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Flat electronic bands can accommodate a plethora of interaction driven quantum phases, since
kinetic energy is quenched therein and electronic interactions therefore prevail. Twisted bilayer
graphene, near so-called the “magic angles”, features slow Dirac fermions close to the charge-
neutrality point that persist up to high-energies. Starting from a continuum model of slow, but
strongly interacting Dirac fermions, we show that with increasing chemical doping away from the
charge-neutrality point, a time-reversal symmetry breaking, valley pseudo-spin-triplet, topological
p+ip superconductor gradually sets in, when the system resides at the brink of an anti-ferromagnetic
ordering (due to Hubbard repulsion), in qualitative agreement with recent experimental findings.
The p + ip paired state exhibits quantized spin and thermal Hall conductivities, polar Kerr and
Faraday rotations. Our conclusions should also be applicable for other correlated two-dimensional
Dirac materials.

Introduction: Carbon, owing to its flexibility in chem-
ical bonding, yields a variety of low-dimensional al-
lotropes: fullerene, nanotubes, one-atom thin honeycomb
crystal- graphene [1, 2]. Due to the van der Waals inter-
action, next generation of allotropes can be synthesized
by stacking a few carbon layers [3]. For example, mono-
layer graphene features pseudo-relativistic Dirac fermions
at low-energies [4], responsible for its unusual electronic
properties [5, 6]. Furthermore, Bernal arrangement of
two graphene layers hosts quadratically dispersing gap-
less chiral excitations [7], while in rhombohedral tri-
layer graphene quasiparticles display cubic dispersion [8],
falling outside the realm of standard Fermi liquid.

This zoo can further be diversified by introducing a rel-
ative twist between two layers of graphene, which gener-
ically gives rise to incommensurate lattices. In particu-
lar, a small twist in bilayer graphene yields nearly flat
bands (NFBs) at a series of so-called “magic angles”,
first of which occurs at θ ∼ 1.05◦ and slow masslesss
Dirac fermions residing near the charge-neutrality point
(CNP) provide an excellent starting point to describe this
system [9–16]. Such NFBs, reported in recent experi-
ments [17, 18], represent an ideal arena for the interac-
tion effects to set in [19–24]. In fact, superconductivity
with a critical temperature Tc ∼ 1.7 K has been observed
in twisted bilayer graphene close to the first magic angle
(MA-TBLG) upon doping this system [25], standing as
the first example of pure carbon-based two-dimensional
superconductor. Even more intriguingly, the supercon-
ductivity possibly arises from a parent Mottlike insulat-
ing state [25]. Motivated by these experimental observa-
tions, we theoretically address the effects of strong elec-
tronic interactions on slow (due to small Fermi velocity)
Dirac fermions [26], constituting an effective low-energy
model for MA-TBLG [9–16], and arrive at the represen-
tative phase diagrams, shown in Figs. 1 and 2.

Our main findings can be summarized as follows. First,
assuming that the onsite Hubbard repulsion is the domi-

FIG. 1: Various cuts of the phase diagram of interacting Dirac
fermions at finite temperature (t) and chemical potential (µ,
measured from the CNP), measured in units of vF Λ. Here,
gt2 = UΛ/(12vF ) is the dimensionless coupling constant, vF
is the Fermi velocity, Λ is the ultraviolet momentum cut-off
for slow Dirac fermions, and U is the strength of repulsive on-
site Hubbard interaction. The red shaded region is occupied
by anti-ferromagnet and the blue region denotes Eg or p+ ip
pairing, see also Fig. 2. The region outside these shaded ones
is occupied by a correlated Dirac liquid without any long-
range order. The results are obtained from a renormalization
group calculation summarized in Eq. (6) and the Supplemen-
tary Materials [28].

nant finite range Coulomb interaction at the lattice scale,
we show that the leading instability of massless slow
Dirac fermions near the CNP (zero doping) is toward the
formation of an antiferromagnetic (AFM) ground state.
However, as the system is doped away from the CNP,
pairing interactions develop from the Hubbard repulsion.
Among various possible superconducting channels, we
show that a time-reversal symmetry breaking valley pseu-
dospin triplet (but spin-singlet) topological p+ ip paired
state is energetically most favored. Our proposed phase
diagrams display such competition (Fig. 1) and a possible
coexistence of the AFM and paired states (Fig. 2). These
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features are in qualitative agreement with the recent ex-
perimental findings [25]. The predicted time-reversal
symmetry breaking p+ ip pairing can support quantized
anomalous spin and thermal Hall conductivities, as well
as finite polar Kerr and Faraday rotations.

Model: Low-energy excitations in a MA-TBLG near
the CNP can be described as a collection of slow Dirac
fermions [9–16], with Fermi velocity v

F
being ∼ 25 times

smaller than that in an isolated monolayer graphene [18].
The corresponding Dirac Hamiltonian reads as [29]

HD(k) = v
F
σ0 (Γ01kx + Γ02ky)− µ. (1)

The spinor basis is Ψ>(k) =
[
Ψ>↑ (k),Ψ>↓ (k)

]
, with

Ψ>σ (k) = [a1,σ(k), b1,σ(k), a2,σ(k), b2,σ(k)], where a, b are
two sublattices, 1, 2 represent two inequivalent valleys of
the single layer graphene lattice, and σ =↑, ↓ are two
projections of electronic spin. The chemical potential
(µ) is measured from the CNP. Two valleys are located
at the corners of the hexagonal Brillouin zone (the K
points). An identical Hamiltonian describes the low-
energy excitations in the other layer and we treat layer as
a decoupled flavor degree of freedom. The above Hamil-
tonian arises in the small angle approximation where
at low energies intra-valley tunneling processes between
the layers dominate [9, 11]. The five mutually anti-
commuting four-component Γ-matrices are the following:
Γ0 = α0β3, Γ1 = α3β2, Γ2 = α0β1, Γ3 = α1β2 and
Γ5 = α2β2. In addition, ten commutators are defined
as Γjk = [Γj ,Γk] /(2i). Two sets of Pauli matrices {αµ}
and {βµ} respectively operate on the valley or pseudo-
spin and sublattice degrees of freedom, and {σµ} on the
spin indices. The noninteracting theory enjoys separate
SU(2) pseudo-spin and spin rotational symmetries, re-
spectively generated by {Γ3,Γ5,Γ35} and {σ1, σ2, σ3},
besides the rotational and translational symmetries, re-
spectively generated by Γ12 and Γ35, see also Supplemen-
tary Materials (SM) [28].

The quintessential features of an interacting Dirac liq-
uid in MA-TBLG can be captured by the Hubbard model

HU =
U

2

∑
i

ni,↑ ni,↓, (2)

as the onsite interaction is the dominant component of
finite range Coulomb interaction [30], where U(> 0) de-
notes the strength of the onsite repulsion, and ni,σ is the
number operator at site i with spin-projection σ =↑, ↓.
The low-energy version of the Hubbard model can be ob-
tained by decomposing the fermionic operators in terms
of the Fourier modes around two valleys, leading to

HU =

∫
d2x

[
gt
1

(
Ψ†σ 1Ψ

)2
+ gt

2

(
Ψ†σ Γ0Ψ

)2
+ gt

3

∑
j=1,2

∑
k=3,5

(
Ψ†σ ΓjkΨ

)2 ]
, (3)

where gt1 = gt2 = 2gt3 = −U/12, see SM [28]. While
the first two terms represent forward scattering, the last
one corresponds to back-scattering between two valleys.
Using Fierz identity [31], the above Hamiltonian can also
be written in terms of four-fermion interactions in the
spin-singlet channels, after taking gtj → −3gsj and σ →
σ0. This change of representation, along with the change
of signs for all quartic couplings, confirms that repulsive
Hubbard interaction is conducive for excitonic orderings,
but only in the spin-triplet channel.

Results: To compare the propensity toward the for-
mation of various spin-triplet excitonic orderings, char-
acterized by an order-parameter 〈Ψ†σMΨ〉, where M
is a 4-dimensional Hermitian matrix, we compute cor-
responding bare susceptibility by performing Hubbard-
Stratonovich decomposition of all quartic terms appear-
ing in the Hubbard model, and subsequently integrat-
ing out fermions. For zero external momentum and fre-
quency the bare susceptibility at T = 0 reads

χ = −
∫
dω d2k

(2π)3
Tr [Gk(iω)σjMGk(iω)σjM ] , (4)

for a specific choice of spin-axis j = x, y, z, where ω is
the fermionic Matsubara frequency and Gk(iω) is the
fermionic Green’s function. Integral over momentum is
restricted up to an ultraviolet cutoff Λ [32]. The bare sus-
ceptibility is largest for M = Γ0, as this matrix operator
anti-commutes with the Dirac Hamiltonian (for µ = 0),
and 〈Ψ†σΓ0Ψ〉 represents the AFM order in honeycomb
lattice. Therefore, a mean-field analysis of the Hubbard
model indicates an onset of AFM order in a half-filled
MA-TBLG, which is quite natural as the honeycomb lat-
tice does not offer any frustration for a staggered arrange-
ment of electronic spin [33–36]. Even though suppression
of Fermi velocity in MA-TBLG near the CNP boosts
the propensity toward the formation of anti-ferromagnet,
since χ ∼ Λ/v

F
∼ EΛ/v

2
F

, where EΛ ≈ v
F

Λ is the Dirac
band width [32], due to the vanishing density of states
(DoS) such ordering always takes place at a finite cou-
pling. Presently it is not clear whether the Hubbard-U is
sufficient to nucleate the AFM order near the CNP (due
to reduced EΛ). But, recent experiment is suggestive of
a metallic phase in its vicinity [18, 25, 37]. While the
metallic phase can be an AFM, for large enough U it can
become a Mott insulator [34, 35].

Yet another (perhaps most exciting) experimental ob-
servation in Ref. [25], is the onset of superconductivity
with increasing carrier density in the system. Next we
seek to understand a possible microscopic origin of such
a paired state. To facilitate the following discussion, we
now introduce a 16-component Nambu-doubled basis as

Ψ>N =
[
Ψ>σ , iσ2Γ15 (Ψ∗σ)

>
]
. Generalizing the Fierz iden-

tity for all possible four-fermion pairing interactions [38],

given by
∑
j g

p
j

(
Ψ†Nη1MjΨN

)2

, where the summation

over j runs over all superconducting vertices and Mjs



3

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

μ

tm

Δ
AFM

SC
Coex.

Dirac metal (at finite-t)

t=0.1

(a)

0 0.1 0.2 0.3 0.4 0.5
0.04

0.06

0.08

μ

h
2
(μ,t)

h
1
(μ,t)

t=0.1

(b)

FIG. 2: (a) Amplitudes of anti-ferromagnet (m) and Eg pair-
ing (∆), obtained by minimizing the free-energy [see Eq. (7)],
as a function of small to moderate chemical doping (µ), mea-
sured from the CNP, at a fixed temperature t = 0.1. All
quantities are dimensionless (see text). Corresponding varia-
tion of the coupling constants, gj = (UΛ/vF ) hj(µ, t) in these
two channels, for j = 1, 2, where hj(µ, t) are phenomenolog-
ical functions, supplied from outset. A finite temperature
phase diagram is qualitatively similar to the ones shown in
(a) for a fixed value of t, since the transition temperature
is proportional to the amplitude of the corresponding order-
parameter. The temperature scale on the right vertical axis
in (a) is arbitrary. The white region at finite-t represents
the normal state (a correlated Dirac metal). The coexisting
regime in panel (a) arises due to an SO(5) symmetry among
two order-parameters [41]. To construct the phase diagram
for even larger µ one should account for higher gradient terms,
besides the Dirac components [37].

are eight-dimensional Hermitian matrices, we find that
onsite repulsive Hubbard interaction does not favor any
superconductivity, at least when µ = 0, since then gpj ≥ 0
for all j. The newly introduced Pauli matrices {ηµ} op-
erate in the Nambu (particle-hole) space. However, at fi-
nite chemical doping, a pairing interaction, conducive for
superconductivity, may arise from incipient AFM fluctu-
ations (without any long-range order) [39].

The mechanism of incipient fluctuation mediated pair-
ing interaction can be demonstrated from the vertex cor-
rection (δgpj,v) to the pairing interaction gpj due to a dom-

inant underlying AFM interaction (gt
2
), given by

δgpj,v = gt
2

(
Ψ†Nη1MjΨn

)
Ψ†N

[∑
iωn

∫
k

σΓ0 G
N
k (iωn, µ)

× η1Mj G
N
k (iωn, µ) σΓ0

]
ΨN , (5)

where GNk (iω, µ) is the fermionic Green’s function in the
Nambu-doubled basis at finite chemical potential (µ).
Notice that δgpj,v < 0 (thus conducive for superconduc-
tivity) only when {Mj ,σΓ0} = 0, since for repulsive
Hubbard interaction gt

2
< 0. Such criterion immedi-

ately justifies one feature: Incipient magnetic fluctua-
tions can only favor spin-singlet pairing. Among many
possible spin-singlet pairings only two, belonging to two-
dimensional Eg and A1k representations of D3d point

group (since we trade the influence of emergent trian-
gular lattice in favor of a renormalized Dirac liquid),
satisfy the above stringent criterion. In the announced
Nambu-doubled basis these two pairings respectively take
the following form: (1) Eg: (η1, η2)σ0 (Γ1,Γ2), (2) A1k:
(η1, η2)σ0 (Γ03,Γ05). The Eg pairing directly couples
two inequivalent valleys and preserves the translational
symmetry in the paired state. This paired state how-
ever breaks the rotational symmetry, since {Γj ,Γ12} = 0
for j = 1, 2, and stands as an example of nematic
superconductor. By contrast, the A1k pairing takes
place separately near two valleys at ±K and breaks
the translational symmetry, since {Γ0j ,Γ35} = 0 for
j = 3, 5, with periodicity of 2|K|. It represents a com-
mensurate Fulde-Farrel-Larkin-Ovchinikov (FFLO) pair-
ing [40], also known as pair-density-wave. Enhancement
of pairing interactions in these two channels stems from
an underlying SO(5) symmetry among AFM and super-
conducting orders [41].

The A1k pairing commutes with the Dirac Hamilto-
nian, implying that δgpA1k,v

= 0 when µ = 0. By contrast,

δgpEg,v
< 0 for repulsive Hubbard interaction. Hence, the

dominant propensity in close proximity to an AFM or-
dering is in the Eg channel. This conclusion remains
valid even when µ 6= 0. The competition between the
anti-ferromagnet and Eg pairing at finite T and µ can be
appreciated from the following leading order renormal-
ization group (RG) flow equations for the dominant cou-
pling of the Hubbard model (gt

2
) and the source terms

for these two channels (respectively denoted by m and
∆) [42]

dgt
2

d`
= −gt

2
+ 4

(
gt
2

)2
f(t, µ),

dt

d`
= t,

dµ

d`
= µ,

d lnm

d`
− 1 =

7gt
2

2
f(t, µ),

d ln ∆

d`
− 1 =

3gt
2

4
h(t, µ), (6)

obtained by performing a summation over fermionic Mat-
subara frequencies and subsequently integrating out a
thin Wilsonian shell Λe−` < |k| < Λ. Two lengthy
functions f(t, µ) and h(t, µ) are shown in SM [28].
RG flow equations are expressed in terms of dimen-
sionless variables obtained by taking gt

2
Λ/(πv

F
) → gt

2
,

(T, µ,m,∆)/(Λv
F

) → (t, µ,m,∆). To the leading order
v
F

does not get renormalized by local interactions.
Both temperature and chemical potential introduce

infra-red cutoffs for the RG flow, respectively given by
`t∗ = − ln t(0) and `µ∗ = − lnµ(0), where X(0)(< 1) de-
notes bare dimensionless parameters. Therefore, we run
the flow of gt2 only up to a scale `∗ = min .(`t∗, `

µ
∗ ). Now

depending on the bare coupling constant gt
2
(0) two sce-

narios can arise: (a) gt
2
(`∗) < 1 or (b) gt

2
(`∗) > 1. While

the former situation describes an interacting Dirac liquid
without any spontaneous symmetry breaking, the latter
one indicates breakdown of perturbation theory and on-
set of an ordered phase. To determine the actual pattern
of the symmetry breaking we simultaneously run the flow
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of the source terms for two competing channels. When
gt2(`∗) > 1 the broken symmetry phase represents anti-
ferromagnet if m(`∗) > ∆(`∗) or an Eg superconductor if
∆(`∗) > m(`∗). Following this procedure, we construct
various cuts of the phase diagram in the (gt2, t) plane, for
different values of µ, shown in Fig. 1.

The phase diagram shows that beyond a critical
strength of interaction and at zero doping the only pos-
sible ordered phase is anti-ferromagnet. But, with in-
creasing chemical doping the critical interaction strength
for the AFM ordering increases, while a superconduct-
ing phase develops for a weaker interaction. Presently it
is unknown how the bare strength of the Hubbard in-
teraction scales as a function of the chemical doping,
which can only be accomplished from microscopic cal-
culation [30]. Nevertheless, it is conceivable for the real
system to follow a path in the phase diagram (Fig. 1) that
goes through the superconducting phase for low chemical
doping, entering into the AFM phase at higher doping,
as we show (phenomenologically) below (Fig. 2).

To demonstrate a possible coexistence of anti-
ferromagnet and Eg pairing inside the ordered phase,
where the perturbative RG breaks down (since gt

2
> 1),

we focus on the following mean-field free-energy [43]

f̄ =
m2

2g1

+
|∆|2

4g2

− 4t
∑
j=1,2

∫ ′ d2k

(2π)2
ln

[
2 cosh

(
Ej
2T

)]
,

(7)
for kB = 1. All quantities in f̄ are dimensionless, with

Ej =
{
v2
F k

2 + µ2 +m2 + |∆|2 + (−1)j
[
2v2
F k

2|∆|2

× (1− sin 2θk) + 4(v2
F k

2 +m2)µ2
]1/2}1/2

, (8)

where θk = tan−1(ky/kx). The coupling constant g1(g2)
supports AFM (superconducting) order. Minimization of
f̄ with respect to m and ∆ leads to coupled gap equa-
tions, shown in the SM [28], which we solve numerically
to arrive at the phase diagram, displayed in Fig. 2. We
find that it is possible for the system to first enter into a
superconducting phase as we increase the chemical dop-
ing away from the CNP and subsequently support an
AFM state, in qualitative agreement with experimental
observations [25]. The underlying SO(5)symmetry be-
tween these two orders also permits a region of coexis-
tence.

Responses & topology: To appreciate the phase locking
between two components of the Eg pairing and emergent
topology of BdG quasi-particles deep inside the paired
state, we now project it onto the Fermi surface, yielding
the following effective single-particle Hamiltonian

HBdG = ξkη3 +
|∆|
kF

[
η1σ0kx + η2σ0ky

]
α3 (9)

where ξk = vk− µ or
[
k2/(2m)− µ∗

]
respectively in the

presence or absence of AFM order, kF is Fermi momen-
tum and µ∗ = µ − m, see SM [28]. The phase locking

between the kx and ky components is dictated by the re-
quirement of a maximally gapped Fermi surface (since all
entries in HBdG mutually anticommute), yielding largest
gain of condensation energy. The time-reversal symme-
try is spontaneously broken in this paired state. Hence,
the Eg pairing close to the Fermi surface assumes the
form of a fully gapped topological p+ ip pairing. This is
a class D spin-singlet, but pseudo- or valley-spin triplet
pairing, characterized by Z topological invariant [44], and
supports quantized anomalous spin and thermal Hall con-
ductivities, respectively given by

σ0
xy,S =

~
4π
, lim

T→0

κxy
T

=
2

3

π2k2
B

h
, (10)

as temperature T → 0, respectively, as well as finite po-
lar Kerr and Faraday rotations [45]. By contrast, if the
pairing interaction exists over the entire valence and con-
duction bands, then a maximally gapped Fermi surface,
comprised of two point nodes around which DoS vanishes
as %(E) ∼ |E|, is obtained from a time-reversal symmet-
ric combination |∆|η1σ0 (Γ1 cosφ+ Γ2 sinφ) of the Eg
pairing. Here, φ is an internal angle, which should be
locked at specific values, depending on the underlying
crystal potential. Therefore, above mentioned responses
(spin and thermal Hall conductivities, Kerr and Faraday
rotations) can probe the nature or extent of the pairing
interaction in MA-TBLG. To this end measurement of
the penetration depth (∆λ) can be instrumental leading
to ∆λ ∼ (T/Tc)

n, with n ≈ 3− 4 for fully gapped p+ ip
state, but n = 1 for gapless Eg pairing, when T � Tc [46].

In brief, starting from an effective low-energy model
of interacting slow Dirac fermions, we demonstrate that
MA-TBLG can display an intriguing confluence of com-
peting AFM and singlet Eg nematic superconducting
phases [47], if the onsite Hubbard repulsion stands as the
dominant component of finite range Coulomb interaction.
Close to the Fermi surface Eg superconductor represents
a pseudo-spin triplet p + ip pairing, which can support
quantized anomalous spin and thermal Hall conductiv-
ities. Such a superconducting state supports Majorana
edge modes [48, 49], turning MA-TBLG into a potential
platform for topological quantum computing [50].

Acknowledgments: We are thankful to Pablo Jarillo-
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