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Unconventional quantum Hall effect and
Berry’s phase of 2π in bilayer graphene
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There are two known distinct types of the integer quantum
Hall effect. One is the conventional quantum Hall
effect, characteristic of two-dimensional semiconductor

systems1,2, and the other is its relativistic counterpart observed
in graphene, where charge carriers mimic Dirac fermions
characterized by Berry’s phase π , which results in shifted
positions of the Hall plateaus3–9. Here we report a third type
of the integer quantum Hall effect. Charge carriers in bilayer
graphene have a parabolic energy spectrum but are chiral
and show Berry’s phase 2π affecting their quantum dynamics.
The Landau quantization of these fermions results in plateaus
in Hall conductivity at standard integer positions, but the
last (zero-level) plateau is missing. The zero-level anomaly
is accompanied by metallic conductivity in the limit of low
concentrations and high magnetic fields, in stark contrast to
the conventional, insulating behaviour in this regime. The
revealed chiral fermions have no known analogues and present
an intriguing case for quantum-mechanical studies.

Figure 1 provides a schematic overview of the quantum Hall
effect (QHE) behaviour observed in bilayer graphene by comparing
it with the conventional integer QHE. In the standard theory, each
filled single-degenerate Landau level contributes one conductance
quantum e2/h towards the observable Hall conductivity (here e is
the electron charge and h is Planck’s constant). The conventional
QHE is shown in Fig. 1a, where plateaus in Hall conductivity
σxy make up an uninterrupted ladder of equidistant steps. In
bilayer graphene, QHE plateaus follow the same ladder but the
plateau at zero σxy is markedly absent (Fig. 1b). Instead, the Hall
conductivity undergoes a double-sized step across this region.
In addition, longitudinal conductivity σxx in bilayer graphene
remains of the order of e2/h, even at zero σxy . The origin of
the unconventional QHE behaviour lies in the coupling between
two graphene layers, which transforms massless Dirac fermions,
characteristic of single-layer graphene3–9 (Fig. 1c), into a new
type of chiral quasiparticle. Such quasiparticles have an ordinary
parabolic spectrum ε(p) = p2/2m with effective mass m, but

accumulate Berry’s phase of 2π along cyclotron trajectories (here ε
is the energy of quasiparticles and p their momentum). The latter is
shown to be related to a peculiar quantization where the two lowest
Landau levels lie exactly at zero energy ε, leading to the missing
plateau and double step shown in Fig. 1b.

Bilayer films studied in this work were made by the
micromechanical cleavage of crystals of natural graphite, which was
followed by the selection of bilayer flakes by using a combination
of optical microscopy and atomic force microscopy as described
in refs 10,11. Multiterminal field-effect devices (see the inset in
Fig. 2a) were made from the selected flakes by using standard
microfabrication techniques. As a substrate, we used an oxidized
heavily doped Si wafer, which allowed us to apply gate voltage Vg

between graphene and the substrate. The studied devices showed
an ambipolar electric field effect such that electrons and holes could
be induced in concentrations n up to 1013 cm−2 (n = αVg, where
α≈7.3×1010 cm−2 V−1 for a 300 nm SiO2 layer). For further details
about microfabrication of graphitic field-effect devices and their
measurements, we refer to earlier work3,4,10,11.

Figure 2a shows a typical QHE behaviour in bilayer graphene
at a fixed Vg (fixed n) and varying magnetic field B up to 30 T.
Pronounced plateaus are clearly seen in Hall resistivity ρxy in
high B, and they are accompanied by zero longitudinal resistivity
ρxx . The observed sequence of the QHE plateaus is described
by ρxy = h/4N e2, which is the same sequence as expected for
a two-dimensional (2D) free-fermion system with double spin
and double valley degeneracy1,2,12–15. However, a clear difference
between the conventional and reported QHE emerges in the regime
of small filling factors ν < 1 (see Figs 2b,c and 3). This regime
is convenient to study by fixing B and varying concentrations of
electrons and holes passing through the neutrality point |n| ≈ 0,
where ρxy changes its sign and, nominally, ν = 0. Also, because
carrier mobilities μ in graphitic films are weakly dependent on
n, measurements in constant B are more informative3,4,10. They
correspond to a nearly constant parameter μB, which defines
the quality of Landau quantization, and this allows simultaneous
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Figure 1 Three types of the integer quantum Hall effect. a,b, Schematic
illustration of the conventional integer QHE found in 2D semiconductor systems (a),
incorporated from refs 1,2, and the QHE in bilayer graphene described in the present
paper (b). Plateaus in Hall conductivity σxy occur at values (ge2/h)N, where N is an
integer, e2/h the conductance quantum and g the system degeneracy. The distance
between steps along the concentration axis is defined by the density of states
gB/φ0 on each Landau level, which is independent of a 2D spectrum1–9. Here, B is
the magnetic field and φ0 = h/e the flux quantum. The corresponding sequences of
Landau levels as a function of carrier concentrations n are shown in blue and orange
for electrons and holes, respectively. For completeness, c also shows the QHE
behaviour for massless Dirac fermions in single-layer graphene.

observation of several QHE plateaus during a single voltage sweep
in moderate magnetic fields (Fig. 2b). The periodicity 	n of
quantum oscillations in ρxx as a function of n is defined by the
density of states gB/φ0 (where g is the degeneracy and φ0 is the
flux quantum) on each Landau level1–10 (see Fig. 1). In Fig. 2c, for
example, 	n ≈ 1.2×1012 cm−2 at B = 12 T, which yields g = 4 and
confirms the double-spin and double-valley degeneracy expected
from band-structure calculations for bilayer graphene14,15.
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Figure 2 Quantum Hall effect in bilayer graphene. a, Hall resistivities ρxy and ρxx

measured as a function of B for fixed concentrations of electrons
n ≈ 2.5×1012 cm−2 induced by the electric field effect. Inset: Scanning electron
micrograph of one of more than ten bilayer devices studied in our work. The width of
the Hall bar (dark central area) is approximately 1 μm. The known geometry of our
devices allowed us to convert the measured resistance into ρxx with an accuracy of
better than 10%. b,c, σxy and ρxx are plotted as functions of n at a fixed B and
temperature T = 4 K. Positive and negative n correspond to field-induced electrons
and holes, respectively. The Hall conductivity σxy = ρxy/(ρ2

xy +ρ2
xx ) was calculated

directly from experimental curves for ρxy and ρxx . σxy allows the underlying
sequences of QHE plateaus to be seen more clearly. σxy crosses zero without any
sign of the zero-level plateau that would be expected for a conventional 2D system.
The inset shows the calculated energy spectrum for bilayer graphene, which is
parabolic at low ε. Carrier mobilities μ in our bilayer devices were typically around
3,000 cm2 V−1 s−1, which is lower than for devices made from single-layer
graphene3,4. This is surprising because one generally expects more damage and
exposure in the case of single-layer graphene that is unprotected from the
immediate environment from both sides.

Figure 2b shows that, although the Hall plateaus in bilayer
graphene follow the integer sequence σxy =±(4e2/h)N for N ≥ 1,
there is no sign of the zero-N plateau at σxy = 0, which is
expected for 2D free-fermion systems1,2 (Fig. 1a). In this respect, the
behaviour resembles the QHE for massless Dirac fermions (Fig. 1c),
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Figure 3 Resistivity of bilayer graphene near zero concentrations as a function
of magnetic field and temperature. a–d, The peak in ρxx remains of the order of
h/4e2, independent of B (a,b) and T (c,d). This yields no gap in the Landau
spectrum at zero energy. b, For a fixed n ≈ 0 and varying B, we observed only small
magnetoresistance. The latter varied for different devices and contact configurations
(probably indicating the edge-state transport) and could be non-monotonic and of
random sign. However, the observed magnetoresistance (for bilayer devices without
chemical doping10) never exceeded a factor of two in any of our experiments in
fields up to 20 T.

where there is also no plateau but a step occurs when σxy passes
the neutrality point. However, in bilayer graphene, this step has a
double height and is accompanied by a central peak in ρxx , which is
twice as broad as all other peaks (Fig. 2c). The broader peak yields
that, in bilayer graphene, the transition between the lowest hole and
electron Hall plateaus requires twice the number of carriers needed
for the transition between the other QHE plateaus. This implies
that the lowest Landau level has double degeneracy 2 × 4B/φ0,
which can be viewed as two Landau levels merged together at n ≈ 0
(see the Landau level charts in Fig. 1).

Continuous measurements through ν = 0 as shown in Fig. 2b,c
have been impossible for conventional 2D systems where the
zero-level plateau in σxy = ρxy/(ρ2

xy + ρ2
xx) is inferred1,2 from a

rapid (often exponential) increase in ρxx � h/e2 with increasing B
and decreasing temperature T for filling factors ν < 1, indicating
an insulating state. To provide a direct comparison with the
conventional QHE measurements, Fig. 3 shows ρxx in bilayer
graphene as a function of B and T around zero ν. Bilayer graphene
shows little magnetoresistance or temperature dependence at the
neutrality point, in striking contrast to the conventional QHE
behaviour. This implies that σxy in bilayer graphene does not vanish
over any interval of ν and reaches zero only at one point, where
ρxy changes its sign. Note that ρxx surprisingly maintains a peak
value of approximately h/ge2 in fields up to 20 T and temperatures
down to 1 K. A finite value of ρxx ≈ h/4e2 in the limit of low
carrier concentrations and at zero B was reported for single-layer
graphene3. This observation was in qualitative agreement with

theory, which attributes the finite metallic conductivity and
the absence of localization to the relativistic-like spectrum of
single-layer graphene3. Bilayer graphene has the usual parabolic
spectrum, and the observation of the maximum resistivity of
approximately h/4e2 and, moreover, its weak dependence on
B in this system is most unexpected. Note, however, that the
quantization is less accurate than in single-layer graphene, as the
peak value varied from 6 to 9 k
 for different bilayer devices.

The unconventional QHE in bilayer graphene originates from
peculiar properties of its charge carriers that are chiral fermions
with a finite mass, as discussed below. First, we have calculated
the quasiparticle spectrum in bilayer graphene by using the
standard nearest-neighbour approximation12. For quasiparticles
near the corners of the Brillouin zone known as K-points, we find
ε(p) = ±(1/2)γ1 ±√

(1/4)γ2
1 + v2

Fp2, where vF = (
√

3/2)γ0a/h̄,
a is the lattice periodicity, h̄ = h/2π and γ0 and γ1 are the
intra layer and inter layer coupling constants, respectively13. This
dispersion relation (plotted in Fig. 2c) is in agreement with the
first-principle band-structure calculations14 and, at low energies,
becomes parabolic ε = ±p2/2m with m = γ1/2v2

F (the sign ±
refers to electron and hole states). Further analysis15 shows that
quasiparticles in bilayer graphene can be described by using the
effective hamiltonian

Ĥ2 = − 1

2m

(
0 (π̂

+
)2

π̂
2

0

)
where π̂ = p̂x + ip̂y .

Ĥ2 acts in the space of two-component Bloch functions (further
referred to as pseudospins) describing the amplitude of electron
waves on weakly coupled nearest sites A1 and B2 belonging to two
nonequivalent carbon sublattices A and B and two graphene layers
marked as 1 and 2.

For a given direction of quasiparticle momentum p =
(pcosϕ,psinϕ), a hamiltonian Ĥ J of a general form

(
0 (π̂

+
)J

π̂
J

0

)

can be rewritten as

Ĥ J = ε(p)σ ·n(ϕ), (1)

where n = −(cos Jϕ, sin Jϕ) and vector σ is made from Pauli
matrices15. For bilayer graphene, J = 2, but the notation J is
useful because it also allows equation (1) to be linked with
the case of single-layer graphene, where J = 1. The eigenstates
of Ĥ J correspond to pseudospins polarized parallel (electrons)
or antiparallel (holes) to the ‘quantization’ axis n. An adiabatic
evolution of such pseudospin states, which accompanies the
rotation of momentum p by angle ϕ, also corresponds to the
rotation of axis n by angle Jϕ. As a result, if a quasiparticle encircles
a closed contour in the momentum space (that is ϕ = 2π), a phase
shift Φ = Jπ known as Berry’s phase is gained by the quasiparticle’s
wavefunction16. Berry’s phase can be viewed as arising owing to
rotation of pseudospin, when a quasiparticle repetitively moves
between different carbon sublattices (A and B for single-layer
graphene, and A1 and B2 for bilayer graphene).

For fermions completing cyclotron orbits, Berry’s phase
contributes to the semiclassical quantization and affects the phase
of Shubnikov–de Haas oscillations (SdHOs). For single-layer
graphene, this results in a π-shift in SdHOs and a related
1/2-shift in the sequence of QHE plateaus3–9, as compared with
the conventional 2D systems where Berry’s phase is zero. For
bilayer graphene, Φ = 2π and there can be no changes in the
quasiclassical limit (N � 1). One might also expect that phase 2π
cannot influence the QHE sequencing. However, the exact analysis
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(see the Supplementary Information) of the Landau-level spectra
for hamiltonian Ĥ J showing Berry’s phase Jπ shows that there is
an associated J-fold degeneracy of the zero-energy Landau level
(that is Berry’s phase of 2π leads to observable consequences in
the quantum limit N = 0). For the free-fermion QHE systems
(no Berry’s phase), the energy is given by εN = h̄ωc(N + 1/2)
and the lowest state lies at finite energy h̄ωc/2, where cyclotron
frequency ωc = eB/m. For single-layer graphene (J = 1, Φ = π),
εN = ±vF

√
2eh̄BN and there is a single state ε0 at zero energy5–9.

For bilayer graphene (J = 2, Φ = 2π), εN = ±h̄ωc

√
N (N −1) and

the two lowest states ε0 = ε1 lie at zero energy15.
The existence of a double-degenerate Landau level explains the

unconventional QHE found in bilayer graphene. This Landau level
lies at the border between electron and hole gases and, taking into
account the quadruple spin and valley degeneracy, it accommodates
carrier density 8B/φ0. With reference to Fig. 1, the existence of such
a Landau level implies that there must be a QHE step across the
neutrality point, similarly to the case of single-layer graphene3–9.
Owing to the double degeneracy, it takes twice the number of
carriers to fill it (as compared with all other Landau levels), so that
the transition between the corresponding QHE plateaus must be
twice as wide (that is 8B/φ0 as compared with 4B/φ0). Also, the
step between the plateaus must be twice as high, that is 8e2/h as
compared with 4e2/h for the other steps at higher carrier densities.
This is exactly the behaviour observed experimentally.

In conclusion, bilayer graphene adds a new member to the
small family of QHE systems, and its QHE behaviour reveals the
existence of massive chiral fermions with Berry’s phase 2π, which
are distinct from other known quasiparticles. The observation
of a finite metallic conductivity of approximately e2/h for such
fermions poses a serious challenge for theory.
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