as the building blocks of neural networks, due to their sev-
eral unique features. The structure of STNO is shown in
Fig. 10(a). According to the principle of STT [128], the
oscillation frequency of the STNO can be controlled by
adjusting the input voltage [129]. In a biological neural
network, synapses cannot be completely separated from
neurons. the neuron-synapse relationship in STNO-based
neural networks can better reflect this biological relation-
ship. Further, the relationship between the oscillation fre-
quency of STNO and the applied current or magnetic field
is highly nonlinear, leading to a direct implementation of
nonlinear activation functions. In addition, STNOs can be
coupled by means such as direct exchange, magnetic fields,
or currents, which gives them the potential to scale to large
networks. As shown in Fig. 10(b), a single STNO is used
to process the speech file using time multiplexing [130]. A
single oscillator can simulate 400 neurons by periodically
assigning time intervals to each neuron's state and using
finite relaxation times to simulate coupling between neu-
rons. This RC network can achieve a recognition rate of up
to 99.6% for MNIST TI-46 speech digits. The upper part of
Fig. 10(c) shows a coupled STNO-based neural network for
vowel recognition [131]. The first neural layer consists of
two individual neurons A and B. The input is represented
by the frequency through two microwave signals fA, and fB.
Changing the bias currents of the STNOs can change the
intrinsic frequencies of the oscillators. The second layer
is composed of 4 full-connected neurons. The lower part
of Fig. 10(c) shows the specific implementation method of
the above network. If the i-th neuron in the second layer is
synchronized with neuron A in the first layer, the equality
of their frequencies simulates a strong synaptic coupling.
On the contrary, neuron A and neuron i with independent
dynamics and frequencies simulate weak synaptic coupling
between them. The strength of these synapses can be tuned
by changing the bias current of each oscillator in the second
layer. In many applications [130–133], STNO exhibits good
stability as well as reliability and can achieve complex func-
tions with fewer devices and higher energy efficiency.

Above all, the first-generation neural network, also known
as the perceptron, was proposed around 1950. It has only
two layers, the input layer and the output layer, which are
mainly linear structures. It cannot solve linearly insepara-
ble problems, and it cannot do anything with slightly more
complicated functions, such as the XOR operation. In order
to solve the defects of the first-generation neural network,
Rumelhart, Williams et al. proposed the second-generation
neural network i.e., MLP, around 1980. Compared to the

Unconventional computing based on magnetic tunnel junction

1 3

Page 17 of 48 236

first-generation neural network, the second-generation has
multiple hidden layers, which can introduce some nonlin-
ear structures and solve the defect that the nonlinear prob-
lem could not be solved before. To conquer the problem
of increasing the number of hidden layers and increas-
ing the parameters sharply, CNN was proposed, which
greatly improved the computational efficiency. To solve
the sequence correlation problem, RNNs are proposed, and
because the neurons are continuously interconnected, the
second-generation neural network generally supports the BP
[134] learning method, which is another enormous improve-
ment in learning efficiency.

3.2 Spiking neural network

The neural networks mentioned above are usually fully con-
nected, receiving continuous values and outputting continu-
ous values. Although contemporary neural networks have
achieved breakthroughs in many fields, they are biologically
imprecise and do not essentially mimic the mechanisms of
the human brain. Therefore, the third generation of a neural
network, SNN, was proposed [9, 135], and uses models that
best fit biological neuron mechanisms to perform compu-
tations and aims to bridge the gap between neuroscience
and machine learning. Compared to the previous two gen-
erations of neural networks, SNNs are closer to biological

neuron mechanisms. SNNs use spikes, which are discrete
events that occur at points in time, rather than the usual
continuous values in ANNs. Each peak is represented by a
differential equation representing a biological process, the
most important of which is the neuron's membrane potential.
Essentially, once a neuron reaches a certain potential, a spike
occurs, and neurons that subsequently reach that potential
are reset. Furthermore, SNNs are usually sparsely connected
and take advantage of special network topologies.

Neurons in an ANN communicate with each other using
activations encoded with high precision and continuous val-
ues and only propagate information in the spatial domain
(i.e., layer by layer). As can be seen from the above equa-
tions, the multiply-and-accumulate of inputs and weights is
the main operation of the network. However, in the SNN,
communication between spiking neurons is through binary
events, rather than continuous activation values. The spikes
from the previous neuron are transmitted to the dendrites
through synapses and finally processed by soma. The equa-
tions of SNN are shown as follows,

(5)�
du(t)

dt
= −[u(t) − ur1] +

∑

j

wj

∑

tk
j
∈S

Tw
j

K(t − tk
j
)

Fig. 10 NC with STNOs. a The structure of STNO. When a d.c. cur-
rent Idc is applied, the magnetization of FL gives an oscillating volt-
age due to the oscillating magnetoresistance. b The neuron model in
RNN. Using time multiplexing in pre- and post-processing, a single
STNO gives state of the art performance as a reservoir in a reservoir
computing scheme, here recognizing the particular spoken digit as
‘1’. c Upside: schematic of RNN for vowel recognition. Downside:

the input is represented by the frequencies of two microwaves applied
through a strip line to the oscillators. I1–4 represent the bias currents
and they can manipulate the natural frequencies of 4 STNOs. These
STNOs can be tuned so that the synchronization pattern between the
oscillators corresponds to the desired output. The figures are adapted
from Ref. [130, 131] with the authors’ permission

 B. Cai et al.

1 3

236 Page 18 of 48

where t represents the time step, τ is a constant, and u and
s represent the membrane potential and output peak. ur1 and
ur2 are the resting potential and the reset potential, respec-
tively. wj is the weight of the jth input synapse. tk

j
 is the

moment when the kth pulse of the jth input synapse fires
(i.e., the state is 1) within the integration time window Tw.
K(t − tk

j
) is the kernel function representing the delay effect.

Tw is the integration time window. uth is a threshold, which
means whether to fire once or not.

When the membrane potential u(t) (that is, the implicit
potential of soma) is higher than the threshold uth, the spik-
ing neuron is regarded as fired, at which time the output
potential s(t) is set to 1, and then u(t) returns to the reset
potential ur2. When u(t) is lower than uth, it does not fire, and
the output remains at 0 at this time. At each time step, the
update process of u(t) satisfies a differential equation, as
shown above. At each time step, the value of u(t) should drop
by a value as large as u(t)-ur1, where ur1 is the resting poten-
tial. In the meanwhile, at each time step, the value of the
membrane potential u(t) should rise by a value, the value of
which is related to the j input synapses of this neuron, and
the weight of each input synapse is wj, and the contribution
of this synapse to the rise in membrane potential
is
∑

tk
j
∈S

Tw
j

K(t − tk
j
) , i.e., in STw

j
 pulses, if the input pulse at

time tk
j
 is the fire state (ie, 1 state), then K(t − tk

j
) is calculated

once and accumulated.
Unlike ANNs, SNNs use sequences of spikes to trans-

mit information, and each spiking neuron experiences rich
dynamic behaviors [135, 136]. Specifically, in addition to
information propagation in the spatial domain, history in
the temporal domain also has a close influence on the cur-
rent state. As a result, neural networks typically have more
temporal generality and lower accuracy than neural networks
that primarily propagate through space and activate continu-
ously. Since spikes are only fired when the membrane poten-
tial exceeds a threshold, the overall spike is usually sparse.
Furthermore, since spikes are binary, i.e., 0 or 1, if the inte-
gration time window Tw is adjusted to 1, the multiplication
between the input and the weights can be eliminated. For the
above reasons, SNN networks can generally achieve lower
power consumption compared to computationally intensive
ANN networks.

Although SNN has many advantages such as biological
proximity, low power consumption, etc. There has long been
a debate about the utility of SNNs as computational tools in
AI and neuromorphic computing [137, 138], especially com-
pared to ANN. Over the past few years, these doubts have
slowed down the development of neuromorphic computing,

s(t) = 1, u(t) = ur2, ifu(t) ≥ uth

s(t) = 0, ifu(t) ≤ uth

and with the rapid progress of deep learning, researchers
have tried to alleviate this problem at the root, people want
to strengthen the SNN by means such as improving the
training algorithm [136, 139], [139–141] to alleviate this
problem.

3.2.1 Biological synapses based on MTJs

In general, learning in the neural network is achieved by
adjusting synaptic weights. Traditional ANNs mainly rely on
gradient descent-based BP algorithms [139, 142], while in
SNN, because the function of the spiking neuron is usually
a non-derivable differential equation, it is extremely difficult
to implement BP in SNN. There are three mainstream ways
of SNN implementation: The first is to convert traditional
ANN to SNN without considering any SNN characteristics
[143]. However, the trained network is fully converted into
a binary spike-based network. For input, the input signal
needs to be encoded as a pulse train. All neurons need to
be replaced with corresponding spiking neurons, and the
weights obtained from training need to be quantified. The
second method is BP [144]. Although it is true that the spike
function of the spiking neuron cannot be directly derived to
calculate the gradient, researchers have come up with many
methods to estimate the gradient of the changing parameters
in the network for BP, including Spikeprop [145], Slayer,
etc. Although these algorithms are still controversial, they
do reduce the training complexity of SNNs to some extent.
The third is using STDP [146]. The principle is to use STDP
to adjust the weights, thresholds, synaptic delays, and other
parameters of the SNN during the training process and
obtain parameters that meet the requirements of the indica-
tors (such as classification, recognition accuracy, etc.) and
the training process is completed. Lastly, the parameters are
fixed and the trained SNN is obtained. Compared to the pre-
vious two approaches, STDP is closer to the actual situation
in biology. It has been the most widely used method so far.
Its key feature is that if presynaptic neuron activity (electri-
cal impulse release) precedes postsynaptic neuron activity,
it will cause an increase in the strength of synaptic con-
nections. Nevertheless, if the presynaptic activity lags the
postsynaptic activity, inhibition will result in weakening the
synaptic connection. The effect of such temporal sequenc-
ing of presynaptic and postsynaptic activities on synaptic
transmission has been thought to be directly related to brain
learning and memory functions.

The learning method of biological neurons is unsuper-
vised learning. Consequently, the initial training of SNN
is considered to be unsupervised. The Hebb rules [146]
provide a firm theoretical basis for the direct training of
SNNs, which state that the strength of synaptic connections
between two neurons changes as the neuron state changes.
Extended from Hebb's rule, the STDP mechanism [147] not

Unconventional computing based on magnetic tunnel junction

1 3

Page 19 of 48 236

only is the basis for the realization of biological learning
and memory functions but also becomes the basic training
principle of SNN. Long-term potentiation and long-term
depression in synaptic transmission function are shown in
Fig. 11(a). STDP studies the relationship between the time
interval between pre-neuron and post-neuron firing and the
strength of the synaptic connection between the two. When
a post-neuron excites a spike sequence, if the excitation time
is later than the arrival time of the spike from the previous
neuron, the synaptic connection strength between the two is
enhanced. The smaller the time difference, the greater the
strength and the synaptic connection. The weight value is
closer to the long-term potentiation in the upper half of the
ordinate; on the contrary, if the excitation time is earlier than
the arrival time of the pulse from the previous neuron, the
synaptic connection strength between the two will be weak-
ened. STDP can be expressed by the following equation:

where τ+ and τ- are time constants, and A+ and A- repre-
sent the maximum magnitudes of the synaptic value for the

(6)W(s)STDP =

{

a
post,pre

2
(s) = +A+e

(−
s

�+
)
, s ≥ 0

a
pre,post

2
(−s) = −A−e

(
s

�−
)
, s ≤ 0

different time domains of s between the arrival and firing
of neuron pulses before and after the synapse, respectively.

Spintronic devices have great potential to realize STDP
[51, 148, 149]. The switching probability of the MTJ con-
forms to the relationship between the time and weight of the
STDP [10]. The most used two-terminal MTJs [150] can be
utilized to implement STDP, following its essential physi-
cal properties. The parameters associated with the heating
and the switching pulses are summarized in the left part of
Fig. 11(b), a high-current pulse is used to generate heat and
a switching pulse is applied to the MTJ after interval Δt. The
two terminals of the MTJ are connected to pre-neurons and
post-neurons, respectively. The relationship between switch-
ing probability and t is shown on the right side of Fig. 11(b).
When no external stimulus is applied to both terminals of
the MTJ, the initial voltage is 0 V. When the pre-neuron
fires, a high-current short-duration pulse is applied to the
MTJ. According to Joule's law, this pulse generates heat,
which results in the rapid rise of temperature as shown in
Fig. 11(c). Before the spike of post-neuron arrives, the tem-
perature of the MTJ will gradually decrease, after interval
Δ t, the post-neuron fires and a low-current long-duration
pulse is applied to the MTJ, at which point the switching

Fig. 11 a The typical STDP curve. If the presynaptic neuron spikes
just before the postsynaptic neuron, the synaptic weight increases,
and if the postsynaptic neuron spikes just before the presynaptic neu-
ron, the synaptic weight decreases. b Left side: The heating pulse and
the switching pulse applied on the MTJ and their time interval. Right
side: The MTJ-based synapse following STDP, which is consist of
two nanomagnets separated by a nonmagnetic spacer (MgO). The red

curve is the switching probability of the artificial synapse as a func-
tion of pulse width. c The temperature (the red curve) response to the
current pulse (the gray curve). The inset is the relationship of switch-
ing probability and temperature. d Experimental results of the pro-
posed MTJ and its STDP behavior wherein the switching probability
can be adjusted by changing the input pulses. The figures are adapted
from Ref. [150], with the authors’ permission

 B. Cai et al.

1 3

236 Page 20 of 48

probability is measured. Since the switching probability has
a strong linear relationship with the amplitude of thermal
fluctuations, as shown in the inset of Fig. 11(c). If the device
temperature is assumed to be constant within t2, the final
measured switching probability is related to Δ t, as shown
in Fig. 11(b). The switching probability decreases with the
increase of Δt and the curve can be seen as the first quadrant
of the STDP behavior. In contrast, when the post neuron is
activated first, Δt is negative and the switching probability is
negative, which also decreases as t increases, corresponding
to the third quadrant of STDP behavior. It is worth noting
that the negative value of the switching probability is due to
the different switching directions from the previous condi-
tion. Fig. 11(d) shows the final realization of imitating STDP
behavior with MTJ, which exposes the fact that MTJ is very
suitable for implementing STDP.

3.2.2 Biological neurons based on MTJs

Biological neural networks possess complex action poten-
tial generation dynamics and network dynamics, while the
network dynamics of SNNs are greatly simplified. The
membrane potential of postsynaptic neurons is modulated
by presynaptic neurons, which generate action potentials or
spikes when the membrane potential exceeds a threshold.
The earliest model to describe this phenomenon was pro-
posed by Hodgkin and Huxley in 1952, namely the Hodgkin-
Huxley model [151]. Since then, many models have been
proposed, including Izhikevich model [72], LIF [152] neu-
ron, etc. Although the Hodgkin-Huxley neuron model can
accurately express various dynamic characteristics of bio-
logical neurons, it has too many parameters and too complex

four-dimensional nonlinear differential equations, making it
difficult to simulate large-scale networks. In the Izhikevich
neuron model, when the membrane potential changes from
the resting potential state to the fired state after being stimu-
lated, the existence of the bifurcation mechanism makes the
neuron fired. Although the model can realize various forms
of pulse firing, its differential equation is still nonlinear. It
is difficult to obtain the analytical expression of the state
variable, and only approximate numerical simulation can be
carried out. The Integrate-and-Fire (IF) [152] neuron model
is defined as: when the magnitude of the accumulated mem-
brane potential reaches a fixed threshold, a spike is sent to
all neurons after the synapse. This gives the neuron model a
higher level of abstraction. Meanwhile, the differential equa-
tion of the IF model is linear, and the LIF neuron model is a
more simplified version that only considers leakage currents.

Figure 12(a) shows the equivalent circuit of the LIF
neuron model [153]. The equivalent circuit shows that the
membrane capacitance Cm and the membrane resistance Rm
are connected in parallel inside the neuron model. If the
presynaptic neuron sends a spike to the soma, a correspond-
ing current I will be generated at the synapse connected to
it. The current is used in two parts. One part will be used to
charge the membrane capacitor Cm, which is equivalent to
the process of accumulating voltage, and the other part will
flow away from the membrane resistor Rm, which is equiva-
lent to the leakage current. Once the accumulated voltage
value on the neuron's membrane capacitance Cm exceeds
the preset firing threshold, the neuron will fire a spike to the
next neuron connected with the synapse. The first-order dif-
ferential equation for the membrane potential V of the LIF
model is as follows:

Fig. 12 a An equivalent circuit
of an LIF neuron model. b The
non-volatile LIF neuron based
on elastic coupling between
the FE-DW and FM-DW. The
position of the FM-DW repre-
sents the membrane-potential,
while the switching activity
of the MTJ emulates the firing
behavior of the neuron. c The
LIF behavior of the neuron.
The upside is the input voltage
spike train received by the
neuron. The downside shows
the FM-DW position which
acts as the membrane potential.
The figures are adapted from
Ref. [157], with the authors’
permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 21 of 48 236

where τm = CmRm is the membrane time constant, and
I is the sum of the synaptic currents received from the
firing behavior of the previous group of neurons con-
nected to each synapse. When the accumulated value of V
exceeds the threshold Vth, a spike will be fired. The spike
continues to conduct backwards with the connection of
the neuron, and the membrane potential will be reset to
Vreset. At this time, regardless of whether another pulse is
received or not, the pulse will not be re-excited, and it is
known as the refractory period. However, when V is less
than the threshold Vth, the neuron will not emit a spike,
and V will gradually decrease to Vreset. Due to its simple,
linear, and event-driven characteristics, the LIF model
has become the mainstream and the most widely used in
SNN studies.

Much effort has been put into implementing LIF model
[154–157]. CMOS-based spiking neurons often suffer from
high leakage power consumption. The large-scale sparsity
exhibited by SNNs makes non-volatile spintronic devices
with zero standby power an excellent candidate. In addi-
tion, spintronic devices are also thought to exhibit neuronal
behaviors [157]. As shown in Fig. 12(b), the LIF neuron is
implemented with ferromagnetic domain wall (FM-DW) and
a ferroelectric domain wall (FE-DW). The connection of the
FM-DW to the underlying FE-DW allows for purely voltage
control of the FM-DW. A 90°domain wall is in between the
domains pointing in-plane (a-domains) and those pointing
out-of-plane (c-domains). When a positive current is applied
to the metal connect layer, the a-domain expands, and the
c-domain decreases, causing the FM-DW to move toward
the + x direction. Conversely, when a small negative volt-
age is applied, the c-domain expands, and the a-domain
decreases, resulting in DW motion in the − x direction,
which mimics the leakage behavior of neurons. As shown
in Fig. 12(c), this structure simulates the leakage and firing
of the LIF model well. The right terminal of the FM layer
under the MTJ section can be regarded as the free layer of
the MTJ. When the FL is P (AP) to the pinning layer, the
MTJ is in a low-resistance state (high-resistance state). The
reference MTJ is used to divide voltage, it needs to guarantee
the output terminal shows a spike goes high when the lower
MTJ is in a low-resistance state. The voltage-driven motion
of the FM-DW enables the simulation of the behavior of
biological neurons as the resistance of the MTJ changes.
Due to ferroelectric materials being usually insulators, the
negative voltage used to generate leakage behavior does not
induce any short-circuit leakage current. Meanwhile, DW is
non-volatile [158], which makes the DW-based LIF model
exhibit low energy consumption.

(7)�m
dV

dt
= −(V − Vreset) + RmI

3.2.3 Implementations of spiking neural network

The biological proximity and non-volatility exhibited by
spintronic devices make them one of the candidates for
implementing SNNs [99, 100]. There have been many stud-
ies successfully constructing the synapses and neurons
needed to realize SNN with MTJs [150, 157]. As shown
in Fig. 13(a), the SNN consists of three parts: pre-neurons,
post-neurons, and the synapses as their connect junctions
[159]. In the spintronic neuron shown in Fig. 13(b), during
the writing process, the applied current integrates the resist-
ance of the MTJ to the threshold value and then the neuron is
fired. Noting that the path for the write current being gated
off during the read mode. The neuron's response at this time
can be obtained by applying a read current, additionally,
the reset current is applied to initialize the neuron. These
neurons are event-driven [51] and their working mode fol-
lows the cycles like the ones mentioned above. Figure 13(c)
shows the use of a three-terminal SOT-MTJ as a synapse,
which exhibits the STDP characteristics. Therefore, the pre-
viously proposed synapses and neurons can be connected in
a crossbar array as shown in Fig. 13(d), composing the SNN
architecture. This MTJ-based SNN has been used to learn
the MNIST dataset with 200 neurons, achieving high energy
efficiencies with an average energy consumption of 1.6 fJ.

3.3 Challenges for neuromorphic computing

The emergence of SNN facilitated the development of neu-
romorphic computing. In terms of learning methods, unsu-
pervised learning mainly includes STDP learning methods
based on Hebbian Rule, while supervised learning has devel-
oped representative learning methods such as the Remote
Supervisor Method. In recent years, IT giants such as Apple,
Google, Intel, and IBM have begun to enter the field of AI
chips. IBM started the research and development of neuro-
morphic hardware as early as 2011 and announced in 2014
that the TrueNorth chip consists of 100 million neurons
and 256 million synapses. It breaks through the architec-
tural bottleneck of traditional computers when dealing with
large-scale problems and further moves towards brain-like
computing. Intel's Loihi chip is also a representative product
for the development of neuromorphic hardware. Although
SNN is favored for its advantages of low power consump-
tion, high efficiency, and event-driven processing, its devel-
opment and application are not smooth, and there are still
many challenges.

The simulation of the real biological nervous system is
too complicated: The working principle of the biological
neural network has been generally grasped by researchers
in many years of research. However, the neural network in
the real biological body is too complex, and its structural

 B. Cai et al.

1 3

236 Page 22 of 48

details are still mysteries. Designing neuromorphic comput-
ing systems based on real biological nervous systems is a
huge challenge.

It is challenging to apply to practical scenarios: If an arti-
ficially designed SNN is used, according to its characteris-
tics, it is generally more suitable for continuous recognition
and inference of dynamic scenes. However, in the actual
application process, how to make full use of the low power
consumption, high-speed and event-driven characteristics
of the SNN is complicated. In addition, the application and
development of SNN also depend on the development of
neural computing chips, because the new structure and com-
puting mode of SNN cannot achieve the theoretical results
on traditional chips.

Difficulty in training and learning: For the direct training
of SNNs, most of the supervised learning methods are based
on gradient settings, lacking biological rationality. Another
way to obtain a trained SNN model is to use the trained
traditional neural network. Although the transformation
is performed directly, it is limited by the loss of precision
caused by many aspects. Therefore, compared to the current
relatively mature artificial neural network, the training and
learning of the SNN on the real large deep network still have
a long way to go.

Application accuracy is low on more complex tasks:
SNNs have been controversial for a long time, one of the
reasons is that their performance in application accuracy is
often inferior to traditional AI networks. Both the encoding
and training-learning issues mentioned above may lead to an
impact on the accuracy of their application on more complex
tasks. Therefore, how to improve the application accuracy of
the SNN while retaining the original advantages and charac-
teristics of the SNN is also a major challenge for the future
development of the SNN.

To sum up, as the third-generation neural network tech-
nology, SNN has very prominent features and advantages
nevertheless its development is also full of challenges.

4 Stochastic computing

In the previous section, we briefly introduced stochastic
computing and its computational unit, p-bit. Based on vari-
ous connection manners of p-bits, different network struc-
tures have been built to solve several kinds of hard com-
putational problems. For example, the use of symmetric
connected BMs and Ising machines (IMs) are favored for
solving the IF and COP, respectively. On the other hand,
BNs with asymmetric connected structures, i.e., directed

Fig. 13 a Schematic of SNN consisting of pre-neurons and post-
neurons interconnected by synapses. The input image is encoded into
spike trains by the neurons. b The left side shows the schematic of
the spintronic neuron consisting of a reference MTJ (upside) and a
neuron-MTJ (downside), both of which are initialized to the high-

resistance state. The right side is the timing diagram illustrating the
various operation modes of this MTJ-HM neuron. c Schematic of the
MTJ-HM synaptic bit cell. d The whole architecture of SNN con-
structed using the spintronic neuron and synapses. The figures are
adapted from Ref. [148], with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 23 of 48 236

connections between p-bits, can be used to perform Bayes-
ian inference. From the perspective of stochastic computing,
this section provides an overview of the recent development
of the above three networks which consist of MTJ-based
p-bits, including the elaboration of the working principle of
networks, the hardware implementation process of networks,
current challenges as well as future directions.

4.1 Boltzmann machines for invertible logic

Standard binary Boolean logic circuitry and memories uti-
lize stable and deterministic units to represent information.
For example, the on and off states of a transistor or the rela-
tive magnetization orientations of a non-volatile nanomagnet
can be used to represent binary states 0 and 1. This deter-
ministic feature makes computational circuits directional in
nature: once a logic gate is fabricated, its input and output
ports will be determined, and the circuit is only capable of
operating in the input-to-output forward mode. This intrinsic
directionality poses a challenge to conventional Von Neu-
mann architecture-based computers in solving some com-
putational tasks, such as NP problems [160]. To address
this issue, the invertible logic [17, 84, 161] has been widely
studied in recent years. Compared to the deterministic bit
used in traditional binary logic circuits, the building block
of invertible logic makes use of an unstable and probabilis-
tic unit called p-bit. Logic circuits made from such proba-
bilistic devices possess various novel characteristics: 1) as
the entire combinational logic circuits can operate both in
forward and reverse modes, the functions of circuits become
more diverse, which provides more design space, and 2)
hardware costs could be greatly reduced for certain arith-
metic computing tasks. For instance, an invertible multiplier
can integrate the functions of multiplication, division, and

product factorization into a single module, while similar
functions require multiple sets of complex multiplier and
divider circuits under conventional single-direction circuits.
3) Many hard computational problems like IF [162] and
Boolean Satisfiability (SAT) [163] can be solved efficiently
with invertible logic.

4.1.1 Boltzmann machine‑based invertible logic

BM [164] is a term that often appears in the context of
machine learning, which describes a network of stochastic
spin glass. Figure 14(a) shows its general structure: 1) each
node is fully connected to other nodes in the network, for
example, a1 is connected to all other nodes in the network,
and 2) there are interactions between nodes. The strength of
interactions is represented by the weight matrix Jij, and each
element in J represents the intensity of the coupling between
two nodes. Such a bidirectional connection makes a diago-
nally symmetric weight matrix with all diagonal elements 0.

Invertible logic is exactly based on BMs with bidirec-
tional configuration. Figure 14(b) shows a BM-based invert-
ible AND gate composed of three nodes with the connection
defined by matrices JAND and hAND. In this logic, each node
or spin is represented by a probabilistic device with bipo-
lar output, namely a p-bit [84]. A generic p-bit is shown in
Fig. 14(c), and it exhibits an “S” shape input–output rela-
tionship described in Eq. (2).

Equation (2) originates from the physical mechanism of
the p-bit itself and Eq. (3) describes the role of the synapse.
Note that it is necessary to ensure that the transmission time
tsynapse is much smaller than the fluctuation time tpbit of p-bits
so that the signal produced by the former p-bit can trans-
mit to other latter p-bits before the next change in its state.
The extremely long transmission time will cause a failure

Fig. 14 a A graphical repre-
sentation of an example BM. b
A BM-based invertible AND
gate defined by weight matrix
JAND and hAND with three p-bits
mA, mB and mC. c A generic
p-bit structure and its sigmoidal
response. Figure(c) is adapted
from Ref. [84] with the authors’
permission

 B. Cai et al.

1 3

236 Page 24 of 48

of the system. The energy of invertible logic is represented
by Hamiltonian H:

At a certain temperature (a given I0), each p-bit of the
network is updated sequentially in every round of iteration.
After some operation time, the whole system will be stabi-
lized at the thermal equilibrium state. The statistical result
of different spin configurations can be verified using the
Boltzmann law:

It can be seen intuitively from the above equations that
the final probability distribution of the system has nothing
to do with the initial values of p-bits but is governed by
the energy of the network which is closely related to the
spin configurations. These configurations are determined
by the biases of p-bits and the coupling strength between
p-bit pairs. For example, the invertible AND gate con-
sists of three p-bits, resulting in that there are a total of 23
spin configurations, and for each configuration, there is
a corresponding energy state. Assume I0 = 1, the table in

(8)H({m}) = −I0

(

∑

i<j

(Jijmimj) +
∑

i

himi

)

(9)P({m}) =
exp(−H)

∑

i,jexp(−H)

Fig. 15(a) lists all 8 possibilities. It can be noticed that by
encoding appropriate JAND and hAND, spin configurations
matched with the truth table of the AND gate filled with
green can have the equal and lowest energy, − 3. There
are three operation modes of invertible AND gate, i.e.,
free mode, forward mode, and reversed mode. For the free
mode shown in Fig. 15(a), none of the nodes of the AND
gate is clamped. Therefore, states that accord with the truth
table have the highest and almost equal possibilities ~ 25%.
By clamping the inputs mA and mB, the invertible AND
gate can operate in the forward mode. For example, clamp
inputs mA and mB to 0 and 1, respectively. As a result,
mC = 0 has the highest possibility, which can be seen in
Fig. 15(b). Fig. 15(c) shows the most striking feature of
the invertible AND gate. By clamping the output mC to 0,
there are three possible solutions (A,B,C) = (0,0,0), (0,1,0)
and (1,0,0) with almost equal possibilities ~ 33.3%. The
statistical results of invertible AND operating in these
three modes match with the analytical Boltzmann law
calculated by Eq. (8) and Eq. (9). Therefore, to design a
well-functioning invertible logic with a specific function,
h and J coefficients need to be carefully designed. There
is no learning process in BM-based invertible logic. Once
h and J are determined, they will no longer change, which
is different from BMs for machine learning purposes.

Fig. 15 An example of an invertible AND gate with three operation
modes: free mode, forward mode, and reverse mode and correspond-
ing simulation results. a Free mode: do not clamp any nodes of the

AND gate. b Forward mode: clamp inputs mA and mB to 0 and 1,
respectively. c Reverse mode: clamp the output mC to 0

Unconventional computing based on magnetic tunnel junction

1 3

Page 25 of 48 236

4.1.2 From small‑scale invertible building blocks
to large‑scale invertible logic

Like the very large-scale integrated circuits, a striking fea-
ture of invertible logic is its composability [161, 165, 166].
Any arbitrarily large-scale invertible logic [167], like sin,
cos, matrix product, etc., can be obtained by logical syn-
thesis using small invertible networks. Commonly used
small building blocks are invertible NOT, invertible AND,
invertible OR gates, invertible half adders, and invertible full
adders, etc. Complicated networks consisting of these build-
ing blocks have been demonstrated to find applications in
solving IF [17, 84, 161, 165, 168], SAT [168, 169], training
of neural networks [170] and machine learning [171, 172].

The equal footing [173] of every p-bit in invertible logic
is the underlying reason for the bidirectional operations of
BM-based invertible logic. Consequently, when designing
small BM-based invertible logic, careful design of J and
h is necessary. As defined in Eq. (8), these two matrices
define the energy of the network, thereby determining the
final Boltzmann distribution at the thermal equilibrium state.
The ground-state spin logic [174, 175] has been proposed
for the quantum system, which provides a compact design
of h and J for the invertible AND gate. Camsari et al. [84]
presented a mathematical transformation approach that can
encode the truth table of any logic to the configuration of
BMs. However, the shortcoming of this approach is that even
for a simple gate, auxiliary p-bits are required, and the trans-
formation process involves a series of matrix operations.
Onizawa et al. [176] proposed a general method to design
a compact J and h with the minimum number of nodes for

small invertible building blocks using Linear Programming
(LP). By solving the LP problem using the off-the-shelf LP
toolkit for Python [177] or MATLAB, the configurations
of small invertible logic can be easily obtained so that a
configuration library for all the small invertible logic can
be created efficiently. The key idea of such an approach is
for any given logic, there is a specific truth table. The target
of LP is to map states in the truth table to the lowest sys-
tem energy so that appropriate J and h could be found. The
detailed steps are as follows:

1) First, as shown in Fig. 16(a), convert logical values 1 and
0 to bipolar format, i.e., + 1 and − 1.

2) As shown in Fig. 16(b), set the energy of all states in
the truth table equal to Emin, while the energy of other
non-desirable states is larger than Emin.

3) Use LP to maximize d (the difference between the low-
est energy level and the second lowest energy level) to
obtain appropriate J and h for small invertible logic.

Figure 16(c) shows a configuration library of commonly
used small invertible logic using such an LP approach.
Note that for the invertible half adder and invertible full
adder, both have two possible configurations, namely two
J and h choices. The configuration for other invertible
combinational logic circuits such as the 3-input/1-output
invertible AND gate, invertible multiplier, and ripple carry
adder with more complicated energy profiles cannot be
directly solved by LP but needs to be constructed from
the configuration library. Fig.17(a) shows an example of a
composite 3-input/1-output invertible AND gate which is

Fig. 16 Steps to design invertible logic. a Convert logical values 1
and 0 to bipolar format + 1 and − 1. b Map the states that accord with
the truth table to the lowest network energy state, other invalid states

have higher energy. Then use LP to solve this set of equations. c A
configuration library of small invertible logic. The figures are adapted
from Ref. [176, 178] with the authors’ permission

 B. Cai et al.

1 3

236 Page 26 of 48

composed of two basic 2-input/1-output invertible AND
gates. The key point in the merging process is that the
output of the AND1 is the input of the next-level AND2,
which means the size of final J and h are not 6 × 6 and
1 × 6 . In fact, due to the introduction of this common node
or called an auxiliary node, the size of both matrices is
reduced (5 × 5 for J, 1 × 5 for h). The auxiliary node is a
bridge connecting the two building blocks. Large-scale
invertible logic composed of more basic logic requires
more auxiliary bits. As a result, more merging processes
are required and such a merging process is time-consum-
ing if done manually [178]. Much attention has to be paid
to locate the position of auxiliary bits so that the J and h
of smaller modules can be superimposed correctly. Kato
et al. [167] proposed an automatic conversion tool from a
gate-level netlist to an invertible logic circuit netlist using
a standard hardware description language, which enhances
the efficiency of merging greatly. Figure 17(b) shows the
logic schematic and graph representations of an integer
factorizer (or invertible multiplier) and SAT solver circuits
designed for IF and SAT, respectively. As we can see, they
are combinational logic circuits that are also composed of
basic logic such as invertible AND gates, invertible half
adders, invertible full adders, invertible NOT gates, and
invertible OR gates. The graphs depict the connectivity
among p-bits in these two large-scale networks.

4.1.3 Stochastic MTJs for implementation of BM‑based
Invertible logic

The hardware implementation of most BM-based invert-
ible logic circuits is within the framework of stochastic
computing using stochastic spintronic devices or proba-
bilistic CMOS-based devices. This section mainly surveys
recent progress on stochastic spintronic devices, more
precisely, the stochastic MTJs. In most previous stud-
ies on nanomagnets, the deterministic property of nano-
magnets is utilized. Deterministic nanomagnets normally
have high EB and are resistant to thermal noise. There-
fore, they have been widely used in memory devices. The
non-volatile MTJs made from nanomagnets with high EB
have binarized resistance states which can be used to store
binary information 0 and 1 for more than 10 years. On
the other hand, it can be predicted that as the energy bar-
rier decreases, the nanomagnets will be more susceptible
to ambient temperature. As a result, the stochasticity of
MTJs based on nanomagnets with low EB (< 5 kBT) will get
stronger. The variables in BMs can be represented by such
stochastic MTJ-based p-bits. Moreover, by connecting a
certain number of p-bits in terms of J and h described
in the previous section, the invertible logic can be con-
structed. These invertible networks can be used to solve
IF and SAT.

Fig. 17 a A composite 3-input/1-output invertible AND gate is com-
posed of two basic 2-input/1-output invertible AND gates. b Logic
schematics and graph representations of an integer factorizer and an

SAT solver based on invertible logic. The figures are adapted from
Ref. [165] with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 27 of 48 236

Camsari et al. [84] proposed a three-terminal p-bit for
implementing invertible logic. As shown in Fig. 18(a), it is
composed of a giant spin Hall effect (GSHE)-driven MTJ
for tunable random number generation and two inverters for
amplification. Note that the nanomagnets used in such MTJ
have a circular shape rather than the usual elliptical ones.
There is no preferred easy axis in circular nanomagnets.
As a result, the shape anisotropy, and the energy barrier of
nanomagnets approximately equals 0, which makes the mag-
netization of MTJ constantly fluctuate. The magnetization
of the free layer can be pinned by a spin current generated
from an injecting charge current and the probability of pin-
ning can be tuned by the magnitude of the charge current
flowing through the GSHE layer. Fig. 18(b) shows the fitted
sigmoidal response of such p-bits and the real-time output
waveforms under three charge currents with different mag-
nitudes. Every point in the fitted curve corresponds to a time
average of the real-time output voltage. This work utilized a
passive resistor network to implement the interconnections
among p-bits as shown in Fig. 18(c). Fig. 18(d) shows an
example of an invertible AND gate built from the proposed
p-bits. The conductance Gij and Gi in the resistive network
are matched with the discrete values of previously defined
matrices JAND and hAND, respectively. The function of invert-
ers is to reverse the direction of the charge current so that the
negative values in matrices can be represented.

Faria et al. [179] and Debashis et al. [180] demonstrated
that unstable magnets with a fraction of kBT can be used
to implement p-bits through numerical simulation results
and experimental evidence, respectively. Based on the
GSHE-driven stochastic MTJ, Faria et al. investigated the

performance differences between in-plane anisotropy mag-
net-based p-bit and perpendicular anisotropy magnets-based
p-bit. They discovered that the former p-bit design could
provide a much faster fluctuation rate and the fluctuation is
more telegraphic than nanomagnets with perpendicular ani-
sotropy. Debashis et al. comprehensively studied the design
of stochastic nanomagnets to find the most suitable way for
implementing p-bits. By comparing three methods, i.e.,
reducing the anisotropy, reducing the net magnetic moment,
or initializing the hard axis, the authors found the scaling of
anisotropy provides a more effective way for implementing
voltage-controlled p-bit.

The other p-bit design under the MTJ framework is based
on the stochastic STT-MTJ. Fig. 19 shows two possible
p-bit designs and their relevant applications. As shown in
Fig. 19(a), Borders et al. [17] proposed a p-bit consisting
of a stochastic MTJ, an NMOS transistor, a comparator,
and a resistor. This 1 T-1MTJ structure is very similar to
a conventional MRAM cell. The only difference is that in
the p-bit design, the free layer is replaced with a nanomag-
net with a relatively high EB of 15kBT rather than the tradi-
tional nanomagnet with high EB used in memory devices.
Fig. 19(b) depicts its sigmoidal input–output relationship. In
a p-bit network, all p-bits are electrically connected by the
synapse module which is composed of a digital-to-analog
converter (DAC) and microcontroller. The target function, J
and h are programmed inside the microcontroller in advance.
As shown in Fig. 19(c), when the system is operating, for
a specific p-bit, all digital output voltages {VOUT} from
other p-bits are collected and converted into an analog volt-
age {VIN}. Then {VIN} is fed into the gate terminal of the

Fig. 18 a A possible three-terminal p-bit to serve as the building
block of invertible logic. b The sigmoidal response of such GSHE-
driven p-bit. Three bias points are chosen to illustrate that each point
in the yellow fitting curve corresponds to a time-averaged output
under certain bias voltages. c A passive resistor network is used to

represent the interconnection strength among p-bits. For a certain
p-bit, it receives feedback currents from all connected p-bits. d Cir-
cuit schematic of an invertible AND gate. The figures are adapted
from Ref. [84] with the authors’ permission

 B. Cai et al.

1 3

236 Page 28 of 48

NMOS transistor so that the magnitude of charge current
and induced STT current flowing through the stochastic MTJ
can be controlled by the gate voltage. Therefore, the proba-
bilistic switching characteristic of magnetization is tunable.
In this work, a printed circuit board with eight p-bits shown
in Fig. 19(d) has been fabricated and an IF task using such
an asynchronous network has been demonstrated. The fac-
torization results 945 = 63 × 15 can also be observed from
Fig. 19(d).

Furthermore, Zhang et al. [97] reported another p-bit
design based on STT, but the underlying mechanism of the
proposed STNO-based p-bit is different from that of the
previous work. In this work, the authors leveraged the anti-
damping STT to balance with the Gilbert damping term so
that a stable oscillation can be sustained, and its structure is
depicted in Fig. 19(e). Due to the existence of thermal noise,
the number of oscillations exhibits a Gaussian distribution
under a certain sampling time. By setting a threshold to the
counter, a digital p-bit exhibiting the sigmoidal response
shown in Fig. 19(f) is obtained. Fig. 19(g) shows the sche-
matic of a time division multiplexing circuit, in which dif-
ferent p-bits are coupled using a customized coupling rule.
The simulation results for a 6-bit factorization 35 = 5 × 7 are
shown in Fig. 19(h).

As the size of invertible logic becomes larger and larger,
more p-bits are required, and the corresponding circuit
implementations will become much more complicated. One
possible solution to reduce the number of required p-bits is
to utilize the many-body interactions [17, 181]. An example

of a 4-bit invertible adder using three-body interactions has
been reported in Ref. [181]. It not only reduces the number
of required p-bits but also simplifies the energy landscapes
of invertible logic by reducing the number of energy levels
so that the solution-seeking process can be sped up. This
brings benefits to the subsequent simulated annealing algo-
rithm design because in this case, the system becomes intrin-
sically easier to get into the global minimum energy state
due to a simpler energy profile. Besides, parallel annealing
has also been demonstrated to solve IF and SAT with a faster
convergence rate [165, 169].

Apart from stochastic MTJ-based p-bits, CMOS-based
p-bit designs have also been extensively studied. Before the
MTJ-based implementation of p-bits, Pervaiz et al. [173]
used microcontrollers to emulate p-bits. The sigmoidal
electrical response of p-bits is programmed into the micro-
controllers. Together with a weighted logic composed of a
microcontroller and a DAC, a BM-based 4-bit × 4-bit invert-
ible multiplier and a 4-bit invertible ripple carry adder have
been demonstrated. This work takes the first step toward
implementing p-bits with nanodevices. Pervaiz et al. [182]
presented a generalized tile of weighted p-bits using a
field-programmable gate array (FPGA). A comparison
between FPGA-based p-bit and MTJ-based p-bit in terms
of energy consumption and required transistors number is
presented in Ref. [17]. FPGA-based p-bits normally consist
of linear feedback shift registers (LFSRs), look-up tables,
and digital comparators. Only consider one LFSR, more
than a thousand transistors are required and the consumed

Fig. 19 Two p-bit designs based on stochastic STT-MTJ. a–d: design
1. e–h: design 2. a Schematic of p-bit 1 which is composed of a sto-
chastic STT-MTJ, an NMOS transistor, a comparator, and a resistor. b
The sigmoidal response of p-bit 1. c Diagram of a general probabilis-
tic circuit based on p-bit 1. d A photograph of a printed integer fac-
torizer circuit. e Schematic of p-bit 2 which is composed of an STNO,

a Schmitt trigger, a counter, and a threshold circuit. f The sigmoidal
response of p-bit 2. g Diagram of a time division multiplexing proba-
bilistic circuit based on p-bit 2. h Simulation result of an integer 35.
The figures are adapted from Ref. [17, 97] with the authors’ permis-
sion

Unconventional computing based on magnetic tunnel junction

1 3

Page 29 of 48 236

energy for generating a random bit is 20fJ, while for MTJ-
based 1 T/1MTJ structure p-bit, the number of transistors
and the energy consumption per random bit are 4 and 2fJ,
respectively.

4.2 Ising machines for combinatorial optimization

COP [183] is closely related to the daily life of human
beings and can be found in various real-world applications
such as logistics, vehicle routing, human resource alloca-
tion, circuit design [184–187], etc. Compared to the knot
counting method of the primitive people in ancient times,
highly integrated and powerful computers in modern soci-
ety have provided great convenience for humans to solve
various hard computational problems like COP, but despite
this, Von Neumann architecture-based conventional com-
puters still show limitations: the increase in problem size is
accompanied by the growth in the number of signals need
to be processed. As a result, the number of solutions also
increases substantially, which leads to an exponential growth
in computational complexity. Considering an extreme case,
the amount of information that needs to be stored is even
much larger than the storage space of the computer when
the size of COP is sufficiently large, so the data processing
becomes an impossible task.

To address the above issues, many heuristic algorithms
have been proposed. Compared with brute force search-
ing methods, such as the resource-consuming exhaustive
method, a well-designed heuristic approach can always
provide acceptable solutions for COP with higher accuracy
and shorter computational time. However, this complicated
algorithm requires higher demands on hardware implemen-
tation. On the other hand, researchers are committed to
finding efficient computational models, among which, the
physics-inspired Ising model [188] has entered the vision
of researchers and has been researched extensively in recent
years due to its simple structure, intuitive mapping, nature-
friendly hardware implementation, and great potential in
solving the COP efficiently.

4.2.1 Ising model

Ising model is a mathematical model describing the behavior
of coupled magnetic spins in ferromagnetic systems [188]
shown in Fig. 20(a). It is composed of discrete spins si that
only can take values + 1(upward state) or − 1(downward
state), interactions between pairs of spins Jij and external
magnetic field hi. The total energy of the whole system H,
which is determined by the spin configurations, is defined as:

H = −
∑

i<j Jijsisj −
∑N

i=1
hisi . (10).

The principle of solving COP using Ising model is to
map the optimal solutions of a specific problem to the spin
configurations with the lowest energy state. The schematic
energy profile of the Ising model is shown in Fig. 20(b). To
do this, the constraints and objective functions of specific
COP need to be translated into the Ising model by program-
ming the interactions among spins and biases. Once this
problem is mapped, the system will tend to evolve towards
lower energy with an appropriate annealing scheme and
the configurations of spin states will update continuously.
Finally, it will converge into a stable energy state. For
example, if the interaction coefficients Jij between pairs of
spins (ignore couplings between spins and applied magnetic
fields) are all programmed to + 1, it can be predicted that in
order to reduce the energy, the final spin configuration must
be parallel, and all spins are in + 1 states. Conversely, real-
world COP normally has much more complicated energy
profiles. As shown in Fig. 20(b), such an energy profile has
a global energy minimum state and multiple local energy
minimum states. Note that if there is no external disturbance,
during the evolution process towards a lower energy state,
the system has a very high probability to enter one of the
local energy minimum states and cannot jump out, resulting
in a wrong solution.

4.2.2 Ising machine

IMs are the hardware implementations of the Ising
model and the carrier to solve COP. Various IMs based
on different physical mechanisms have been extensively

Fig. 20 a Ising spin model. b
Energy profile of an Ising model
system. The energy is deter-
mined by the spin configura-
tions. The figures are adapted
from Ref. [189] with the
authors’ permission

 B. Cai et al.

1 3

236 Page 30 of 48

studied, including Quantum-based [190], Optical-based
[191, 192], and Electrical LC-based [193, 194], but these
approaches also have their problems. D-wave quantum
annealing IMs use qubits to represent spins [190]. Its
fatal shortcoming is that a cryogenic cooling system is
required to operate normally, which brings high energy
consumption and extremely low energy efficiency. Opti-
cal-based IMs use coherent light to represent spins and
the coupling between spins is implemented by FPGA.
Although this system achieves room-temperature opera-
tion, it requires kilometer-long optical fibers [191, 192],
which poses a great challenge for miniaturization. Elec-
trical LCs can be used as oscillators to implement IMs
and the device size is greatly reduced [193, 194]. The
binary states of spins are implemented by binarized
phases of oscillators and couplings are encoded to the
resistive network. The speed of this approach is in the
millisecond scale, but still can be accelerated. MTJ-based
IMs, more precisely, stochastic MTJ-based and STNO-
based Ising solvers, are promising candidates for solving
the above issues due to the following desired and unique
characteristics: 1) the inherent randomness in stochas-
tic MTJs or STNO enables the solver trapped in local
minimum to jump out of these undesired solutions, 2)
the energy landscape of the system can be explored on
nanosecond timescales because such nanodevices can
operate in the GHz frequency range, thereby speeding up
the process of solution searching, and 3) various simple
hardware implementation choices for couplings between
Ising spins including electrical methods and magnetic
methods. In this article, we focus on MTJ-based IMs.
Typical COP solved by this approach like MAX-CUT,
graph coloring problems, and TSP are surveyed. For
other hardware implementations of IMs, interested read-
ers can refer to Ref. [195] for comparisons in terms of
their standard performance metrics, like the ground-state
success probability and time-to-solution.

4.2.3 Stochastic MTJs for Ising model‑based combinatorial
optimization

4.2.3.1 Simulated annealing‑based In recent years,
nanomagnets with low EB have attracted the attention of
researchers. The decrease in the energy barrier of nanomag-
nets makes the inherent randomness brought by the ther-
mal noise more and more severe. MTJs made from such
nanomagnets with low EB are called stochastic MTJs, which
exhibit an “S” shape input–output relationship and can be
leveraged to make natural annealers.

Using stochastic MTJs to solve COP can be traced back
to Ref. [16]. In this proof-of-concept work, the proposed
SHE-based stochastic MTJ works in the telegraphic noise
region. It utilizes the superparamagnet to serve as the mate-
rial of the free layer. The energy barrier of such nanomag-
nets is comparable to kBT. Each superparamagnetic MTJ is
implemented to represent a spin cell in the Ising model and
the electrical response of such a cell is shown in Fig. 21(a)
and the time-averaged magnetization can be tuned by the
injecting current. Due to the controllable stochasticity, a
naturally simulated annealing process is enabled. As shown
in Fig. 21(b), by continuously increasing the magnitude of
the controllable current between pairs of spin cells, a room-
temperature implementation of a 16-city TSP has been dem-
onstrated [16]. In this work, the system gradually converges
to a local energy minimum state with appropriate simulated
annealing. A not ideal but acceptable solution is found by
reading the magnetization states of the 4 × 4 SHE-MTJs
array. The flipping rate of the superparamagnetic MTJ is on
a nanosecond timescale, which enables the system to explore
the energy landscape with GHz frequency. As a preliminary
work towards natural IMs, this work proves the great poten-
tial of superparamagnets in solving COP with high speed
and ultralow power consumption, while the drawback of
using superparamagnets is also obvious because they are
extremely susceptible to process variation, which poses big

Fig. 21 a Sigmoidal response of a stochastic MTJ. Each point in the sigmoidal fitting curve is obtained by the time-averaged magnetization. b
Through simulated annealing, a 16-city TSP can be solved. The figures are adapted from Ref. [16] with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 31 of 48 236

challenges to device fabrication and reading circuit design.
The reading circuits need to be designed appropriately to
minimize the reading currents. Therefore, the possible pin-
ning effect on the free layer arising from the reading current
can also be minimized.

The above issues limit the application prospects of MTJ
in solving COP. To mitigate this, Shim et al. [189, 196] still
used a SHE-driven MTJ to work as the Ising cell but replaced
its superparamagnetic free layer with a higher-energy-barrier
one, and its structure is shown in Fig. 22(a). The thermal
noise-induced stochasticity is still applied to serve as the
entropy source. In this work, the authors used the charge cur-
rent injected into the heavy-metal layer underlying the MTJ
to manipulate the in-plane magnetic anisotropy. As shown
in Fig. 22(b), for a specific MTJ, the majority vote function
is implemented with multiple current sources and switches.
Based on the nearest neighbor, the amount of charge cur-
rent injecting, namely the results of votes, to a specific cell
is determined by the states of surrounding spin cells. More
votes correspond to a higher switching probability of mag-
netization. Therefore, the next spin configuration of MTJs
is determined by the vote results. Fig. 22(c) shows the well-
designed schematic of an Ising spin. Reference resistor RREF
serves as a voltage divider and cooperates with the output
inverter to binarize the voltage levels. For the majority vote
function part, CMOS logic gates together with series of tran-
sistors are used.

With the implementation of functions “Annealing” and
“Majority Vote”, several classical COP have been demon-
strated. Fig. 23(a) demonstrates the solution process of a
MAX-CUT problem which aims at finding two mutually
exclusive subsets of spins by connecting edges to maximize
the summation of weights along the edges. It can be noticed
that from point (c) to (d), there is an abrupt energy drop.
This phenomenon implies that the system evolves from a
local energy minimum state to a global energy minimum
state with an appropriate simulated annealing algorithm.
This annealing process is realized by increasing the mag-
nitude of coupling currents between spins. In other words,
annealing means the behavior of stochastic MTJs transits
from a stochastic manner to a more deterministic manner.
Another example is a very famous NP-complete problem
called graph coloring which is described as: is it possible to
assign m-colors for n-vertices so that two adjacent vertices
have the same color? For this problem, a total number of
m × n spins are required to represent the spin configuration
for the problem. Similarly, the target of an n-city TSP is to
find the shortest possible route to visit each city exactly once
and returns to the origin city. The list of cities and distances
between each pair of cities are known. A total of n × n spins
are required to solve such a problem. The simulation results
for these two typical hard computational problems are shown
in Fig. 23 (b) and (c), respectively. For the graph coloring
problem, the author fixed the number of colors to 3, but

Fig. 22 a Three-terminal stochastic SHE-MTJ-based Ising cell. b
Majority vote function implemented with multiple current copy
branches. The switching probability of a selected MTJ is mapped to

the amount of injecting charge current. c Detailed circuit design dia-
gram of an Ising cell. The figures are adapted from Ref. [189, 196]
with the authors’ permission

 B. Cai et al.

1 3

236 Page 32 of 48

the number of vertices is up to 6. For each subproblem, the
author runs a thousand times to obtain an average iteration
number when the system reaches an energy minimum state.
For a 29-city TSP, the system with a natural annealing pro-
cess converges quickly after 1431 rounds of iteration. Even
though the final suggested route for the salesman to travel is
not the optimal but it is reasonable and acceptable.

Apart from using charge currents to implement inter-
actions, a voltage-based method has also been studied.
Sharmin et al. [197] proposed a voltage-controlled Ising
cell that utilizes the magnetoelectric effect of the mul-
tiferroics to minimize the current flowing through the
network. This voltage-controlled IM can mitigate the

scalability issue with the increasing size of the prob-
lem. Fig. 24(a) shows the structure of the proposed volt-
age-controlled nanodevice and its sigmoidal electrical
response. This proposed Ising cell is based on a multi-
ferroic Oxide/CoFeB heterostructure with manipulation
of magnetization states + 1 and − 1 through the voltage
drop. Fig. 24(b) shows how it is coupled with other cells.
The output the former Ising cell is directly cascaded to
the input terminal of the latter Ising cell. All other cells
are coupled in this way. As a result, there is no need to
amplify the output signal using additional CMOS ampli-
fier circuits, but the complicated structure puts forward
higher requirements for subsequent fabrication processes.

Fig. 23 Three NP problems can be solved by the SHE-MTJ-based
Ising machine. a MAX-CUT. With appropriate interaction design, the
system evolves toward the lower energy state and with enough itera-
tions (450th here), a solution with the lowest energy is obtained. b
Graph coloring problems. A total number of m × n spins are required

to for a problem with m-colors for n-vertices. c TSP. The spin con-
figurations are constantly updating during the iteration process and
finally a route is suggested. The figures are adapted from Ref. [189,
196] with the authors’ permission

Fig. 24 a Structure of an Ising cell based on a voltage-controlled
nanodevice and its electrical response. The input voltage, namely the
write process, is applied across the multiferroic oxide/CoFeB hetero-
structure in which the magnetization state of the CoFeB layer can be

manipulated to represent the + 1 and − 1 states. b Implementation of
couplings among Ising cells. The figures are adapted from Ref. [197]
with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 33 of 48 236

In addition to advances in simulations, Safranski et al.
[93] and Hayakawa et al. [94] provided experimental evi-
dence of nanosecond scale fluctuations for stochastic-MTJ
with low EB, which marks a milestone towards hardware
implementation of the Ising model. Furthermore, Borders
et al. [17] experimentally demonstrated the solving of an
IF problem with STT-based stochastic MTJs serving as the
hardware spin cells. They fabricated a printed circuit board
with eight stochastic MTJ-based p-bits which are intercon-
nected through a microcontroller and a DAC; a factoriza-
tion result of an integer up to 945 has been demonstrated.
IF can be categorized as an NP-intermediate problem, and
the solution principle of this kind of problem is similar
to COP. Therefore, this work is a good reference for the
subsequent use of stochastic MTJs with low EB to solve
large-scale COP.

4.2.3.2 Parallel annealing‑based Parallel annealing [198]
is the other annealing algorithm that has the potential in
faster minimizing the system energy to obtain optimal or

near-optimal solutions. Different from simulated annealing,
parallel annealing makes use of a set of replicas of the p-bit
network with well-designed discrete fixed temperature levels
rather than only one network with decreasing temperature
levels. As shown in Fig. 25(a), the higher temperate replica
suffers more severe thermal fluctuations, thus it can explore
a larger range of spin configurations. This is reflected in the
fact that state 1 has a larger fluctuation energy range. Mean-
while, the lower temperate replica is also fluctuating but in a
small range. Once the high-temperature replica finds a spin
configuration whose energy is lower than the low-temperate
one, the spin states between them will exchange.

Grimaldi et al. [169] applied parallel annealing to a sto-
chastic MTJ-based Ising model. Firstly, based on the mac-
rospin model, Fig. 25(b) shows the real-time magnetiza-
tion fluctuations of a stochastic MTJ with thermal noise
comparable to the energy barrier. The solving process of a
MAX-3SAT with 70 variables and 700 clauses is demon-
strated using 771 p-bits with parallel annealing. The simu-
lation results are shown in Fig. 25(c). Four replicas with

Fig. 25 a Illustration of parallel tempering with two replicas at low-
and high-temperature levels. b Real-time magnetization state of a
stochastic MTJ. c Simulation results of a MAX-3SAT with 70 vari-
ables and 700 clauses using parallel annealing. Four replicas with
the pseudo-temperature I0 = 0.10, 0.15, 0.20, and 1.50 are used. d

Simulation results of an SAT “uf20-01.cnf” using parallel annealing.
Four replicas with the pseudo-temperature β = 0.30, 0.35, 0.40, and
1.50 are used The figures are adapted from Ref. [165, 169] with the
authors’ permission

 B. Cai et al.

1 3

236 Page 34 of 48

four different temperate levels are adopted and the solver
obtains the optimal solution within 60 ns. This ultrafast
solution-finding process is enabled by the parallel updating
of p-bits which is different from the sequentially updating of
p-bits in the simulated annealing scheme. Aadit et al. [165]
also confirmed the superiority of parallel annealing over
simulated annealing in solving IF and SAT. The authors
solved the same SAT “uf20-01.cnf” using these two anneal-
ing schemes. Figure 25(d) shows the optimal solution is
achieved only after 100 iterations by a 4-replica parallel
annealing. Although the parallel annealing algorithm can
converge faster to find the solution for solving factorization
and COP, as discussed above, multiple replicas cost more
computational resources.

4.2.4 Spin torque nano‑oscillators for Ising model‑based
combinatorial optimization

The other kind of IMs that can be used to solve COP utilize
a completely different mechanism of the MTJ, namely the
oscillation of the magnetization. The free layer of such MTJ
is made of nanomagnet with a high energy barrier, which
mitigates the aforementioned issues for MTJ state reading
and difficulties in device fabrication. Nevertheless, com-
pared to the stochastic MTJ, which directly uses the rela-
tive orientation of magnetization to the reference layer to
intuitively represent the upward + 1 and downward -1 states
of spins, the STNO-based Ising cell requires an additional
phase binarization step.

4.2.4.1 Phase binarization by injection locking The phase
binarization of the oscillator is usually achieved by sub-
harmonic injection locking. As shown in Fig. 26, in the
coupled oscillator network, a perturbation signal with a
frequency of 2finj (finj is comparable to fSHNO) is injected
into each oscillator which has a natural frequency of fSHNO.
Then, the frequency of each oscillator will change from
fSHNO to finj with two stable phase-locked states. After this

step, the oscillator no longer has an analog phase but stabi-
lizes at some discrete phase points, that is 0 and π, and thus
this bistate can be used to represent the two states of the
spin. For an oscillator in a coupled oscillator network, in
addition to external signal perturbations, it is also perturbed
by the oscillators connected to it. The dynamics of its phase
change with time can be accurately captured by the Kura-
moto model [199]:

where {ϕi} represents the phase of the ith oscillator and
{Jij} represents the coupling between oscillator i and oscil-
lator j. The global parameter K adjusts the overall coupling
strength between oscillators. Ks modulates the coupling
strength from external perturbation. It can be observed that
a perturbation signal with a frequency of ω1 = 2πf1 intro-
duces a coupling term with a period of π (i.e., sin(2φ)) to
the phase dynamics, while the period of the coupling term
from other oscillators is 2π.

To see the evolution from the energy aspect, there is an
energy-like Lyapunov Function associated with Eq. (11):

A global Lyapunov function is a quantity like the
energy term in the Ising system. When {ϕi} settle at these
discrete points, that is, ϕi(t) is either = 0 or = π, the last
term of Eq. (12) is a constant offset term (cos 0 or cos
2π = 1). Ignore this constant term, the mapping relation-
ship between the Lyapunov function and Hamiltonian is:

(11)

d

dt
�i(t) = −K ⋅

n
∑

j=1,i≠j

Jij ⋅ sin
(

�i(t) − �j(t)
)

− Ks ⋅ sin
(

2�i(t)
)

(12)

E
(

𝜙(t)
)

= − K ⋅

∑

i,j,i≠j

Jij ⋅ cos
(

𝜙i(t) − 𝜙j(t)
)

− Ks ⋅

∑

i,j,i≠j

Jij ⋅ cos
(

2𝜙i(t)
)

(13)

E
(

�⃗𝜙(t)
)

= −K ⋅

∑

i,j,i≠j

Jij ⋅ cos
(

𝜙i(t) − 𝜙j(t)
)

= −2K ⋅

∑

i,j,i<j

Jij ⋅ sisj.

Fig. 26 Illustration of subhar-
monic injection locking. Cou-
pled oscillators are stabilized at
one of the binary phases under
subharmonic injection locking.
The figures are adapted from
Ref [193] with the authors’
permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 35 of 48 236

If K = 0.5 is chosen, the global Lyapunov function in
Eq. (13) exactly matches the Ising Hamiltonian at these
discrete phases. It implies that just like the configura-
tions of spins keep flipping towards lower system energy,
oscillators will interact with each other, and their phases
are continuously changing to minimize the energy and
finally settle into stable phases so that the solution to the
mapped problem can be obtained. Detailed derivation for
the dynamics of an oscillator under subharmonic injec-
tion locking from a single oscillator to coupled oscillator
network is presented in [193].

4.2.4.2 Spin torque nano‑oscillators‑based Ising
machines Albertsson et al. [200] demonstrated the feasibil-
ity and superiority of implementing IMs using MTJ-based
STNOs shown in Fig. 27(a) using a numerical simulation
model: the solution-searching speed for specific MAX-
CUT problems can be accelerated to the order of ns and the
nanoscale size of Ising cell provides a solution for the min-
iaturization of IMs. When using the developed numerical
model for oscillator network simulation, there is no need to
define the type of coupling. Although this makes the model
more general, it also implies the impossibility to use the
model to study the impact of various coupling designs on the
system’s performance. Moreover, this work implemented
the annealing process by modulating the coupling strength

between the external perturbation signal and spins, but it
does not introduce the phase noise term. Therefore, the sys-
tem is more likely to fall into these undesired local minima
states when dealing with COP with complex energy pro-
files. This conclusion is confirmed by the simulation results
shown in Fig. 27(b) when solving a MAX-CUT problem.
The increase in the problem size significantly reduces the
success probability of the IMs to obtain the optimal solution
and the near-optimal solution.

McGoldrick et al. [201] developed a general analyti-
cal framework that not only can capture the dynamics of
injection locking for STNOs shown in Fig. 27(c) with large
oscillation angles but also models the phase noise using the
impulse sensitivity function approach [202]. Previously,
models in Ref. [203] can only explain injection locking
with a small procession angle. Same to the treatment when
dealing with the thermal fluctuations in Ref. [204], the ther-
mal noise is treated as an effective field in STNO. Moreo-
ver, the authors emulated the fundamental features of the
oscillators required for IMs and analyzed the performance
of STNO networks at the circuit level. Results show that
to solve the same 100-size MAX-CUT problem, the STNO
scheme can achieve several orders of improvements in solu-
tion time and energy efficiency. Furthermore, due to proper
modeling of phase noise existing at room temperature, as
shown in Fig. 27(d), solver operating at 300 K has higher

Fig. 27 a Illustration of an STNO. b As the size of the MAX-CUT
problem increases, the success probability of obtaining the solution
(green) and a sub-optimal solution (purple) decreases substantially
when no phase noise exists. c Top view of 3-terminal SHNO. d With

thermal noise, the success probability of obtaining the solution can be
improved greatly. The figures are adapted from Ref. [200, 204] with
the authors’ permission

 B. Cai et al.

1 3

236 Page 36 of 48

success probability than the one working at 0 K Besides, it
is found that the success probability of solutions is expected
to scale with the array size of the coupled oscillator network
as shown in Fig. 27(d).

From an experimental perspective, a 2 × 2 phase-bina-
rized SHNO array has been experimentally demonstrated to
solve a MAX-CUT problem [205], and an 8 × 8 SHNO 2D
array has been fabricated for neuromorphic computing appli-
cation [132]. The schematic presentation of SHNO arrays
are shown in Fig. 28.

At present, the problems solved by SHNO-based IMs
are relatively simple, only involving the MAX-CUT prob-
lem and the problem size is small. For other problems that
require a more complicated coupling design, more theo-
retical and experimental verifications are needed. On the
other hand, common coupling mechanisms between SHNOs
and STNOs include electrical coupling, spin-wave, direct
exchange, and dipolar. The coupling mechanism between
spins shown in Fig. 28 is difficult to be programmed, espe-
cially for weighted coupling strength. Normally, a general-
purpose IM requires an all-to-all coupling, which requires a
careful design of the couplings. These experimental realiza-
tions of such an SHNO network represent a significant mile-
stone toward SHNO-based IMs. How to encode coupling
strength in an easier way, such as how to realize electri-
cal coupling between oscillators in experiments, still needs
follow-up research.

4.3 Bayesian networks for bayesian inference

BN [206] is a directed probabilistic graphical model that has
been widely applied to understand the causal dependencies
[207] among events. It aims to efficiently solve common but
hard computational probabilistic tasks in real life, such as
a series of problems with inherent causality represented by
medical treatment decisions [208] and weather forecasting

[209]. In a BN, random variables, the directionality, and
strength of dependencies among random variables are rep-
resented by nodes, edges, and a set of conditional probability
tables (CPTs), respectively. Nodes can be divided into parent
and child nodes in terms of their causal sequences inherited
from events. Edges map such parent-to-child directionality,
while CPTs encode the strength of such dependencies. The
implementation of Bayesian inference [210] in BNs, spe-
cifically, the process of deriving the posterior probability
based on the prior probability and the likelihood function
(derived from the probability model) requires substantial
floating-point representations and operations. It makes con-
ventional computing paradigm-based computers encounter
a bottleneck in the pursuit of efficient inference with low
resource consumption and fast computing speed. Moreover,
as the size of BN grows, the dependencies between parent
nodes and child nodes become more complicated. There-
fore, the computational complexity increases greatly, and
the calculation of conditional probabilities becomes intrac-
table. To solve the above issues, researchers are committed
to finding nature-friendly devices and circuits that can rep-
resent random variables and perform associated probability
operations.

4.3.1 A classical four‑variable Bayesian network

BN is a fusion of probability theory and graph theory
[211]. It uses the language of graph theory to reveal the
structure of the problem intuitively while it uses the
principles of probability theory to solve inference and
learning problems according to problem structure. Such a
combination can be seen in a classical BN with 4 random
variables [206]. The four variables represent four random
events—whether the weather is cloudy “C”, whether the
weather is rainy “R”, whether the sprinkler is on “S” and
whether the grass is wet “W”. By decomposing joint prob-
abilities into a series of simple modules, the computing
difficulty can be reduced in BN. The causality between
nodes can be obtained from the direction of edges, and
CPT describes the dependencies between parent and child
nodes in the format of conditional probability.

Based on BNs, assuming that the grass has been
observed to be wet (observed evidence), Bayesian infer-
ences can be implemented. In this case, there are two
hidden causes: the sprinkler is on, or it is raining. The
posterior probability can be estimated using Bayes' rule
as defined:

where P(S) is prior probability, that is, a judgment on
the probability of the event “sprinkler is on” before the

(14)P(W) =
P(S)P(S)

P(W)

Fig. 28 A 2 × 2 phase-binarized STNO array. The figure is adapted
from Ref. [200] with the authors’ permission

Unconventional computing based on magnetic tunnel junction

1 3

Page 37 of 48 236

occurrence of the event “grass is wet”, P(S|W) is the pos-
terior probability, that is, the reassessment of the prob-
ability of the event “sprinkler is on” after the occurrence
of the event “grass is wet”, P(W|S)/P(S) is called likeli-
hood function, which is an adjustment factor.

4.3.2 Stochastic MTJs for RNGs in Bayesian networks

Various schemes have been developed for direct hardware
implementation of BNs. Under the CMOS-based framework,
there are stochastic digital circuits with digital logic gates
[212–214] and analog probabilistic computing circuits with
stochastic devices [215–217]. A comprehensive overview
of related CMOS-based BN hardware implementation can
be found in Ref. [218], which pays more attention to the
improvements in circuit implementation, architecture design,
and algorithm optimizations. Moreover, emerging nanode-
vices, especially the stochastic MTJs, provide a compact and
low hardware-cost solution to replace the core elements for
randomness generation in BNs due to their unique stochas-
tic feature. Fig. 29(a) shows a diagram of the traditional
stochastic bitstream generator (SBG) in which the random
bitstreams are generated utilizing two core modules: RNGs
and comparators. In most of the previous work, LFSRs [219]
are popular to function as RNGs. After the comparison pro-
cess, random bitstreams with 50% ratios of 0 s and 1 s are
generated, while this approach consumes a mass of transis-
tors and the bitstreams generated are pseudo-random. The

former problem brings a lot of area and energy consumption,
while the latter implies that the computing accuracy using
BNs will be degraded due to the correlation among bits in a
bitstream. In Ref. [220–222], TRNG circuits using stochastic
MTJs have been proposed, which utilize the inherent ran-
domness of nanomagnets. Note that these stochastic MTJ-
based RNG modules need to be cooperated with peripheral
CMOS circuits to function as an SBG. Although the above
designs have great potential in replacing LFSRs that require
up to thousands of transistors, the tunable randomness nature
of stochastic MTJs, i.e., the tunable output ratios of 1 s and
0 s, is not fully exploited. Also, the potential of SBGs in
solving practical problems such as Bayesian inference is not
reflected in these works.

The novel MTJ-based circuit proposed by Ref. [223, 224]
can solve the above issues and demonstrates its application
in data fusion and BN with higher speed and low hardware
cost, in which the authors make full use of the “S” shape
relationship between the input pulse voltage level and the
switching probability of the stochastic MTJ. The schematic
of the proposed SBG circuit, illustrated in Fig. 29(b), is com-
posed of a write circuit and a read circuit. The writing part
includes two stages: resetting to AP state and switching from
AP to P state. 1 MTJ and 4 multiplexers (MUX) are used.
The basic workflow and principle are as follows: 1) set Write
En of MUX2 and MUX3 to 1 so that the circuit works in a
write operation, 2) set Rst.0 to 1 and Wrt.1 to 0 to make sure
the reset stage is on and the current direction is shown as

Fig. 29 a Diagram of the traditional SBG using an RNG and a com-
parator. b Stochastic MTJ-based SBG composed of MTJ and Mul-
tiplexers. By controlling the write and read processes, random bit-
streams are generated. c Stochastic MTJ-based system for Bayesian

inference. The three core modules of this system are Evidence/ Like-
lihood, SBG matrix and the SC Architecture. The figures are adapted
from Ref. [223, 224] with the authors’ permission

 B. Cai et al.

1 3

236 Page 38 of 48

the blue arrow, and 3) contrary to previous step setting, set
Rst.0 to 0 and Wrt.1 to 1 to make sure the circuit work in the
switching phase. At this time, the current direction is shown
as the red arrow, flowing from the free layer to the pinned
layer. The probability of switching from AP to P state can be
customized in terms of the occurrence probability of a spe-
cific event, which can be achieved by configuring the ampli-
tude or duration of the applied voltage pulse. Such circuits
can be directly used to work as an SBG to generate random
bitstreams. Furthermore, such SBG matrix-based Bayesian
inference systems can be employed by circuit designers to
reduce power overhead and accelerate inference speed.

However, strictly speaking, the above-mentioned
approaches are still under the domain of CMOS circuits as
these random nanomagnet-based RNGs or SBGs cannot be
manipulated individually in BN. As a result, they are not
able to be directly used as stochastic nodes to represent sto-
chastic variables as well as reflect the dependencies among
nodes. Subsequent complicated CMOS arithmetic circuits
shown in Fig. 29(c) are required with such a stochastic com-
puting paradigm to implement the inference task. The mag-
nitude of input voltage is proportional to the likelihood. The
SBG matrix translates the input voltages to stochastic bit-
streams. The stochastic computing architecture implements
the inference process based on the input data processed by
the SBG matrix. This module is constructed by multiple
logic gates. In this review paper, we focus on the nanomag-
nets-based beyond-CMOS stochastic devices, expanding
only using the random characteristics of nanomagnets as
RNGs or SBGs to building blocks that can directly build
BNs. These nanomagnet-based units can be independently
engineered through underlying physical mechanisms to
directly represent stochastic variables and couplings among
them. We give descriptions of several different schemes for
representing random variables, edges and CPTs, as well as
their respective advantages and drawbacks.

4.3.3 Stochastic MTJs for direct implementation
of Bayesian networks

Behin-Aein et al. [225] presented a proof-of-concept hard-
ware implementation of a 3-variable BN using experimen-
tally benchmarked models of nanomagnets. In this work,
each stochastic variable is represented by a stochastic MTJ-
based p-bit shown in Fig. 30(a). The CPT reflecting the
dependencies between nodes corresponds to the ensemble
average of the magnetization orientations after the initiali-
zation and relaxation process of the nanomagnets. In this
preliminary work, the authors demonstrated the structure
of a carrot-stick-performance BN shown in Fig. 30(b). Such
a simple 3-node BN is often used for employee incentive
policies in enterprises. Although details about how to trans-
late real-world problems like this to such nanomagnet-based

building blocks are not given, the authors make predictions
about the underlying physical mechanisms that could poten-
tially be exploited to directly implement BN, including how
to write, how to read states of variables and how to imple-
ment interactions.

Faria et al. [14] reported a design framework for imple-
menting BN in hardware, including 1) how to translate
real-world BN to a behavioral model PSL with a set of
mapping rules and associated formula expressions, and
2) how to map PSL to electronic circuit elements. Table 1
reports all the information on translating a graphical
model of BN to real electronic elements in which PSL is a
bridge between BN and real circuits, defined by the h and
J coefficients. In PSL, the binarized magnetization ori-
entations of nanomagnets represent the random variable,
which corresponds to high and low levels binarized by the
inverter in electronic elements. The conditional dependen-
cies between random variables represented by CPT can be
explained by Eq. 15(a) and 15 (b): there is a child node mi,
and its output is governed by input Ii by Eq. 15(a). Then,
15(b) describes Ii is obtained by summing the weighted
states of each node connected to mi and its own bias. Given
the precondition of mj = 1 (by applying sufficiently large
current or voltage), the probability of mi = 1 can be cal-
culated from the above two equations. The direction from
the parent node to the child node represented by edges
can be implemented by the directivity in real circuits
when connecting the input and output terminals of p-bits.
Figure 30(c) shows the circuit of a building block, i.e.,
a p-bit in this work, which is composed of a stochastic
MTJ, an operational amplifier, two inverters, and resis-
tive elements. By sampling its time-averaged output, the
occurrence probability of a particular event can be readily
obtained. Please refer to Eqs. 16(a, b) and Eqs. 17(a–e)
for the mapping from PSL to circuits. A set of translation
process examples of zero-parent nodes, one-parent nodes,
and two-parent nodes from BN to PSL to the circuit are
also shown in Fig. 30(d).

Based on the inherent randomness of stochastic nano-
magnets, Debashis et al. [226] proposed another novel p-bit
design which is made of stochastic MTJs with perpendicular
anisotropy and worked as the building block of the network.
Figure 30(e) shows the ring-like structure of the proposed
stochastic device which utilizes the GSHE originating from
the SOC in heavy metal rather than spin transfer torque in
previous work. Due to the design differences of underlying
physical mechanisms, the translating process is slightly dif-
ferent from the previous case. More specifically, although
both two pieces of work change the weights and local bias
by changing the conductance or voltage, the subsequent cur-
rent change in Ref. [14] directly leads to a strong change in
the STT effect. However, in Ref. [226], the reversal of mag-
netization is indirectly affected by changing the magnetic

Unconventional computing based on magnetic tunnel junction

1 3

Page 39 of 48 236

field generated from the injected current flowing through
the Oersted ring. Figure 30(f) shows an experimental dem-
onstration of a four-variable BN, in which stochastic devices
are initialized and sampled by a pulse sequence, and all of
them are electrically interconnected. Any given correlations
can be captured by designing the weights and biases.

Shim et al. [227] developed a SOT-driven stochastic MTJ
along with peripheral CMOS circuits to act as the building
block, the variable of Bayesian inference engine. As shown
in Fig. 30(g), a voltage pulse sequence with a fixed phase
difference is injected into the input of the building block.
Due to the “S” shape switching probability with respect to
the input current, the probabilistic information is encoded

Fig. 30 Various p-bit designs based on stochastic-MTJs for direct
implementation of BN. a–b: design 1. c–d: design 2. e–f: design 3.
g–h: design 4. a A proof-of-concept p-bit based on a stochastic MTJ
to represent a stochastic variable in BN. b A carrot-stick-performance
BN based on design 1. c Schematic for p-bit design 2, which is com-
posed of a stochastic STT-MTJ, an operational amplifier, two invert-
ers, and resistive elements. d Examples of the translation process

from BN to PSL to electronic elements based on design 2. e Sche-
matic of p-bit design 3 based on an Oersted-ring assisted stochastic
MTJ. f Circuit schematic of a 4-node BN using design 3. g Schematic
for p-bit design 4 based on stochastic SHE-MTJ. h Circuit schematic
of a 4-node BN using design 4. The figures are adapted from Ref.
[14, 225–227] with the authors’ permission

 B. Cai et al.

1 3

236 Page 40 of 48

into the system and following pulse-based arithmetic will
implement the inference. Fig. 30(h) shows the complete cir-
cuit schematic of a typical four-node BN case and demon-
strates its efficiency in solving such inference tasks by using
a direct mapping approach.

Furthermore, Zand et al. [228, 229] realized a model of
a deep belief network using stochastic MTJ-based p-bits.
The developed inference simulator is based the restricted
Boltzmann machines and can be trained to recognize hand-
written digits.

It should be noted that when using the above p-bits
as building blocks to build BN, the update sequence of
p-bits needs to be appropriately designed to make sure
the network operates correctly. In the previous context
of BM-based invertible logic, all p-bits have an equal
footing. Therefore, the final statistical results, i.e., the
Boltzmann distribution, presented at thermal equilib-
rium will not be affected even if the p-bits are randomly
updated in each round of iteration. In BN, on the other
hand, the story is different. The inherent causal rela-
tionship between events implies that the status of p-bits
representing parent nodes and child nodes are differ-
ent. As a result, it is necessary to ensure BN is updated
sequentially and in order from the parent node to the
child node. Otherwise, the circuit will not operate appro-
priately. Faria et al. [230] systematically studied the
underlying causes and influencing parameters of such
phenomena. A design criterion for designing autono-
mous and asynchronous BN circuits without any clocks
or sequencers based on the p-bit of 1 T-1MTJ adopted
in Ref. [14] is expounded. The signal transmission delay
on synapse-like interconnection elements must be much
smaller than the p-bit response time (the sum of the
retention time and flipping time of the stochastic MTJ).
In Ref. [226, 227], the sequential update order from the
parent node to a child node is guaranteed by the timing
of pulses injected into p-bits. The other main contri-
bution of this work is that a behavioral model called
parallel PSL for autonomous BN is developed, which
provides a valuable reference to future clockless BN
design based on emerging nanodevices.

4.4 Challenges and future directions for stochastic
computing

In this section, we review recent research progress on
stochastic nanodevices, especially the stochastic MTJ
which can be used as a p-bit (a building block) to build
complicated networks, in several typical applications of
stochastic computing. Compared to CMOS-based imple-
mentations, stochastic MTJs are favored by researchers
due to their inherent stochasticity and other desirable
properties. These nature-friendly properties and good Ta

bl
e

1
 T

ra
ns

la
tio

n
pr

oc
es

s o
f a

 g
ra

ph
ic

al
 m

od
el

 o
f B

N
 to

 re
al

 e
le

ct
ro

ni
c

el
em

en
ts

B
N

Fr
om

 B
N

 g
ra

ph
ic

al
 m

od
el

 to
 P

SL
Fr

om
 P

SL
 to

 c
irc

ui
ts

Va
ria

bl
e

B
in

ar
iz

ed
 m

ag
ne

tiz
at

io
n

or
ie

nt
at

io
ns

 o
f n

an
om

ag
ne

t
B

in
ar

iz
ed

 v
ol

ta
ge

 le
ve

ls

C
PT

m
i(
t
+
Δ
t)
=
sg
n
(r
a
n
d
(

(−
1
,1
)
+
ta
n
h
I i
(t
))

(1
5a

)
V
o
u
t,
i
=

V
D
D

2
sg
n
(

ra
n
d
(−

1
,1
)
+
ta
n
h

V
in
,i

V
0

)

(1
6a

)

I i
(t
)
=
I 0

�

h
i(
t)
+
∑

j
J i
jm

j�

(1
5b

)
V
in
,i
=
V
b
ia
s,
iG

b
R
f
+
∑

j
V
o
u
t,
iG

ij
R
f (

16
b)

(1
6b

)

M
a
p
p
in
g
ru
le
s
∶
m

i
=
V
o
u
t,
i∕

V
D
D

2
,
I i
=
V
in
,i
∕
V
0
,
h
i
=
V
b
ia
s,
i
∕
V
D
D

2
,
J i
j
=
G

ij
∕
G

b
,
I 0

=
G

b
R
f
V
D
D
∕
2
V
0

17
(a

)–
17

(e
)

Ed
ge

s
Pa

re
nt

 n
od

e →
 ch

ild
 n

od
e

Ph
ys

ic
al

 c
on

ne
ct

io
n

di
re

ct
io

n:
C

on
ne

ct
 th

e
ou

tp
ut

 o
f p

ar
en

t n
od

e
to

 th
e

in
pu

t o
f c

hi
ld

 n
od

e

Unconventional computing based on magnetic tunnel junction

1 3

Page 41 of 48 236

compatibility with the CMOS process make stochastic
MTJs one of the most promising candidates to directly
implement probabilistic networks based on the stochastic
computing paradigm. For example, in BM-based Invert-
ible logic and IMs, the tunable stochasticity of stochas-
tic MTJs makes it possible to implement the natural
annealing process. Therefore, the hardware overhead of
additionally implementing the annealing algorithm can
be reduced. In BNs, stochastic MTJs can directly rep-
resent stochastic variables and conditional dependencies
between events can also be easily mapped. Furthermore,
stochastic MTJs provide a compact and low hardware cost
solution which consumes much less area and power in
stochastic bitstreams generation compared with CMOS-
based SBG. However, there still exist several challenges
ahead for direct hardware implementation of probabilistic
networks using stochastic MTJ-based p-bit devices.

On the device-circuit level, although low barrier nano-
magnets enable much faster flips of states and hence, the
process of network exploring all the spin configurations
can be accelerated, stochastic MTJs with low EB not only
pose difficulties to the fabrication process but also the
circuit design, because a very limited energy barrier
results in a very small critical current [231]. Therefore,
the current flowing through the read circuit needs to be
designed to be as small as possible to minimize its nega-
tive pinning effect on the switching of the free layer. On
the other hand, nanomagnets are vulnerable to process
variation, which implies even tiny differences in energy
barrier may bring great change to device stochasticity.
This undesirable change in stochasticity can be overcome
for small-scale networks, but with the increase in network
size, scalability emerges as the most important issue,
because these negative effects can be accumulated and
may eventually lead to a specific stochastic MTJ being
unable to operate at its originally designed operating
point, thus leading to malfunction of the whole network.

On the algorism level, with an increase in the problem
size, a design scheme that can simplify the coefficients
for BM-based invertible logic and IM is imperative to be
developed, which is reflected in a more reasonable design
of h and J when mapping the problem ready to be solved
to the p-bits-based probabilistic network so that simpler
energy profile, fewer p-bits required and reduced com-
putational complexity are obtained. Recently, a design
scheme based on many-body interactions has been dem-
onstrated to be one of the promising solutions to solve
the above issues [17, 181]. However, how to directly
implement the multiple couplings among p-bits based on
STT-MTJs, SOT-MTJs or oscillation-based MTJs requires
further research. Furthermore, for large-size problems,
the accuracy of the solution can be improved by anneal-
ing algorithms, but most of the current works adopt the

simplest linear simulated annealing schedule. Other more
advanced annealing schedules, like the design of a univer-
sal algorithm that can automatically adjust the annealing
speed according to the energy profile of the networks, still
need further discussion.

5 Conclusion

We review the MTJ-based neural networks of neuromor-
phic computing and several typical applications of MTJ-
based stochastic computing. First, the fundamentals and
research progress of MTJ-based neurons, synapses, and
p-bits at the device level are introduced. The magnetiza-
tion of the MTJ can be regulated by STT, SOT, or VCMA,
and thus the resistance changes due to the presence of
TMR. The STT-MTJ was first considered as an artificial
synapse, and its switching probability can be adjusted
from 0 to 100% by the amplitude of the pulse at a fixed
pulse width, which enables it to implement the STDP
rule. However, SOT-MTJ exhibits better stability and
lower energy consumption. For an artificial neuron, what
it needs to achieve is to accumulate charge and fire when
the voltage reaches the threshold. MTJs exhibit an extraor-
dinary ability to mimic this integrated and fire process. In
addition, MTJ-based neurons have nonlinear dynamics,
giving them excellent biological proximity. For p-bits, the
naturally stochastic fluctuation of MTJs makes them one of
the promising candidates. VCMA-MTJs with stochasticity
has been implemented as TRNGs and p-bits.

In the section about neuromorphic computing, the neu-
ral networks based on MTJs are reviewed. There are three
generation neural networks: The first generation is the sin-
gle perceptron whereas it has only one layer of functional
neurons, which makes it unable to solve non-linearly sepa-
rable problems. The addition of one or more hidden layers
between the input and output layers led to the birth of the
second generation of neural networks and the concept of
MLP. Facing the dramatic increase in parameters caused by
the increase in the number of layers, CNN was proposed.
MTJ-based CNNs are used to identify datasets such as
MNIST, CIFAR-10, and ImageNet with high accuracy and
low power consumption. In addition, to solve the sequence
problem, RNNs are proposed. Building RNN and RC with
MTJs is feasible and STNO exhibits high energy efficiency.
The third generation is the event-driven SNN. Compared to
the previous two generations, SNNs are closer to the nervous
system in the human brain. Meanwhile, their high computing
efficiency and low energy consumption highlight their excel-
lent potential for efficient information processing. With the
characteristics of non-volatility and high energy efficiency,
MTJs can realize learning rules such as STDP and models
such as LIF, which perfectly meet the requirements of SNN

 B. Cai et al.

1 3

236 Page 42 of 48

for devices. Nonetheless, like all nascent technologies, the
development of SNN is controversial and SNN still faces
problems such as difficulties in practical use, difficulties in
training and learning and low accuracy in complex tasks.

In addition, we review stochastic computing with the
MTJs used as p-bits. The stochasticity and other desir-
able properties exhibited by the stochastic MTJ and its
compatibility with CMOS technology make it a promis-
ing candidate for the p-bit. In application examples such
as BMs, BN, etc., MTJ exhibits highly energy-efficient,
compact, and low-cost solutions. Nevertheless, MTJ-
based stochastic computing also faces some problems. The
switching speed and energy barrier of MTJ are a pair of
contradictory indicators. To achieve fast switching, a small
energy barrier is required. Nevertheless, a small energy
barrier will lead to a small critical current, which brings
difficulties to circuit design. Affected by the manufactur-
ing process, it is difficult for the MTJs in the network to
have a completely uniform energy barrier, and a slight
difference may have a huge impact on the final results.
In addition, the mechanism of coupling between p-bits
based on STT-MTJ, SOT-MTJ, and VCMA-MTJ is still
unclear. Implementing more complex annealing schedules
or even a general annealing algorithm also needs to be
further investigated.

Acknowledgements This work at the ShanghaiTech Univer-
sity is supported by National Key R&D Program of China (Grant
No. 2022YFB4401700), Shanghai Sailing Program (Grant No.
20YF1430400) and NSFC (Grant No. 12104301). This work at the
National University of Singapore is supported by MOE-2017- T2-2-
114, MOE-2019-T2-2-215, and FRC-A-8000194-01-00.

Data availability statement The datasets generated during and analysed
during the current study are available from the corresponding author
on reasonable request.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. D. Monroe, Neuromorphic computing gets ready for the (really)
big time. Commun. ACM 57(6), 13–15 (2014). https:// doi. org/
10. 1145/ 26010 69

 2. J. Han, M. Orshansky, “Approximate computing: An emerg-
ing paradigm for energy-efficient design. IEEE Eur. Test Symp.
(ETS) (2013). https:// doi. org/ 10. 1109/ ETS. 2013. 65693 70

 3. C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10),
1629–1636 (1990). https:// doi. org/ 10. 1109/5. 58356

 4. M. Mishra and M. Srivastava 2014 “A view of Artificial Neu-
ral Network,” in 2014 International Conference on Advances in
Engineering & Technology Research (ICAETR - 2014). Doi:
https:// doi. org/ 10. 1109/ ICAETR. 2014. 70127 85.

 5. F. Rossi, B. Conan-Guez, Functional multi-layer perceptron: a
non-linear tool for functional data analysis. Neural Netw. 18(1),
45–60 (2005). https:// doi. org/ 10. 1016/j. neunet. 2004. 07. 001

 6. V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer, Efficient processing of
deep neural networks: a tutorial and survey. Proc. IEEE 105(12),
2295–2329 (2017). https:// doi. org/ 10. 1109/ JPROC. 2017. 27617
40

 7. S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of
a convolutional neural network,” in 2017 International Confer-
ence on Engineering and Technology (ICET), 2017, pp. 1–6. doi:
https:// doi. org/ 10. 1109/ ICEng Techn ol. 2017. 83081 86

 8. T. Mikolov, S. Kombrink, L. Burget, J. Černocký, S. Khudanpur,
Extensions of recurrent neural network language model. IEEE
Int. Conf. Acoustics Speech Sig. Process. (2011). https:// doi. org/
10. 1109/ ICASSP. 2011. 59476 11

 9. S. Ghosh-Dastidar, H. Adeli, Spiking neural networks. Int. J.
Neural Syst. 19(04), 295–308 (2009). https:// doi. org/ 10. 1142/
S0129 06570 90020 02

 10. N. Caporale, Y. Dan, Spike timing-dependent plasticity: a Heb-
bian learning rule. Annu. Rev. Neurosci. 31(1), 25–46 (2008)

 11. K.Y. Camsari, S. Salahuddin, S. Datta, Implementing p-bits With
Embedded MTJ. IEEE Electron Device Lett. 38(12), 1767–1770
(2017). https:// doi. org/ 10. 1109/ LED. 2017. 27683 21

 12. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm
for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985).
https:// doi. org/ 10. 1016/ S0364- 0213(85) 80012-4

 13. N. Zhang, S. Ding, J. Zhang, Y. Xue, An overview on Restricted
Boltzmann Machines. Neurocomputing 275, 1186–1199 (2018).
https:// doi. org/ 10. 1016/j. neucom. 2017. 09. 065

 14. R. Faria, K.Y. Camsari, S. Datta, Implementing Bayesian net-
works with embedded stochastic MRAM. AIP Adv. 8(4), 045101
(2018). https:// doi. org/ 10. 1063/1. 50213 32

 15. T. Albash, D.A. Lidar, Adiabatic quantum computation. Rev.
Mod. Phys 90(1), 015002 (2018). https:// doi. org/ 10. 1103/ RevMo
dPhys. 90. 015002

 16. B. Sutton, K.Y. Camsari, B. Behin-Aein, S. Datta, Intrinsic opti-
mization using stochastic nanomagnets. Sci. Rep. (2017). https://
doi. org/ 10. 1038/ srep4 4370

 17. W.A. Borders, A.Z. Pervaiz, S. Fukami, K.Y. Camsari, H. Ohno,
S. Datta, Integer factorization using stochastic magnetic tunnel
junctions. Nature 573(7774), 393 (2019). https:// doi. org/ 10. 1038/
s41586- 019- 1557-9

 18. J. Grollier, D. Querlioz, K.Y. Camsari, K. Everschor-Sitte, S.
Fukami, M.D. Stiles, Neuromorphic spintronics. Nat. Electron
3(7), 360 (2020). https:// doi. org/ 10. 1038/ s41928- 019- 0360-9

 19. Z. Li, S. Zhang, Magnetization dynamics with a spin-transfer
torque. Phys. Rev. B 68(2), 024404 (2003). https:// doi. org/ 10.
1103/ PhysR evB. 68. 024404

 20. R. Ramaswamy, J.M. Lee, K. Cai, H. Yang, Recent advances in
spin-orbit torques: Moving towards device applications. Appl.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2601069
https://doi.org/10.1145/2601069
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/ICAETR.2014.7012785
https://doi.org/10.1016/j.neunet.2004.07.001
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1109/LED.2017.2768321
https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1016/j.neucom.2017.09.065
https://doi.org/10.1063/1.5021332
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1038/srep44370
https://doi.org/10.1038/srep44370
https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1103/PhysRevB.68.024404
https://doi.org/10.1103/PhysRevB.68.024404

Unconventional computing based on magnetic tunnel junction

1 3

Page 43 of 48 236

Phys. Rev 5(3), 031107 (2018). https:// doi. org/ 10. 1063/1. 50417
93

 21. F. Mahfouzi, R. Mishra, P.-H. Chang, H. Yang, N. Kioussis,
Microscopic origin of spin-orbit torque in ferromagnetic het-
erostructures: A first-principles approach. Phys. Rev. B 101(6),
060405 (2020). https:// doi. org/ 10. 1103/ PhysR evB. 101. 060405

 22. G. Vignale, Ten years of spin hall effect. J. Supercond.
Nov. Magn. 23(1), 3 (2009). https:// doi. org/ 10. 1007/
s10948- 009- 0547-9

 23. H.C. Koo et al., Rashba effect in functional spintronic devices.
Adv. Mater. 32(51), 2002117 (2020). https:// doi. org/ 10. 1002/
adma. 20200 2117

 24. B.A. Bernevig, S.-C. Zhang, Quantum spin hall effect. Phys.
Rev. Lett 96(10), 106802 (2006). https:// doi. org/ 10. 1103/ PhysR
evLett. 96. 106802

 25. B. Rana, Y. Otani, Towards magnonic devices based on voltage-
controlled magnetic anisotropy. Commun. Phys. (2019). https://
doi. org/ 10. 1038/ s42005- 019- 0189-6

 26. M. Julliere, Tunneling between ferromagnetic films. Phys. Lett.
A 54(3), 225–226 (1975). https:// doi. org/ 10. 1016/ 0375- 9601(75)
90174-7

 27. S. Zuo, H. Fan, K. Nazarpour, H. Heidari, A CMOS analog front-
end for tunnelling magnetoresistive spintronic sensing systems.
IEEE Int. Symp. Circuits Syst. (ISCAS) (2019). https:// doi. org/
10. 1109/ ISCAS. 2019. 87022 19

 28. K. Rahimi, C. Diorio, C. Hernandez, M.D. Brockhausen, A simu-
lation model for floating-gate MOS synapse transistors. IEEE
Int. Symp.Circuits Syst. (ISCAS) (2002). https:// doi. org/ 10. 1109/
ISCAS. 2002. 10110 42

 29. R.R. Harrison, J.A. Bragg, P. Hasler, B.A. Minch, S.P. Deweerth,
A CMOS programmable analog memory-cell array using float-
ing-gate circuits. IEEE Trans. Circuits Syst. II Analog Digit.
Signal Process 48(1), 4–11 (2001). https:// doi. org/ 10. 1109/ 82.
913181

 30. S. Yu, H.-S. Philip Wong, Modeling the switching dynamics of
programmable-metallization-cell (PMC) memory and its appli-
cation as synapse device for a neuromorphic computation sys-
tem. Int. Electron Devices Meet. (2010). https:// doi. org/ 10. 1109/
IEDM. 2010. 57034 10

 31. A. Aggarwal, B. Hamilton, “Training artificial neural networks
with memristive synapses: HSPICE-matlab co-simulation. Symp.
Neural Netw. Appl. Electr. Eng. (2012). https:// doi. org/ 10. 1109/
NEUREL. 2012. 64199 74

 32. L. Zheng, S. Shin, S.-M.S. Kang, “Memristor-based synapses
and neurons for neuromorphic computing”, in. IEEE Int. Symp.
Circuits Syst. (ISCAS) 2015, 1150–1153 (2015). https:// doi. org/
10. 1109/ ISCAS. 2015. 71688 42

 33. J.M. Skelton, D. Loke, T. Lee, S.R. Elliott, Ab Initio Molecular-
Dynamics Simulation of Neuromorphic Computing in Phase-
Change Memory Materials. ACS Appl. Mater. Interfaces 7(26),
14223–14230 (2015). https:// doi. org/ 10. 1021/ acsami. 5b018 25

 34. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature
521(7553), 536 (2015). https:// doi. org/ 10. 1038/ natur e14539

 35. V.-T. Nguyen, Q.-K. Trinh, R. Zhang, Y. Nakashima, STT-
BSNN: an in-memory deep binary spiking neural network based
on STT-MRAM. IEEE Access 9, 151373–151385 (2021). https://
doi. org/ 10. 1109/ ACCESS. 2021. 31256 85

 36. L.F. Abbott, B. DePasquale, R.-M. Memmesheimer, Building
functional networks of spiking model neurons. Nat. Neurosci.
19(3), 350 (2016). https:// doi. org/ 10. 1038/ nn. 4241

 37. I. Hayashi et al., A 250-MHz 18-Mb Full Ternary CAM With
Low-Voltage Matchline Sensing Scheme in 65-nm CMOS. IEEE
J. Solid-State Circuits 48(11), 2671–2680 (2013). https:// doi. org/
10. 1109/ JSSC. 2013. 22748 88

 38. A. Amirany, M.H. Moaiyeri, K. Jafari, Nonvolatile Associative
Memory Design Based on Spintronic Synapses and CNTFET

Neurons. IEEE Trans. Emerg. Top. Comput. 10(1), 428–437
(2022). https:// doi. org/ 10. 1109/ TETC. 2020. 30261 79

 39. Y. Ma et al., A 600-µW ultra-low-power associative processor for
image pattern recognition employing magnetic tunnel junction-
based nonvolatile memories with autonomic intelligent power-
gating scheme. Jpn. J Appl. Phys. 55(4), 15 (2016). https:// doi.
org/ 10. 7567/ JJAP. 55. 04EF15

 40. E. Kitagawa et al., Impact of ultra low power and fast write opera-
tion of advanced perpendicular MTJ on power reduction for high-
performance mobile CPU. Int. Electron Devices Meet. (2012).
https:// doi. org/ 10. 1109/ IEDM. 2012. 64791 29

 41. P. Lennie, The Cost of Cortical Computation. Curr. Biol. 13(6),
493–497 (2003). https:// doi. org/ 10. 1016/ S0960- 9822(03)
00135-0

 42. K. Lee, J. J. Kan, and S. H. Kang, “Unified embedded non-vol-
atile memory for emerging mobile markets”, in Proceedings of
the 2014 international symposium on Low power electronics and
design, New York, (NY, USA, 2014) pp. 131–136. https:// doi.
org/ 10. 1145/ 26273 69. 26316 41

 43. H. Noguchi et al., “A 250-MHz 256b-I/O 1-Mb STT-MRAM
with advanced perpendicular MTJ based dual cell for nonvolatile
magnetic caches to reduce active power of processors,” in 2013
Symposium on VLSI Technology 2013, pp. C108–C109.

 44. J. Grollier, D. Querlioz, M.D. Stiles, Spintronic Nanodevices for
Bioinspired Computing. Proc. IEEE 104(10), 2024–2039 (2016).
https:// doi. org/ 10. 1109/ JPROC. 2016. 25971 52

 45. Y. Zhang et al., Electrical modeling of stochastic spin transfer
torque writing in magnetic tunnel junctions for memory and
logic applications. IEEE Trans. Magn. 49(7), 4375–4378 (2013).
https:// doi. org/ 10. 1109/ TMAG. 2013. 22422 57

 46. A.F. Vincent et al., Spin-transfer torque magnetic memory as a
stochastic memristive synapse for neuromorphic systems. IEEE
Trans. Biomed. Circuits Syst. 9(2), 166–174 (2015). https://
doi. org/ 10. 1109/ TBCAS. 2015. 24144 23

 47. N. Locatelli et al., Spintronic devices as key elements for
energy-efficient neuroinspired architectures. Des. Autom. Test
Eur. Conf. Exhib. (DATE) (2015). https:// doi. org/ 10. 7873/
DATE. 2015. 1117

 48. D. Zhang et al., “Energy-efficient neuromorphic computation
based on compound spin synapse with stochastic learning”, in
2015. IEEE Int. Symp. Circuits Syst. (ISCAS) (2015). https://
doi. org/ 10. 1109/ ISCAS. 2015. 71689 39

 49. D. Zhang, L. Zeng, Y. Zhang, W. Zhao, J.O. Klein, “Stochas-
tic spintronic device based synapses and spiking neurons for
neuromorphic computation”, in 2016. IEEE/ACM Int. Symp.
Nanoscale Archit. (NANOARCH) (2016). https:// doi. org/ 10.
1145/ 29500 67. 29501 05

 50. K. Garello et al., “SOT-MRAM 300MM integration for low
power and ultrafast embedded memories”, in 2018. IEEE Symp.
VLSI Circuits (2018). https:// doi. org/ 10. 1109/ VLSIC. 2018.
85022 69

 51. G. Srinivasan, A. Sengupta, K. Roy, “Magnetic tunnel junction
enabled all-spin stochastic spiking neural network”, in. Des.
Autom. Test Eur. Conf. Exhib. (DATE) (2017). https:// doi. org/
10. 23919/ DATE. 2017. 79270 45

 52. V. Ostwal, R. Zand, R. DeMara, J. Appenzeller, “A Novel Com-
pound Synapse Using Probabilistic Spin–Orbit-Torque Switching
for MTJ-Based Deep Neural Networks”,. IEEE J. Explor. Solid-
State Comput. Dev. Circuits 5(2), 182–187 (2019). https:// doi.
org/ 10. 1109/ JXCDC. 2019. 29564 68

 53. H. Ghanatian, M. Ronchini, H. Farkhani, F. Moradi, STDP
implementation using multi-state spin−orbit torque synapse.
Semicond. Sci. Technol. 37(2), 024004 (2021). https:// doi. org/
10. 1088/ 1361- 6641/ ac419c

https://doi.org/10.1063/1.5041793
https://doi.org/10.1063/1.5041793
https://doi.org/10.1103/PhysRevB.101.060405
https://doi.org/10.1007/s10948-009-0547-9
https://doi.org/10.1007/s10948-009-0547-9
https://doi.org/10.1002/adma.202002117
https://doi.org/10.1002/adma.202002117
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1038/s42005-019-0189-6
https://doi.org/10.1038/s42005-019-0189-6
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1109/ISCAS.2019.8702219
https://doi.org/10.1109/ISCAS.2019.8702219
https://doi.org/10.1109/ISCAS.2002.1011042
https://doi.org/10.1109/ISCAS.2002.1011042
https://doi.org/10.1109/82.913181
https://doi.org/10.1109/82.913181
https://doi.org/10.1109/IEDM.2010.5703410
https://doi.org/10.1109/IEDM.2010.5703410
https://doi.org/10.1109/NEUREL.2012.6419974
https://doi.org/10.1109/NEUREL.2012.6419974
https://doi.org/10.1109/ISCAS.2015.7168842
https://doi.org/10.1109/ISCAS.2015.7168842
https://doi.org/10.1021/acsami.5b01825
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ACCESS.2021.3125685
https://doi.org/10.1109/ACCESS.2021.3125685
https://doi.org/10.1038/nn.4241
https://doi.org/10.1109/JSSC.2013.2274888
https://doi.org/10.1109/JSSC.2013.2274888
https://doi.org/10.1109/TETC.2020.3026179
https://doi.org/10.7567/JJAP.55.04EF15
https://doi.org/10.7567/JJAP.55.04EF15
https://doi.org/10.1109/IEDM.2012.6479129
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1145/2627369.2631641
https://doi.org/10.1145/2627369.2631641
https://doi.org/10.1109/JPROC.2016.2597152
https://doi.org/10.1109/TMAG.2013.2242257
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.7873/DATE.2015.1117
https://doi.org/10.7873/DATE.2015.1117
https://doi.org/10.1109/ISCAS.2015.7168939
https://doi.org/10.1109/ISCAS.2015.7168939
https://doi.org/10.1145/2950067.2950105
https://doi.org/10.1145/2950067.2950105
https://doi.org/10.1109/VLSIC.2018.8502269
https://doi.org/10.1109/VLSIC.2018.8502269
https://doi.org/10.23919/DATE.2017.7927045
https://doi.org/10.23919/DATE.2017.7927045
https://doi.org/10.1109/JXCDC.2019.2956468
https://doi.org/10.1109/JXCDC.2019.2956468
https://doi.org/10.1088/1361-6641/ac419c
https://doi.org/10.1088/1361-6641/ac419c

 B. Cai et al.

1 3

236 Page 44 of 48

 54. C. Timm, M. Di Ventra, Memristive properties of single-mole-
cule magnets. Phys. Rev. B 86(10), 104427 (2012). https:// doi.
org/ 10. 1103/ PhysR evB. 86. 104427

 55. S. Lequeux et al., A magnetic synapse: multilevel spin-torque
memristor with perpendicular anisotropy. Sci. Rep. (2016).
https:// doi. org/ 10. 1038/ srep3 1510

 56. S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, H. Ohno,
Magnetization switching by spin–orbit torque in an antiferromag-
net–ferromagnet bilayer system. Nat. Mater. 15(5), 535 (2016).
https:// doi. org/ 10. 1038/ nmat4 566

 57. D. Querlioz, O. Bichler, P. Dollfus, C. Gamrat, Immunity to
device variations in a spiking neural network with memristive
nanodevices. IEEE Trans. Nanotechnol. 12(3), 288–295 (2013).
https:// doi. org/ 10. 1109/ TNANO. 2013. 22509 95

 58. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K.
Likharev, D.B. Strukov, Training and operation of an integrated
neuromorphic network based on metal-oxide memristors. Nature
521(7550), 61 (2015). https:// doi. org/ 10. 1038/ natur e14441

 59. M. Wang, Y. Jiang, Compact model of domain wall MTJ driven
by spin orbit torque and Dzyaloshinskii-moriya interaction. IEEE
Trans. Magn. (2021). https:// doi. org/ 10. 1109/ TMAG. 2021. 31381
91

 60. S. Fukami et al., 2009 “Low-current perpendicular domain wall
motion cell for scalable high-speed MRAM,”. Symp. VLSI Tech-
nol. pp. 230–231.

 61. A. Sengupta, A. Ankit, K. Roy, “Performance analysis and
benchmarking of all-spin spiking neural networks (Special ses-
sion paper)”, in. Int. Joint Conf.Neural Netw. (IJCNN) 2017,
4557–4563 (2017). https:// doi. org/ 10. 1109/ IJCNN. 2017. 79664
34

 62. S.A. Siddiqui, S. Dutta, A. Tang, L. Liu, C.A. Ross, M.A.
Baldo, Magnetic domain wall based synaptic and activation
function generator for neuromorphic accelerators. Nano Lett.
20(2), 1033–1040 (2020). https:// doi. org/ 10. 1021/ acs. nanol ett.
9b042 00

 63. J. Lourembam et al., Multi-state magnetic tunnel junction pro-
grammable by nanosecond spin-orbit torque pulse sequence.
Adv. Electron. Mater. 7(4), 2001133 (2021). https:// doi. org/ 10.
1002/ aelm. 20200 1133

 64. J. Hong et al., A dual magnetic tunnel junction-based neuromor-
phic device. Adv. Intell. Syst. 2(12), 2000143 (2020). https:// doi.
org/ 10. 1002/ aisy. 20200 0143

 65. W.S. McCulloch, W. Pitts, A logical calculus of the ideas imma-
nent in nervous activity. Bull. Math. Biophys. 5(4), 115–133
(1943). https:// doi. org/ 10. 1007/ BF024 78259

 66. S. Aunet, B. Oelmann, S. Abdalla, Y. Berg, “Reconfigurable
subthreshold CMOS perceptron”, in 2004. IEEE Int. Joint Conf.
Neural Netw. 3, 1983–1988 (2004). https:// doi. org/ 10. 1109/
IJCNN. 2004. 13809 19

 67. M.A. Bañuelos-Saucedo et al., Implementation of a neuron
model using FPGAS. J. Appl. Res. Technol. (2003). https:// doi.
org/ 10. 22201/ icat. 16656 423. 2003.1. 03. 611

 68. S. Jeyanthi, M. Subadra, “Implementation of single neuron using
various activation functions with FPGA”, in 2014. IEEE Int.
Conf. Adv. Commun. Control Comput. Technol. (2014). https://
doi. org/ 10. 1109/ ICACC CT. 2014. 70192 73

 69. H. Hikawa, A digital hardware pulse-mode neuron with piece-
wise linear activation function. IEEE Trans. Neural Netw. 14(5),
1028–1037 (2003). https:// doi. org/ 10. 1109/ TNN. 2003. 816058

 70. C.-H. Tsai, Y.-T. Chih, W.H. Wong, C.-Y. Lee, “A Hardware-Effi-
cient Sigmoid Function With Adjustable Precision for a Neural
Network System”, IEEE Trans. Circuits Syst. II Express Briefs
62(11), 1073–1077 (2015). https:// doi. org/ 10. 1109/ TCSII. 2015.
24565 31

 71. D. Baptista, F. Morgado-Dias, Low-resource hardware imple-
mentation of the hyperbolic tangent for artificial neural networks.

Neural Comput. Appl. 23(3), 601–607 (2013). https:// doi. org/ 10.
1007/ s00521- 013- 1407-x

 72. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans.
Neural Netw. 14(6), 1569–1572 (2003). https:// doi. org/ 10. 1109/
TNN. 2003. 820440

 73. H. Lim et al., Reliability of neuronal information conveyed by
unreliable neuristor-based leaky integrate-and-fire neurons: a
model study. Sci. Rep (2015). https:// doi. org/ 10. 1038/ srep0 9776

 74. J. Torrejon et al., Neuromorphic computing with nanoscale spin-
tronic oscillators. Nature 547(7664), 428 (2017). https:// doi. org/
10. 1038/ natur e23011

 75. S. Tsunegi et al., Evaluation of memory capacity of spin torque
oscillator for recurrent neural networks. Jpn. J. Appl. Phys
57(12), 120307 (2018). https:// doi. org/ 10. 7567/ JJAP. 57. 120307

 76. E.J. Basham, D.W. Parent, “An analog circuit implementation of
a quadratic integrate and fire neuron”, in 2009. Ann. Int. Conf.
IEEE Eng. Med. Biol. Soc. (2009). https:// doi. org/ 10. 1109/
IEMBS. 2009. 53326 55

 77. S. Millner, A. Grübl, K. Meier, J. Schemmel, and M. Schwartz,
2010 “A VLSI Implementation of the Adaptive Exponential
Integrate-and-Fire Neuron Model,”.Adv.Neural Inform. Pro-
cess. Syst., vol. 23. Accessed: Sep. 01, 2022. [Online]. Avail-
able: https:// proce edings. neuri ps. cc/ paper/ 2010/ hash/ 25b28
22c2f 5a323 0abfa dd476 e8b04 c9- Abstr act. html

 78. S. Hashimoto, H. Torikai, A Novel Hybrid Spiking Neuron:
Bifurcations, Responses, and On-Chip Learning. IEEE Trans.
Circuits Syst. Regul. Pap. 57(8), 2168–2181 (2010). https:// doi.
org/ 10. 1109/ TCSI. 2010. 20415 07

 79. T. Hishiki and H. Torikai, 2009 Bifurcation Analysis of a Reso-
nate and Fire Type Digital Spiking Neuron In: CS. Leung, M.
Lee, Jonathan H. Chan (eds) Neural Information. Springer, USA,
pp. 392–400

 80. T. Matsubara, H. Torikai, T. Hishiki, “A generalized rotate-and-
fire digital spiking neuron model and its on-FPGA Learning”,
IEEE Trans. Circuits Syst. II Express Briefs 58(10), 677–681
(2011). https:// doi. org/ 10. 1109/ TCSII. 2011. 21617 05

 81. T. Matsubara and H. Torikai, “Dynamic Response Behaviors of
a Generalized Asynchronous Digital Spiking Neuron Model,”
in Neural Information Processing, Berlin, Heidelberg, 2011, pp.
395–404. doi: https:// doi. org/ 10. 1007/ 978-3- 642- 24965-5_ 45.

 82. H. Torikai, A. Funew, T. Saito, “Approximation of Spike-trains
by Digital Spiking Neuron”, in. Int. Joint Conf.Neural Netw.
2007, 2677–2682 (2007). https:// doi. org/ 10. 1109/ IJCNN. 2007.
43713 81

 83. C. Cerkez, I. Aybay, U. Halici, A digital neuron realization for
the random neural network model. Proceed. Int. Conf. Neural
Netw. 2, 1000–1004 (1997). https:// doi. org/ 10. 1109/ ICNN. 1997.
616163

 84. K.Y. Camsari, R. Faria, B.M. Sutton, S. Datta, Stochastic p -bits
for invertible logic. Phys. Rev 7(3), 031014 (2017). https:// doi.
org/ 10. 1103/ PhysR evX.7. 031014

 85. A. Lucas, Ising formulations of many NP problems. Front. Phys.
(2014). https:// doi. org/ 10. 3389/ fphy. 2014. 00005

 86. S. Geman, D. Geman, Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Trans. Pattern Anal.
Mach. Intell. 6(6), 721–741 (1984). https:// doi. org/ 10. 1109/
tpami. 1984. 47675 96

 87. B. Sutton, R. Faria, L.A. Ghantasala, R. Jaiswal, K.Y. Camsari,
S. Datta, Autonomous Probabilistic Coprocessing With Petaflips
per Second. IEEE Access 8, 157238–157252 (2020). https:// doi.
org/ 10. 1109/ ACCESS. 2020. 30186 82

 88. A. Fukushima et al., Spin dice: A scalable truly random number
generator based on spintronics. Appl. Phys. Express 7(8), 083001
(2014). https:// doi. org/ 10. 7567/ APEX.7. 083001

 89. D. Vodenicarevic et al., Low-energy truly random number gener-
ation with superparamagnetic tunnel junctions for unconventional

https://doi.org/10.1103/PhysRevB.86.104427
https://doi.org/10.1103/PhysRevB.86.104427
https://doi.org/10.1038/srep31510
https://doi.org/10.1038/nmat4566
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TMAG.2021.3138191
https://doi.org/10.1109/TMAG.2021.3138191
https://doi.org/10.1109/IJCNN.2017.7966434
https://doi.org/10.1109/IJCNN.2017.7966434
https://doi.org/10.1021/acs.nanolett.9b04200
https://doi.org/10.1021/acs.nanolett.9b04200
https://doi.org/10.1002/aelm.202001133
https://doi.org/10.1002/aelm.202001133
https://doi.org/10.1002/aisy.202000143
https://doi.org/10.1002/aisy.202000143
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/IJCNN.2004.1380919
https://doi.org/10.1109/IJCNN.2004.1380919
https://doi.org/10.22201/icat.16656423.2003.1.03.611
https://doi.org/10.22201/icat.16656423.2003.1.03.611
https://doi.org/10.1109/ICACCCT.2014.7019273
https://doi.org/10.1109/ICACCCT.2014.7019273
https://doi.org/10.1109/TNN.2003.816058
https://doi.org/10.1109/TCSII.2015.2456531
https://doi.org/10.1109/TCSII.2015.2456531
https://doi.org/10.1007/s00521-013-1407-x
https://doi.org/10.1007/s00521-013-1407-x
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/srep09776
https://doi.org/10.1038/nature23011
https://doi.org/10.1038/nature23011
https://doi.org/10.7567/JJAP.57.120307
https://doi.org/10.1109/IEMBS.2009.5332655
https://doi.org/10.1109/IEMBS.2009.5332655
https://proceedings.neurips.cc/paper/2010/hash/25b2822c2f5a3230abfadd476e8b04c9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/25b2822c2f5a3230abfadd476e8b04c9-Abstract.html
https://doi.org/10.1109/TCSI.2010.2041507
https://doi.org/10.1109/TCSI.2010.2041507
https://doi.org/10.1109/TCSII.2011.2161705
https://doi.org/10.1007/978-3-642-24965-5_45
https://doi.org/10.1109/IJCNN.2007.4371381
https://doi.org/10.1109/IJCNN.2007.4371381
https://doi.org/10.1109/ICNN.1997.616163
https://doi.org/10.1109/ICNN.1997.616163
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1109/tpami.1984.4767596
https://doi.org/10.1109/tpami.1984.4767596
https://doi.org/10.1109/ACCESS.2020.3018682
https://doi.org/10.1109/ACCESS.2020.3018682
https://doi.org/10.7567/APEX.7.083001

Unconventional computing based on magnetic tunnel junction

1 3

Page 45 of 48 236

computing. Phys. Rev. Appl 8(5), 054045 (2017). https:// doi. org/
10. 1103/ PhysR evApp lied.8. 054045

 90. W.T. Coffey, Y.P. Kalmykov, Thermal fluctuations of magnetic
nanoparticles: Fifty years after Brown. J. Appl. Phys 112(12),
121301 (2012). https:// doi. org/ 10. 1063/1. 47542 72

 91. W.F. Brown, Thermal fluctuations of a single-domain particle.
Phys. Rev. 130(5), 1677–1686 (1963). https:// doi. org/ 10. 1103/
PhysR ev. 130. 1677

 92. J. Kaiser, A. Rustagi, K.Y. Camsari, J.Z. Sun, S. Datta, P. Upad-
hyaya, Subnanosecond fluctuations in low-barrier nanomagnets.
Phys. Rev. Appl 12(5), 054056 (2019). https:// doi. org/ 10. 1103/
PhysR evApp lied. 12. 054056

 93. C. Safranski, J. Kaiser, P. Trouilloud, P. Hashemi, G. Hu, J.Z.
Sun, Demonstration of nanosecond operation in stochastic mag-
netic tunnel junctions. Nano Lett. 21(5), 2040–2045 (2021).
https:// doi. org/ 10. 1021/ acs. nanol ett. 0c046 52

 94. K. Hayakawa et al., Nanosecond Random Telegraph Noise in
In-Plane Magnetic Tunnel Junctions. Phys. Rev. Lett. 126(11),
117202 (2021). https:// doi. org/ 10. 1103/ PhysR evLett. 126. 117202

 95. J. Deng, V.P.K. Miriyala, Z. Zhu, X. Fong, G. Liang, Voltage-
controlled spintronic stochastic neuron for restricted boltzmann
machine with weight sparsity. IEEE Electron Device Lett. 41(7),
1102–1105 (2020). https:// doi. org/ 10. 1109/ LED. 2020. 29958 74

 96. Y.C.C. Wu et al., Voltage-gate-assisted spin-orbit-torque mag-
netic random-access memory for high-density and low-power
embedded applications. Phys. Rev. Appl (2021). https:// doi. org/
10. 1103/ PhysR evApp lied. 15. 064015

 97. B. Zhang, Y. Liu, T. Gao, D. Zhang, W. Zhao, L. Zeng, “Time
division multiplexing ising computer using single tunable true
random number generator based on spin torque nano-oscillator”,
in. IEEE Int. Electron Dev. Meet. (IEDM) (2021). https:// doi. org/
10. 1109/ IEDM1 9574. 2021. 97207 02

 98. M. Suri, Ed., Applications of Emerging Memory Technology:
Beyond Storage. Singapore: Springer Singapore, 2020. doi:
https:// doi. org/ 10. 1007/ 978- 981- 13- 8379-3.

 99. J. Zhou, J. Chen, Prospect of spintronics in neuromorphic com-
puting. Adv. Electron. Mater. 7(9), 2100465 (2021). https:// doi.
org/ 10. 1002/ aelm. 20210 0465

 100. I. Chakraborty, A. Jaiswal, A.K. Saha, S.K. Gupta, K. Roy,
Pathways to efficient neuromorphic computing with non-vola-
tile memory technologies. Appl. Phys. Rev 7(2), 021308 (2020).
https:// doi. org/ 10. 1063/1. 51135 36

 101. J. Zupan, Introduction to artificial neural network (ANN) meth-
ods: what they are and how to use them. Acta Chim. Slov. 41(3),
327 (1994)

 102. F. Rosenblatt, The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychol. Rev. 65(6),
386–408 (1958). https:// doi. org/ 10. 1037/ h0042 519

 103. J. Han, C. Moraga, The influence of the sigmoid function param-
eters on the speed of backpropagation learning, in From Natural
to Artificial Neural Computation. ed. by J. Mira, F. Sandoval
(Heidelberg, Springer, Berlin Heidelberg, 1995), pp.195–201

 104. D. Yarotsky, Error bounds for approximations with deep ReLU
networks. Neural Netw 94, 103–114 (2017). https:// doi. org/ 10.
1016/j. neunet. 2017. 07. 002

 105. E. Fan, Extended tanh-function method and its applications to
nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000).
https:// doi. org/ 10. 1016/ S0375- 9601(00) 00725-8

 106. M. Minsky, S.A. Papert, Perceptrons: an introduction to com-
putational geometry. The MIT Press (2017). https:// doi. org/ 10.
7551/ mitpr ess/ 11301. 001. 0001

 107. H. Bourlard, Y. Kamp, Auto-association by multilayer percep-
trons and singular value decomposition. Biol. Cybern. 59(4–5),
291–294 (1988). https:// doi. org/ 10. 1007/ BF003 32918

 108. E.B. Baum, On the capabilities of multilayer perceptrons. J.
Complex. 4(3), 193–215 (1988). https:// doi. org/ 10. 1016/ 0885-
064X(88) 90020-9

 109. M.W. Gardner, S.R. Dorling, Artificial neural networks (the mul-
tilayer perceptron)—a review of applications in the atmospheric
sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998). https://
doi. org/ 10. 1016/ S1352- 2310(97) 00447-0

 110. J. Cai et al., Voltage-controlled spintronic stochastic neuron
based on a magnetic tunnel junction. Phys. Rev. Appl 11(3),
034015 (2019). https:// doi. org/ 10. 1103/ PhysR evApp lied. 11.
034015

 111. J. Schmidhuber, Deep learning in neural networks: An overview.
Neural Netw. 61, 85–117 (2015). https:// doi. org/ 10. 1016/j. neu-
net. 2014. 09. 003

 112. K. O’Shea and R. Nash, “An Introduction to Convolutional Neu-
ral Networks.” arXiv, Dec. 02, 2015. Accessed: Oct. 28, 2022.
[Online]. Available: http:// arxiv. org/ abs/ 1511. 08458

 113. J. Gu et al., Recent advances in convolutional neural networks.
Pattern Recognit. 77, 354–377 (2018). https:// doi. org/ 10. 1016/j.
patcog. 2017. 10. 013

 114. Y. Pan et al., A multilevel Cell STT-MRAM-based computing
in-memory accelerator for binary convolutional neural network.
IEEE Trans. Magn. 54(11), 1–5 (2018). https:// doi. org/ 10. 1109/
TMAG. 2018. 28486 25

 115. C. Pan, A. Naeemi, A proposal for energy-efficient cellular neural
network based on spintronic devices. IEEE Trans. Nanotechnol.
15(5), 820–827 (2016). https:// doi. org/ 10. 1109/ TNANO. 2016.
25981 47

 116. C. Pan, A. Naeemi, “Non-boolean computing benchmarking for
beyond-CMOS devices based on cellular neural network”, IEEE.
J. Explor. Solid-State Comput. Devices Circuits 2, 36–43 (2016).
https:// doi. org/ 10. 1109/ JXCDC. 2016. 26332 51

 117. S. Hijazi, R. Kumar, and C. Rowen, “Using Convolutional Neural
Networks for Image Recognition,” p. 12.

 118. R. Chauhan, K.K. Ghanshala, R.C. Joshi, Convolutional neural
network (CNN) for image detection and recognition. First Int.
Conf. Secur. Cyber Comput. Commun. (2018). https:// doi. org/
10. 1109/ ICSCCC. 2018. 87033 16

 119. M. Schuster, K.K. Paliwal, Bidirectional recurrent neural net-
works. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997).
https:// doi. org/ 10. 1109/ 78. 650093

 120. M. Lukoševičius, H. Jaeger, Reservoir computing approaches
to recurrent neural network training. Comput. Sci. Rev. 3(3),
127–149 (2009). https:// doi. org/ 10. 1016/j. cosrev. 2009. 03. 005

 121. K. Gregor, I. Danihelka, A. Graves, D.J. Rezende, D. Wierstra,
DRAW: A recurrent neural network for image generation. Proc.
Mach. Learn. Res. 37, 1462–1471 (2015)

 122. Y. Ming et al., “Understanding hidden memories of recurrent
neural networks.” IEEE Conf. Vis. Anal. Sci. Technol. (2017).
https:// doi. org/ 10. 1109/ VAST. 2017. 85857 21

 123. T. K. Dang, R. Wagner, J. Küng, N. Thoai, M. Takizawa, and
E. Neuhold, Eds., Future Data and Security Engineering: Third
International Conference, FDSE 2016, Can Tho City, Viet-
nam, November 23–25, 2016, Proceedings, vol. 10018. Cham:
Springer International Publishing(2016). doi: https:// doi. org/
10. 1007/ 978-3- 319- 48057-2.

 124. L. Appeltant et al., Information processing using a single
dynamical node as complex system. Nat. Commun. 2(1), 468
(2011). https:// doi. org/ 10. 1038/ ncomm s1476

 125. Q. Zheng, X. Zhu, Y. Mi, Z. Yuan, K. Xia, Recurrent neural
networks made of magnetic tunnel junctions. AIP Adv. 10(2),
025116 (2020). https:// doi. org/ 10. 1063/1. 51433 82

 126. T. Furuta et al., Macromagnetic simulation for reservoir com-
puting utilizing spin dynamics in magnetic tunnel junctions.
Phys. Rev. Appl. 10(3), 034063 (2018). https:// doi. org/ 10.
1103/ PhysR evApp lied. 10. 034063

https://doi.org/10.1103/PhysRevApplied.8.054045
https://doi.org/10.1103/PhysRevApplied.8.054045
https://doi.org/10.1063/1.4754272
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRevApplied.12.054056
https://doi.org/10.1103/PhysRevApplied.12.054056
https://doi.org/10.1021/acs.nanolett.0c04652
https://doi.org/10.1103/PhysRevLett.126.117202
https://doi.org/10.1109/LED.2020.2995874
https://doi.org/10.1103/PhysRevApplied.15.064015
https://doi.org/10.1103/PhysRevApplied.15.064015
https://doi.org/10.1109/IEDM19574.2021.9720702
https://doi.org/10.1109/IEDM19574.2021.9720702
https://doi.org/10.1007/978-981-13-8379-3
https://doi.org/10.1002/aelm.202100465
https://doi.org/10.1002/aelm.202100465
https://doi.org/10.1063/1.5113536
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1016/S0375-9601(00)00725-8
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.1007/BF00332918
https://doi.org/10.1016/0885-064X(88)90020-9
https://doi.org/10.1016/0885-064X(88)90020-9
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1103/PhysRevApplied.11.034015
https://doi.org/10.1103/PhysRevApplied.11.034015
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1511.08458
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/TMAG.2018.2848625
https://doi.org/10.1109/TMAG.2018.2848625
https://doi.org/10.1109/TNANO.2016.2598147
https://doi.org/10.1109/TNANO.2016.2598147
https://doi.org/10.1109/JXCDC.2016.2633251
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.1109/78.650093
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1007/978-3-319-48057-2
https://doi.org/10.1007/978-3-319-48057-2
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1063/1.5143382
https://doi.org/10.1103/PhysRevApplied.10.034063
https://doi.org/10.1103/PhysRevApplied.10.034063

 B. Cai et al.

1 3

236 Page 46 of 48

 127. G. Tanaka et al., Recent advances in physical reservoir comput-
ing: A review. Neural Netw. 115, 100–123 (2019). https:// doi.
org/ 10. 1016/j. neunet. 2019. 03. 005

 128. M.D. Stiles, A. Zangwill, Anatomy of spin-transfer torque.
Phys. Rev. B 66(1), 014407 (2002). https:// doi. org/ 10. 1103/
PhysR evB. 66. 014407

 129. J.-G. Zhu, Y. Wang, Microwave assisted magnetic recording
utilizing perpendicular spin torque oscillator with switchable
perpendicular electrodes. IEEE Trans. Magn. 46(3), 751–757
(2010). https:// doi. org/ 10. 1109/ TMAG. 2009. 20365 88

 130. M. Riou et al., Neuromorphic computing through time-multi-
plexing with a spin-torque nano-oscillator. IEEE Int. Electron
Dev. Meet. (IEDM) (2017). https:// doi. org/ 10. 1109/ IEDM.
2017. 82685 05

 131. M. Romera et al., Vowel recognition with four coupled spin-
torque nano-oscillators. Nature 563(7730), 230–234 (2018).
https:// doi. org/ 10. 1038/ s41586- 018- 0632-y

 132. M. Zahedinejad et al., Two-dimensional mutually synchronized
spin Hall nano-oscillator arrays for neuromorphic computing.
Nat. Nanotechnol. 15(1), 47–52 (2020). https:// doi. org/ 10.
1038/ s41565- 019- 0593-9

 133. A. J. Edwards et al., “Passive frustrated nanomagnet reservoir
computing.” arXiv, Sep. 16, 2022. Accessed: Oct. 28, 2022.
[Online]. Available: http:// arxiv. org/ abs/ 2103. 09353

 134. R. Hecht-Nielsen, “Theory of the Backpropagation Neural
Network**Based on ‘nonindent’ by Robert Hecht-Nielsen,
which appeared in Proceedings of the International Joint Con-
ference on Neural Networks 1, 593–611, June 1989. © 1989
IEEE.,” in Neural Networks for Perception, Elsevier, 1992,
pp. 65–93. doi: https:// doi. org/ 10. 1016/ B978-0- 12- 741252- 8.
50010-8.

 135. A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A.
Maida, Deep learning in spiking neural networks. Neural Netw.
111, 47–63 (2019). https:// doi. org/ 10. 1016/j. neunet. 2018. 12. 002

 136. Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L. Shi, Direct training for
spiking neural networks: faster, larger, better. Proc. AAAI Conf.
Artif. Intell. 33, 1311–1318 (2019). https:// doi. org/ 10. 1609/ aaai.
v33i01. 33011 311

 137. M. Bouvier et al., Spiking neural networks hardware implementa-
tions and challenges: a survey. ACM J. Emerg. Technol. Comput.
Syst. 15(2), 1–35 (2019). https:// doi. org/ 10. 1145/ 33041 03

 138. A. Gruning and S. M. Bohte, “Spiking neural networks: princi-
ples and challenges,” Comput. Intell. p. 10, 2014.

 139. Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backprop-
agation for training high-performance spiking neural networks.
Front. Neurosci. 12, 331 (2018). https:// doi. org/ 10. 3389/ fnins.
2018. 00331

 140. E.O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process.
Mag. 36(6), 51–63 (2019). https:// doi. org/ 10. 1109/ MSP. 2019.
29315 95

 141. W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, Y. Tian, Deep
residual learning in spiking neural networks. Adv. Neural Inform.
Process Syst. 34, 1056 (2021)

 142. P.J. Werbos, Backpropagation through time: what it does and how
to do it. Proc. IEEE 78(10), 1550–1560 (1990). https:// doi. org/
10. 1109/5. 58337

 143. N.-D. Ho and I.-J. Chang, “TCL: an ANN-to-SNN Conversion
with Trainable Clipping Layers,” 58th ACM/IEEE Design Auto-
mation Conference (DAC), San Francisco, CA, USA, 2021, pp.
793–798. doi: https:// doi. org/ 10. 1109/ DAC18 074. 2021. 95862 66.

 144. J.H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural
networks using backpropagation. Front. Neurosci. (2016). https://
doi. org/ 10. 3389/ fnins. 2016. 00508

 145. S. M. Bohte and J. N. Kok, “SpikeProp: Backpropagation for
Networks of Spiking Neurons,” p. 6.

 146. J. Lisman, A mechanism for the Hebb and the anti-Hebb pro-
cesses underlying learning and memory. Proc. Natl. Acad. Sci.
86(23), 9574–9578 (1989). https:// doi. org/ 10. 1073/ pnas. 86. 23.
9574

 147. E.M. Izhikevich, Solving the distal reward problem through link-
age of STDP and dopamine signaling. Cereb. Cortex 17(10),
2443–2452 (2007). https:// doi. org/ 10. 1093/ cercor/ bhl152

 148. G. Srinivasan, A. Sengupta, K. Roy, Magnetic tunnel junction
based long-term short-term stochastic synapse for a spiking neu-
ral network with on-chip STDP learning. Sci. Rep. 6(1), 29545
(2016). https:// doi. org/ 10. 1038/ srep2 9545

 149. M.-C. Chen, A. Sengupta, K. Roy, Magnetic skyrmion as a
spintronic deep learning spiking neuron processor. IEEE Trans.
Magn. 54(8), 1–7 (2018). https:// doi. org/ 10. 1109/ TMAG. 2018.
28458 90

 150. H.I. Velarde, J. Nagaria, Z. Yin, A. Jacob, A. Jaiswal, Intrinsic
spike-timing-dependent plasticity in stochastic magnetic tunnel
junctions mediated by heat dynamics. IEEE Magn. Lett. 12, 1–5
(2021). https:// doi. org/ 10. 1109/ LMAG. 2021. 31361 54

 151. A.L. Hodgkin, A.F. Huxley, A quantitative description of mem-
brane current and its application to conduction and excitation
in nerve. J. Physiol. 117(4), 500–544 (1952). https:// doi. org/ 10.
1113/ jphys iol. 1952. sp004 764

 152. A.N. Burkitt, A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006).
https:// doi. org/ 10. 1007/ s00422- 006- 0068-6

 153. H. Huang et al., Quasi-hodgkin–huxley neurons with leaky
integrate-and-fire functions physically realized with memristive
devices. Adv. Mater. 31(3), 1803849 (2019). https:// doi. org/ 10.
1002/ adma. 20180 3849

 154. J.-W. Han, M. Meyyappan, Leaky integrate-and-fire biristor
neuron. IEEE Electron Device Lett. 39(9), 1457–1460 (2018).
https:// doi. org/ 10. 1109/ LED. 2018. 28560 92

 155. B. Datta Sahoo, Ring oscillator based sub-1V leaky integrate-
and-fire neuron circuit. IEEE Int. Symp. Circuits Syst. (ISCAS)
(2017). https:// doi. org/ 10. 1109/ ISCAS. 2017. 80509 80

 156. D. Chatterjee, A. Kottantharayil, A CMOS compatible bulk
FinFET-based ultra low energy leaky integrate and fire neuron
for spiking neural networks. IEEE Electron Device Lett. 40(8),
1301–1304 (2019). https:// doi. org/ 10. 1109/ LED. 2019. 29242 59

 157. A. Jaiswal, A. Agrawal, P. Panda, K. Roy, Neural comput-
ing with magnetoelectric domain-wall-based neurosynaptic
devices. IEEE Trans. Magn. 57(2), 1–9 (2021). https:// doi.
org/ 10. 1109/ TMAG. 2020. 30107 12

 158. G. Tatara, H. Kohno, Theory of current-driven domain wall
motion: spin transfer versus momentum transfer. Phys. Rev.
Lett. 92(8), 086601 (2004). https:// doi. org/ 10. 1103/ PhysR
evLett. 92. 086601

 159. E. Ros, R. Carrillo, E.M. Ortigosa, B. Barbour, R. Agís, Event-
Driven Simulation Scheme for Spiking Neural Networks Using
Lookup Tables to Characterize Neuronal Dynamics. Neural
Comput. 18(12), 2959–2993 (2006). https:// doi. org/ 10. 1162/
neco. 2006. 18. 12. 2959

 160. A. Paz, S. Moran, Non deterministic polynomial optimization
problems and their approximations. Theor. Comput. Sci. 15(3),
251–277 (1981)

 161. S. Patel, P. Canoza, S. Salahuddin, Logically synthesized and
hardware-accelerated restricted Boltzmann machines for com-
binatorial optimization and integer factorization. Nat. Electron.
5(2), 92–101 (2022)

 162. R. Steinfeld and Y. Zheng, “A signcryption scheme based on
integer factorization,” in International Workshop on Informa-
tion Security, 2000, pp. 308–322.

https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1103/PhysRevB.66.014407
https://doi.org/10.1103/PhysRevB.66.014407
https://doi.org/10.1109/TMAG.2009.2036588
https://doi.org/10.1109/IEDM.2017.8268505
https://doi.org/10.1109/IEDM.2017.8268505
https://doi.org/10.1038/s41586-018-0632-y
https://doi.org/10.1038/s41565-019-0593-9
https://doi.org/10.1038/s41565-019-0593-9
http://arxiv.org/abs/2103.09353
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1145/3304103
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/DAC18074.2021.9586266
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1073/pnas.86.23.9574
https://doi.org/10.1073/pnas.86.23.9574
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.1038/srep29545
https://doi.org/10.1109/TMAG.2018.2845890
https://doi.org/10.1109/TMAG.2018.2845890
https://doi.org/10.1109/LMAG.2021.3136154
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1002/adma.201803849
https://doi.org/10.1002/adma.201803849
https://doi.org/10.1109/LED.2018.2856092
https://doi.org/10.1109/ISCAS.2017.8050980
https://doi.org/10.1109/LED.2019.2924259
https://doi.org/10.1109/TMAG.2020.3010712
https://doi.org/10.1109/TMAG.2020.3010712
https://doi.org/10.1103/PhysRevLett.92.086601
https://doi.org/10.1103/PhysRevLett.92.086601
https://doi.org/10.1162/neco.2006.18.12.2959
https://doi.org/10.1162/neco.2006.18.12.2959

Unconventional computing based on magnetic tunnel junction

1 3

Page 47 of 48 236

 163. M.Y. Vardi, Boolean satisfiability: theory and engineering.
Commun. ACM 57(3), 5–5 (2014)

 164. G.E. Hinton, T.J. Sejnowski, D.H. Ackley, Boltzmann
machines: Constraint satisfaction networks that learn (Car-
negie-Mellon University, Department of Computer Science
Pittsburgh, PA, 1984)

 165. N.A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, G.
Finocchio, K.Y. Camsari, “Computing with invertible logic:
Combinatorial optimization with probabilistic bits”, in. IEEE
Int. Electron Devices Meet. (IEDM) 2021, 40–43 (2021)

 166. N. Onizawa, T. Hanyu, CMOS Invertible Logic: Bidirectional
operation based on the probabilistic device model and stochas-
tic computing. IEEE Nanotechnol. Mag. 16(1), 33–46 (2021)

 167. M. Kato, N. Onizawa, T. Hanyu, Design automation of invert-
ible logic circuit from a standard HDL description. IfCoLoG
J. Log. Their Appl. 8(5), 1311–1333 (2021)

 168. N.A. Aadit et al., Massively parallel probabilistic computing
with sparse Ising machines. Nat. Electron 5, 1–9 (2022)

 169. A. Grimaldi et al., Spintronics-compatible approach to solving
maximum-satisfiability problems with probabilistic comput-
ing, invertible logic, and parallel tempering. Phys. Rev. Appl.
17(2), 024052 (2022)

 170. D. Shin, N. Onizawa, W.J. Gross, T. Hanyu, Training hardware
for binarized convolutional neural network based on CMOS
invertible logic. IEEE Access 8, 188004–188014 (2020)

 171. J. Kaiser, W.A. Borders, K.Y. Camsari, S. Fukami, H. Ohno,
S. Datta, Hardware-aware in situ learning based on stochastic
magnetic tunnel junctions. Phys. Rev. Appl. 17(1), 014016
(2022)

 172. N. Onizawa, S.C. Smithson, B.H. Meyer, W.J. Gross, T. Hanyu,
In-hardware training chip based on CMOS invertible logic for
machine learning. IEEE Trans. Circuits Syst. Regul. Pap. 67(5),
1541–1550 (2019)

 173. A.Z. Pervaiz, L.A. Ghantasala, K.Y. Camsari, S. Datta, Hardware
emulation of stochastic p-bits for invertible logic. Sci. Rep. 7(1),
1–13 (2017)

 174. J.D. Biamonte, Nonperturbative k-body to two-body commuting
conversion Hamiltonians and embedding problem instances into
Ising spins. Phys. Rev. A 77(5), 052331 (2008)

 175. J.D. Whitfield, M. Faccin, J.D. Biamonte, Ground-state spin
logic. EPL Europhys. Lett. 99(5), 57004 (2012)

 176. N. Onizawa et al., “A design framework for invertible logic,” in
2019 53rd Asilomar Conference on Signals, Systems, and Com-
puters, 2019, pp. 312–316.

 177. S. Mitchell, M. OSullivan, and I. Dunning, “PuLP: a linear
programming toolkit for python,” Univ. Auckl. Auckl. N. Z 65
(2011).

 178. S.C. Smithson, N. Onizawa, B.H. Meyer, W.J. Gross, T. Hanyu,
Efficient CMOS invertible logic using stochastic computing.
IEEE Trans. Circuits Syst. Regul. Pap. 66(6), 2263–2274 (2019)

 179. R. Faria, K.Y. Camsari, S. Datta, Low-barrier nanomagnets as
p-bits for spin logic. IEEE Magn. Lett. 8, 1–5 (2017)

 180. P. Debashis, R. Faria, K.Y. Camsari, Z. Chen, Design of stochas-
tic nanomagnets for probabilistic spin logic. IEEE Magn. Lett. 9,
1–5 (2018)

 181. N. Onizawa, T. Hanyu, “High convergence rates of CMOS invert-
ible logic circuits based on many-body Hamiltonians”, in. IEEE
Int. Symp. Circuits Syst.(ISCAS) 2021, 1–5 (2021)

 182. A.Z. Pervaiz, B.M. Sutton, L.A. Ghantasala, K.Y. Camsari,
Weighted $ p $-Bits for FPGA implementation of probabilistic
circuits. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1920–
1926 (2018)

 183. E. L. Lawler, Combinatorial optimization: networks and
matroids. Courier Corporation, 2001.

 184. A. Sbihi, R.W. Eglese, Combinatorial optimization and green
logistics. Ann. Oper. Res. 175(1), 159–175 (2010)

 185. T.L. Magnanti, Combinatorial optimization and vehicle fleet
planning: Perspectives and prospects. Networks 11(2), 179–213
(1981)

 186. C.-M. Lin, M. Gen, Multi-criteria human resource allocation for
solving multistage combinatorial optimization problems using
multiobjective hybrid genetic algorithm. Expert Syst. Appl.
34(4), 2480–2490 (2008)

 187. F. Barahona, M. Grötschel, M. Jünger, G. Reinelt, An application
of combinatorial optimization to statistical physics and circuit
layout design. Oper. Res. 36(3), 493–513 (1988)

 188. B.A. Cipra, An introduction to the Ising model. Am. Math. Mon.
94(10), 937–959 (1987)

 189. Y. Shim, A. Jaiswal, K. Roy, Ising computation based combinato-
rial optimization using spin-Hall effect (SHE) induced stochastic
magnetization reversal. J. Appl. Phys. 121(19), 193902 (2017)

 190. M.W. Johnson et al., Quantum annealing with manufactured
spins. Nature 473(7346), 194–198 (2011)

 191. T. Inagaki et al., A coherent Ising machine for 2000-node opti-
mization problems. Science 354(6312), 603–606 (2016)

 192. P.L. McMahon et al., A fully programmable 100-spin coherent
Ising machine with all-to-all connections. Science 354(6312),
614–617 (2016)

 193. T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising
machines for solving combinatorial optimisation problems,” In
International Conference on Unconventional Computation and
Natural Computation, 2019, pp. 232–256.

 194. J. Chou, S. Bramhavar, S. Ghosh, W. Herzog, Analog coupled
oscillator based weighted Ising machine. Sci. Rep. 9(1), 1–10
(2019)

 195. N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hard-
ware solvers of combinatorial optimization problems. Nat. Rev.
Phys. 4(6), 363–379 (2022)

 196. Y. Shim, A. Jaiswal, K. Roy, “Stochastic Switching of SHE-MTJ
as a Natural Annealer for Efficient Combinatorial Optimization”,
in. IEEE Int. Conf. Comput. Des. (ICCD) 2017, 605–608 (2017)

 197. S. Sharmin, Y. Shim, K. Roy, Magnetoelectric oxide based sto-
chastic spin device towards solving combinatorial optimization
problems. Sci. Rep. 7(1), 1–9 (2017)

 198. D.J. Earl, M.W. Deem, Parallel tempering: Theory, applications,
and new perspectives. Phys. Chem. Chem. Phys. 7(23), 3910–
3916 (2005)

 199. J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler,
The Kuramoto model: A simple paradigm for synchronization
phenomena. Rev. Mod. Phys. 77(1), 137 (2005)

 200. D.I. Albertsson, M. Zahedinejad, A. Houshang, R. Khymyn, J.
Åkerman, A. Rusu, Ultrafast Ising Machines using spin torque
nano-oscillators. Appl. Phys. Lett. 118(11), 112404 (2021)

 201. B.C. McGoldrick, J.Z. Sun, L. Liu, Ising machine based on
electrically coupled spin Hall nano-oscillators. Phys. Rev. Appl.
17(1), 014006 (2022)

 202. A. Hajimiri, T.H. Lee, A general theory of phase noise in elec-
trical oscillators. IEEE J. Solid-State Circuits 33(2), 179–194
(1998)

 203. A. Slavin, V. Tiberkevich, Nonlinear auto-oscillator theory of
microwave generation by spin-polarized current. IEEE Trans.
Magn. 45(4), 1875–1918 (2009)

 204. J. Xiao, A. Zangwill, M.D. Stiles, Macrospin models of spin
transfer dynamics. Phys. Rev. B 72(1), 014446 (2005)

 205. A. Houshang et al., Phase-binarized spin hall nano-oscillator
arrays: towards spin hall ising machines. Phys. Rev. Appl. 17(1),
014003 (2022)

 206. J. Pearl, Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan kaufmann, 1988.

 B. Cai et al.

1 3

236 Page 48 of 48

 207. D. Heckerman, C. Meek, and G. Cooper, “A Bayesian approach
to causal discovery,” in Innovations in Machine Learning,
Springer, 2006, pp. 1–28.

 208. M.B. Sesen, A.E. Nicholson, R. Banares-Alcantara, T. Kadir, M.
Brady, Bayesian networks for clinical decision support in lung
cancer care. PLoS ONE 8(12), e82349 (2013)

 209. A. S. Cofino, R. Cano Trueba, C. M. Sordo, and J. M. Gutiérrez
Llorente, “Bayesian networks for probabilistic weather predic-
tion,” 2002.

 210. E. T. Jaynes, Probability theory: The logic of science. Cambridge
university press, 2003.

 211. K. Murphy, “A Brief Introduction to Graphical Models and
Bayesian Networks2,” Httpwww Cs Ubc Ca∼ MurphykBayes-
bnintro Html, 1998.

 212. V. K. Mansinghka, E. M. Jonas, and J. B. Tenenbaum, “Stochas-
tic digital circuits for probabilistic inference,” Massachussets
Inst. Technol. Tech. Rep. MITCSAIL-TR, vol. 2069, 2008.

 213. C.S. Thakur, S. Afshar, R.M. Wang, T.J. Hamilton, J. Tapson, A.
Van Schaik, Bayesian estimation and inference using stochastic
electronics. Front. Neurosci. 10, 104 (2016)

 214. J. Choi and R. A. Rutenbar, “Video-rate stereo matching using
Markov random field TRW-S inference on a hybrid CPU+ FPGA
computing platform,” in Proceedings of the ACM/SIGDA inter-
national symposium on Field programmable gate arrays, 2013,
pp. 63–72.

 215. Y. Akhmetov, A.P. James, “Probabilistic neural network with
memristive crossbar circuits”, in. IEEE Int. Symp. Circuits Syst.
(ISCAS) 2019, 1–5 (2019)

 216. K. Wang et al., Threshold switching memristor-based stochastic
neurons for probabilistic computing. Mater. Horiz. 8(2), 619–629
(2021)

 217. P. Mroszczyk, P. Dudek, “The accuracy and scalability of con-
tinuous-time Bayesian inference in analogue CMOS circuits”, in.
IEEE Int. Symp. Circuits Syst. (ISCAS) 2014, 1576–1579 (2014)

 218. L. Bagheriye, J.K. Kwisthout, Brain-inspired hardware solu-
tions for inference in bayesian networks. Front. Neurosci (2021).
https:// doi. org/ 10. 3389/ fnins. 2021. 728086

 219. P. Jeavons, D.A. Cohen, J. Shawe-Taylor, Generating binary
sequences for stochastic computing. IEEE Trans. Inf. Theory
40(3), 716–720 (1994)

 220. L. A. de Barros Naviner, H. Cai, Y. Wang, W. Zhao, and A. B.
Dhia, “Stochastic computation with spin torque transfer magnetic
tunnel junction,” in 2015 IEEE 13th International New Circuits
and Systems Conference (NEWCAS), 2015, pp. 1–4.

 221. Y. Wang, H. Cai, L.A. Naviner, J.-O. Klein, J. Yang, W. Zhao,
“A novel circuit design of true random number generator using

magnetic tunnel junction”, in. IEEE/ACM Int. Symp. Nanoscale
Archit. (NANOARCH) 2016, 123–128 (2016)

 222. S. Wang et al., “Hybrid VC-MTJ/CMOS non-volatile stochastic
logic for efficient computing”,. Des. Automation Test Eur. Conf.
Exhib. (DATE) 2017, 1438–1443 (2017)

 223. X. Jia, J. Yang, Z. Wang, Y. Chen, H. H. Li, and W. Zhao, “Spin-
tronics based stochastic computing for efficient Bayesian infer-
ence system,” in 2018 23rd Asia and South Pacific Design Auto-
mation Conference (ASP-DAC), 2018, pp. 580–585.

 224. X. Jia, J. Yang, P. Dai, R. Liu, Y. Chen, W. Zhao, “SPINBIS:
Spintronics-based Bayesian inference system with stochastic
computing”, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst 39(4), 789–802 (2019)

 225. B. Behin-Aein, V. Diep, S. Datta, A building block for hardware
belief networks. Sci. Rep. 6(1), 1–10 (2016)

 226. P. Debashis, V. Ostwal, R. Faria, S. Datta, J. Appenzeller, Z.
Chen, Hardware implementation of Bayesian network building
blocks with stochastic spintronic devices. Sci. Rep. 10(1), 1–11
(2020)

 227. Y. Shim, S. Chen, A. Sengupta, K. Roy, Stochastic spin-orbit
torque devices as elements for bayesian inference. Sci. Rep. 7(1),
1–9 (2017)

 228. R. Zand, K.Y. Camsari, S. Datta, R.F. Demara, Composable
Probabilistic Inference Networks Using MRAM-based Stochas-
tic Neurons. ACM J. Emerg. Technol. Comput. Syst. 15(2), 1–22
(2019). https:// doi. org/ 10. 1145/ 33041 05

 229. R. Zand, K. Y. Camsari, S. D. Pyle, I. Ahmed, C. H. Kim, and R.
F. DeMara, “Low-Energy Deep Belief Networks Using Intrinsic
Sigmoidal Spintronic-based Probabilistic Neurons,” in Proceed-
ings of the 2018 on Great Lakes Symposium on VLSI, Chicago
IL USA, 2018. doi: https:// doi. org/ 10. 1145/ 31945 54. 31945 58.

 230. R. Faria, J. Kaiser, K.Y. Camsari, S. Datta, Hardware design for
autonomous bayesian networks. Front. Comput. Neurosci. 15,
584797 (2021)

 231. C.M. Liyanagedera, A. Sengupta, A. Jaiswal, K. Roy, Stochastic
spiking neural networks enabled by magnetic tunnel junctions:
from nontelegraphic to telegraphic switching regimes. Phys. Rev.
Appl. 8(6), 064017 (2017). https:// doi. org/ 10. 1103/ PhysR evApp
lied.8. 064017

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3389/fnins.2021.728086
https://doi.org/10.1145/3304105
https://doi.org/10.1145/3194554.3194558
https://doi.org/10.1103/PhysRevApplied.8.064017
https://doi.org/10.1103/PhysRevApplied.8.064017

	Unconventional computing based on magnetic tunnel junction
	Abstract
	1 Introduction
	2 MTJ-based devices for unconventional computing: from mechanism to applications
	2.1 Mechanism
	2.2 Applications
	2.2.1 Neuromorphic computing
	2.2.1.1 Artificial synapses based on MTJ
	2.2.1.2 Artificial neurons based on MTJ

	2.2.2 Stochastic computing
	2.2.2.1 P-bit based on MTJ

	3 Neuromorphic computing
	3.1 Artificial neural networks
	3.1.1 The perceptron based on MTJ
	3.1.2 Multi-layered perceptron and convolutional neural network
	3.1.3 Recurrent neural network

	3.2 Spiking neural network
	3.2.1 Biological synapses based on MTJs
	3.2.2 Biological neurons based on MTJs
	3.2.3 Implementations of spiking neural network

	3.3 Challenges for neuromorphic computing

	4 Stochastic computing
	4.1 Boltzmann machines for invertible logic
	4.1.1 Boltzmann machine-based invertible logic
	4.1.2 From small-scale invertible building blocks to large-scale invertible logic
	4.1.3 Stochastic MTJs for implementation of BM-based Invertible logic

	4.2 Ising machines for combinatorial optimization
	4.2.1 Ising model
	4.2.2 Ising machine
	4.2.3 Stochastic MTJs for Ising model-based combinatorial optimization
	4.2.3.1 Simulated annealing-based
	4.2.3.2 Parallel annealing-based

	4.2.4 Spin torque nano-oscillators for Ising model-based combinatorial optimization
	4.2.4.1 Phase binarization by injection locking
	4.2.4.2 Spin torque nano-oscillators-based Ising machines

	4.3 Bayesian networks for bayesian inference
	4.3.1 A classical four-variable Bayesian network
	4.3.2 Stochastic MTJs for RNGs in Bayesian networks
	4.3.3 Stochastic MTJs for direct implementation of Bayesian networks

	4.4 Challenges and future directions for stochastic computing

	5 Conclusion
	Acknowledgements
	References

