
Mon. Not. R. Astron. Soc. 312, 257±284 (2000)

Uncorrelated modes of the non-linear power spectrum
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A B S T R A C T

Non-linear evolution causes the galaxy power spectrum to become broadly correlated over

different wavenumbers. It is shown that pre-whitening the power spectrum ± transforming

the power spectrum in such a way that the noise covariance becomes proportional to the unit

matrix ± greatly narrows the covariance of power. The eigenfunctions of the covariance of

the pre-whitened non-linear power spectrum provide a set of almost uncorrelated non-linear

modes somewhat analogous to the Fourier modes of the power spectrum itself in the linear,

Gaussian regime. These almost uncorrelated modes make it possible to construct a near-

minimum variance estimator and Fisher matrix of the pre-whitened non-linear power

spectrum analogous to the Feldman±Kaiser±Peacock (FKP) estimator of the linear power

spectrum. The paper concludes with summary recipes, in gourmet, fine and fastfood

versions, of how to measure the pre-whitened non-linear power spectrum from a galaxy

survey in the FKP approximation. An appendix presents FFTLog, a code for taking the fast

Fourier or Hankel transform of a periodic sequence of logarithmically spaced points, which

proves useful in some of the manipulations.

Key words: cosmology: theory ± large-scale structure of Universe.

1 I N T R O D U C T I O N

Most of the information about cosmological parameters bottled

inside current1 and forthcoming galaxy surveys, notably the Two-

Degree Field Survey (2dF) (Colless 1999; Folkes et al. 1999) and

the Sloan Digital Sky Survey (SDSS) (Gunn & Weinberg 1995;

Margon 1999), lies in the non-linear regime. Even in the linear

regime, non-linearities perturb.

At large, linear scales, the power spectrum ± the covariance of

the density field, expressed in the Fourier representation ± is the

pre-eminent measure of large-scale structure. It is a generic,

although by no means universal, prediction of inflation (Turner

1997) that linear density fluctuations should be Gaussian. More

generally, primordial fluctuations should be Gaussian whenever

they result from superpositions of many independent processes,

thanks to the central limit theorem. Observations of large-scale

structure are consistent with linear density fluctuations being

Gaussian (Bouchet et al. 1993; Juszkiewicz, Bouchet, & Colombi

1993; GaztanÄaga 1994; GaztanÄaga & Frieman 1994; Nusser,

Dekel & Yahil 1995; Stirling & Peacock 1996; Colley 1997; Chiu,

Ostriker & Strauss 1998; Frieman & GaztanÄaga 1999) although

the evidence is not definitive (White 1999). If linear density

fluctuations are Gaussian, then the three-point and higher

irreducible moments are zero, so that the covariance of the

density field contains complete information about the statistical

properties of the field, hence all information about cosmological

parameters. Compared with other measures of covariance such as

the correlation function, the power spectrum has the additional

advantage that estimates of power at different wavenumbers are

uncorrelated, for Gaussian fluctuations. This asset of the power

spectrum is intimately related to the assumption that the field is

statistically translation-invariant, and to the fact that Fourier

modes are eigenfunctions of the translation operator.

At smaller, non-linear scales, the power spectrum loses some of

its glow. Non-linear evolution drives the density field away from

Gaussianity, coupling Fourier modes, feeding higher order

moments, and causing power at different wavenumbers to become

correlated. The broad extent of the correlation of the non-linear

power spectrum has been emphasized by Meiksin & White (1999)

and Scoccimarro, Zaldarriaga & Hui (1999), and is illustrated in

Fig. 2 of the present paper (later).
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1 For a review of redshift surveys of galaxies, see Strauss (1999) and

references therein. Recent surveys include: Updated Zwicky Catalog

(UZC) (Falco et al. 1999); IRAS Point Source Catalogue Redshift Survey

(PSCz) (Sutherland et al. 1999); Redshift Survey of Zwicky Catalog

Galaxies in a 2h � 158 Region around 3C 273 (Grogin, Geller & Huchra

1998); Durham/UKST (Ratcliffe et al. 1998); Southern Sky Redshift

Survey (SSRS) (da Costa et al. 1998); ESO Slice Project (ESP) (Vettolani

et al. 1998); Muenster Redshift Project (MRSP) (Schuecker et al. 1998);

CNOC2 Field Galaxy Redshift Survey (Carlberg et al. 1999); Century

Survey (Geller et al. 1997); Norris Survey of the Corona Borealis

Supercluster (Small, Sargent & Hamilton 1997); Stromlo±APM (Loveday

et al. 1996); Las Campanas Redshift Survey (LCRS) (Shectman et al.

1996); Hawaii Deep Fields (Cowie et al. 1996); Canada±France Redshift

Survey (CFRS) (Lilly et al. 1995).
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The purpose of the present paper is to show how to unfold the

non-linear power spectrum into a set of nearly uncorrelated

modes, somewhat analogous to the Fourier modes of the power

spectrum itself in the linear, Gaussian regime. The present paper is

a natural successor to Hamilton (1997a,b, hereafter Papers I and

II), which showed how to derive the minimum variance estimator

and Fisher matrix of the power spectrum of a galaxy survey in the

Feldman, Kaiser & Peacock (1994, hereafter FKP) approximation,

for Gaussian fluctuations. Section 5.2 of Paper I posed, but was

unable to solve, the non-Gaussian problem solved in the present

paper. A following paper (Hamilton & Tegmark 2000, hereafter

Paper IV), describes how to complete the processing of the power

spectrum into fully decorrelated band-powers.

It turns out that a key to solving the non-Gaussian problem is to

`pre-whiten' the power spectrum ± to transform the non-linear

power spectrum in such a way that the (two-point) shot-noise

contribution to the covariance matrix is proportional to the unit

matrix. The properties of the pre-whitened non-linear power

spectrum appear empirically to be sweeter than might reasonably

have been expected.

This paper is devoted entirely to the problem of non-linearity. It

ignores the equally important problem of redshift distortions

(Hamilton 1998), and the problematic question of light-to-mass

bias (Coles 1993; Fry & GaztanÄaga 1993; Mo, Jing & White 1997;

Mann, Peacock & Heavens 1998; Tegmark & Peebles 1998;

Moscardini et al. 1998; Scherrer & Weinberg 1998; Dekel &

Lahav 1999; ColõÂn et al. 1999; Cen & Ostriker 1999; Narayanan,

Berlind & Weinberg 1999; Blanton et al. 1999; Benson et al. 1999;

Bernardeau & Schaeffer 1999; Coles, Melott & Munshi 1999).It

further assumes that uncertainties arising either from the selection

function (Binggeli, Sandage & Tammann 1988; Willmer 1997;

Tresse 1999) or from evolution in the cosmological volume

element or the galaxy population are negligible.

Several authors have recently published estimates of how well

measurements of the power spectrum from future galaxy surveys

will constrain cosmological parameters (Tegmark 1997b; Gold-

berg & Strauss 1998; Hu, Eisenstein & Tegmark 1998; Eisenstein,

Hu & Tegmark 1998, 1999). The procedures described in the

present paper should assist this enterprise.

The aims of the present paper are complementary to those of

Bond, Jaffe & Knox (1998b). The question that Bond et al.

considered was: if the power spectrum (of the cosmic microwave

background, specifically) is quadratically compressed (Tegmark

1997a; Tegmark, Taylor & Heavens 1997; Tegmark et al. 1998)

into a set of band-powers, then what is the best way to use those

band-powers in maximum likelihood estimation of parameters?

For example, one general procedure is to use not the band-powers

themselves, but rather functions of the band-powers arranged such

that their variances remain constant as the prior power is varied.

Bond et al. argued that the likelihood function is then more nearly

Gaussian. The purpose of this paper and Paper IV is rather to

arrive at the point where one has decorrelated band-powers to

work with in the first place.

The plan of this paper is as follows. Section 2 sets up the

notation and defines reference material needed in subsequent

sections. Section 3 goes through the difficulties one meets in

attempting to measure the non-linear power spectrum in minimum

variance fashion, and describes how to overcome them. Section 4

reveals the unexpectedly nice properties of the pre-whitened

covariance of the power spectrum, key to the whole enterprise of

this paper. Section 5 defines the pre-whitened power spectrum.

Sections 6 and 7 show how the approximations motivated in

previous sections lead to a practical way to evaluate the Fisher

matrix of the pre-whitened non-linear power, and to measure the

pre-whitened non-linear power spectrum from a galaxy survey.

Section 8 discusses how to evaluate the Fisher matrix and non-

linear power spectrum using the FKP approximation alone,

without any additional approximation. Section 9 summarizes the

results of previous sections into recipes, in gourmet, fine and

fastfood versions, for measuring non-linear power, the end product

being a set of uncorrelated pre-whitened non-linear band-powers,

with error bars, over some prescribed grid of wavenumbers.

Section 10 summarizes the conclusions. Appendix B gives details

of FFTLog, a code for taking the fast Fourier or Hankel transform

of a periodic sequence of logarithmically spaced points.

2 P R E L I M I N A R I E S

This section contains reference material needed in subsequent

sections. The reader interested in new results may like to skip to

the next section, Section 3, referring back to the present section as

needed.

2.1 Data and parameters

`He will, of course, use maximum likelihood because his

textbooks have told him that' ± E. T. Jaynes (1996, p. 624).

According to Bayes' theorem, the probability distribution of

parameters ua given data d i is, up to a normalization factor, the

product of the prior probability with the likelihood function

L(d i|ua ). The data d i in a galaxy survey can be taken to be

overdensities d(r) at positions r in the survey

d�r� ;
n�r�2 �n�r�

�n�r� ; �1�

where n(r) is the observed number density of galaxies, and nÅ(r) is

the selection function. The parameters ua are, for the present

purpose, some parametrization of the galaxy power spectrum; the

focus of this paper is on the case in which the parameters are the

power spectrum ja itself.

This paper conforms to the common convention used by

cosmologists to relate the power spectrum j(k) in Fourier space to

the correlation function j(r) in real space, notwithstanding the

extraneous factors of 2p that result:

j�k� �
�

eik ´ rj�r� d3r �
�1

0

j0�kr�j�r�4pr2 dr; �2�

j�r� �
�

e2ik ´ rj�k� d3k

�2p�3 �
�1

0

j0�kr�j�k� 4pk2 dk

�2p�3 ; �3�

where j0�x� � sin x=x is a spherical Bessel function.

2.2 Hilbert space

As in Paper I, it is convenient to adopt a notation in which Latin

indices i, j, ¼, refer to three-dimensional positions, while Greek

indices a , b , ¼, run over the space of parameters, and more

specifically over the one-dimensional space of wavenumbers or

pair separations.

For generality, brevity and ease of manipulation, it is convenient

to treat quantities such as the data vector d i, or the power spectrum

ja , as vectors in a Hilbert space (for a didactic exposition, see

Hamilton 1998, section 3.3). Such vectors have a meaning

q 2000 RAS, MNRAS 312, 257±284
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independent of the particular basis, i.e. complete set of linearly inde-

pendent functions, with respect to which they might be expressed.

For example, the data vector has components dr�� d�r�� when

expressed in real space, or components dk�� d�k� � � eik ´ rd�r� d3r�
when expressed in Fourier space, but from a Hilbert-space point of

view these are the same vector, and in this paper they are both

denoted by the same symbol d i.

Similarly the power spectrum ja has components jk�� j�k��
when expressed in Fourier space, or jr�� j�r�� when expressed in

real space, but again from a Hilbert-space point of view these are

the same vector, and in this paper they are both denoted by the

same symbol ja .

Latin indices i, j, ¼, on vectors and matrices run over the three-

dimensional space of positions r, or more generally over any

three-dimensional basis of the Hilbert space. Unless stated

otherwise, repeated pairs of indices signify the inner product in

Hilbert space, as in

aibi �
�

a*�r�b�r� d3r �
�

a*�k�b�k� d3k=�2p�3: �4�

By definition, the inner product is a scalar, the same quantity

independent of the choice of basis. The raised index ai denotes the

Hermitian conjugate (if the basis is orthonormal) of the vector ai.

One of the indices in an inner product is always raised, the other

lowered. In this paper, all vectors in the Hilbert space are real-

valued when expressed in real space, so that a*�r� � a�r� and

a*�k� � a�2k�.
Adhering to the raised/lowered index convention serves as a

useful reminder that one of the pair of vectors in an inner product

is a Hermitian conjugate (if the basis is orthonormal). In Fourier

space, for example, this means using 2k for one index (raised)

and �k for the other index (lowered) of an inner product.

Greek indices a , b , ¼, run over the space of one-dimensional

pair separations r, or wavenumbers k, or more generally over any

one-dimensional basis in the associated Hilbert space. Again,

unless stated otherwise, repeated indices signify the inner product

aaba �
�

a*�r�b�r�4pr2 dr �
�

a*�k�b�k�4pk2 dk=�2p�3 �5�

which is again a scalar, the same quantity independent of the choice

of basis. Again, in this paper all vectors in the Hilbert space are real-

valued in real space, so a*�r� � a�r� and a*�k� � a�k�. Although

there is no distinction in this case between vectors with raised and

lowered indices in either real or Fourier space, adhering to the

raised/lowered index convention again serves as a useful reminder.

The unit matrix 1b
a in any representation is defined such that its

inner product with any vector ab leaves the vector unchanged,

1b
aab � ab1b

a � aa: �6�
In the continuous real representation, the unit matrix is

1rb
ra
� d3D�ra 2 rb�; �7�

where d3D�ra 2 rb� denotes the three-dimensional Dirac delta-

function, defined such that�
d3D�ra 2 rb�4pr2

a dra � 1: �8�

In the continuous Fourier representation, the unit matrix is

1
kb
ka
� �2p�3d3D�ka 2 kb�; �9�

again a three-dimensional Dirac delta-function.

2.3 Discretization of matrices

Many of the operations in this paper involve manipulations of

matrices in the one-dimensional space of separations. Continuous

matrices must be discretized to manipulate them numerically.

Discretization should be done in such a way as to preserve the

inner product (5), so that integration over the volume element,

4pr2 dr in real space, or 4pk2 dk/(2p)3 in Fourier space, translates

into summation in the corresponding discrete space. This ensures

that matrix operations such multiplication, diagonalization and

inversion can be done in the usual fashion.

Most of the manipulations in this paper are done in Fourier

space on a logarithmically spaced grid of wavenumbers ka . In this

case, a continuous vector a(ka ) is discretized by multiplying it by

�4pk3
aD ln k=�2p�3�1=2:

a�ka� ! aka � a�ka��4pk3
aD ln k=�2p�3�1=2; �10�

and a continuous matrix A(ka , kb ) is discretized by multiplying it

by 4p(kakb )3/2D ln k/(2p)3:

A�ka; kb� ! Akakb � A�ka; kb�4p�kakb�3=2D ln k=�2p�3: �11�
The unit matrix �2p�3d3D�ka 2 kb� in the continuous Fourier

representation translates to the unit matrix 1ab in the discrete

case:

�2p�3d3D�ka 2 kb� ! 1ab: �12�
Similarly, a continuous vector a(ra) in real space is discretized

on to a logarithmically spaced grid of separations ra by

multiplying the vector by �4pr3
aD ln r�1=2:

a�ra� ! ara � a�ra��4pr3
aD ln r�1=2; �13�

and a continuous matrix A(ra,rb ) is discretized by multiplying it

by 4p�rarb�3=2D ln r:

A�ra; rb� ! Ararb � A�ra; rb�4p�rarb�3=2D ln r: �14�
The unit matrix d3D�ra 2 rb� in the continuous real representation

translates to the unit matrix 1ab in the discrete case:

d3D�ra 2 rb� ! 1ab: �15�
The transformation between Fourier and real space for

logarithmically spaced wavenumbers ka and separations ra may

be accomplished with FFTLog (Appendix B).

2.4 Gaussian density field

If the density distribution d (r) were Gaussian ± which is not true

in the present case ± then one would have the luxury of being able

to write down an explicit Gaussian likelihood function

L / 1

jCj1=2
exp 2

1

2
diC

21ijdj

� �
; �16�

where jCj and C21 are the determinant and inverse of the

covariance matrix C of overdensities

Cij ; kdidjl: �17�
Angle-brackets here and throughout this paper signify averages

over possible data sets d i predicted by the likelihood function

ktl ;
�

tL �dijua� d�di�: �18�
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Maximum likelihood (ML) estimates uÃa of the parameters ua (the

hat distinguishing the estimate uÃa from the true value ua ) are

given by the vanishing of the vector of partial derivatives of the

log-likelihood function

 lnL
ua

� 1

2

Cij

ua
C21ikC21jl�dkdl 2 Ckl�; �19�

 lnL
ua

����
ua�û a

� 0: �20�

The covariance kDû aDû bl of the estimated parameters is given

approximately by the inverse of the Fisher information matrix

Fab, defined to be minus the expectation value of the matrix of

second partial derivatives of the log-likelihood function:

Fab ; 2
2 lnL
uaub

� �
� 1

2

Cij

ua
C21ikC21jl Ckl

ub
; �21�

kDû aDû bl < F21
ab : �22�

The approximation (22) is exact if the estimated parameters uÃa are

Gaussianly distributed about their expectation values. The central

limit theorem asserts that the parameters become Gaussianly

distributed in the asymptotic limit of a large amount of data.

It is commonly assumed, and the same assumption is adopted

here, that the dominant source of variance in a galaxy survey is a

combination of cosmic (sample) variance and shot-noise arising

from the discrete sampling of galaxies. If the sampling of galaxies

is random ± a Poisson process ± then the covariance Cij is a sum

of the cosmic covariance j ij with Poisson sampling noise Nij:

Cij � jij � Nij: �23�
In the real representation, the cosmic covariance j ij is the

correlation function

jij � j�jri 2 rjj�; �24�
and the noise matrix Nij is the diagonal matrix

Nij � d3D�ri 2 rj�
�n�ri� ; �25�

with d3D�ri 2 rj� a three-dimensional Dirac delta-function. In the

Fourier representation the cosmic covariance j ij is the diagonal

matrix

jij � �2p�3d3D�ki � kj�j�ki�; �26�
the eigenvalues j (ki) of which constitute the power spectrum.

The focus of this paper is on the case in which the parameters

ua are the power spectrum ja itself [in this paper the cosmic

covariance function ja , expressed in an arbitrary representation,

will often be referred to as the `power spectrum', even though this

name is commonly reserved for the covariance j (k) expressed in

Fourier space; no confusion should result]. In this case the

covariance Cij is a linear function of the parameters ja :

Cij � Da
ijja � Nij; �27�

where in real space ja � j�ra� is the correlation function, and

Da
ij � d3D�jri 2 rjj2 ra� �28�

is a three-dimensional Dirac delta-function, equation (15), while

in Fourier space ja � j�ka� is the thing commonly called the

power spectrum, and

Da
ij � �2p�6d3D�ki � kj�d3D�ki 2 ka�: �29�

It follows from equations (19) and (20) that the ML estimator jÃa
of the power spectrum, for Gaussian fluctuations, is that solution of

ĵ a � 1

2
F21
abD

b
ij C

21ikC21jl�dkdl 2 Nkl� �30�

for which the estimate is equal to the prior, ĵ a � ja. The variance

of the ML estimator is

kDĵ aDĵ bl < F21
ab �31�

and the Fisher matrix is

Fab � 1

2
Da

ij C
21ikC21jlD

b
kl: �32�

If the prior power ja is regarded as fixed, then equation (30)

yields an estimated power jÃa that is quadratic in overdensities d i.

If this estimated power is folded back into the prior, then equation

(30) with the revised prior yields another estimate of power.

Iterated to convergence, the result is the ML estimator of the

power. It is to be noted that, even without iteration, equation (30)

yields a measurement of power that (as long as the prior is at least

roughly correct) should already be a good approximation, since `if

the prior matters, then you are not learning much from the data', to

quote one of the refrains from the 1997 Aspen workshop on

Precision Measurement of Large Scale Structure.

The question of how to apply quadratic estimators [such as

given by equation (30)] to measure the power spectrum is

addressed by Tegmark et al. (1998) for galaxies, and by Tegmark

(1997a), Tegmark et al. (1997) and Bond, Jaffe & Knox (1998a,b)

for the cosmic microwave background.

2.5 Non-Gaussian density field

Ultimately, one might look forward to a wondrous N-body

machine able to compute the probability distribution of linear

initial conditions given noisy and incomplete data from a survey

(Narayanan & Weinberg 1998; Monaco & Efstathiou 1999; and

references therein).

In the meantime, it is far from clear what to write down as a

likelihood function for the non-linear density field (Dodelson, Hui

& Jaffe 1999). Certainly it would be a bad idea to use a Gaussian

likelihood function for a non-Gaussian density field, since that

would lead to a serious underestimate of the true uncertainty in the

measured non-linear power spectrum.

An alternative procedure is to seek a minimum variance

unbiased estimator of power. Now the power spectrum is by

definition a covariance of overdensities, and, by the presumption

of Poisson sampling, any a priori weighted sum of quantities

quadratic in observed overdensities (with self-terms excluded, to

eliminate shot-noise) provides an unbiased estimate of the power

spectrum linearly windowed in some fashion. It was shown in

section 2.3 of Paper I that, amongst estimators quadratic in

observed overdensities d i, the unbiased estimator jÃa of the power

spectrum having minimum variance is

ĵ a � F21
abD

b
ij C21ijkl�dkdl 2 N̂kl� �33�

with variance

kDĵ aDĵ bl � F21
ab ; �34�

where Fab is the Fisher matrix

Fab � Da
ij C21ijklD

b
kl; �35�
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Cijkl is the covariance of shot-noise-subtracted products of

overdensities

Cijkl ; k�didj 2 N̂ij 2 jij��dkdl 2 N̂kl 2 jkl�l �36�
and C21ijkl is its inverse, meaning CijmnC21mnkl � Sym�kl�1k

i 1
l
j. The

symbol Sym(ij) signifies symmetrization over its underscripts, as

in

Sym
�ij�

Aij ;
1

2
�Aij � Aji�: �37�

The quantity NÃ kl in equations (33) and (36) is the `actual' shot-

noise, the contribution to d kd l from self-pairs of galaxies, pairs

consisting of a galaxy and itself. The actual shot-noise NÃ kl in a

survey is to be distinguished from its expectation value

Nkl ; kN̂kll. If the expected shot-noise Nkl is used in equation

(33) in place of the actual shot-noise, then additional terms [given

in equation (8) of Paper I] appear in the covariance matrix Cijkl,

increasing the variance of the estimator. Why does the ML

estimator jÃa in the Gaussian case, equation (30), involve the

expected shot-noise Nkl rather than the actual shot-noise NÃ kl?

Because a discretely sampled Gaussian field is not really

Gaussian, except in the limit where a cubic wavelength contains

many galaxies, so the assumption of a Gaussian likelihood

function is not strictly correct. In fact it is plain that the Gaussian

ML estimator jÃa would also be improved if the actual shot-noise

NÃ kl were used in place of the expected shot-noise Nkl in equation

(30), since using the actual shot-noise exploits additional

information about the character of the Poisson sampling that is

discarded by the Gaussian likelihood. However, as discussed by

Tegmark et al. (1998, appendix A), the gain from subtracting the

actual versus the expected shot-noise is in practice small at linear

scales, where a cubic wavelength is likely to contain many

galaxies.

In the same Poisson sampling approximation as equation (23),

the covariance Cijkl of shot-noise-subtracted products of over-

densities, equation (36), is, in the real representation with no

implicit summation,

Cijkl � jikjjl � jiljjk � hijkl

� �Nik�jjl � zijl� � �i$ j; k $ l���4 terms�
� �NikNjl � NilNjk��1� jij�; �38�

in which the top line is the four-point, the middle the three-point,

and the bottom line the two-point contribution to the covariance,

as illustrated in Fig. 1. For Gaussian density fluctuations equation

(38) reduces to

Cijkl � 2 Sym
(kl)

CikCjl �39�

with inverse

C21ijkl � 1

2
Sym

(kl)

C21ikC21jl: �40�

It follows from equation (40) that for Gaussian fluctuations the

minimum variance estimator of the power spectrum, equation

(33), is the same as the ML estimator, equation (30), if the

estimate is folded back into the prior and iterated to convergence

(modulo the comments about shot-noise in the previous

paragraph).

3 P R O B L E M S

3.1 FKP approximation

Calculating the minimum variance estimate jÃa of the power

spectrum, equation (33), involves the formidable problem of

inverting the pair covariance Cijkl, a rank 4 matrix of three-

dimensional quantities. Whereas for Gaussian fluctuations the

rank 4 matrix Cijkl factorizes into a product of rank 2 matrices,

equation (39), for non-Gaussian fluctuations it does not factorize.

Again, whereas for Gaussian fluctuations it may be possible, at

least at the largest scales, to pixellize a survey into large enough

pixels that brute force numerical inversion is feasible, for non-

Gaussian fluctuations brute force inversion is quite impossible.

A natural way to simplify the problem is to adopt the Feldman,

Kaiser & Peacock (1994, FKP) approximation, where the

selection function nÅ(r) is taken to be locally constant. The FKP

approximation is expected to be valid at wavelengths much smaller

than the characteristic size of the survey. Section 5 of Paper I terms

this the `classical' approximation, since it is valid to the extent that

the position and wavelength of a density mode can be measured

simultaneously. While the FKP approximation is liable to break

down at larger scales, particularly for pencil beam or slice surveys,

it should be a good approximation at smaller, non-linear scales,

especially in surveys with broad contiguous sky coverage.

Even if the selection function nÅ is taken to be constant, the

general problem of inverting the rank 4 matrix Cijkl remains

intractable. Notice, however, that C21ijkl appears multiplied in

both equations (33) and (35) by the matrix Da
ij . Now Da

ij has

translation and rotation symmetry, and in the FKP approximation

the matrix Cijkl also has translation and rotation symmetry, the

selection function nÅ being constant. Indeed, inspection of equation

(38) reveals that the matrix Cijkl remains translation- and rotation-

invariant even if the selection functions nÅi and nÅj at positions i and

j are two different constants. It follows that the combination

CijklD
kl
a is likewise translation- and rotation-symmetric, which

implies that it can be expressed in the form

CijklD
kl
a � Cab� �ni; �nj�Db

ij �41�
for some matrix Cab , which can be termed the `reduced'

covariance matrix. Equation (41) is the FKP approximation,

expressed in concise mathematical form; additional details of the

justification of this equation are provided in Appendix A. The

reduced matrix is written in equation (41) as Cab(nÅi, nÅj) to

emphasize the fact that it is a function of the selection functions nÅi

and nÅj at positions i and j; note that no implicit summation over i

or j is intended on the right-hand side of equation (41). Inspection

of equation (38) for Cijkl shows that the reduced covariance

Cab (nÅi, nÅj) takes the form

Cab� �ni; �nj� � 2�Kab � � �n21
i � �n21

j �Jab � �n21
i �n21

j Hab�; �42�

q 2000 RAS, MNRAS 312, 257±284

Figure 1. Schematic illustration of the four-point, three-point and two-

point contributions to the covariance Cijkl of pairs ij with other pairs kl. The

three-point and two-point contributions are shot-noise contributions in

which one or both galaxies of the pair ij are the same as one or both of the

pair kl.
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a linear combination of four-point, three-point and two-point

contributions Kab , Jab and Hab . Multiplying equation (41) by

C21gaC21mnij shows that the inverse of Cijkl is similarly related to

the inverse of the reduced matrix Cab :

C21ijklDa
kl � C21ab� �ni; �nj�Dij

b: �43�
Physically, to the extent that the selection functions nÅi and nÅj at

positions i and j are constants, the minimum variance pair-

weighting attached to a pair ij should be a function only of the

separation a of the pair, not of their position or orientation. Just as

Cijkl is the covariance between a pair ij and another pair kl, so the

reduced covariance matrix Cab is the covariance between a pair

separated by a and another pair separated by b.

In the FKP approximation given by equation (43), the minimum

variance estimate (33) of the power spectrum is

ĵ a � F21
abC21bgDij

g�didj 2 N̂ij� �44�
and the associated Fisher matrix (35) is

Fab � C21agDij
gD

b
ij : �45�

Notice that the approximate Fisher matrix given by this equation

(45) is not symmetric, whereas the original Fisher matrix,

equation (35), was symmetric. The asymmetry results from the

asymmetry of the FKP approximation, equation (41). The

approximate expression (45) would be symmetric if the FKP

approximation were exact, and in practice it should be nearly

symmetric; if not, it is a signal that the FKP approximation is

breaking down.

To ensure symmetry of the Fisher matrix, one might be inclined

at this point to symmetrize equation (45), since after all an equally

good approximation to the Fisher matrix would be the same

expression (45) with the indices swapped on the right-hand side,

a$ b. However, it is desirable that the FKP estimator jÃa,

equation (44), should be unbiased, meaning that

kĵ al � ja: �46�
Averaging equation (44) gives, since kdidj 2 N̂ijl � Da

ijja accord-

ing to equation (27),

kĵ al � F21
abC21bgDij

gDe
ijje; �47�

which shows that the FKP estimator jÃa is unbiased only if the

Fisher matrix in equation (44) is interpreted as satisfying the

asymmetric expression (45). A detailed discussion of this issue is

deferred to Section 7. Here it suffices to remark that, to the extent

that the FKP approximation is valid, the variance of the FKP

estimator jÃa is equal to the inverse of the symmetrized Fisher

matrix given by equation (45):

kDĵ aDĵ bl � F21
�ab�; �48�

where F�ab� ; Sym�ab�Fab denotes the symmetrized Fisher

matrix, and F21
�ab� its inverse.

3.2 Hierarchical model

The pair covariance matrix Cijkl, equation (38), hence also the

reduced covariance matrix Cab , equation (41), involves the three-

point and four-point correlation functions z ijk and h ijkl. The

problem here is that these correlation functions are not known

precisely.

Available observational and N-body evidence [see, for example,

the summaries by Scoccimarro & Frieman (1999) and Hui &

GaztanÄaga (1999)] is consistent with a hierarchical model in

which the three-point and four-point functions are, in the real

representation with no implicit summation,

zijk � Q�jijjjk � jjkjki � jkijij�; �49�
hijkl � Ra�jijjjkjkl � cyclic �12 snake terms��

� Rb�jijjikjil � cyclic �4 star terms��; �50�
with approximately constant hierarchical amplitudes Q, Ra and Rb.

On the other hand, it is clear that the hierarchical amplitudes do

vary at some level, as a function of both scale and configuration

shape.

In the translinear regime, perturbation theory predicts that the

hierarchical amplitudes should vary (somewhat) with both scale

and configuration, for density fluctuations growing by gravity

from Gaussian initial conditions (Fry 1984; Scoccimarro et al.

1998).

In the deeply non-linear regime, predictions for the behaviour

of the hierarchical amplitudes are more empirical. Scoccimarro &

Frieman (1999) have recently suggested an ansatz, which they dub

hyperextended perturbation theory (HEPT), that the hierarchical

amplitudes in the highly non-linear regime go over to the values

predicted by perturbation theory for configurations collinear in

Fourier space. For power-law power spectra j�k� / kn, HEPT

predicts a three-point amplitude

Q � 4 2 2n

1� 2 2n
; �51�

and four-point amplitudes Ra � Rb � Q4 with

Q4 � 54 2 27 2n � 2 3n � 6n

2�1� 6 2n � 3 3n � 6 6n� : �52�

For simplicity, the present paper adopts the hierarchical model,

with constant hierarchical amplitudes set equal to the HEPT

values (51) and (52). For reasons to be discussed shortly (namely

that the Schwarz inequality is violated otherwise), most of the

calculations shown take

Ra � 2Rb � Q4; �53�
although where possible results are also shown for

Ra � Rb � Q4: �54�
In addition to power-law power spectra, the present paper shows

results for the power spectrum derived from observations by

Peacock (1997), and for an observationally concordant LCDM

model from the fitting formulae of Eisenstein & Hu (1998), non-

linearly evolved according to the procedure of Peacock & Dodds

(1996). In these cases the adopted amplitudes are those

corresponding to n � 21:2, i.e. a correlation function with slope

g � n� 3 � 1:8, for which Q � 1:906 and Q4 � 4:195.

In the hierarchical model with constant hierarchical amplitudes,

the four-point, three-point and two-point contributions to the

reduced covariance matrix Cab , equation (42), are, in the Fourier

representation with no implicit summation,

K�ka; kb� � �2p�3d3D�ka 2 kb�j�ka�2

� Ra�j�ka� � j�kb��2A�ka; kb�
� Rbj�ka�j�kb��j�ka� � j�kb��; �55�

q 2000 RAS, MNRAS 312, 257±284
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J�ka; kb� � �2p�3d3D�ka 2 kb�j�ka�
� Q�j�ka� � j�kb��A�ka; kb� � Qj�ka�j�kb�; �56�

I�ka; kb� � �2p�3d3D�ka 2 kb� � A�ka; kb�; �57�
where in the real-space representation the matrix Aab is the

diagonal matrix

A�ra; rb� � d3D�ra 2 rb�j�ra�; �58�
while in the Fourier representation Aab is

A�ka; kb� � 1

2kakb

�ka�kb

jka2kbj
j�k�k dk: �59�

Convergence of A(ka , kb ) at ka � kb requires that j�k� , kn

with n . 22 at small wavenumber k. Convergence ofR
j(r)4pr2 dr at small r requires that j�r� , r2g with g , 3 at

small separation r. Thus for power-law power spectra j�k� / kn

(this is the evolved, non-linear power spectrum, not the original,

linear power spectrum), equivalent to power-law correlation

functions j�r� / r2g with g � n� 3, the hierarchical model is

consistent only for

22 , n , 0 or equivalently 1 , g , 3: �60�
It is straightforward to determine that, for power-law power

spectra j�k� / kn in the hierarchical limit (where the Gaussian

contribution becomes negligible), the correlation coefficient of the

four-point contribution Kab to the reduced covariance Cab is, for

ka @ kb,

Kab

�KaaKbb�1=2
! �Ra � Rb�

2
2n�2

n� 2
Ra � Rb

� � kb

ka

� �n=2

; �61�

which diverges as ka=kb ! 1 (for 22 , n , 0) unless

Rb � 2Ra. Thus the Schwarz inequality, which requires that the

absolute value of the correlation coefficient be less than or equal

to unity, is violated unless Rb � 2Ra. This problem has been

remarked upon and discussed by Scoccimarro et al. (1999, section

3.3). Scoccimarro et al. show from N-body simulations that the

traditional relation Ra < Rb holds approximately for ka < kb, but

that indeed Ra � Rb decreases systematically as ka and kb become

more and more separated. Scoccimarro et al. conclude that the

simple hierarchical model with constant amplitudes is not a good

description of the four-point function in the highly non-linear

regime.

For simplicity, the present paper adopts the hierarchical model

with constant amplitudes, and either Rb � 2Ra or Rb � Ra.

Ultimately, the latter choice leads to unphysically huge variances,

plainly a consequence of the violation of the Schwarz inequality.

Thus the canonical models in this paper have Rb � 2Ra.

However, where possible, intermediate results are also shown

for Rb � Ra.

3.3 Pre-whitening

The minimum variance estimator jÃa and associated Fisher matrix

Fab, equations (44) and (45), involve six-dimensional integrals of

C21ab(nÅi, nÅj) over all pairs ij of volume elements in a survey. This

is actually quite a feasible numerical problem. The reduced

covariance matrix Cab (nÅi, nÅj) is a rank 2 matrix of one-

dimensional quantities, so is straightforward to invert numerically

for any particular values of the selection functions nÅi and nÅj. If, as

is typical, the selection function separates into the product of an

angular mask and a radial selection function, then the angular

integrals can be done analytically (Hamilton 1993), leaving a

double integral of C21ab(nÅi, nÅj) over the radial directions, which is

doable. This direct procedure is discussed further in Section 8, and

forms the basis of the gourmet recipe summarized in Section 9.1.

Still, the integration is burdensome, and it is enlightening to

explore whether further simplification is possible.

Ideally what one would like is that there would exist a

representation in which Cab(nÅi, nÅj) were simultaneously diagonal

for arbitrary values of the selection function nÅ . Precisely this

situation obtains in the case of Gaussian fluctuations, for which

the reduced covariance matrix Cab is diagonal in Fourier space:

Cab� �ni; �nj� � 2�2p�3d3D�ka 2 kb��j�ka� � �n21
i ��j�ka� � �n21

j �;
�62�

regardless of the values nÅi and nÅj of the selection function.

For non-Gaussian fluctuations, the reduced covariance

Cab� �ni; �nj� is a linear combination of four-point, three-point and

two-point matrices Kab , Jab and Hab , according to equation (42).

Finding a representation in which Cab(nÅi, nÅj) is diagonal for any nÅi

and nÅj thus means diagonalizing the three matrices K, J and H

simultaneously. This is of course generically impossible.

However, it is possible to diagonalize two (K and H) of the three

matrices simultaneously by the trick of pre-whitening, and to cross

one's fingers on the third matrix (J). The term pre-whitening refers

to the operation of multiplying a signal by a function in such a

way that the noise becomes white, or constant (Blackman &

Tukey 1959, section 11). Pre-whitening is commonly used in the

construction of Karhunen±LoeÁve modes (signal-to-noise ratio

eigenmodes), in order to allow a signal and its noise to be

diagonalized simultaneously (Vogeley & Szalay 1996; Tegmark

et al. 1997, 1998).

Define the pre-whitened reduced covariance Bab to be

B ; H21=2CH21=2; �63�
and similarly define the pre-whitened three-point and four-point

matrices Mab and Lab to be

M ; H21=2KH21=2; �64�
L ; H21=2JH21=2: �65�
By construction, the pre-whitened two-point matrix is the unit

matrix, H21=2HH21=2 � 1. In terms of the pre-whitened four-

point and three-point matrices Mab and Lab , the pre-whitened

reduced covariance Bab (nÅi, nÅj) is (compare equation 42)

Bab� �ni; �nj� � 2�Mab � � �n21
i � �n21

j �Lab � �n21
i �n21

j 1ab�: �66�
The properties of the pre-whitened four-point and four-point

matrices M and L are examined in Section 4.

3.4 FFTLog

Several of the manipulations described in this paper involve

transforming between real and Fourier space. Ideally, one would

like to be able to cover several orders of magnitude in separation

or wavenumber. The SDSS, for example, should be able to probe

scales from 1022 to 103 h21 Mpc, a range of 105. If the Fourier

transforms were done using standard fast Fourier transform (FFT)

techniques, which require lineary spaced points, covering such a

range would require 105 points. The trouble with this is that one

q 2000 RAS, MNRAS 312, 257±284
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would then have to manipulate 105 � 105 matrices. Clearly this is

a problem of the shoe not fitting the foot ± that is, a linear spacing

of points is not well suited to the case at hand: while the difference

between separations of 0.01 and 0.02 h21 Mpc may be significant,

the difference between 1000.01 and 1000.02 h21 Mpc is practi-

cally irrelevant.

The problem may be solved by using an FFT method originally

proposed by Talman (1978) that works for logarithmically spaced

points, and which I have implemented in a code FFTLog. FFTLog

is analogous to the normal FFT in that it gives the exact Fourier

transform of a discrete sequence that is uniformly spaced and

periodic in logarithmic space. More generally, FFTLog yields fast

Hankel (�Fourier±Bessel� transforms of arbitrary order, including

both integral and 1/2-integral orders. FFTLog, like the normal

FFT, suffers from the usual problems of ringing (response to

sudden steps) and aliasing (periodic folding of frequencies), but,

under appropriate circumstances and with suitable precautions,

discussed in Appendix B, it yields reliable Fourier transforms

covering ranges of many orders of magnitude with modest

numbers of points.

Appendix B gives further details of FFTLog. The code may be

downloaded from http://casa.colorado.edu/,ajsh/FFTLog/.

4 P R E - W H I T E N E D F O U R - P O I N T A N D

T H R E E - P O I N T C OVA R I A N C E M AT R I C E S

4.1 Computation

Before showing pictures, it is helpful to comment on the

numerical computation of the four-point and three-point covar-

iance matrices Kab and Jab and their pre-whitened counterparts

Mab and Lab .

Equations (55) and (56) give expressions for the four-point and

three-point matrices K(ka , kb ) and J(ka , kb ) in Fourier space, for

the hierarchical model with constant hierarchical amplitudes.

These are discretized as described in Section 2.3. An issue here is

the calculation of the subsidiary matrix A(ka , kb). This matrix Aab

is diagonal in real space with diagonal entries j (ra ), equation (58),

so one way to calculate A(ka , kb) is to start with the diagonal

matrix A(ra, rb ) in real space, and then Fourier transform it into

Fourier space. Unfortunately, the resulting Fourier transformed

matrix A(ka , kb ) shows evident signs of ringing and aliasing,

which is true whether the wavenumbers ka are linearly spaced

(FFT) or logarithmically spaced (FFTLog). Part of the difficulty is

that the diagonal matrix A(ra, rb ) is liable to vary by several

orders of magnitude along the diagonal; since the FFT (or

FFTLog) assumes that the matrix is periodic, the matrix appears

to have a sharp step at its boundary. These problems can be

reduced by padding the matrix, and in the case of FFTLog by

biasing the matrix with a suitable power law (see Appendix B).

Still, artefacts from the FFT remain a concern.

A more robust procedure, the one used in this paper, is to avoid

FFTs altogether, and to calculate the matrix A(ka , kb) directly

from its Fourier expression (59).

A similar issue arises when pre-whitening the four-point and

three-point matrices K and J. The pre-whitening matrix H21=2 �
�1� A�21=2 is again diagonal in real space, with diagonal entries

�1� j�r��21=2. Thus one way to pre-whiten K (say) is to start with

K(ka , kb) in Fourier space, Fourier transform it into real space,

pre-whiten M�ra; rb� � �1� j�ra��21=2K�ra; rb��1� j�rb��21=2,

and then Fourier transform back into Fourier space. Once again

the resulting matrix M(ka , kb) shows signs of ringing and aliasing.

Again, a more robust procedure, the one used in this paper, is to

avoid FFTs, and to calculate the pre-whitening matrix H21=2 �
�1� A�21=2 directly in Fourier space. Specifically, take the

Fourier expression (59) for A(ka , kb ), add the unit matrix 1 to

form H, and evaluate the inverse positive square root H21/2 via an

intermediate diagonalization. This yields the pre-whitening matrix

H21/2 in Fourier space, which can be used directly to pre-whiten

the four-point and three-point covariance matrices K and J in

Fourier space. This manner of constructing H21/2 guarantees that

the pre-whitened two-point covariance matrix H21/2H H21/2 is

numerically equal to the unit matrix 1, as it should be. Although

this procedure is slower than using FFTs, it yields results that are

robust with respect to range, resolution and linear or logarithmic

binning, and consistent with the results from FFTs if due care is

taken with the latter.

q 2000 RAS, MNRAS 312, 257±284

Figure 2. Correlation coefficient K�ka; kb�=�K�ka; ka�K�kb; kb��1=2 of the

four-point contribution K(ka , kb ) to the covariance of the power (i.e. the

covariance without shot-noise) in the case of a power-law power spectrum

with correlation function j�r� � �r=5 h21 Mpc�21:8. Each line is the

correlation coefficient for a fixed kb , and each line peaks at ka � kb,

whereat the value is unity. The hierarchical amplitudes are Ra � 2Rb �
4:195: The resolution is 128 points per decade, D log k � 1=128.

Figure 3. Correlation coefficient M�ka; kb�=�M�ka; ka�M�kb; kb��1=2 of the

four-point contribution M(ka , kb ) to the pre-whitened covariance of a

power-law power spectrum with correlation function j�r� �
�r=5 h21 Mpc�21:8: Lines are dotted where the correlation coefficient is

negative. This is the same as Fig. 2, except that the covariance is pre-

whitened.
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4.2 Pre-whitened four-point covariance matrix

Fig. 2 shows the correlation coefficient Kab /(KaaKbb)1/2 (no

implicit summation) of the four-point contribution Kab to the

(unpre-whitened) reduced covariance matrix Cab , equation (42),

for the case of a power-law power spectrum having correlation

function j�r� � �r=5 h21 Mpc�21:8. Physically, the quantity plotted

is the (correlation coefficient of the) covariance of estimates of

power in the case of a perfect survey with no shot-noise, �n! 1.

The correlation coefficient offers a good way to visualize the

covariance, since a value of �2�1 means that two quantities are

perfectly (anti-)correlated, and the Schwarz inequality requires

that the absolute value of the correlation coefficient always be less

than or equal to unity.

The Gaussian spikes evident in the curves on the leftward,

linear, side of Fig. 2 reflect the fact that the covariance of power

becomes diagonal in the linear, Gaussian regime. In the non-linear

regime, the hierarchical contribution to the covariance dominates,

and the covariance of power becomes quite broad, a point

previously made by Meiksin & White (1999) and Scoccimarro

et al. (1999).

It should be borne in mind that the shape of the correlation

coefficient shown in Fig. 2 depends on the resolution in

wavenumber k, a point emphasized by Scoccimarro et al.

(1999). In Fig. 2 the points are logarithmically spaced with 128

points per decade, so D log k � 1=128. However, the correlation

coefficient varies in an unsurprising way: as the resolution

increases, the Gaussian spikes gets spikier, tending in principle to

a Dirac delta-function in the limit of infinite resolution.

Fig. 3 shows the correlation coefficient Mab /(MaaMbb )1/2 of

the four-point contribution Mab to the pre-whitened reduced

covariance Bab , equations (63) and (66), again for the case of a

power-law power spectrum having correlation function

j�r� � �r=5 h21 Mpc�21:8. The only difference between this figure

and Fig. 2 is that the covariance is now pre-whitened.

The pre-whitened covariance M plotted in Fig. 3 appears to be

remarkably narrow, certainly substantially narrower than the

covariance shown in Fig. 2. The Gaussian spikes again show up in

the linear regime, and again the hierarchical contribution to the

pre-whitened covariance dominates in the non-linear regime. The

hierarchical contribution appears empirically to have a constant

width of Dk < p=r0 < 1 h Mpc21, where r0 � 5 h21 Mpc is the

correlation length. Thus the pre-whitened covariance appears to

become relatively narrower at large wavenumber k.

Fig. 4 shows the correlation coefficients of the covariance of the

power, both straight K and pre-whitened M, for several other

power spectra. In each case the covariance of power with the

power at k � 1 h Mpc21 is plotted, which is essentially the `worst

case', where the pre-whitened covariance M is relatively broadest.

The solid lines in Fig. 4 are for four-point hierarchical

amplitudes Rb � 2Ra, while the dashed lines are for Rb � Ra.

As discussed in Section 3.2, the hierarchical model violates the

Schwarz inequality at ka @ kb (or ka ! kb) unless Rb � 2Ra.

Fig. 4 illustrates that the pattern encountered in Figs 2 and 3 is

remarkably robust over different power spectra. That is, while the

covariance of the power is itself broad, in all cases the covariance

of the pre-whitened power is substantially narrower, at least for

Rb � 2Ra (solid lines). Note that the power-law power spectra

illustrated in Fig. 4 cover essentially the full range of indices,

1 , g , 3, allowed by the hierarchical model.

The situation for Rb � Ra is muddier. Although the core of the

pre-whitened covariance is for the most part reasonably narrow

also in this case, the off-diagonal covariances at ka @ kb (or

ka ! kb) are starting to become worrying large in several cases.

Some of this behaviour is undoubtedly inherited from the

unphysical (Schwarz-inequality-violating) behaviour of the ordin-

ary covariance, and is surely not realistic. Here I leave the

problem with the comment that further investigation is clearly

required, along the lines being pioneered by Scoccimarro et al.

(1999).

4.3 Pre-whitened three-point covariance matrix

As discussed in Section 3.3, it would be ideal if the pre-whitened

three-point contribution Lab to the covariance of power were

diagonal in the same representation as the four-point contribution

Mab .

q 2000 RAS, MNRAS 312, 257±284

Figure 4. Correlation coefficients (top) K�ka; kb�=�K�ka; ka�K�kb; kb��1=2 of the covariance, and (bottom) M�ka; kb�=�M�ka; ka�M�kb; kb��1=2 of the pre-

whitened covariance, of the power spectrum in four different models of the power spectrum. Each curve is the correlation coefficient at fixed kb � 1 h Mpc21,

plotted as a function of ka . The three sets of panels starting from the left are for power-law power spectra with correlation functions j�r� � �r=5 h21 Mpc�2g

with indices g � 1:1; 1.8 and 2.9, while the rightmost panel is for the LCDM power spectrum of Eisenstein & Hu (1998) with VL � 0:7; Vm � 0:3;
Vbh2 � 0:02 and h � 0:65, non-linearly evolved by the procedure of Peacock & Dodds (1996). The two lines on each graph are for four-point hierarchical

amplitudes (solid) Rb � 2Ra, and (long-dashed) Rb � Ra. Lines are dotted where the correlation coefficient is negative. The Schwarz inequality, which

requires that the correlation coefficient be # 1, is violated by the hierarchical model with Rb � Ra at values k ! k 0 and k @ k 0. The resolution is 128 points

per decade, the same as in Figs 2 and 3.
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Fig. 5 shows the correlation coefficient of the pre-whitened

three-point covariance Lab in the representation of eigenfunctions

of the pre-whitened four-point covariance Mab , for the case of

j�r� � �r=5 h21 Mpc�21:8. The horizontal axis here is a nominal

wavenumber ka labelling each eigenfunction fa (k) of the pre-

whitened four-point covariance Mab . In practice, the eigenfunc-

tions are simply ordered by eigenvalue, which in most cases (see

below) yields a satisfactory ordering by wavenumber, in the sense

that the corresponding eigenfunctions fa (k) have their largest

components around k < ka.

At first sight, the correlation coefficient plotted in Fig. 5 looks

astonishingly diagonal at all wavenumbers, for both Rb � 2Ra

and Rb � Ra. However, as Scoccimarro et al. (1999) emphasize,

off-diagonal elements, although they may be small, are many. The

resolution in Fig. 5 is 128 points per decade, and the off-diagonal

elements in the case Rb � 2Ra are down at the level of , 1=100,

which means that cumulative off-diagonal covariance over a

decade of wavenumber would be comparable to the diagonal

variance. Curiously, the off-diagonal elements are somewhat

smaller for Rb � Ra than for Rb � 2Ra.

In Section 6 and thereafter the approximation will be made,

equation (80), that the three-point matrix L is indeed diagonal in

the representation of four-point eigenfunctions. If L is not

precisely diagonal, then the `minimum variance' pair-weighting

that emerges from assuming diagonality will not be precisely

minimum variance. However, a linear error in the pair-weighting

will raise the variance quadratically from its minimum, so the

pair-weighting should be close to minimum variance as long as L

is not too far from being diagonal. In any case, as discussed in

Section 7.1, the estimate of power remains unbiased whatever

approximations are made.

Fig. 6 shows the correlation coefficient of the pre-whitened

three-point covariance Lab in the representation of eigenfunctions

of the pre-whitened four-point covariance Mab for a number of

different power spectra, at a representative nominal wavenumber

ka � 1 h Mpc21. The figure illustrates that this correlation

coefficient remains remarkably diagonal for all power spectra.

Again, the range of power-law power spectra shown covers

essentially the full range 1 , g , 3 allowed by the hierarchical

model.

In the case g � 2:9, the off-diagonal elements of the correlation

coefficient shown in Fig. 6 appear to bounce around, even though

taken as a whole the correlation coefficient appears more diagonal

in this case than in any other. The apparent noise is caused by a

near-degeneracy of eigenvalues. Such degeneracy is not too

surprising, since in the limit g! 3 the pre-whitened three-point

and four-point matrices Lab and Mab are both expected to

become proportional to the unit matrix. Numerically, for both

three-point and four-point matrices, there is a degeneracy of

eigenvalues between eigenfunctions at small and large wavenum-

bers (in the sense that eigenfunctions with nearly the same

eigenvalue may have their largest components at either small or

large wavenumber): the eigenvalues are larger at small and large

wavenumbers, and go through a minimum at intermediate

wavenumber. The degeneracy causes mixing of the eigenfunctions

at small and large wavenumbers, making the correspondence

between eigenvalue and nominal wavenumber ambiguous, and

resulting in the oscillations in the off-diagonal components

apparent in Fig. 6.

4.4 Four-point and three-point eigenvalues

Denote the eigenvalues of the four-point and three-point pre-

whitened covariance matrices M and L by

Mfa � m2
afa; �67�

Lwa � lawa �68�
(no implicit summation on the right-hand side), so that for

Gaussian fluctuations the eigenvalues ma and la would be

ma � la � j�ka�.
Fig. 7 shows the ratio ma=j�ka� of the four-point eigenvalues

ma to the non-linear power spectrum j (ka ), plotted as a function

of the nominal wavenumber ka , which labels the eigenfunctions

fa ordered by eigenvalue, for a power-law power spectrum with

correlation function j�r� � �r=5 h21 Mpc�21:8. The eigenvalue is

comparable to the power spectrum at all wavenumbers,

ma , j�ka�. In the Gaussian, small-ka regime the eigenvalue is

equal to the power spectrum, ma � j�ka�, as expected, while in the

hierarchical, large-ka regime the eigenvalue tends asymptotically

to close to 2R1=2
a times the power spectrum, ma < 2R1=2

a j�ka�.
Similar behaviour is found for other power spectra (not plotted),

and for the three-point eigenvalue la , which in the hierarchical

regime tends asymptotically to la < 2Qj�ka�.
q 2000 RAS, MNRAS 312, 257±284

Figure 5. Correlation coefficient Lab=�LaaLbb�1=2 of the pre-whitened

three-point covariance Lab in the representation of eigenfunctions fa of

the pre-whitened four-point covariance Mab , for a power-law power

spectrum with correlation function j�r� � �r=5 h21 Mpc�21:8. Each line is

the correlation coefficient at a fixed nominal wavenumber kb , plotted

against the nominal wavenumber ka , which labels the four-point

eigenfunctions fa ordered by eigenvalue. Each line peaks at ka � kb,

whereat the correlation coefficient is unity. The upper panel is for four-

point hierarchical amplitudes Rb � 2Ra; the lower panel is for Rb � Ra.

Lines are dotted where the correlation coefficient is negative. The

resolution is D log k � 1=128.
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Fig. 8 shows the ratio la /ma of three-point to four-point

eigenvalues, as a function of the nominal wavenumber ka , for

several power spectra. Remarkably, the ratio la /ma of eigenva-

lues is quite close to unity at all wavenumbers and for all power

spectra. The case g � 2:9 is not plotted, in part because of the

same problem of mixing of eigenfunctions shown in Fig. 6. In any

case, for g � 2:9 the ratio la /ma differs from unity by less than

1 per cent at all wavenumbers. Analytically, the ratio is expected

to equal one in the limit g! 3.

In the LCDM model, the eigenfunctions fa (and wa ) mix

where the eigenvalues ma (and la ) are degenerate, which

happens because the LCDM power spectrum goes through a

maximum at k < 0:017 h Mpc21. For the purpose of plotting the

ratio la /ma for the LCDM model in the bottom panel of Fig. 8,

q 2000 RAS, MNRAS 312, 257±284

Figure 7. Ratio ma=j�ka� of the eigenvalue ma of the four-point pre-

whitened covariance matrix M to the non-linear power spectrum j(ka ), as a

function of the nominal wavenumber ka , which labels the four-point

eigenfunctions fa ordered by eigenvalue, for a power-law power spectrum

with correlation function j�r� � �r=5 h21 Mpc�21:8. The relation between

eigenvalue and nominal wavenumber varies with resolution. The low-

resolution case has D log k � 1=32; the solid line is for Rb � 2Ra, the

long-dashed line for Rb � Ra. The high-resolution case has D log k �
1=128; here the (dashed) Rb � 2Ra and (dotted) Rb � Ra curves lie

practically on top of each other.

Figure 6. Correlation coefficient Lab=�LaaLbb�1=2 of the pre-whitened three-point covariance Lab in the representation of eigenfunctions fa of the pre-

whitened four-point covariance Mab , at a representative nominal wavenumber kb � 1 h Mpc21. The horizontal axis is the nominal wavenumber ka , which

labels the four-point eigenfunctions fa ordered by eigenvalue. The three sets of panels starting from the left are for power-law power spectra with correlation

functions j�r� � �r=5 h21 Mpc�2g with indices g � 1:1; 1.8 and 2.9, while the rightmost panel is for the LCDM power spectrum of Eisenstein & Hu (1998)

with VL � 0:7; Vm � 0:3; Vbh2 � 0:02 and h � 0:65. Upper panels are for four-point hierarchical amplitudes Rb � 2Ra, lower panels for Rb � Ra. Lines

are dotted where the correlation coefficient is negative. The resolution is D log k � 1=32, four times coarser than that of Fig. 5. What appears to be noise in

the curve for g � 2:9 results from a degeneracy of eigenvalues that mixes the correspondence between eigenfunctions fa and nominal wavenumbers ka .

Figure 8. Ratio la=ma of the eigenvalues of the three-point and four-point

pre-whitened covariance matrices, for various power spectra. The two lines

in each case are for four-point hierarchical amplitudes (solid) Rb � 2Ra

and (long-dashed) Rb � Ra. The horizontal axis is the nominal

wavenumber ka , which labels the three-point and four-point eigenfunc-

tions wa and fa ordered by eigenvalue. The relation between eigenvalue

and nominal wavenumber varies with resolution. The resolution is

D log k � 1=32, except for a high-resolution case shown for g � 1:8,

where D log k � 1=128.
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this mixing was avoided by the device of truncating the matrices

Mab and Lab at a wavenumber close to the peak. Mixing causes no

problems for the evaluation of the minimum variance estimator and

Fisher matrix of the pre-whitened power spectrum in Sections 6 and

7 (so there is no need to truncate the matrices in general), but mixing

does muddy the physical interpretation of the eigenfunctions.

Curiously, the ratios ma /j (ka ) and la /j (ka ), regarded as

functions of the nominal wavenumber ka , vary with the resolution

D log k of the matrix, as illustrated in Figs 7 and 8 for the case

g � 1:8. In the Gaussian limit of small ka , the ratios do not

change with resolution, but in the hierarchical limit of large ka the

ratios seems to shift (to the right in the figures, as the resolution

increases) in such a way that the ratios are functions of the product

kaD log k. At intermediate ka , the shift is intermediate. Now the

wavenumber ka is only a nominal wavenumber, a labelling of

the eigenfunctions ordered by eigenvalue, and it is only in the

Gaussian regime that the eigenmodes are Fourier modes and the

correspondence between nominal and true wavenumber is precise.

Still, the shift seems surprising: for example, in the limit of

infinite resolution D log k ! 0, the ratio ma /j (ka ) plotted in Fig. 7

would shift to the right so far that ma /j (ka ) would equal 1 at all

finite wavenumbers. Similarly, the ratio la /ma plotted in Fig. 8

would shift to the right so far that la /ma would equal 1 at all

finite wavenumbers. Numerically, to the limit to which I have

tested it �D log k � 1=1024�, this is indeed what seems to happen:

both ma /j (ka) and la /j(ka ), hence also their ratio la=ma; shift

to the right together as the resolution increases, for all power

spectra.

This does not appear to be a numerical error, because

`observable' quantities computed via the eigenfunctions fa and

their eigenvalues ma , such as the error bars attached to the pre-

whitened power spectrum XÃ (k) in Fourier space (Section 7),

appear robust against changes in resolution.

Examination of the eigenfunctions of the four-point and three-

point matrices M and L reveals at least part of the reason why their

eigenvalues seem to shift as the resolution increases. Fig. 9 shows

a sampling of eigenfunctions fa of the four-point matrix M for

the case j�r� � �r=5 h21 Mpc�21:8, at two different resolutions,

D log k � 1=32 and 1/128. Whereas in the Gaussian, small-ka
regime the eigenfunctions go over to delta-functions in Fourier

space, in the hierarchical, large-ka regime the eigenfunctions grow

ever wigglier as the resolution increases. What seems to happen is

that, as the resolution increases, eigenfunctions at neighbouring

nominal wavenumbers ka strive to remain orthogonal to each

other, which they accomplish by becoming wigglier and wigglier.

To the limit to which I have tested it numerically, there seems to

be no end to the wiggliness. Given that there is no asymptotic limit

to which the eigenfunctions appear to tend, perhaps it is not

surprising that their eigenvalues should shift systematically too.

However, it would be nice to have a better understanding of what

is going on.

5 P R E - W H I T E N E D P OW E R S P E C T R U M

5.1 Definition

Given the nice properties of the pre-whitened covariance of power

established in the previous section, Section 4, it makes sense to

define a pre-whitened power spectrum Xa , and a corresponding

estimator XÃa thereof, with the property that the covariance of the

pre-whitened power equals the pre-whitened covariance of power.

Define, therefore, the pre-whitened power spectrum Xa by, in

the real-space representation,

X�r� ;
2j�r�

1� �1� j�r��1=2
: �69�

The expression (69) is equivalent to X�r� ; 2�1� j�r��1=2 2 2,

but the former expression (69) is numerically more stable to

evaluate when j(r) is small. Similarly, define an estimator XÃ a of

the pre-whitened power in terms of the minimum variance

estimator jÃa, equation (33), of the power spectrum by, again in the

real-space representation,

X̂�r� ;
2ĵ �r�

1� �1� ĵ �r��1=2
; �70�

which by construction has the property that for small DXÃ (r), as

should be true in the limit of a large amount of data [the following

equation is essentially the derivative of equation (70)],

DX̂�r� � Dĵ �r�
�1� ĵ �r��1=2

: �71�

The covariance of the estimate XÃa of the pre-whitened power

spectrum is given by

kDX̂aDX̂bl � �H21=2�gakDĵ gDĵ dl�H21=2�db � E21
ab ; �72�

where the Fisher matrix Eab of the pre-whitened power equals the

pre-whitened Fisher matrix of the power, equation (35),

Eab � �H1=2�agFgd�H1=2�bd : �73�
In Section 7 it will be found convenient to deal with another

pre-whitened estimator YÃa defined by

Ŷa ; �H21=2�baĵ b: �74�
The pre-whitened estimator YÃa has the same covariance as XÃa :

kDŶaDŶbl � kDX̂aDX̂bl � E21
ab : �75�

q 2000 RAS, MNRAS 312, 257±284

Figure 9. Sample of (discretized) eigenfunctions fa�k��4pk3D ln k=

�2p�3�1=2 of the pre-whitened four-point covariance Mab for a power-

law power spectrum with correlation function j�r� � �r=5 h21 Mpc�21:8,

and Rb � 2Ra, at resolutions of (top) D log k � 1=32 and (bottom)

D log k � 1=128. The eigenfunctions have nominal wavenumbers ka of

0.1, 1 and 10 h Mpc21. In the hierarchical regime, the eigenfunctions grow

wigglier as the resolution increases.
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So why not define YÃa to be the pre-whitened power? The problem

with the estimator YÃa is that it depends explicitly on the prior

power spectrum ja . That is, YÃa in real space is

Ŷ�r� � ĵ �r�
�1� j�r��1=2

; �76�

which involves an estimated quantity jÃ(r) in the numerator and the

prior quantity j (r) in the denominator. Imagine plotting YÃa on a

graph. Of what is this quantity supposed to be an estimate?

Obviously YÃa is an estimate of Ya ; kŶal � �H21=2�bajb. If one

wanted to attach error bars to the estimate, then to be fair one

should include the full covariance of the quantity being estimated,

including the covariance that arises from the denominator �1�
j�r��1=2 in equation (76), not just the covariance kDŶaDŶbl with

the denominator held fixed. Indeed, if one goes through the usual

ML cycle of permitting the data to inform the prior, so that the

estimated jÃ(r) is inserted into the denominator of equation (76),

then it becomes abundantly evident that it would be correct to

include covariance arising from the denominator.

To avoid confusion, it should be understood that the quantities

YÃa are of course perfectly fine for carrying out ML estimation of

parameters. In ML estimation, `error bars are attached to the

model, not to the data', to quote another of the refrains from the

1997 Aspen workshop on Precision Measurement of Large Scale

Structure. Whereas in ML parameter estimation with XÃa one

might form a likelihood from the `data' quantities DX̂�r� �
2ĵ �r�={1� �1� ĵ �r��1=2} 2 2j�r�={1� �1� j�r��1=2}; in ML

parameter estimation with YÃa one would instead form a likelihood

from the `data' quantities DŶ�r� � �ĵ �r�2 j�r��=�1� j�r��1=2.

For the purpose of plotting quantities on a graph, however,

plainly it is the pre-whitened power spectrum XÃa defined by

equation (70) that should be plotted, not YÃa.

5.2 Picture

Fig. 10 shows pre-whitened non-linear power spectra X(k), along

with linear and non-linear power spectra jL(k) and j(k), for the

observationally derived power spectrum of Peacock (1997) with

Vm � 0:3, and for a LCDM model of Eisenstein & Hu (1998)

with observationally concordant parameters as indicated on the

graph.

The non-linear power spectra j(k) were constructed from the

linear power spectra jL(k) according to the formula of Peacock &

Dodds (1996). Amongst other things, the Peacock & Dodds

formula depends on the logarithmic slope of the linear power

spectrum. Now the Eisenstein & Hu power spectrum contains

baryonic wiggles, causing the slope to oscillate substantially,

whereas what Peacock & Dodds had in mind was a rough average

slope. For the slope of the LCDM model in the Peacock & Dodds

formula, I therefore used the slope of the `no-wiggle' power

spectrum provided by Eisenstein & Hu as a smooth fit through the

baryonic wiggles. The alternative of using the wiggly slope has the

additional demerit that it amplifies baryonic wiggles in the non-

linear regime, which is opposite to the suppression of baryonic

wiggles in the non-linear regime observed in N-body simulations

by Meiksin, White & Peacock (1999).

The pre-whitened power spectra X(k) shown in Fig. 10 were

computed by transforming the non-linear power spectrum j (k)

into real space using FFTLog (see Appendix B, Fig. B1),

constructing the pre-whitened power X(r) from j (r) according to

equation (69), and Fourier transforming back.

The pre-whitened power spectra shown in Fig. 10 appear to be

interestingly close to the linear power spectra, X�k� < jL�k�,
another one-eyebrow-raising property of the pre-whitened power

spectrum. Surely this is just coincidence, however, since for a

primordial power spectrum j�k� / kn the pre-whitened correlation

in the highly non-linear regime should go as X�r� < 2j�r�1=2 /
r23�n�3�=2�n�5� assuming stable clustering (Peebles 1980, equation

73.12), whereas the linear power spectrum would go as r2(n+3), the

power-law exponents of which agree only in the limiting case

n! 23. Still, the coincidence is curious.

Fig. 10 points up one defect of the pre-whitened power

spectrum, which is that, surprisingly enough, it does not reproduce

the linear power spectrum at the very largest scales (small k).

Indeed, the pre-whitened power goes negative in the Peacock

(1997) case at k < 0:0023 h Mpc21, and in the LCDM case at

k < 0:000 21 h Mpc21. This turns out to be a generic feature of the

pre-whitened power spectrum if the true power spectrum goes to

zero at zero wavenumber, as is true for Harrison±Zel'dovich

q 2000 RAS, MNRAS 312, 257±284

Figure 10. Linear power spectrum jL(k), non-linear power spectrum j (k), and pre-whitened non-linear power spectrum X(k) for (left) the Vm � 0:3 power

spectrum derived from observations by Peacock (1997), and (right) the COBE-normalized LCDM power spectrum from the fitting formulae of Eisenstein &

Hu (1998), with parameters as listed on the graph. The non-linear power spectra were computed from the linear power spectra according to the formula of

Peacock & Dodds (1996). The LCDM power spectrum is the one used in Figs 4, 6, 8, 11 and B1.
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models, j�k� / k as k ! 0. For, if it is true that the power

spectrum j (k) goes to zero at zero wavenumber k,

lim
k!0

j�k� �
�1

0

j�r�4pr2 dr � 0; �77�

then it follows that the pre-whitened power must go to a negative

constant at zero wavenumber,

lim
k!0

X�k� �
�1

0

2j�r�
1� �1� j�r��1=2

4pr2 dr , 0; �78�

since the factor 2={1� �1� j�r��1=2} in the integrand is less than

one for all positive j(r), and greater than one for all negative j (r).

It is not clear what to do about this, if indeed anything needs to be

done. Adding a constant to X(k) and XÃ (k) (which would leave DXÃ ,

hence the covariance kDX̂DX̂l, unchanged) would spoil the nice

behaviour of the pre-whitened power in the non-linear regime.

6 F I S H E R M AT R I X O F P R E - W H I T E N E D

N O N - L I N E A R P OW E R I N A S U RV E Y

It was found in Section 4 that the pre-whitened reduced covariance

B of power appears to have some unexpectedly pleasant

properties: first, the pre-whitened covariance is surprisingly

narrow in Fourier space; secondly, the four-point and three-point

contributions M and L, equation (66), to the pre-whitened reduced

covariance B are almost simultaneously diagonal (the two-point

contribution is by construction the unit matrix, so is automatically

diagonal in any representation); thirdly, the four-point and three-

point eigenvalues ma and la , as defined by equations (67) and

(68), are approximately equal; fourthly, all these results hold for

all power spectra tested.

It should be emphasized that the pleasant properties of the pre-

whitened power are not perfect, and that they are premised on the

validity of the hierarchical model with constant hierarchical

amplitudes, which as discussed in Section 4.2 is certainly wrong at

some level.

These pretty properties lead to an approximate expression,

equation (83), for the Fisher matrix of the pre-whitened non-linear

power spectrum of a galaxy survey, which looks the same as the

FKP approximation to the Fisher matrix of the power in the linear,

Gaussian case, with the difference that the eigenmodes of the pre-

whitened covariance M of the non-linear power take the place of

the Fourier modes in the linear case.

6.1 Fisher matrix

To the extent that the pre-whitened four-point and three-point

matrices M and L are simultaneously diagonal, the pre-whitened

reduced covariance matrix Bab (nÅi, nÅj) is diagonal in the

representation of eigenfunctions fa of M and L, with

Bab� �ni; �nj� < 21ab�m2
a � � �n21

i � �n21
j �la � �n21

i �n21
j �: �79�

To the further extent that la < ma, the pre-whitened covariance

matrix Bab (nÅi, nÅj) is just

Bab� �ni; �nj� < 21ab�ma � �n21
i ��ma � �n21

j �: �80�
The Fisher matrix Fab of the power spectrum is given in the

FKP approximation by equation (45). In terms of the pre-whitened

reduced covariance Bab , the Fisher matrix Fab is

Fab � �H21=2�ad B21de�H21=2�geDij
gD

b
ij : �81�

Now �H21=2�ge commutes with Dij
gD

b
ij , since both are simulta-

neously diagonal in real space. It follows that the Fisher matrix

E ; H1=2FH1=2 of the pre-whitened power, equation (73), is, in

the FKP approximation,

Eab � B21agDij
gD

b
ij : �82�

Like Fab, the pre-whitened Fisher matrix Eab is asymmetric,

inheriting its asymmetry from the FKP approximation, equation

(41).

To the extent that the approximation (80) to B is true, it follows

from equation (82) that the Fisher matrix Eab of pre-whitened

power in the FKP approximation is, in the representation of

eigenfunctions fa of the pre-whitened covariance,

Eab �
�1

0

fa�r�fb�r�R�r;ma�4pr2 dr; �83�

where R(r;ma ) are FKP-weighted pair integrals (commonly

denoted kRRl in the literature, for random±random),

R�r;ma� �
�

d3D�rij 2 r�
2�ma � �n�ri�21��ma � �n�rj�21� d3ri d3rj; �84�

the integration being taken over all pairs of volume elements ij

separated by rij ; jri 2 rjj � r in the survey.

The FKP approximation to the Fisher matrix Eab of pre-

whitened power, equation (83), takes the same form as the FKP

approximation to the Fisher matrix of the power spectrum for

Gaussian fluctuations derived in section 5 of Paper I and

computed in section 3 of Paper II. The difference is that the

eigenfunctions fa (r) and their eigenvalues ma here take the place

of the Fourier eigenfunctions j0(kar) and their eigenvalues j (ka )

in the Gaussian case.

6.2 Numerics

Equation (83) for Eab involves the eigenfunctions fa (r) of the

pre-whitened four-point matrix M in real space, whereas in

Section 4.1 it was suggested that the most robust way to compute

M is in Fourier space. The problem is that FFTing the matrix M

from Fourier into real space is liable to introduce ringing and

aliasing, which one would like to avoid.

A more robust procedure is not to FFT M into real space, but

rather to FFT the pair integrals R(r;ma ) into Fourier space; this is

the same procedure as adopted in section 3 of Paper II (except that

R here is 1/2 that of Paper II). If ma is treated, temporarily, as a

constant, then equation (83) can be transformed into real space to

yield the diagonal matrix

E�r; r 0;ma� � d3D�r 2 r 0�R�r;ma�: �85�
Beware of equation (85)! It does not signify that the Fisher matrix

is diagonal in real space, because the constant ma is different for

each row of the Fisher matrix Eab . The Fourier transform of

E(r, r 0;ma) is E�k; k 0;ma� �
�

j0�kr�j0�k 0r�R�r;ma�4pr2 dr, which

simplifies to

E�k; k 0;ma� �
p

kk 0
� ~R�k 2 k 0;ma�2 ~R�k � k 0;ma�� �86�

where RÄ (k;ma) is the one-dimensional cosine transform of

R(r;ma ):

~R�k;ma� ; 2

�1

0

cos�kr�R�r;ma� dr: �87�

q 2000 RAS, MNRAS 312, 257±284
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Transforming E(k, k 0;ma ) into fa-space gives

Eab �
�
fa�k�fb�k 0�E�k; k 0;ma�

4pk2 dk 4pk 02 dk 0

�2p�6 : �88�

The cosine transform RÄ (k;ma ), equation (87), can be done with

either FFT or FFTLog; both work well. To ensure that RÄ (k;ma )

remains accurate at large (and small) wavenumbers k, it helps to

extrapolate R(r;ma ) to small (and large) separations r before

transforming. The transformation into fa -space, equation (88), is

done by discrete summations.

Evaluating the Fisher matrix Eab with equations (86)±(88)

successfully eliminates ringing and aliasing, but it introduces

another problem. The problem is that equation (86) is liable to

overestimate the value of E(k, k 0;ma ) along the diagonal k � k 0 if

the gridding in k-space is too coarse to resolve the diagonal

properly, as typically occurs at moderate and large k with

logarithmic gridding. What is important is that the integral of

E(k, k 0;ma ) over the diagonal be correct. Integrating E(k, k 0;ma )

over k 0 yields�1

0

E�k; k 0;ma�k 0 dk 0 � 2p

k

�k

0

~R�k 0;ma� dk 0: �89�

The integral on the right can be done conveniently and reliably by

sine transforming (with FFT or FFTLog) the pair integral�k

0

~R�k 0;ma� dk 0 � 2

�1

0

sin�kr� R�r;ma�
r

dr: �90�

Discretized (Section 2.3) on a logarithmic grid of wavenumbers

k, the continuous matrix E�k; k 0;ma� becomes Ekk 0 �ma� �
E�k; k 0;ma� 4p�kk 0�3=2D ln k=�2p�3; and equation (89) becomesX

k 0
�k 0=k�1=2Ekk 0 �ma� �

1

p

�k

0

~R�k 0;ma� dk 0: �91�

Numerically, if the left-hand side of equation (91), with Ekk 0(ma )

discretized from equation (86), exceeds the right-hand side of

equation (91), evaluated by equation (90), then the value of the

diagonal element Ekk(ma) should be reduced so that the sum is

satisfied. Ultimately, this procedure yields error bars on

decorrelated band-powers (Paper IV) that are robust with respect

to range, resolution and linear or logarithmic binning.

6.3 Coarse gridding

Typically the pair integral R(r;ma ) is broad in real space, so its

cosine transform RÄ (k;ma ) is a narrow window about k < 0 with a

width comparable to the inverse scalelength of the survey. It

follows that the matrix E(k, k 0;ma ) given by equation (86) is

likewise narrow in k-space, with a width comparable to the inverse

scalelength of the survey. Moreover, the sum in equation (91)

approximates R(0;ma ) at wavenumbers exceeding the inverse

scalelength of the survey, which is to say at all except the largest

accessible wavelengths:X
k 0
�k 0=k�1=2Ekk 0 �ma� < R�0;ma� for k @ scale21; �92�

where R(0;ma ) is the pair integral at zero separation

R�0;ma� �
�

d3r

2�ma � �n�r�21�2 : �93�

Thus, if the matrix Ekk 0(ma ) is discretized on a grid that is

coarse compared with the inverse scalelength of the survey, then it

is approximately proportional to the unit matrix:

Ekk 0 �ma� < 1kk 0R�0;ma�: �94�
The resulting discrete Fisher matrix Eab , equation (88), is

diagonal in the fa-representation

Eab < 1abR�0;ma�: �95�
The result (95) is analogous to that obtained by FKP for Gaussian

fluctuations.

Of course, if this diagonal Fisher matrix, equation (95), is

transformed back into Fourier space, then it is no longer diagonal.

That is, equation (95) asserts that the Fisher matrix of the pre-

whitened non-linear power spectrum is approximately diagonal in

fa -space, not in Fourier space.

7 E S T I M AT E O F P R E - W H I T E N E D

N O N - L I N E A R P OW E R I N A S U RV E Y

7.1 Unbiased estimate

`In the case of a Gaussian distribution¼ rather than removing the

bias we should approximately double it, in order to minimize the

mean square sampling error' ± E. T. Jaynes (1996, sentence

containing equation 17-13).

It is convenient to start out by considering the pre-whitened

estimator YÃa defined by equation (74). The minimum variance

estimator jÃa of the power spectrum in the FKP approximation is

given by equation (44). Translating this equation into pre-

whitened quantities, one concludes that the minimum variance

pre-whitened estimator YÃa in the FKP approximation is, in terms

of the pre-whitened reduced covariance B, equation (63), and its

associated Fisher matrix E, equation (73),

Ŷa � E21
ab B21bg�H21=2�egDij

e �didj 2 N̂ij�: �96�
The estimator YÃa is minimum variance if and only if jÃa is

minimum variance, since Ŷa ; �H21=2�baĵ b is a linear combina-

tion of jÃa .

Now the estimator YÃa, equation (96), is intended to be an

estimate of Ya ; �H21=2�bajb, but is that really true, given the

various approximations? It will be true provided that the estimator

is unbiased, meaning that the expectation value of the estimator is

equal to the true value

kŶal � Ya: �97�
The expectation value of the estimator YÃa given by equation (96)

is, since kdidj 2 N̂ijl � Da
ijja according to equation (27),

kŶal � E21
abB21bg�H21=2�egDij

eDz
ijjz

� E21
abB21bgDij

gDe
ijYe; �98�

where the second line follows because �H21=2�eg commutes with

Dij
eDz

ij, both being diagonal in real space. It follows that the

estimator YÃa will be unbiased, kŶal � Ya, provided that the Fisher

matrix Eab is taken to satisfy the asymmetric equation (82), not,

for example, a symmetrized version of that equation.

An important point to recognize here is that an estimate YÃa of

the form (96) will be unbiased for any a priori choice of the matrix

B, regardless of the choice of prior power j (k), regardless of the

hierarchical model, regardless of the FKP approximation, and

regardless of the approximation (such as equation 80) to B, just so
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272 A. J. S. Hamilton

long as the matrix E in the estimator is interpreted as satisfying the

unsymmetrized equation (82). Ultimately this property of being

unbiased is inherited from the basic prior assumption that galaxies

constitute a random, Poisson sampling of an underlying statisti-

cally homogeneous, isotropic density field, so that the product of

overdensities d id j at any pair of points ij separated by ra provides

an unbiased estimate of the correlation function j(ra ). Note that

the presumption here is that the galaxies sampled are an unbiased

tracer of the galaxy density itself, not necessarily of the mass

density.

Interpreting the estimator YÃa, equation (96), as involving the

asymmetric matrix Eab , equation (82), should be regarded not as

changing the estimator to make it unbiased, but rather as

interpreting the estimator correctly. If instead the estimator YÃa
were interpreted as involving the symmetrized Fisher matrix

E�ab� ; Sym�ab�Eab, for example, then the expectation value of

the estimator would be kŶal � E21
�ab�E

bgYg, which is not the same

as Ya, although of course it should be almost the same to the extent

that Eab is almost symmetric.

It is convenient to introduce yet another estimator ZÃa related to

the estimator YÃa by

Ŷa � E21
ab Ẑb: �99�

In the FKP approximation, the estimator ZÃa is

Ẑa � B21ab�H21=2�gbDij
g�didj 2 N̂ij�: �100�

If the approximation (80) to the pre-whitened covariance B is

used in the estimate (100) of ZÃ , then, in the representation of

eigenfunctions fa ,

Ẑa �
�1

0

fa�r�Ŝ�r;ma�
�1� j�r��1=2

4pr2 dr; �101�

where SÃ(r;ma ) is the FKP-weighted integral over pairs of

overdensities d (ri)d (rj) at points ij separated by rij ; jri 2 rjj �
r (commonly denoted kDDl 2 2kDRl� kRRl in the literature: D

for data, R for random):

Ŝ�r;ma� �
�

d3D�rij 2 r�d�ri�d�rj�
2�ma � �n�ri�21��ma � �n�rj�21� d3ri d3rj: �102�

The shot-noise NÃ ij is excluded from equation (102) by excluding

from the integration the contribution from self-pairs of galaxies,

which of course have zero separation. The associated asymmetric

Fisher matrix Eab is given by equation (83).

Equation (102) is expressed as an integral over pairs of

overdensities d (ri)d (rj) in real space. One could just as well

express SÃ as an integral over pairs of overdensities d(ki)d (kj) in

Fourier space, or pairs of overdensities d�ki; li;mi�d�kj; lj;mj� in

spherical harmonic space, if one found it more convenient.

7.2 Numerics

As in Section 6.2, to avoid potential problems of ringing and

aliasing, it is probably better to evaluate the estimator ZÃa ,

equation (101), by means of an expression that involves the

eigenfunctions fa (k) in Fourier space rather than the eigenfunc-

tions fa (r) in real space.

If ma is treated, temporarily, as a constant, then transforming

equation (101) into real space yields

Ẑ�r;ma� �
Ŝ�r;ma�
�1� j�r��1=2

: �103�

The Fourier transform of this is

Ẑ�k;ma� �
�1

0

j0�kr�Ẑ�r;ma�4pr2 dr; �104�

in terms of which the estimator ZÃa , equation (101), is

Ẑa �
�1

0

fa�k�Ẑ�k;ma�
4pk2 dk

�2p�3 : �105�

The transformation into fa -space, equation (105), is done by

discrete summation.

The advantage of equation (105) over the nominally equivalent

equation (101) is that in equation (105) it is the data that are

Fourier transformed, Ẑ�r;ma� ! Ẑ�k;ma�, equation (104),

whereas in equation (101) it is the eigenfunctions of the matrix

M that must be transformed, fa�k� ! fa�r�. While the two

methods would yield identical results for ZÃa if the same unitary

Fourier transform were applied in both cases, in reality it may be

advantageous to have the freedom to Fourier transform the data

the best way one can, without regard to the irrelevant question of

how the eigenfunctions fa behave when Fourier transformed.

7.3 The covariance of ZÃa

It will now be argued that the covariances of the estimators ZÃa and

YÃa are approximately equal to, respectively, the symmetrized

Fisher matrix E(ab ) and its inverse, equations (109) and (115). It

seems worthwhile to go through the arguments rather carefully. As

a general rule, one should estimate error bars as accurately as

possible; but if some approximation is necessary, then one would

prefer to err on the conservative side of overestimating the true

errors.

Equation (109) will now be derived, commentary on the

derivation being deferred to the end. The covariance of the

estimate ZÃa is, from equation (100),

kDẐaDẐbl � B21ag� �ni; �nj��H21=2�egDij
e Ctrue

ijkl Dkl
z

� �H21=2�zhB21hb� �nk; �nl�; �106�
in which B is the approximate pre-whitened reduced covariance

matrix (80) used to construct the estimate ZÃa , equation (101),

while Ctrue
ijkl is the true covariance matrix, equation (38). To the

extent that the FKP approximation, equation (41), is valid for Ctrue
ijkl ,

equation (106) reduces to

kDẐaDẐbl � B21ag� �ni; �nj��H21=2�egDij
eDu

ij

� CFKP
uz � �ni; �nj��H21=2�zhB21hb� �ni; �nj�

� B21ag� �ni; �nj�Dij
gDe

ijB
FKP
ez � �ni; �nj�

�B21zb� �ni; �nj�
� EagBFKP

ge � �ni; �nj�B21eb� �ni; �nj�; �107�
where CFKP is the FKP covariance, equation (42), and BFKP ;
H21=2CFKPH21=2 is its pre-whitened counterpart, equation (66).

Note that going from equation (106) to the second expression in

equation (107) includes, as part of the FKP approximation, the

assumption that nÅk and nÅl in B21hb (nÅk, nÅl) are approximately

constant. The expressions on the right-hand side of equation (107)

are not symmetric in ab , because of the asymmetry of the FKP

approximation (41). To the further extent that the pre-whitened
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covariance BFKP equals the approximation B, equation (80), the

covariance kDẐaDẐbl reduces to the asymmetric matrix E given

by equation (83):

kDẐaDẐbl � Eab; �108�
the asymmetry of the right-hand side being inherited from the

FKP approximation. An equally good approximation to the

covariance would be the same expression (108) with the indices

swapped on the right-hand side, a$ b. Thus it seems reasonable

to conclude that the covariance kDẐaDẐbl should be approxi-

mately equal to the the symmetrized Fisher matrix E(ab ):

kDẐaDẐbl � E�ab� ; Sym
�ab�

Eab: �109�

Several comments can be made about the accuracy of the

approximations made in the above derivation.

First, one partial test of the validity of the FKP approximation is

the degree of asymmetry of the asymmetric Fisher matrix Eab ,

equation (83). If the survey is broad in real space, which is the

condition for the FKP approximation to hold, then the pair integral

R(r;ma ) in the integrand on the right-hand side of equation (83)

will be a slowly varying function of pair separation r, so that the

matrix Eab will be nearly diagonal, hence symmetric. The test is

not definitive because Eab would be symmetric in any case if

ma � mb. In practice, however, ma < j�ka� in both linear and non-

linear regimes (Fig. 7), and realistically the power spectrum j(k)

varies substantially, so the consistency test should be indicative.

Secondly, one of the weaknesses of the FKP approximation is

that it fails to deal with sharp edges ± as typically occur at the

angular boundaries of a survey ± correctly. The FKP approxima-

tion tends to overestimate the variance contributed by regions near

boundaries, since it assumes that those regions are accompanied

by more correlated neighbours than is actually the case. Thus, at

least as regards edge effects, the FKP approximate covariance,

equation (107), should tend to overestimate the exact covariance,

equation (106), of the approximate estimate ZÃa .

Thirdly, it is possible to check the accuracy of the approxima-

tion made in going from equation (107) to equation (108). The

approximation involves setting BFKPB21 � 1, whereas comparing

equation (66) for BFKP with the approximation (80) for B shows

that this quantity is in fact, in the representation of eigenfunctions

fa of the four-point matrix M,

BFKP
ag � �ni; �nj�B21gb� �ni; �nj� � 1b

a

� � �n21
i � �n21

j �
�ma � �n21

i ��ma � �n21
j �
�Lb

a 2 ma1b
a�: �110�

The correction term on the right-hand side of equation (110)

should be small to the extent that the three-point matrix Lab is

near-diagonal in this four-point representation, with eigenvalues

la < ma, as was found to be the case in Section 4.

If desired, one could use the expression on the right-hand side

of equation (110) to compute a more accurate approximation to

the covariance of ZÃa , based on equation (107) rather than on

equation (108). However, if one were willing to go to the trouble

of computing a correction from equation (110), then one would

probably be willing to revert to equation (100), and to integrate

B21ab (nÅi, nÅj) numerically over all pairs of volume elements ij in

the survey, inverting B numerically for each pair nÅi, nÅj of values of

the selection function. This latter procedure is in fact the gourmet

recipe of Section 9.1.

Fourthly, the approximation la < ma adopted in the approx-

imation (80) to B tends to overestimate the true eigenvalues la of

the three-point matrix L, according to Fig. 8. This should lead to a

slight overestimate of the variance. In the realistic LCDM case,

Fig. 8, the approximation la < ma overestimates the true

eigenvalues la by at worst 20 per cent, at moderately non-linear

wavenumbers k. This 20 per cent overestimate is diluted to at

worst 10 per cent because the three-point variance contributes at

most half of the combined two-point, three-point and four-point

variance, where the selection function satisfies �n21 � ma. The

overestimate is further diluted because in practice the selection

function varies, and is unlikely to sit everywhere near the worst

value.

The conclusion is that the covariance of the approximate

estimator ZÃa , equation (101) or (105), should be given

approximately (equation 109) by the symmetrized Fisher matrix

E(ab ) of equation (83), and that if anything this covariance is

likely to be on the conservative side of the true covariance.

7.4 The covariance of YÃa

From the expression (109) for the covariance of ZÃa , one might

conclude (falsely) that the covariance of YÃa, equation (99), is

kDŶaDŶbl � E21
ag E�gd�E21

bd : �111�
A more direct derivation of the covariance of YÃa, along the lines of

equations (106)±(109), leads to the same (false) conclusion. The

analogue of equation (108) is

kDŶaDŶbl � E21
ba �112�

with the asymmetric matrix E on the right-hand side. At this point

one might be inclined to symmetrize this equation (112), as was

done for kDẐaDẐbl in equation (109), writing

kDŶaDŶbl � Sym
�ab�

E21
ab : �113�

The symmetrized inverse Sym�ab�E21
ab of the asymmetric Fisher

matrix is to be distinguished from the inverse E21
�ab� of the

symmetrized Fisher matrix. However, it is not hard to show that

Sym
�ab�

E21
ab � E21

ag E�gd�E21
bd : �114�

Thus equations (111) and (113) are identical. However, both

equations are wrong.

The problem is that, while the Fisher matrix E remains well-

behaved in the presence of loud noise, with near-zero eigenvalues,

its inverse E21 becomes almost singular. Consider the example of

some noisy mode, for which the eigenvalue of the Fisher matrix is

almost zero. It may well happen that the asymmetric Fisher matrix

Eab is numerically non-singular, but that, because of approxima-

tions or numerics, the computed eigenvalue of the symmetrized

Fisher matrix E(ab ) is exactly zero. Equation (111) would then say

that the variance of the noisy mode is zero [for if the determinant

of the symmetrized Fisher matrix is zero, jE�ab�j � 0, while the

determinant of the asymmetric Fisher matrix is finite, jEabj ± 0,

then the determinant of the variance in equation (111) is zero].

This is plainly absurd.

It is safer to take the covariance of YÃa to be approximately

equal to the inverse of the symmetrized Fisher matrix E(ab ),

kDŶaDŶbl � E21
�ab�: �115�
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Here a noisy mode will always reveal itself by its small

eigenvalue.

7.5 Convert to XÃ a

For the purpose of constructing uncorrelated quantities to be

plotted on a graph, it is desirable to compute the pre-whitened

power spectrum XÃa .

To compute XÃa , start from the estimate ZÃa given by

equation (105), transform this into Ŷa � E21
ab Ẑb, equation (99),

thence into the power spectrum ĵ a � �H21=2�baŶb, equation

(74), and thence into the pre-whitened power spectrum XÃa ,

equation (70).

The covariance of the pre-whitened power XÃa is, by con-

struction, the same as that of YÃa, equation (115),

kDX̂aDX̂bl � E21
�ab�; �116�

the inverse of the symmetrized Fisher matrix of the pre-whitened

power.

The estimator XÃa of pre-whitened power, equation (70), is a

non-linear transformation of the estimator jÃa of power, and is

therefore biased if jÃa is unbiased. However, the estimator XÃa is

unbiased in the asymptotic limit of a large quantity of data.

7.6 Decorrelate

One final step remains, which is to process the measured pre-

whitened power spectrum XÃa into a set of decorrelated band-

powers. How to accomplish such decorrelation is described in

Paper IV.

One possibility would be to decorrelate the power spectrum

jÃ(k) itself. This is a bad idea, because the power spectrum is

highly correlated in the non-linear regime, so the decorrelation

matrices would be broad, with large negative off-diagonal entries,

making it impossible to interpret the decorrelated band-powers as

representing the power spectrum over some narrow band.

Another possibility would be to decorrelate the pre-whitened

power XÃa not in Fourier space but rather in the representation of

eigenfunctions fa of the pre-whitened four-point matrix M. Again

this seems not so good an idea, in the first place because the

physical meaning of this representation is obscure, and in the

second place because the eigenfunctions can mix where their

eigenvalues ma are degenerate. Since ma < j�ka�, such mixing in

practice occurs between wavenumbers ka where the power j (ka )

is the same, which happens to either side of the peak in the power

spectrum, Fig. 10. Perhaps in the future a better understanding of

the eigenfunctions fa will emerge, amongst other things allowing

mixing to avoided, but in the meantime these problems remain.

The natural solution is to decorrelate the pre-whitened power

XÃ (k) in Fourier space. As seen in Section 4, the covariance of the

pre-whitened power is encouragingly narrow in Fourier space,

narrow enough that the decorrelation matrices will be narrow, so

that the decorrelated band-powers can be interpreted as estimates of

the pre-whitened power over narrow intervals of wavenumber k. In

contrast to the pre-whitened power XÃa in the fa-representation, the

pre-whitened power XÃ (k) in Fourier space has a clear interpretation,

and there is no problem arising from mixing of eigenfunctions.

8 T H E F U L L F K P

Sections 6 and 7 invoked not only the FKP approximation, but

also the simplifying approximation (80) to the pre-whitened

reduced covariance B. How much more work would it take to

compute the minimum variance estimator and Fisher matrix of

non-linear power making only the FKP approximation and no

other approximation? The question is of both didactic and

practical interest.

8.1 Fisher matrix

The FKP approximation to the Fisher matrix of the power

spectrum, equation (45), looks simplest expressed in real space:

F�ra; rb� �
�

C21�ra; rb; �ni; �nj�d3D�rij 2 rb� d3ri d3rj: �117�

The corresponding expression for the FKP approximation to the

Fisher matrix of the pre-whitened power spectrum, equation (82),

is

E�ra; rb� �
�

B21�ra; rb; �ni; �nj�d3D�rij 2 rb� d3ri d3rj: �118�

These are five-dimensional (thanks to the Dirac delta-function)

integrals over pairs of volume elements ij separated by rij ;
jri 2 rjj � rb in the survey. The integrals are actually quite

doable. If, as is typical, the selection function nÅ(r) separates into

the product of an angular mask and a radial selection function,

then the three-dimensional angular integrals can be done

analytically (Hamilton 1993), leaving a double integral of

C21�ra; rb; �ni; �nj� or B21�ra; rb; �ni; �nj� over the radial directions.

The matrices C�ra; rb; �ni; �nj� or B�ra; rb; �ni; �nj�; discretized

(Section 2.3) over a grid of separations ra and rb, can be inverted

numerically for each pair of values of the selection functions nÅi

and nÅj.

The problem with equations (117) and (118) is that experience

(Sections 4.1, 6.2) suggests that discretization of the matrix

C�ra; rb; �ni; �nj� or B�ra; rb; �ni; �nj� in real space is liable to

introduce ringing and aliasing in Fourier space, defeating the

aim of constructing an accurate Fisher matrix of the power

spectrum.

A possibly more robust procedure would be to follow more

closely the program described in Sections 6 and 7. In Fourier

space, the FKP approximation to the pre-whitened Fisher matrix,

equation (82), is

E�ka; kb��
�

B21�ka; kg; �ni; �nj�j0�kgrij�j0�kbrij� d3ri d3rj

4pk2
g dkg

�2p�3 :

�119�
This integral might be evaluated as follows (since I have not

actually carried through this program, I cannot say for sure that it

would work without a hitch). First, compute the matrix of pair

integrals

R�r; ka; kb� �
�

B21�ka; kb; �ni; �nj�d3D�rij 2 r� d3ri d3rj �120�

for many pair separations rij � r. These pair integrals R(r; ka , kb ),

equation (120), are analogous to the FKP-weighted pair integrals

R(r;ma ), equation (84). Next, cosine-transform (e.g. with

FFTLog) the pair integrals

~R�k; ka; kb� � 2

�1

0

cos�kr�R�r; ka; kb� dr �121�

analogously to RÄ (k;ma ), equation (87). Finally, compute the
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pre-whitened Fisher matrix E�ka; kb� by integrating

E�ka; kb� � 1

2pkb

�1

0

� ~R�kg 2 kb; ka; kg�

2 ~R�kg � kb; ka; kg��kg dkg: �122�
In practice, the matrix B�ka; kb; �ni; �nj� in equation (120)

must be inverted on a discrete grid of wavenumbers k.

Similarly, the integral over kg in equation (122) should be

done as a discrete sum. Specifically, if the matrices are discretized

(Section 2.3) on a logarithmic grid of wavenumbers, so that

R�k; ka; kb� discretizes to Rkakb �k� � R�k; ka; kb�4p�kakb�3=2

D ln k=�2p�3; and the Fisher matrix E�ka; kb� discretizes to

Ekakb � E�ka; kb�4p�kakb�3=2D ln k=�2p�3; then equation (122)

becomes

Ekakb �
X

kg

�kbkg�1=2

2p
� ~Rkakg �kg 2 kb�2 ~Rkakg �kg � kb��: �123�

It may be anticipated that, as in Section 6.2, equation (123) will

tend to overestimate the diagonal elements Ekaka
if the gridding of

the matrix is too coarse to resolve the diagonal properly.

Integrating the continuous Fisher matrix E(ka , kb), equation

(122), over kb yields�1

0

E�ka; kb�kb dkb � 1

p

�1

0

�kg

0

~R�k; ka; kg� dk kg dkg: �124�

Discretized, equation (124) becomes

X
b

kb

ka

� �1=2

Ekakb �
1

p

X
kg

kg

ka

� �1=2�kg

0

~Rkakg �k� dk: �125�

The integral over k on the right-hand side of equation (125) can be

done conveniently as a sine transform (e.g. with FFTLog) of the

pair integral�kg

0

~Rkakg �k� dk � 2

�1

0

sin�kr� Rkakg �r�
r

dr: �126�

If the sum on the left-hand side of equation (125) exceeds the

right-hand side, then reduce the diagonal element Ekaka
so that the

sum is satisfied. It is fine to evaluate the sum on the right-hand

side of equation (125) as a discrete sum over kg , rather than as a

continuous integral, because Rkakg
(k), equation (120), inherits its

behaviour from Bka kg
, which, if constructed equation (66) from

the four-point and three-point matrices M and L as discussed in

Section 4.1, should behave correctly near the diagonal even if the

resolution is too coarse to resolve the diagonal.

8.2 Estimate of power

The FKP approximation to the minimum variance estimator of

the power spectrum, equation (44), again looks simplest when

expressed in real space:

ĵ a � F21
ab T̂b �127�

with

T̂�ra� �
�

C21�ra; rij; �ni; �nj�d�ri�d�rj� d3ri d3rj: �128�

As usual, the pre-whitened estimator Ŷ ; H21=2ĵ , equation (74),

is related to the estimator ZÃ by Ŷ � E21Ẑ, equation (99). The FKP

approximation to the estimator ZÃ is (equation 100)

Ẑ�ra� �
�

B21�ra; rij; �ni; �nj�d�ri�d�rj�
�1� j�rij��1=2

d3ri d3rj: �129�

Equations (128) and (129) are six-dimensional integrals over pairs

of volume elements ij in the survey. Once again, however, one

may anticipate that discretization of the matrices C�ra; rb; �ni; �nj�
or B�ra; rb; �ni; �nj� in real space would introduce ringing and

aliasing in Fourier space, defeating the aim of constructing an

accurate estimator of the power spectrum.

Again, it seems likely that it would be more robust to work with

pre-whitened quantities in Fourier space. In Fourier space, the

FKP approximation to the estimator ZÃa is (equation 100)

Ẑ�ka� �
�

B21�ka; kb; �ni; �nj�j0�kbrij�d�ri�d�rj�
�1� j�rij��1=2

d3ri d3rj

4pk2
b dkb

�2p�3 :

�130�
One way to evaluate this integral might be as follows. First,

compute the matrix SÃ(r; ka , kb ) of integrals over pairs of

overdensities d (ri)d (rj) at many separations rij � r:

Ŝ�r; ka; kb� �
�

B21�ka; kb; �ni; �nj�d3D�rij 2 r�d�ri�d�rj� d3ri d3rj;

�131�
which may be compared to equation (102). Next, pre-whiten

(compare equation 103)

Ẑ�r; ka; kb� � Ŝ�r; ka; kb�
�1� j�r��1=2

�132�

and Fourier transform, e.g. with FFTLog (compare equation 104):

Ẑ�k; ka; kb� �
�1

0

j0�kr�Ẑ�r; ka; kb�4pr2 dr: �133�

Actually it suffices to do this Fourier transform for k � kb only.

Finally, the estimator ZÃ (ka ), equation (130), is

Ẑ�ka� �
�1

0

Ẑ�kb; ka; kb�
4pk2

b dkb

�2p�3 : �134�

The integral in equation (134) should be done as a discrete sum.

If discretized (Section 2.3) on a logarithmic grid of wavenumbers,

so that ZÃ (ka ) discretizes to Ẑka � Ẑ�ka��4pk3
aD ln k=�2p�3�1=2 and

Ẑ�k; ka; kb� discretizes to Ẑkakb �k� � Ẑ�k; ka; kb�4p�kakb�3=2D ln k=
�2p�3; then equation (134) is

Ẑka �
X

kb

Ẑkakb �kb�
4pk3

bD ln k

�2p�3
" #1=2

: �135�

9 R E C I P E S

This section summarizes the results of previous sections into

logical sequences of practical steps needed to estimate the pre-

whitened non-linear power spectrum from an actual galaxy survey.

The end result is a set of uncorrelated pre-whitened non-linear

band-powers with error bars, over some prescribed grid of

wavenumbers k.

There are three versions of the recipe, gourmet (Section 9.1),

fine (Section 9.2), and fastfood (Section 9.3). All the methods use

the FKP approximation, equation (41). Thus one should imagine
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that there is also a haute cuisine method, which might be brute-

force, or might be some clever procedure that apodizes edges.

First a disclaimer. The methods described herein do not take

into account redshift distortions, the effects of which on the power

spectrum are at least as great as those of non-linearity. There is no

point in using these methods as they stand, without also taking

into account redshift distortions. However, given that a full-blown

procedure including redshift distortions may well be based in part

on the methods described, it seems worthwhile to lay out the steps

required to implement them.

9.1 Gourmet

This version of the recipe is conceptually the simplest, but it takes

the most computing power (a supercomputer would be handy).

The procedure is a direct implementation of the FKP approxima-

tion to the minimum variance estimator of pre-whitened power

and the associated Fisher matrix, as described in Section 8.

Naturally, if one were going to the trouble of using the gourmet

recipe, then one would want to use the best possible model of the

three-point and four-point correlation functions, not just the

hierarchical model with constant amplitudes.

Steps 1 and 2 below require knowledge of the selection function

of a survey, but no actual data. Steps 3±5 require actual data from

a galaxy survey.

Step 1. Compute the FKP approximation to the asymmetric

Fisher matrix Eab of the pre-whitened non-linear power spectrum,

as described in Section 8.1, equations (120)±(122). Equation

(120) involves a five-dimensional integral over pairs ij of volume

elements separated by rij � r in the survey. If the selection

function nÅ(r) separates into the product of an angular mask and a

radial selection function, then the three-dimensional angular

integrals can be done analytically (Hamilton 1993), leaving a

double integral of B21(ka , kb ; nÅi, nÅj) over the radial directions.

Step 2. The covariance matrix kDX̂aDX̂bl of the pre-whitened

power is equal, equation (116), to the inverse E21
�ab� of the

symmetrized Fisher matrix. Use this covariance matrix to

construct decorrelation matrices W, as described in Paper IV,

with the property that WkDX̂DX̂TlWT is diagonal in Fourier space

(cf. Paper IV equation (20)). The diagonal elements of this

diagonal matrix are the expected variances of the decorrelated

band-powers B̂ � WX̂ to be computed in step 5.

Step 3. Compute the estimator ZÃa as described in Section 8.2,

equations (131)±(134).

Step 4. Transform ZÃa into the pre-whitened power XÃa using

equations (99), (74) and (70), as stated in Section 7.5.

Step 5. Decorrelate the estimated pre-whitened power spectrum

XÃ into a set of uncorrelated band-powers B̂ � WX̂, using the

decorrelation matrices W computed in step 2. Bear in mind that, as

usual in ML fitting, the error bars should of course be interpreted

as being attached to the model, the prior band-powers B, rather

than to the data, the estimated band-powers BÃ .

9.2 Fine

This method adopts the approximation made in Sections 6 and 7

that the pre-whitened reduced covariance matrix B takes the

simplified form (80). According to the results of Section 4, this

approximation to B should be quite good. If it is, then the fine

method should yield results close to the gourmet method of

Section 9.1, at a considerable saving in computer time.

Steps 1±5 below do not require any actual data; the steps can be

used to determine in advance how well the pre-whitened power

spectrum might be measured from a survey. Steps 6±9 require

actual data from a galaxy survey.

Step 1. Compute a table of FKP-weighted pair integrals R(r;m)

at many separations r and several FKP constants m . Calculating the

pair integrals R(r;m) requires knowing the selection function nÅ(r) of

a galaxy survey, but does not require actual data. This pair integral,

commonly denoted kRRl, is commonly computed by Monte Carlo

integration, but I find it faster, more accurate and more convenient

(since the program is already written) to compute the integral

directly, using the procedures described by Hamilton (1993).

Step 2. Compute the pre-whitened four-point contribution M ;
H21=2K H21=2 to the reduced covariance of the non-linear power

spectrum. This involves adopting a prior power spectrum j (k), and

a model of the four-point correlation function h ijkl. For the

hierarchical model, the covariance matrices K and H are given by

equations (55) and (57). Some numerical issues concerning the

computation of the matrix M are discussed in Section 4.1.

Step 3. Compute the eigenfunctions fa and eigenvalues m2
a,

equation (67), by diagonalizing the pre-whitened four-point

matrix M.

Step 4. Compute the asymmetric Fisher matrix Eab , equation

(83), of the pre-whitened non-linear power spectrum of the survey,

in the representation of eigenfunctions fa of the pre-whitened

four-point matrix M. This is where the pair integral R(r,m)

computed in step 1 is needed. Numerical issues are discussed in

Section 6.2.

Step 5. This is the same as step 2 of the gourmet method: from

the inverse E21
�ab� of the symmetrized Fisher matrix, construct

decorrelation matrices W such that the covariance of the band-

powers B̂ � WX̂ is diagonal. Decorrelation is the subject of Paper

IV.

Step 6. Compute a table of FKP-weighted pair densities SÃ(r;m ),

equation (102), at many separations r and several FKP constants

m . Calculating SÃ(r;m), commonly denoted kDDl 2 2kDRl� kRRl,
requires actual data from a survey.

Step 7. From SÃ(r;ma ), compute the estimate ZÃa , equation (105),

in the representation of eigenfunctions fa , as described in Section

7.2.

Step 8. This is the same as step 4 of the gourmet method:

transform ZÃa into the pre-whitened power XÃa using equations

(99), (74) and (70), as stated in Section 7.5. The transformations

may be done in whatever representation proves most convenient or

numerically reliable. Ultimately, one wants the pre-whitened

power spectrum XÃ (k) in Fourier space.

Step 9. This is the same as step 5 of the gourmet method:

decorrelate the pre-whitened power spectrum XÃ into a set of

uncorrelated band-powers B̂ � WX̂, using the decorrelation

matrices W computed in step 5 above.

9.3 Fastfood

For some purposes a simplified, approximate version of the

procedure in Section 9.2 may be considered adequate.

The basic simplifying approximation here is that the covariance

kDX̂�ka�DX̂�kb�l of the pre-whitened power spectrum may be

considered to be diagonal in Fourier space without further

refinement. The procedure then becomes the same as the FKP

procedure for Gaussian fluctuations, with the differences that (i) it

is the pre-whitened power spectrum XÃ (k), equation (69), rather
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than the power spectrum jÃ(k) that is being estimated; and (ii) the

FKP constants m(k) in the FKP pair-weightings are modified from

the Gaussian case where m�k� � j�k�.
Fig. 11 shows the ratio m(k)/j (k) of the effective FKP constant

m(k) to the non-linear power spectrum j(k) for several different

power spectra. The ratios plotted in Fig. 11 should be regarded as

indicative rather than definitive, because they depend on the

validity of the hierarchical model with constant amplitudes Rb �
2Ra (as required to satisfy the Schwarz inequality, Section 3.2),

which as discussed in Section 4.2 is certainly wrong at some level.

The effective FKP constant m(k) shown in Fig. 11 is not the

same thing as the eigenvalue ma of M at the nominal wavenumber

ka shown in Fig. 7. As discussed in Section 4.4, the corre-

spondence between eigenvalue ma and nominal wavenumber ka is

precise only for Gaussian fluctuations.

The effective FKP constant m(k) in Fig. 11 was calculated by

going through steps 2±5 of the recipe in Section 9.2 for the case of

a perfect, noiseless � �n! 1� survey of (large) volume V. In this

case the Fisher matrix Eab of the pre-whitened power, equation

(83), reduces to

Eab � V

2
M21

ab �136�
the inverse of which gives the covariance of the pre-whitened

power XÃ :

kDX̂aDX̂bl � 2

V
Mab: �137�

Decorrelating this covariance, equation (137), in Fourier space, as

described by in Paper IV, yields band-powers BÃ (k) the covariance

of which is by construction diagonal. The diagonal values of the

diagonal covariance matrix of the band-powers can be taken to

define the effective FKP constants m(k):

kDB̂�ka�DB̂�kb�l � 1ab
2m�ka�2

V
: �138�

With the effective FKP constants m (k) taken as given by Fig.

11, the shortcut recipe is then as follows.

Step 1. Compute the effective spatial volume V(k) of the survey

for modes at wavenumber k:

V�k� � 2m�k�2R�0;m�k�� �
�

d3r

�1� �n�r�21m�k�21�2 : �139�

Step 2. The Fisher matrix (83) of the pre-whitened power

reduces to

E�ka; kb� � 1

2

�1

0

j0�kar�j0�kbr�R�r;m�ka��4pr2 dr: �140�

If the pre-whitened power is averaged over sufficiently broad

shells in k-space, then, by arguments similar to those in Section

6.3, the Fisher matrix is approximately diagonal (compare

equation 95):

E�ka; kb� < �2p�3d3D�ka 2 kb� V�ka�
2m�ka�2

; �141�

where V(ka ) is the effective volume given by equation (139). For

the approximation (141) to be valid, the shells in k-space must be

broad not only compared with the inverse scale of the survey (as in

the Gaussian case), but also compared with the width of the four-

point matrix M plotted in Figs 3 and 4. In the large-k, hierarchical

limit, the width of the matrix M in k-space is comparable to an

inverse correlation length, Dk , p=r0.

Step 3. The covariance kDX̂�ka�DX̂�kb�l of the pre-whitened

power equals the inverse of the Fisher matrix E(ka , kb ) given by

equation (141):

kDX̂�ka�DX̂�kb�l < �2p�3d3D�ka 2 kb� 2m�ka�2
V�ka� : �142�

Define pre-whitened band-powers BÃ (k) to be the pre-whitened

power spectrum XÃ (k) averaged over broad (as in step 2) shells of

volume Vk about k,

B̂�k� ; V21
k

�
ĵ �k� dVk; �143�

where dVk ; 4pk2 dk=�2p�3. The variance of the shell-averaged

pre-whitened band-powers is

kDB̂�k�2l <
2m�ka�2
V�k�Vk

; �144�

which is 2m(ka )2 divided by the effective phase volume, the

product of the effective spatial volume V(k), equation (139), with

the Fourier volume Vk of the shell in k-space.

Step 4. As step 6 of Section 9.2: compute FKP-weighted pair

densities SÃ(r;m), equation (102).

Step 5. Compute the estimator ZÃ (k):

Ẑ�k� �
�1

0

j0�kr�Ŝ�r;m�k��
�1� j�r��1=2

4pr2 dr; �145�

which may be compared to equation (104).

Step 6. As step 8 of Section 9.2: transform ZÃ (k) to XÃ (k) using

equations (99), (74) and (70). The estimator Ŷ � E21Z is

Ŷ�k� � 2m�k�2
V�k� Ẑ�k�: �146�

Step 7. Form pre-whitened band-powers BÃ (k) by averaging XÃ (k)

over sufficiently broad shells in k-space, equation (143).

q 2000 RAS, MNRAS 312, 257±284

Figure 11. Ratio m (k)/j (k) of the effective FKP constant m(k) to the non-

linear power spectrum j (k), as a function of wavenumber k, for several

different power spectra. The ratios should be regarded as indicative rather

than definitive, because they depend on the validity of the hierarchical

model (see text). The numbered curves are for power-law power spectra

with correlation functions j�r� � �r=5 h21 Mpc�2g, the number label being

the index g . The curve labelled P97 is for the Vm � 0:3 power spectrum

derived from observations by Peacock (1997), while that labelled LCDM

is for the LCDM power spectrum of Eisenstein & Hu (1998).
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1 0 C O N C L U S I O N S

The main finding of this paper is that the pre-whitened non-linear

power spectrum Xa defined by equation (69) has surprisingly

sweet properties.

First, the covariance of the pre-whitened non-linear power is

substantially narrower in Fourier space than the covariance of the

non-linear power spectrum itself, Figs 3 and 4.

Secondly, in the FKP approximation, the four-point and three-

point contributions M and L to the covariance of pre-whitened

power are almost simultaneously diagonal (the two-point

contribution is by construction the unit matrix, so is automatically

diagonal), Figs 5 and 6. Thus the eigenmodes of the covariance of

pre-whitened non-linear power form a set of almost uncorrelated

modes somewhat analogous to the Fourier modes of power in the

Gaussian case.

Thirdly, the eigenvalues ma and la , as defined by

equations (67) and (68), of the four-point and three-point pre-

whitened matrices M and L are almost equal, ma < la (Fig. 8),

which is similar to the Gaussian case where m�k� � l�k� �
j�k�:

The second and third points above together make it possible to

construct a near-minimum variance estimator, Section 7, and

Fisher matrix, Section 6, of the pre-whitened non-linear power

spectrum similar to the FKP estimator and Fisher matrix of the

linear power spectrum in the Gaussian case.

Fourthly, all the above properties hold for all power spectra

tested, including power-law non-linear power spectra j�k� / kn

with indices 22 , n , 0 over the full range allowed by the

hierarchical model, and including realistic power spectra, such as

the observationally derived power spectrum of Peacock (1997),

and an observationally concordant LCDM model of Eisenstein &

Hu (1998), non-linearly evolved according to the Peacock &

Dodds (1996) formula.

Fifthly, in the realistic cases of the Peacock (1997) and

Eisenstein & Hu (1998) power spectra, the pre-whitened non-

linear power spectrum X(k) appears to be curiously close to the

linear power spectrum jL(k), Fig. 10.

This having been said, it should be emphasized that the above

properties are all premised on the hierarchical model with constant

hierarchical amplitudes, Section 3.2, which as discussed in

Section 4.2 and by Scoccimarro et al. (1999, section 3.3) is

certainly wrong at some level. Clearly it will be important to test

how well these results stand up in N-body simulations.

In the meantime, the results of this paper raise questions. Is

there some physical reason underlying the seemingly unreason-

ably pretty properties of the pre-whitened non-linear power

spectrum? In general, modes may be statistically uncorrelated

without being dynamically independent. However, the fact that the

covariance of the pre-whitened power is narrow for all power

spectra is suggestive: do the eigenmodes of the covariance of pre-

whitened power somehow encode the information in the linear

power spectrum that is ravelled by non-linear evolution in the

power spectrum itself? And is there somehow a connection to the

mapping between linear and non-linear power spectra found by

Hamilton et al. (1991)?

I conclude with a repeat of the warning that this paper has

ignored redshift distortions, light-to-mass bias and evolution, and

it has assumed that the only sources of variance are cosmic

variance and shot-noise variance arising from Poisson sampling of

galaxies. In real galaxy surveys, all these problems must be

grappled with.
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A P P E N D I X A : J U S T I F I C AT I O N O F E Q UAT I O N

( 4 1 )

Equation (41) is the FKP approximation, expressed in concise

mathematical form. This appendix offers further details justifying

this equation.

The pair±pair covariance matrix Cijkl can be regarded as an

operator that acts on pair-functions Ckl. It is helpful to think of Ckl

as a two-particle wavefunction (symmetric under pair exchange

k $ l), and Cijkl as a Hermitian operator that acts on the space of

such wavefunctions. The pair-wavefunctions Ckl of interest in the

present case have translation and rotation symmetry, which means

that they have zero total momentum and zero total angular

momentum. In the Fourier representation such wavefunctions Ckl

can be expressed in the form

C�kk; kl� � �2p�3d3D�kk � kl�c�kk�; �A1�
where c (kk) is a function of the scalar kk ; jkkj. In a general

representation, equation (A1) is

Ckl � Da
klca; �A2�

where Da
kl is the operator introduced in Section 2.4, equations (28)

and (29).

In the FKP approximation, the selection functions nÅi and nÅj

upon which the pair-covariance Cijkl depends, equations (38) and

(25), are taken to be locally constant, so that Cijkl also has

translation and rotation symmetry, i.e. it commutes with the

operators of total momentum and total angular momentum. Thus,

in the FKP approximation, Cijkl acting on a wavefunction Da
klca

with zero momentum and angular momentum yields another

wavefunction D
b
ijxb with zero momentum and angular momentum,

Ckl
ij Da

klca � D
b
ijxb: �A3�

Take ca in equation (A3) to be the elements of a complete

orthonormal basis of functions. Then equation (A3) implies that

CijklD
kl
a � D

b
ijCba �A4�

for some matrix Cba . Equation (A4) is the desired equation (41)

that was to be justified [at least if the indices on Cab are swapped

in equation (A4), which is fine because Cab is symmetric, as

proven below]. The wavefunctions ca and xb in equation (A3)

are related by

Ca
bca � xb: �A5�
A wavefunction of the form Da

ijca is unnormalized ± that is,

caDij
aD

b
ijcb diverges ± as is usual in quantum mechanics for a

wavefunction that has definite momentum, and must therefore be

defined over infinite space. The divergence can be tamed by

regarding the wavefunction as being defined instead over an

extremely large but finite volume V. Then

Dij
aD

b
ij � 1abV ; �A6�

which is most easily proven from the real-space representation of

Da
ij , equation (28). Equation (A6) should be interpreted with due

care. For example, equation (A6) should not be substituted into

equation (45) for the Fisher matrix in the FKP approximation,
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because the matrix C21ag� �ni; �nj� on the right-hand side of equation

(45) varies with positions i and j.

Operating on equation (A4) with D
ij
b implies, from equation

(A6), that (nÅi and nÅj here are being regarded formally as fixed

constants in the huge volume V)

D
ij
bCijklD

kl
a � VCba: �A7�

It is evident from this equation that the pair-exchange symmetry

ij$ kl of Cijkl implies that Cab is similarly symmetric:

Cab � Cba: �A8�
Equation (A7) shows that, modulo the normalization factor V, the

reduced matrix Cab can be regarded as the matrix elements of the

operator Cijkl restricted to the class of wavefunctions that have

zero total momentum and zero total angular momentum.

A P P E N D I X B : F F T L o g

B1 Introduction

FFTLog computes the fast Fourier or Hankel (�Fourier±Bessel�
transform of a periodic sequence of logarithmically spaced points.

FFTLog can be regarded as a natural analogue to the standard

FFT, in the sense that, just as the normal FFT gives the exact (to

machine precision) Fourier transform of a linearly spaced periodic

sequence, so also FFTLog gives the exact Fourier or Hankel

transform, of arbitrary order m, of a logarithmically spaced

periodic sequence. FFTLog shares with the normal FFT the

problems of ringing (response to sudden steps) and aliasing

(periodic folding of frequencies), but under appropriate circum-

stances FFTLog may approximate the results of a continuous

Fourier or Hankel transform.

The FFTLog algorithm was originally proposed by Talman

(1978). However, it seems worthwhile here to present the

algorithm in some detail.

The FFTLog code may be downloaded from http://casa.

colorado.edu/,ajsh/FFTLog/.

Consider the continuous Hankel (�Fourier±Bessel� transform

pair

~a�k� �
�1

0

a�r��kr�qJm�kr�k dr; �B1�

a�r� �
�1

0

~a�k��kr�2qJm�kr�r dk: �B2�

If the substitution

a�r� � A�r�r2q and ~a�k� � ~A�k�kq �B3�
is made, then the Hankel transform pair (B1), (B2) becomes

equivalent to the transform pair

~A�k� �
�1

0

A�r�Jm�kr�k dr; �B4�

A�r� �
�1

0

~A�k�Jm�kr�r dk: �B5�

Although the Hankel transform (B1) with a power-law bias (kr)^q

is thus equivalent in the continuous case to the unbiased Hankel

transform (B4), the transforms are different when they are

discretized and made periodic; for if a(r) is periodic, then A�r� �
a�r�rq is not periodic. FFTLog evaluates discrete Hankel trans-

forms (B1) and (B2) with arbitrary power-law bias.

Fourier sine and cosine transforms can be regarded as special

cases of Hankel transforms with m � ^1=2, since

J1=2�x� � �2=px�1=2 sin�x�; �B6�

J21=2�x� � �2=px�1=2 cos�x�: �B7�
As first noted by Siegman (1977), if the product kr in the Hankel

transform is written as eln k+ln r, then the transform becomes a

convolution integral in the integration variable ln r or ln k.

Convolution is equivalent to multiplication in the corresponding

Fourier transform space. Thus the Hankel transform can be

computed numerically by the algorithm: FFT! multiply by a

function! FFT back. This is the idea behind a number of fast

Hankel transform algorithms (Candel 1981; Anderson 1982;

Hansen 1985; Fanning 1996), including FFTLog (Talman 1978).

An advantage of FFTLog, emphasized by Talman (1978), is that

the order m of the Bessel function may be any arbitrary real

number. In particular, FFTLog works for 1/2-integral m , so

includes the cases of Fourier sine and cosine transforms, and

spherical Hankel transforms involving the spherical Bessel

functions jl�x� ; �p=2x�1=2Jl�1=2�x�.

B2 Normal discrete Fourier transform

First, recall the essential properties of the standard discrete Fourier

transform of a periodic sequence of linearly spaced points.

Suppose that a(r) is a continuous, in general complex-valued,

function that is periodic with period R,

a�r � R� � a�r�: �B8�
Without loss of generality, take the fundamental interval to be

�2R=2;R=2�, centred at zero. Since a(r) is periodic, its continuous

Fourier transform contains only discrete Fourier modes e2pimr/R

with integral wavenumbers m. Suppose further that the function

a(r) is `smooth' in the specific sense that it is some linear

combination only of the N lowest frequency Fourier modes,

m � 0;^1;¼;^�N=2�, where [N/2] denotes the largest integer

greater than or equal to N/2,

a�r� �
X

m

0cm e2pimr=R; �B9�

the outermost Fourier coefficients being equal, c2N=2 � cN=2, in

the case of even N. The primed sum in equation (B9) signifies a

sum over integral m from 2�N=2� to [N/2], with the proviso that

for even N the outermost elements of the sum receive only half-

weight:

X
n

0xn ;
X�N=2�

n�2�N=2�
wnxn; �B10�

with wn � 1 except that w2N=2 � wN=2 � 1=2 if N is even.

The sampling theorem (e.g. Press et al. 1986, section 12.1)

asserts that, given a function a(r) satisfying equation (B9), the

Fourier coefficients cm can be expressed in terms of the values

an ; a�rn� of the function a(r) at the N discrete points rn � nR=N

for n � 0;^1;¼;^�N=2�. For even N, the periodicity of a(r)

ensures that a2N=2 � aN=2. Specifically, the sampling theorem

asserts that the Fourier coefficients in the expansion (B9) satisfy

cm � 1

N

X
n

0an e22pimn=N ; �B11�
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the discrete points an themselves satisfying

an �
X

m

0cm e2pimn=N �B12�

in accordance with equation (B9).

Equations (B11) and (B12) constitute a discrete Fourier

transform pair relating two periodic, linearly spaced sequences

an and cm of length N. The standard FFT evaluates the discrete

Fourier transform exactly (that is, to machine precision).

B3 Discrete Hankel transform

Now suppose that the function a(r), instead of being periodic in

ordinary space r, is periodic in logarithmic space ln r, with

logarithmic period L,

a�r eL� � a�r�: �B13�
Take the fundamental interval to be �ln r0 2 L=2; ln r0 � L=2�,
centred at ln r0. As in Appendix B2, the periodicity of a(r) implies

that its Fourier transform with respect to ln r contains only discrete

Fourier modes e2pim ln (r/r0)/L with integral wavenumbers m.

Suppose further, as in Appendix B2, equation (B9), that a(r)

contains only the N lowest frequency Fourier modes

a�r� �
X

m

0cm e2pim ln �r=r0�=L; �B14�

with c2N=2 � cN=2 for even N. The sampling theorem asserts that

the Fourier coefficients cm are given by

cm � 1

N

X
n

0an e22pimn=N ; �B15�

where an ; a�rn� are the values of the function a(r) at the N

discrete points rn � r0 enL=N for n � 0;^1;¼;^�N=2�,
an �

X
m

0cm e2pimn=N : �B16�

The continuous Hankel transform aÄ(k), equation (B1), of a

function a(r) of the form (B14) is

~a�k� �
X

m

0cm

�1

0

e2pim ln�r=r0�=L�kr�qJm�kr�k dr: �B17�

The integrals on the right-hand side of equation (B17) can be done

analytically, in terms of

Um�x� ;
�1

0

txJm�t� dt � 2x G��m� 1� x�=2�
G��m� 1 2 x�=2� ; �B18�

where G(z) is the usual Gamma-function. Thus equation (B17)

reduces to

~a�k� �
X

m

0cmum e22pim ln�k=k0�=L; �B19�

where um is

um�m; q� ; �k0r0�22pim=LUm q� 2pim

L

� �
: �B20�

Notice that um* � u2m, which ensures that aÄ(k) is real if a(r) is real.

Equation (B19) gives the (exact) continuous Hankel transform

aÄ(k) of a function a(r) of the form (B9). Like a(r), the Hankel

transform aÄ(k) is periodic in logarithmic space ln k, with period L.

The fundamental interval is �ln k0 2 L=2; ln k0 � L=2�, centred at

ln k0, which may be chosen arbitrarily (but see Appendix B5

below).

The sampling theorem requires that u2N=2 � uN=2 for even N,

which is not necessarily satisfied by equation (B20). However, at

the discrete points kn � k0 enL=N considered by the sampling

theorem, the contributions at m � ^N=2 to the sum on the right-

hand side of equation (B19) are �2�ncN=2�uN=2 � uN=2* �=2, the

imaginary part of which cancels out. Thus the equality (B19)

remains true at the discrete points kn if u^N/2 are replaced by their

real parts,

u^N=2 ! Re uN=2: �B21�
With the replacement (B21), the sampling theorem asserts that the

coefficients cmum in the sum (B19) are determined by the values

~an ; ~a�kn� of the Hankel transform at the N discrete points kn �
k0 enL=N for n � 0;^1;¼;^�N=2�,

cmum � 1

N

X
n

0 ~an e2pimn=N ; �B22�

~an �
X

m

0cmum e22pimn=N : �B23�

Putting together equations (B15), (B16), (B22) and (B23) yields

the discrete Hankel transform pair

~an �
X

m

0am v�m�n�m; q�; �B24�

am �
X

n

0 ~an v2
m�n�m; q�; �B25�

in which the forward discrete Hankel mode v�n �m; q� is the discrete

Fourier transform of um(m , q) given by equations (B20) and (B21),

v�n �m; q� �
1

N

X
m

0um�m; q� e22pimn=N �B26�

while the inverse discrete Hankel mode v2
n �m; q� is the discrete

Fourier transform of the reciprocal 1=u2m�m; q�,

v2
n �m; q� �

1

N

X
m

0 1

u2m�m; q� e22pimn=N : �B27�

The Hankel transform matrices v�m�n�m; q� and v2
m�n�m; q� are

mutually inverseX
l

0v�m�l�m; q�v2
l�n�m; q� � dmn; �B28�

where dmn denotes the Kronecker delta. The forward and inverse

Hankel modes have the interesting property of being self-similar:

that is, Hankel modes v�m�n�m; q� [or v2
m�n�m; q�� with different

indices m consist of the same periodic sequence v�n �m; q� [or

v2
n �m; q�� cyclically shifted by m notches.

FFTLog evaluates the forward and inverse discrete Hankel

transforms given by equations (B24) and (B25) exactly (to

machine precision).

The reciprocal 1/u2m(m , q) in equation (B27) is equal to

um(m ,2q), according to equations (B18) and (B20),

1

u2m�m; q� � um�m;2q� �m ± N=2� �B29�

except in the case m � ^N=2 for even N, when the replacement

(B21) generally invalidates equation (B29). However, in the

special case where u^N=2 are already real, then equation (B21)

leaves u^N=2 unchanged, and equation (B29) remains valid also at
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m � ^N=2. This special case is of particular interest, and is

discussed further in Section B5 below.

In the continuous case, the inverse Hankel transform is equal to

the forward transform with q! 2q, equations (B1) and (B2). In

the discrete case this remains true for odd N, but it is not generally

true for even N (the usual choice) except in the important special

case discussed in Section B5.

In the general discrete case (i.e. if the condition (B30) in

Section B5 is not satisfied), the inverse discrete Hankel mode

v2
n �m; q�, equation (B27), differs from the forward Hankel mode

v�n �m;2q�, equation (B26), only for even N and only in the

coefficient of the highest frequency Fourier component,

1=u2m�m; q� versus um�m;2q� for m � ^N=2. To the extent that

the highest frequency Fourier coefficient c^N=2 of a sequence an is

small, the difference between its inverse discrete Hankel transform

and its forward transform with q! 2q should be small.

It is possible for the inverse discrete Hankel transform to be

singular, if u^N=2 is purely imaginary, so that its real part vanishes,

making v2
n �m; q� singular. As discussed in Section B5, this

singularity can be avoided by choosing a low-ringing value of

k0r0, equation (B32).

The forward (inverse) discrete Hankel transforms are also

singular at special values of m and q, namely where m� 1� q (or

m� 1 2 q in the inverse case) vanishes, because u0�m; q� � Um�q)

is singular at these points. This singularity reflects a real

singularity in the corresponding continuous Hankel transform

(unlike the singularity of the previous paragraph, which is an

avoidable artefact of discreteness). The singularity in u0 leads to

an additive infinite constant in the discrete Hankel transform. In

physical problems this additive infinite constant may somehow

cancel out (for example, in the difference between two Hankel

transforms). FFTLog's strategy in these singular cases is to

evaluate the discrete Hankel transform with the infinite constant

set to zero, and to issue a warning.

B4 FFTLog algorithm

The FFTLog algorithm for taking the discrete Hankel transform,

equation (B24), of a sequence an of N logarithmically spaced

points is:

(i) FFT an to obtain the Fourier coefficients cm, equation (B15);

(ii) multiply by um given by equations (B20) and (B21) to

obtain cmum;

(iii) FFT cmum back to obtain the discrete Hankel transform aÄn,

equation (B23).

A variant of the algorithm is to sandwich the above operations

with power-law biasing and unbiasing operations. For example,

one way to take the unbiased continuous Hankel transform AÄ (k) of

a function A(r), equation (B4), is to bias A(r) and AÄ (k) with power

laws, equation (B3), and take a biased Hankel transform, equation

(B1). The discrete equivalent of this is:

(i) bias An with a power law to obtain an � Anr2q
n , equation

(B3);

(ii) FFT an to obtain the Fourier coefficients cm, equation (B15);

(iii) multiply by um given by equations (B20) and (B21) to

obtain cmum;

(iv) FFT cmum back to obtain the discrete Hankel transform aÄn,

equation (B23);

(v) unbias aÄn with a power law to obtain ~An � ~ank2q
n , equation

(B3).

Although in the continuous limit the result would be identical to

an unbiased Hankel transform, in the discrete case the result

differs. With a simple unbiased discrete Hankel transform, it is the

sequence An that is taken to be periodic, whereas in the algorithm

above it is not An but rather an that is periodic.

The inverse discrete Hankel transform is accomplished by the

same series of steps, except that cm is divided instead of multiplied

by um.

The FFTLog code is built on top of the National Center for

Atmospheric Research (NCAR) suite of FFT routines (Swarztrauber

1979), and a modified version of an implementation of the complex

Gamma-function from the gamerf package by Ooura (1996).

FFTLog includes driver routines for the specific cases of the

Fourier sine and cosine transforms.

B5 Low-ringing condition on k0r0

The central values ln r0 and ln k0 of the periodic intervals in ln r

and ln k may be chosen arbitrarily. However, ringing of the

discrete Hankel transform may be reduced, for either even or odd

N, if the product k0r0 is chosen in such a way that the boundary

points of the sequence um, equation (B20), are equal:

u2N=2 � uN=2: �B30�
Recall that the general procedure, for even N, was to replace u^N/2

by their real part, equation (B21). The condition (B30) requires

that u^N/2 are already real. The condition (B30) reduces ringing

because it makes the periodic sequence um fold smoothly across

the period boundary at m � ^N=2.

In addition to reducing ringing, the condition (B30) means that

equation (B29) remains true also at m � ^N=2, so is true for all

m. In this case the inverse Hankel mode v2
n �m; q�, equation (B27),

is equal to the forward Hankel mode v�n �m;2q� with q of the

opposite sign

v2
n �m; q� � v�n �m;2q� � 1

N

X
m

0um�m;2q� e22pimn=N : �B31�

In other words, if condition (B30) is satisfied, then the inverse

discrete Hankel transform equals the forward discrete Hankel

transform with q! 2q. This is like the continuous Hankel

transform, equations (B1), (B2), where the inverse transform

equals the forward transform with q! 2q.

The periodicity condition (B30) on u^N/2 translates, for real m
and q, into a condition on k0r0:

ln�k0r0� � L

N

1

p
Arg Um q� p

iN

L

� �� �
� integer

� �
�B32�

where Argz ; Im ln z denotes the argument of a complex number,

and `integer' is any integer. In other words, to reduce ringing, it

may help to choose k0r0 so as to satisfy the condition (B32). This

is not too much of a restriction, since L/N is the logarithmic

spacing between points (� one notch), so the low-ringing

condition (B32) allows k0r0 to be chosen to lie within half a

notch [�L=�2N�� of whatever number one chooses, for example

within half a notch of k0r0 � 1.

FFTLog can be set to use automatically the low-ringing value

of k0r0 nearest to any input value of k0r0.

How else does the choice of k0r0 affect the Hankel transform?

Increasing the value of ln(k0r0) by one notch L/N cyclically shifts

the discrete Hankel transform aÄn, equation (B23), by one notch to

the left, ~an ! ~an21. In other words, changing ln(k0r0) by an
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integral number of notches shifts the origin of the transform, but

leaves the transform otherwise unchanged, as might have been

expected.

In practice, since in most cases one is probably using the

discrete Hankel transform as an approximation to the continuous

transform, one would probably want to use k0r0 < 1 (or 2, or p,

according to taste).

B6 Unitary Hankel transform

The discrete Hankel transform with both low-ringing k0r0 and no

power-law bias, q � 0, is of particular interest because it is

unitary, like the Fourier transform. Indeed, being also real, the

low-ringing unbiased Hankel transform is orthogonal, i.e. self-

inverse, like the Fourier sine and cosine transforms. This is like

the continuous unbiased �q � 0� Hankel transform, equations

(B1), (B2), which is self-inverse.

The discrete Hankel modes vm�m; 0� � v�m�m; 0� � v2
m �m; 0� in

the low-ringing unbiased �q � 0� case are periodic, orthonormal,

and self-similar, equation (B27),X
l

0vm�l�m; 0�vl�n�m; 0� � dmn: �B33�

Like any orthogonal transformation, the low-ringing unbiased

�q � 0� Hankel transform commutes with the operations of matrix

multiplication, inversion and diagonalization (for non-low-ringing

or biased Hankel transforms, q ± 0, the operations do not

commute). That is, the Hankel transform of the product of two

matrices is equal to the product of their Hankel transforms, and so

on.

All else being equal (which it may not be), given a choice

between applying an unbiased �q � 0� or biased �q ± 0� Hankel

transform, and between a low-ringing k0r0, equation (B32), or

otherwise, one would be inclined to choose the low-ringing

unbiased transform, because of its orthogonality property.

B7 Example

Fig. B1 shows the correlation function j(r) computed by FFTLog

for the non-linear LCDM power spectrum of Eisenstein & Hu

(1998) shown in Fig. 10. Two different resolutions are plotted on

top of each other, a low-resolution case with 96 points over the

range r � 1023 to 103 h21 Mpc, and a high-resolution case with

768 points over the range r � 1026 to 106 h21 Mpc. Both cases

used an unbiased �q � 0� transform and a low-ringing value of

k0r0 (actually the choice of k0r0 made little difference here).

The low- and high-resolution correlation functions shown in

Fig. B1 agree well except near the edges r < 1023 and

103 h21 Mpc; in particular, the low-resolution correlation function

tends to a positive constant < 1025 at r ! 103 h21 Mpc, whereas

the high-resolution correlation function is negative and declining

as a power law / r24 at large r. The disagreement is caused by

aliasing (see Appendix B8) of small and large separations in the

low-resolution case. Aliasing is almost eliminated in the high-

resolution case because the range r � 1026 to 106 h21 Mpc over

which the transform was computed is much broader than the range

plotted.

The bottom panel of Fig. B1 shows the ratio jFFT/jFFTLog of

the correlation function jFFT, computed with a normal FFT

(sine transform) with 1023 points over the range r � 0:125 to

128 h21 Mpc, to the (high resolution) correlation function jFFTLog

computed with FFTLog. Even with 1023 points, the FFT'd

correlation function rings noticeably, with an amplitude of about

^5 per cent.

In this particular instance, FFTLog outperforms the normal FFT

on all counts: it is more accurate, with fewer points, over a larger

range, and it shows no signs of ringing. This does not mean that

FFTLog is always better than FFT. Rather, FFTLog is well

matched to the problem at hand: the cosmological power spectrum

extends over many orders of magnitude in wavenumber k, and

varies smoothly in ln k.

B8 Ringing and aliasing

FFTLog suffers from the same problems of ringing (response to

sudden steps) and aliasing (periodic folding of frequencies) as the

normal FFT.

Usually one is interested in the discrete Fourier or Hankel

transform not for its own sake, but rather as an approximation to
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Figure B1. Correlation function j (r) corresponding to the non-linear

COBE-normalized LCDM power spectrum of Eisenstein & Hu (1998),

Fig. 10. The top panel shows the correlation function computed with

FFTLog at two different resolutions, plotted on top of each other: (i) with

96 points over the range r � 1023 to 103 h21 Mpc (low resolution), and (ii)

with 768 points over the range r � 1026 to 106 h21 Mpc (high resolution).

The lines are dashed where the correlation function is negative, at

separations r . 119 h21 Mpc. The low- and high-resolution curves are

almost indistinguishable except at r * 200 h21 Mpc: the high-resolution

curve is the one that declines as a power law , r24 at large r. The straight

dashed line shows the canonical power law �r=5 h21 Mpc�21:8 for

reference. The middle panel shows the ratio j low/jhigh of the low- and

high-resolution correlation functions. The bottom panel shows the ratio

jFFT/jFFTLog of the correlation function jFFT, computed with a normal FFT

(sine transform) with 1023 points over the range r � 0:125 to

128 h21 Mpc, to the high-resolution correlation function jFFTLog computed

with FFTLog. The FFT'd correlation function jFFT rings at the ^5 per cent

level.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/312/2/257/972743 by U
.S. D

epartm
ent of Justice user on 16 August 2022



284 A. J. S. Hamilton

the continuous transform. The usual procedure would be to apply

the discrete transform to a finite segment of the function a(r) to be

transformed. For FFTLog, the procedure can be regarded as

involving two steps: truncating the function to a finite logarithmic

interval, which causes ringing of the transform; followed by

periodic replication of the function in logarithmic space, which

causes aliasing.

Fig. B2 illustrates these steps for the unbiased �q � 0� Hankel

transform, equation (B1), of order m � 21=2 of a function that is

Gaussian in the log:

a�r� � exp�2�ln r�2=2�: �B34�
Truncation of the function a(r) leads to ringing of its transform

aÄ(k) at high frequencies k, as seen in the middle right panel of Fig.

B2. The oscillations at large k are actually uniformly spaced in k,

but appear bunched up because of the logarithmic plotting.

Periodic replication means taking a sum of copies shifted by

integral periods. From the definition Fig. (B1) of the continuous

Hankel transform, it can be seen that periodically replicating a

function a(r) in logarithmic space ln r and then taking its

continuous Hankel transform is equivalent to Hankel-transforming

the function a(r) and then periodically replicating the transform

aÄ(k) in ln k. However, truncating a function does not truncate its

transform, so, whereas a truncated, periodically replicated

function a(r) contains contributions from only one period at

each point r, the periodically replicated transform contains

overlapping contributions from many periods at each point k.

This is aliasing. In Fig. B2 aliasing is visible as an enhancement of

the periodically replicated transform aÄ(k) on the high-k side of the

periodic interval.

Ringing and aliasing can be reduced by taking suitable

precautions.

The ringing that results from taking the discrete transform of a

finite segment of a function can be reduced by arranging that the

function folds smoothly from large to small scales. It may help to

bias the function with a power law before transforming it, as in the

second algorithm in Appendix B4. It may also help to use a low-

ringing value of k0r0, Appendix B5.

Aliasing can be reduced by enlarging the periodic interval.

Aliasing can be eliminated (to machine precision) if the interval

can be enlarged to the point where the transform aÄ(k) goes

sensibly to zero at the boundaries of the period. Note that it is not

sufficient to enlarge the interval to the point where a(r) is sensibly

zero at the period boundaries: what is important is that the

transform aÄ(k) goes to zero at the boundaries.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B2. Illustrating the ringing and aliasing that occurs when the

continuous Hankel transform of a function is approximated by the discrete

Hankel transform of a finite segment of the function. Lines are dashed

where values are negative. The function a(r) is shown to the left, and its

corresponding Hankel transform aÄ(k) to the right. The panels from top to

bottom are: (top) the original function a(r) and its Hankel transform aÄ(k);

(middle) the truncated function a(r) and its Hankel transform aÄ(k), which

rings at high frequencies k; and (bottom) the truncated, periodically

replicated function a(r) and its corresponding periodically replicated

Hankel transform aÄ(k), which is aliased. Vertical lines in the bottom panels

demarcate periodic intervals.
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