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Interactions among electrons can give rise to striking collective phenomena when 

the kinetic energy of charge carriers is suppressed.  One example is the fractional quantum 

Hall effect
1-4

, in which correlations between electrons moving in two dimensions under the 

influence of a strong magnetic field generate excitations with fractional charge.  Graphene 

provides a platform to study unique many-body effects due to its massless chiral charge 

carriers and the fourfold degeneracy that arises from their spin and valley degrees of 

freedom
5
. Here we report local electronic compressibility measurements of a suspended 

graphene flake performed using a scanning single-electron transistor.   Between Landau 

level filling � = 0 and 1, we observe incompressible fractional quantum Hall states that 

follow the standard composite fermion sequence � = p/(2p ± 1) for all integer p ���������

contrast, incompressible behavior occurs only at � = 4/3, 8/5, 10/7 and 14/9 between � = 1 

and 2.  These fractions correspond to a subset of the standard composite fermion sequence 

involving only even numerators, suggesting a robust underlying symmetry.  We extract the 

energy gaps associated with each fractional quantum Hall state as a function of magnetic 

field.  The states at � = 1/3, 2/3, 4/3 and 8/5 are the strongest at low field, and persist below 

1.5 T.  The unusual sequence of incompressible states provides insight into the interplay 

between electronic correlations and SU(4) symmetry in graphene.

Application of a strong perpendicular magnetic field B to a two-dimensional electron gas 

effectively quenches the kinetic energy of electrons and gives rise to flat energy bands called 

Landau levels (LLs) which contain a total of eB/h states, where e is the electron charge and h is 

Planck’s constant.  In graphene, each of these states has an additional fourfold degeneracy due to 

the spin and sublattice degrees of freedom, and the LLs possess an approximate SU(4) 

symmetry
6
. Incompressible quantum Hall states are formed when the Fermi energy lies between 
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LLs. This occurs in graphene at filling factors � = neB/h = 4(N + 1/2) in the absence of 

interelectron interactions
7-9

, where n is the charge carrier density and N is the orbital index.

Hence, the quantum Hall sequence is shifted by a half-integer, a distinctive signature that reflects 

the sublattice pseudospin of graphene.

When disorder is low and at high magnetic field, Coulomb forces between electrons 

become important and many-body effects emerge.  Recently, the fractional quantum Hall effect 

(FQHE) of Dirac fermions has attracted considerable attention
10-23

.  In graphene, the low 

dielectric constant and unique band structure lead to fractional quantum Hall states with energy 

gaps that are larger than in GaAs at the same field, particularly in the N = 1 LL
11, 17, 18

.

Moreover, the SU(4) symmetry of charge carriers in graphene could yield fractional quantum 

Hall states without analogues in GaAs
12-14

.   The FQHE was recently observed
24-26

in suspended 

graphene samples at � = 1/3 and 2/3, with an activation gap at � = 1/3 of approximately 2 meV at 

B = 14 T.  Measurements of graphene on hexagonal boron nitride substrates
27

revealed further 

fractional quantum Hall states at all multiples of � = 1/3 up to 13/3, except at � = 5/3, but no 

conductance plateaus were observed at filling factors with higher denominators.  It was 

suggested that the absence of a fractional quantum Hall state at � = 5/3 might result from low-

lying excitations associated with SU(2) or SU(4) symmetry, but alternate scenarios associated 

with disorder could not be ruled out
27

.

Here we report local electronic compressibility measurements of graphene performed 

using a scanning single-electron transistor (SET)
28, 29

.  We observe a unique pattern of 

incompressible fractional quantum Hall states at filling factors with odd denominators as large as 

nine.  Figure 1a shows a schematic of the measurement setup.  By modulating the carrier density 
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and monitoring the resulting change in SET current, we measure both the local chemical 

potential µ and the local inverse electronic compressibility dµ/dn of the graphene flake.

The inverse electronic compressibility as a function of carrier density and magnetic field 

is shown in Fig. 1b.  At zero magnetic field, we observe an incompressible peak that arises from 

the vanishing density of states at the charge neutrality point in graphene.  For B > 0, strong 

incompressible behavior occurs at � = 4(N + 1/2), confirming the monolayer nature of our 

sample.  In addition to the expected single-particle quantum Hall features, we observe 

incompressible states at intermediate integer filling factors � = 0, 1, 3, 4, 5, 7, 8 and 9.   These 

integer broken-symmetry states arise from interactions among electrons
26, 27, 30, 31

and are visible 

at fields well below 1 T, indicating the high quality of our sample.  Most intriguing, however, is 

the appearance of incompressible peaks at fractional filling factors, the strongest of which 

emerge around B = 1 T.  Below, we focus only on the novel fractional quantum Hall findings.  A 

more detailed study of the integer broken-symmetry states will be presented elsewhere.  We note 

that it is straightforward to distinguish fractional quantum Hall states from oscillations in 

compressibility caused by localized states.  Localized states occur at a constant density offset 

from their parent quantum Hall state and are therefore parallel to lines of constant filling factor in 

the n-B plane
7
.  When plotted against filling factor (Fig. 1c), localized states therefore curve as 

the magnetic field is changed, whereas any incompressible behavior caused by an integer or 

fractional quantum Hall state appears as a vertical feature.

Figures 2a and 2b show finer measurements of the inverse compressibility as a function 

of filling factor and magnetic field.  We first discuss the behavior for � < 1: incompressible peaks 

occur at � = 1/3, 2/3, 2/5, 3/5, 3/7, 4/7 and 4/9.  This sequence reproduces the standard composite 

fermion sequence observed in GaAs.  We resolve the strongest incompressible states, � = 1/3 and 
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2/3, down to B ���������	
��
�� = 2/3 weakens considerably below 4 T.  As filling factor 

denominator increases, the field at which the corresponding state emerges also increases, with �

= 4/9 only apparent above B ������

Between � = 1 and 2, we observe a different pattern of incompressible behavior.  

Surprisingly, no fractional quantum Hall states with odd numerators occur in this regime.  

Instead, the system condenses into incompressible states only at � = 4/3, 8/5, 10/7 and 14/9. The 

incompressible peaks at � = 4/3 and 8/5 are most robust, persisting down to 1 and 1.5 T, 

respectively.  States at 10/7 and 14/9 are similar in magnitude, and disappear below 4 T.  In 

graphene, � = 2 corresponds to a filled LL; defining filling fraction �
*

= 2 – � reveals a clear 

pattern of incompressible peaks at �
*

= 2p/(4p ± 1) for p �������
�����������������������	��	
�	�

displayed by composite fermions, except that only filling fractions with even numerators lead to 

incompressible states.  The magnitudes of the incompressible peaks do not decrease smoothly as 

a function of magnetic field.  This is particularly evident for fractions with high denominators 

and at low magnetic field.  The phenomenon is sometimes so strong that an incompressible peak 

vanishes, only to reappear again at lower field.  Modulations in the inverse compressibility may 

be caused by crossing localized states associated with other quantum Hall states.  Alternatively, 

the disappearance and re-emergence of particular fractions, such as � = 2/3 around 3.5 T, may 

indicate a phase transition where the spin and/or valley polarization of the fractional quantum 

Hall state changes, as observed in GaAs
32

.

Averaging over magnetic field helps to reduce fluctuations from localized states because 

they do not occur at constant filling factor as magnetic field is varied.  Figure 2c shows the 

inverse compressibility between � = 0 and 1, averaged over 9-11.9 T (blue), and between � = 1 

and 2, averaged over 4.9-6.4 T (red).   These curves reveal clear incompressible peaks centered 
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at the filling fractions discussed above.  It is worthwhile to note that a slight incompressible peak 

occurs at � = 1.65 in Fig. 2c.  While this may indicate the emergence of a fractional quantum 

Hall state at � = 5/3, it is much weaker than all other multiples of � = 1/3 and is therefore 

consistent with the conclusion that all odd-numerator fractional quantum Hall states are 

suppressed.  The absence of odd-numerator states suggests the presence of a robust symmetry 

between � = 1 and 2.  The sequence of incompressible states we observe between � = 1 and 2 is 

consistent with SU(2) symmetry, but it is evident that this symmetry does not persist between � =

0 and 1 because compressibility is not symmetric about � = 1.  The data in Fig. 2 also reveal 

negative contributions to the inverse compressibility immediately surrounding each fractional 

quantum Hall state, which can be ascribed to interactions among the quasiparticles and 

quasiholes involved in the FQHE
33

.  It is interesting to note that the localized states associated 

with the integer quantum Hall effect disappear or substantially weaken when they reach the 

fractional quantum Hall states.  The origin of this behavior is currently not understood.

Integrating the inverse compressibility with respect to carrier density allows us to extract 

	
���	�������
���������	��	������� associated with each fractional quantum Hall state and thereby 

determine the corresponding energy gap ��.  Figure 3a displays the chemical potential as a 

function of carrier density at B ���������������� ������� as the difference between the local 

maximum and minimum in the chemical potential, and the values for each fractional quantum 

Hall state as a function of magnetic field are plotted in Figs. 3b and 3c.  Because the fractional 

����	���!���������������"���#$�����	��������	����	�������%n) decreases due to quasiparticle 

interactions immediately before and after each incompressible fractional quantum Hall state
33

.

����� ����	
��&����� ���'�n based on its value at � ���'�����������	��������	��$���	���������� at 

each field (see Supplementary Information).  It is also important to note that the chemical 
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potential is defined with respect to electrons.  Therefore, the step in chemical potential must be 

multiplied by the ratio of the quasiparticle charge to the electron charge in order to obtain the 

energy gap of fractionally charged quasiparticles.

The steps in chemical potential at each multiple of � = 1/3 have similar magnitude, which 

reaches a maximum of about 3.5 meV at B �����������(�	
���1/3 ������2/3 also have a similar 

dependence on magnetic field; they scale approximately linearly with field and exhibit a steeper 

������	
���	
�	�� ���4/3.  We note that the energy gap at � = 2/3 nearly closes around B = 3.5 T 

before reviving again, potential evidence for a change in the spin and/or valley polarization of 

the � = 2/3 state.  The steps in chemical potential at � = 2/5, 3/5 and 8/5 can all be described by a 

linear dependence on magnetic field with a similar slope, but their intercepts are different.  At B

����������2/5 ������3/5 ���������)���	��$�������*�����+��������	�"��$��������8/5 reaches a 

maximum of about 0.7 meV �	�,�����-�	
��
���� for the states discussed above can be 

described by a linear dependence on field, we cannot rule out B
1/2

scaling, particularly at high 

magnetic field.  The steps in chemical potential at � = 3/7, 4/7, 10/7, 4/9 and 14/9 are even 

smaller, and their extracted magnitudes fluctuate substantially as a function of magnetic field, 

presumably due to the influence of localized states at the measurement point. Although the 

energy gaps associated with fractional quantum Hall states closer to � = 0 are larger and persist 

to lower fields than do their counterparts near � = 1 with the same denominator, this behavior is 

not robust; before current annealing our sample, we observed the opposite trend (see 

Supplementary Information).

The energy gaps that we extract are smaller than theoretical predictions
10, 11, 14, 17, 18, 21

, but 

are comparable to results from activation studies
24, 27

��.
��
�$��������1/3 ����/-1.8 meV at 12 T 

�����4/3 ����0���+��	�12�����-�	
��
������������	���4/3 at 35 T is difficult due to the 



8 

 

����������$���� ������	���	
���)	������	���	
���������������.��������������4/3 yields a value of 

about 2.8 meV at 35 T.  Our measured energy gaps are only slightly smaller than theoretical 

predictions at � = 1/3, but are 3-10 times smaller than those theoretically predicted at � = 2/3, 4/3, 

2/5 and 8/5 (see Supplementary Information).  The comparatively small experimental energy 

gaps likely result in part from sample disorder, which smears out the cusps in µ(n) and therefore 

decreases the apparent step in chemical potential.  This can be partially mitigated by linear 

extrapolation of the negative slope in µ(n) surrounding each fractional quantum Hall state
34

(Fig 

3a), yielding energy gaps that are approximately 1-1.5 meV larger at the highest fields (see 

Supplementary Information).

�
��.��	
��3n of the most robust fractional quantum Hall states are shown in Fig. 3d.  

Widths were determined by fitting a Gaussian to the incompressible peak at each filling factor.  

All fraction�������	���!�����	�	���
�"����������3n of about 4-10x10
8

cm
-2

, which does not 

depend strongly on magnetic field.  This field-independence can be understood to arise from 

nonlinear screening
7
������	���	
�	�3n reflects the amount of local disorder in our device.  The 

exceptionally small peak widths provide another indication that the sample is especially clean.

All the measurements described so far were taken at one position.  We now discuss the 

spatial dependence of each fractional quantum Hall state.  Line scans of the inverse 

compressibility as a function of filling factor and position at B = 6 and 12 T are shown in Fig. 4a 

and 4b, respectively.  The density at which incompressible peaks occur varies with position, 

which can be explained by local density fluctuations.  The magnitude of these fluctuations is 

similar to the width of the fractional quantum Hall states, and may explain why the FQHE has 

been so difficult to observe in transport studies: different regions of the sample form a given 

fractional quantum Hall state at different back gate voltages.  Figure 4 also shows that 



9 

 

incompressible peak magnitude fluctuates significantly as a function of position.  Although some 

incompressible states, such as those at � = 1/3 persist at virtually all positions, others are more 

susceptible to disorder.  Both � = 2/3 and 4/3 fully disappear in some locations, which seem to be 

correlated with the areas where the integer quantum Hall states are wider, a sign that local 

disorder is comparatively large.  We note that before aggressive current annealing, the flake was 

much more homogeneous, but the overall level of disorder was larger (see Supplementary 

Information).  Despite the existence of disordered regions, the ability to perform local 

measurements reveals a multitude of fractional quantum Hall states in the cleanest areas.  The 

observation of incompressible behavior at multiples of � = 1/9 indicate that graphene is quickly 

approaching the sample quality obtained in GaAs, and may provide a platform in which to 

investigate some of the more exotic electronic states observed in conventional two-dimensional 

electron systems in the near future.

Methods

Graphene flakes were mechanically exfoliated onto a doped Si wafer capped with 300 nm 

of SiO2.  Suitable flakes were identified by optical microscopy and were electrically contacted 

using electron beam lithography followed by thermal evaporation of Cr/Au (3/100 nm) contacts 

and liftoff in warm acetone.  The sample was placed in 5:1 buffered oxide etch for 90 s and dried 

using a critical point dryer.  It was then transferred to a 
3
He cryostat, and was cleaned by current 

annealing.  All measurements were performed at approximately 450 mK.  The back gate voltage 

was limited to ±10 V to avoid structural damage to the device.  The sample whose data appears 

in this paper is actually a monolayer-bilayer hybrid.  All local measurements reported here were 
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conducted on the monolayer side of the flake.  Transport data are shown in the Supplementary 

Information.

To fabricate the scanning SET tip, a fiber puller was used to make a conical quartz tip.  

Al leads (16 nm) were evaporated onto either side of the quartz rod, and following an oxidation 

step, 7 nm of additional Al was evaporated onto the tip to create the island of the SET.  The

diameter of the SET is approximately 100 nm, and it was held 50-150 nm above the graphene 

flake during measurements.  Compressibility measurements were performed using AC and DC 

techniques similar to those described in refs. 7, 28 and 29.  The SET serves as a sensitive 

measure of the change in electrostatic potential 34, which is related to the chemical potential of 

the graphene flake by 35 = -e34 when the system is in equilibrium.  In the AC scheme used to 

measure dµ/dn, an AC voltage is applied to the back gate to weakly modulate the carrier density 

of the flake, and the corresponding changes in SET current are converted to chemical potential 

by normalizing the signal with that of a small AC bias applied directly to the sample.  For DC 

measurements, a feedback system was used to maintain the SET current at a fixed value by 

changing the sample bias.  The corresponding change in sample voltage provides a direct 

measure of µ(n).
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Figure Legends

Figure 1 | Measurement setup and Landau fan. a, Schematic of the measurement setup.  The 

single-electron transistor (SET) is approximately 100 nm in size and is held 50-150 nm above the 

graphene flake.  The red arrow indicates the path of the spatial scans in Fig. 4. b, Inverse 

compressibility dµ/dn as a function of carrier density n and magnetic field B.  Broken-symmetry 

quantum Hall states occur at all integers in the lowest three Landau levels and fractional 

quantum Hall states emerge above B � 1 T.  Oscillations in compressibility that run parallel to 

incompressible peaks in the n-B plane are caused by localized states. c, Data from (b) plotted as a 

function of filling factor �.  Vertical features correspond to quantum Hall states, whereas 

localized states curve as magnetic field is changed.  Principle integer and fractional quantum 

Hall states are labeled in panels (b) and (c), which have identical color scales.

Figure 2 | Incompressible fractional quantum Hall states in the lowest Landau level. a,

Finer measurement of dµ/dn as a function of filling factor and magnetic field.  Incompressible 

states follow the standard composite fermion sequence between � = 0 and 1.  b, Finer 

measurement of dµ/dn between � = 1 and 2.  Incompressible states occur only at filling fractions 

with even numerators. c, dµ/dn between � = 0 and 1, averaged over 9-11.9 T (blue) and between 

� = 1 and 2, averaged over 4.9-6.4 T (red). Curves are offset for clarity.  Averaging over 

magnetic field reduces the influence of localized states and shows clear incompressible peaks 

centered at � = 1/3, 2/3, 4/3, 2/5, 3/5, 8/5, 3/7, 4/7, 10/7, 4/9 and 14/9.
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Figure 3 | Steps in chemical potential and incompressible peak widths. a, Chemical potential 

relative to its value at � = 1/2 as a function of carrier density at 11.9 T.  The step in chemical 

potential of each incompressible state is given by the difference in chemical potential between 

the local maximum and minimum (blue).  Disorder smears out the cusps of each incompressible 

peak, but an estimate of the intrinsic behavior can be made by extrapolation from the linear 

sloped regions surrounding each fractional quantum Hall state (red; see Supplementary 

Information).  b, Steps in chemical potential associated with fractional quantum Hall states at 

measured multiples of � = 1/3 and 1/5 as a function of magnetic field. c, Steps in chemical 

potential of fractional quantum Hall states at measured multiples of � = 1/7 and 1/9 as a function 

of magnetic field.  Localized states give rise to especially large fluctuations in the apparent 

strength of these states. d, Incompressible peak width of the fractional quantum Hall states as a 

function of magnetic field. 

Figure 4 | Spatial dependence of fractional quantum Hall states. a, dµ/dn as a function of 

carrier density and position X along the flake (red arrow in Fig. 1) at B = 6 T.  b, dµ/dn as a 

function of carrier density and position at B = 12 T.  At both fields, the we observe density 

fluctuations and variations in the strength of the fractional quantum Hall states as a function of 

position.  States at � = 2/3 and 4/3 appear more susceptible to disorder than does � = 1/3. 
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Supplementary Information

Electronic Transport

The sample discussed in this paper is a hybrid consisting of monolayer and bilayer 

graphene regions in parallel.  Figure S1 shows the resistance of the device as a function of carrier 

density n and magnetic field B.  We observe several quantum Hall features, with resistance 

maxima occurring at � = 0, 1, 2, 3, 4 and 6.  This sequence includes the strongest monolayer and 

bilayer states, consistent with previous measurements
1
.  Conductance plateaus at approximately 

the expected quantized value occur at filling factors � = 1 and 2 suggesting that both the 

monolayer and bilayer sides are simultaneously in a fully developed quantum Hall state.  

Conductance is also suppressed strongly at the charge neutrality point, with resistance reaching 

�����)���	��$���67���!�.�"��������������	�������������	������������	� ���	������ ������ ��	������

This likely reflects the charge inhomogeneity in the sample, as discussed in the main text.  It is 

worthwhile to note that in transport, the resistive region at � = 0 is so wide that it envelops � =

1/3, even though � = 1/3 is visible at virtually all positions along the monolayer in local 

compressibility measurements.

Sample Behavior Before and After Current Annealing

The data presented in the main text were taken after two rounds of current annealing, and 

the sample changed substantially as a result of each current annealing step.  Below, we discuss 

the progression of flake behavior associated with these cleaning procedures.  Figures S2-S4 show 

data prior to current annealing, and Figs. S5-S6 display data taken after gentle current annealing.  

Even before current annealing the device, incompressible fractional quantum Hall states were 



visible.  Fractional quantum Hall states are clearly distinguishable in Figure S2a above 5-6 T, 

although the incompressible peaks are not nearly as pronounced, and localized states 

significantly modulate their apparent strength.  The increased disorder is particularly evident in 

the breadth of localized states surrounding � = 2, which obscure all fractional quantum Hall 

states above � = 4/3.  Figures S2b and S2c show spatial maps at B = 8 and 12 T, respectively, and 

the average compressibility over these spatial regions is plotted in Fig. S2d.  Incompressible 

behavior is only evident at multiples of � = 1/3, but the data reveal relatively homogeneous 

strength of each fractional quantum Hall state as a function of position, particularly compared to 

that presented in Fig. 4.

Finer measurements which reveal fractional quantum Hall states at � = 1/3, 2/3, 4/3, 2/5, 

3/5 and 4/7 are shown in Figs. S3a and S3b.  A three-dimensional rendering of the high-field 

data is plotted as a function of filling factor in Fig. S3c, and the average of inverse 

compressibility over this field range can be seen Fig. S3d.  Interestingly, the incompressible 

behavior at � = 2/3 persists to lower fields than � = 1/3, and the same is true for � = 3/5 with 

respect to � = 2/5.  This is the opposite behavior from that observed after current annealing.  The 

data presented in Fig. S3 are actually an average over measurements performed at six different 

locations, each separated by about 200 nm.  Spatial averaging mitigates the fluctuations in 

compressibility caused by localized states to some degree.  Nonetheless, the incompressible 

peaks at � = 1/3 and 2/5 are still strongly modulated by localized states, which may explain why 

they disappear at higher fields than their counterparts near � = 1 with the same denominator.

The steps ����
���������	��	������� ���������������#������8�.��	
��3n associated with 

each fractional quantum Hall state prior to current annealing are shown in Fig. S4.  The extracted 

"������� ���� .������������#� ������������� ��������	�	����.�	
���1/3 ������2/3 reaching only 1 



meV at 12 T.  Moreover, the steps in chemical potential depended primarily on filling factor 

denominator, with no differences evident over the fluctuations caused by localized states.  All 

incompressible fractional quantum Hall peaks had similar widths, but they were slightly wider 

than after current annealing, indicating increased charge inhomogeneity.

We next gently current annealed the sample, applying only 1 V between contacts.  This 

had no effect on electronic transport, but dramatically improved sample quality.  The data reveal 

additional incompressible fractional quantum Hall states at � = 8/5, 3/7 and 10/7, and a large 

increase in the magnitude of the incompressible peaks associated with other fractional quantum 

Hall states (Fig. S5).  Each incompressible state persists to lower field as well, with � = 1/3, 4/3 

and 8/5 all visible at 2 T.  It is worthwhile to note that � = 2/3 is less robust, disappearing around 

4 T, consistent with the diminished gap observed around 3.5 T after the second round of current 

annealing.  The step in chemical potential associated with each fractional quantum Hall state 

��������������������	�� �������	�������������.�����.�	
���1/3 ����
�����2���+�������3/5 reaching 

0.7 meV at 12 T (Fig. S6a). Moreover, the incompressible peak magnitude remained 

approximately independent of position, as illustrated in Fig. S6b.

Determination of the Offset in Inverse Compressibility

Due to the finite size of the sample, some fringing fields from the back gate directly 

affect the SET, giving rise to a constant positive offset in the measured inverse compressibility.  

���������	��$��)	���	���� of each fractional quantum Hall state, this parasitic capacitance must 

#��	�8�����	��������	���9�	��������	
��&����� ���'�n is further complicated because interactions 

among charge carriers produce a negative contribution to the inverse compressibility that 

depends on magnetic field
2
.  Figure S7 shows the average inverse compressibility as a function 



of magnetic field for the filling factor ranges 0.45 < � < 0.55 and 1.45 < � < 1.55.  The inverse 

���������#���	$����#�	
�������������������������� �	�.����#$���'�n ~ -B
-1/2

dependence, as expected 

for interacting particles with density n ~ B����
�� �	�	��	
�������"�����������	���� ������'dn = 0 at 

���
� ����� ���	
���)	���	����� �������:�������
�.���������	��� ���'�n as a function of density 

����� ����.�	
�����"��	����	
�	���'�n = 0 at � = 1/2.  However, the inverse compressibility in 

���������	������� ��������	
�	���'�n = 0 in the compressible regions associated with Landau levels 

at filling factors � > 2 (e.g. at � = 3.5).

Comparison With Theoretically Predicted Energy Gaps

��#��������	��	
����	�����$�������	�������$������; of several fractional quantum Hall 

states, and compares our measurements with the predicted values at the highest experimentally 

accessible field.  To the best of our knowledge, no quantitative predictions are available for the 

other fractional quantum Hall states that we observe.  In Table 1, the theoretically predicted 

values assume a dielectric constant of 4.5 in suspended graphene
3

and the extracted experimental 

values assume that the quasiparticle charge is given by the electron charge divided by the filling 

factor denominator.  As stated in the main text of the manuscript, the energy gaps that we extract 

from our measurements are smaller than theoretically predicted.  Even if we use the 

extrapolation method of Fig. 3a to mitigate the effects of disorder, the discrepancy persists for all 

fractional quantum Hall states except � = 1/3.  The extrapolated steps in chemical potential at 

select magnetic fields are summarized for � = 1/3, 2/3, 2/5 and 3/5 in Fig. S8.

:����:���1#��.���)	���	��������$�����1/3 ��������V at B = 12 T, only slightly below 

the range specified by theoretical predictions.  From the extrapolated values in Fig. S8, we obtain 

�����	���	���1/3 ����2���+��.
��
����.�	
���	
���������������#$�	
����	�����������	�������<��



contrast, even the extrapol�	����2/3 ����/���+�����	�����-3 times smaller than theoretically 

������	�����=�������$��	
����	���	���"������ ��2/5 from the extrapolation in Fig. S8 is only about 

0.4 meV at B = 12 T, approximately 4-5 times smaller than theoretically predicted.  Although the 

extrapolated steps in chemical potential at � ��/'1�������	��
�.�����:���=>���4/3 ��*�,2���+��	�>�

T, about 4-5 times smaller than the theoretical prediction.  Finally, we note that linear 

extrapolation was not possible at � = 8/5 or 14/9, but the energy gaps at these filling factors are 

also significantly smaller than expected.

Table 1 | Theoretical predictions for fractional quantum Hall gap strengths. Theoretical 

predictions for gap size at the highest experimentally accessible magnetic field are compared 

with the corresponding measured and extrapolated values.  Experimental and extrapolated values 

assume that the charge of the quasiparticles involved is given by the electron charge divided by 

the denominator of the filling factor.

�
Theoretically 

predicted �;

Predicted �; at 

largest B (meV)

Experimental �; at 

largest B (meV)

Extrapolated �; at 

largest B (meV)

1/3 (0.03-0.1)e
2
/?lB

4-10
1.3-4.3 (at 12 T) 1.2 1.5

2/3 (0.08-0.11)e
2
/?lB

8
3.5-4.8 (at 12 T) 1 1.5

4/3 (0.08-0.11)e
2
/?lB

8, 10
2.8-3.9 (at 8 T) 0.5 0.75

2/5 (0.04-0.051)e
2
/?lB

5, 8, 10
1.7-2.2 (at 12 T) 0.2 0.4

8/5 (0.02-0.051)e
2
/?lB

5, 8, 10
0.7-1.7 (at 7 T) 0.15 -

14/9 0.019e
2
/?lB

10
0.6 (at 7 T) 0.02 -
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Figure Legends

Figure S1 | Magnetotransport. Sample resistance as a function of carrier density n and 

magnetic field B.  Numbers and solid slanted lines at the edge of the plot indicate selected filling 

factors �.

Figure S2 | Inverse compressibility prior to current annealing. a, Inverse compressibility 

dµ/dn as a function of carrier density and magnetic field.  Incompressible fractional quantum 

Hall states emerge around 5-6 T.  Localized states associated with � = -2 are especially broad. b,

dµ/dn as a function of carrier density and position X along the flake at B = 8 T.  c, dµ/dn as a 

function of carrier density and position along the flake at B = 12 T. d, Spatial average of dµ/dn at 

8 T (blue) and 12 T (red). Curves are offset for clarity. 

Figure S3 | Fractional quantum Hall states prior to current annealing. a and b, Spatial 

average of dµ/dn as a function of carrier density and magnetic field taken at six different 

locations.  Incompressible states occur at � = 1/3, 2/3, 2/5, 3/5 and 4/7 which are marked by 



dashed lines.  Despite the averaging, localized states parallel to � = 0 and 1 are still visible and 

modulate the apparent amplitude of the fractional states.  c, Three-dimensional rendering of the 

data in (a) plotted as a function of filling factor.  In this rendering, localized states appear as 

curved compressibility oscillations rather than straight lines. d, dµ/dn as a function of filling 

factor, averaged over the field range shown in (a).

Figure S4 | Steps in chemical potential and peak widths prior to current annealing. a,

Energy gaps of each fractional quantum Hall state as a function of magnetic field.  Gap size 

depends primarily on the denominator of the filling factor. b, Incompressible peak widths of each 

fractional quantum Hall state, which are not strongly dependent on magnetic field.

Figure S5 | Inverse compressiblity after gentle current annealing. Inverse compressibility as 

a function of carrier density and magnetic field.  Clear incompressible peaks occur at � = 1/3, 

2/3, 2/5, 3/5, 3/7, 4/7, 4/3, 8/5 and 10/7.  Few localized states are visible due to the decreased 

sample disorder and the relatively large excitation in density: approximately 1.5x10
9

cm
-2

, which 

is identical to that used to take the data in Figs. S2 and S3, but 2.5 times larger than was used in 

the measurements presented in the main text.

Figure S6 | Steps in chemical potential after gentle current annealing. a, Steps in chemical 

potential of each fractional quantum Hall state as a function of magnetic field. b, dµ/dn as a 

function of carrier density and position X along the flake at B = 8 T.  Incompressible peaks are 

visible at � = 1/3, 2/5, 3/5, 2/3 and 4/3, and sample behavior varies only moderately with 

position.



Figure S7 | Determining the zero of inverse compressibility. Average inverse compressibility 

as a function of magnetic field for the filling factor ranges 0.45-0.55 (blue) and 1.45-1.55 (red).  

The data are well fit by B
-1/2

dependence, as shown by the black fit.  The black fit is used to 

determine dµ/dn = 0 for the purpose of fractional quantum Hall gap size extraction at each field.

Figure S8 | Extrapolated gap sizes. Steps in chemical potential at � = 1/3 (blue), 2/3 (red), 2/5 

(cyan) and 3/5 (orange) obtained by linearly extrapolating the negative compressibility 

surrounding each fractional quantum Hall state, as illustrated in Fig. 3a.  Lines between data 

points are guides to the eye.
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