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ABSTRACT

This paper proposes a novel uncorrelated multilinear dis-

criminant analysis (UMLDA) algorithm for the challenging

problem of gait recognition. A tensor-to-vector projection

(TVP) of tensor objects is formulated and the UMLDA is

developed using TVP to extract uncorrelated discriminative

features directly from tensorial data. The small-sample-size

(SSS) problem present when discriminant solutions are ap-

plied to the problem of gait recognition is discussed and a

regularization procedure is introduced to address it. The ef-

fectiveness of the proposed regularization is demonstrated

in the experiments and the regularized UMLDA algorithm

is shown to outperform other multilinear subspace solutions

in gait recognition.

1. INTRODUCTION

Gait recognition [1, 2], the identification of individuals in

video sequences by the way they walk, has gained signifi-

cant attention recently. This interest is strongly motivated

by the need for automated person identification system, vi-

sual surveillance at a distance in security-sensitive environ-

ments such as banks, airports and large civic structures, where

other biometrics such as fingerprint, face or iris information

can not be utilized [3]. Furthermore, night vision capabil-

ity is usually impossible with other biometrics due to the

limited signature in the IR image [3]. Gait is a complex

spatio-temporal biometric that can address these problems

effectively.

Binary gait silhouette sequences are taken as the input

in most of the gait recognition algorithms proposed in the

literature. The binary sequences are three-dimensional ob-

jects naturally represented as third-order tensors in a very

high-dimensional tensor space, with the spatial row, column

and the temporal modes for the three dimensions. To deal

with these tensor objects directly, classical vector-based lin-

ear feature extraction algorithms such as the Principal Com-

ponent Analysis (PCA) and Linear Discriminant Analysis

(LDA) need to reshape (vectorize) the input into vectors in

a very high-dimensional space, resulting in high computa-

tion and memory demand. Furthermore, the input reshaping

breaks the structure and correlation in the original data and

thus the redundancy and structure in the original data is not

fully utilized.

Lately, multilinear subspace algorithms operating directly

on the gait sequences in their tensor representation rather

than their vectorized versions have been proposed. The mul-

tilinear PCA (MPCA) framework [4] attempts to determine

a multilinear projection that projects the original tensor ob-

jects into a lower-dimensional tensor subspace while pre-

serving the variation in the original data and it has achieved

good results when applied to the gait recognition problem.

Nonetheless, MPCA is an unsupervised method and the class

information is not used in the feature extraction process.

This motivated research towards the development of super-

vised multilinear methodologies. A number of such solu-

tions have been introduced recently. The multilinear dis-

criminant analysis (MDA) proposed in [5] maximizes a tensor-

based scatter ratio criterion, but unfortunately the algorithm

does not converge and performs poorly on tensorial gait

data [4]. In [6], a so-called general tensor discriminant anal-

ysis (GTDA) algorithm is proposed by maximizing a scat-

ter difference criterion. Although the algorithm converges,

its direct application on tensorial gait data results in poor

performance [6]. All these three methodologies are based

on the tensor-to-tensor projection (TTP). The so-called Dis-

criminant Tensor Rank-one Decomposition (DTROD) algo-

rithm [7, 8], which uses the scatter difference criterion, ob-

tains a number of rank-one projections from the residues of

the original tensor data and it can be viewed as a tensor-to-

vector projection (TVP). This “greedy” approach, originally

proposed in [9], is a heuristic development without theoret-

ical justification and systematic determination of parameter

settings.

In this paper, a novel uncorrelated multilinear discrimi-

nant analysis (UMLDA) is proposed to extract uncorrelated

discriminative features directly from tensorial data based

on the Fisher’s discrimination criterion. In the next sec-

tion, basic notations and multilinear algebra are introduced



and the tensor-to-vector projection (TVP) is formulated as a

number of elementary multilinear projections (EMPs). The

UMLDA is then derived in Section 3 and the small-sample-

size (SSS) problem in gait recognition is analyzed and a

regularization procedure is introduced to tackle this prob-

lem. Finally, the experimental results are shown in Sec. 4 to

demonstrate the effectiveness of the proposed methods and

conclusions are drawn in Sec. 5.

2. MULTILINEAR ALGEBRA BASICS

2.1. Notations and basic multilinear algebra

In this paper, vectors are denoted by lowercase boldface let-

ters, e.g., x; matrices by uppercase boldface, e.g., U; and

tensors by calligraphic letters, e.g., A. Their elements are

denoted with indices in brackets. Indices are denoted by

lowercase letters and span the range from 1 to the upper-

case letter of the index, e.g., n = 1, 2, ..., N . Throughout

this paper, the discussion is restricted to real-valued vectors,

matrices and tensors since the targeted application (holistic

gait recognition using binary silhouettes) involve real data

only.

An N th-order tensor is denoted as: A ∈ R
I1×I2×...×IN .

It is addressed by N indices in, n = 1, ..., N , and each in
addresses the n-mode of A. The n-mode product of a tensor

A by a matrix U ∈ R
Jn×In , denoted by A ×n U, is a ten-

sor with entries: (A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑

in
A(i1, ..., iN ) · U(jn, in). The scalar product of two

tensors A,B ∈ R
I1×I2×...×IN is defined as: < A,B >=

∑

i1

∑

i2
...

∑

iN
A(i1, i2, ..., iN )·B(i1, i2, ..., iN ). The “n-

mode vectors” of A are defined as the In-dimensional vec-

tors obtained from A by varying the index in while keeping

all the other indices fixed. A rank-1 tensor A equals to the

outer product of N vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N),

which means that A(i1, i2, ..., iN ) = u(1)(i1) ·u
(2)(i2) · ... ·

u(N)(iN ) for all values of indices. Unfolding A along the

n-mode is denoted as A(n) ∈ R
In×(I1×...×In−1×In+1×...×IN ).

The column vectors of A(n) are the n-mode vectors of A.

2.2. Tensor-to-Vector projection for classification

The classification of tensor objects in this paper is deter-

mined through a multilinear projection from a tensor space

to a vector space. Firstly, the projection from a tensor to a

scalar is considered. A tensor X ∈ R
I1×I2×...×IN is pro-

jected to a point y as:

y = X ×1 u(1)T

×2 u(2)T

... ×N u(N)T

, (1)

which can also be written as the inner product:

y =< X ,u(1) ◦ u(2) ◦ ... ◦ u(N) > . (2)

Let U = u(1) ◦ u(2) ◦ ... ◦ u(N), then y =< X ,U >. Such

a multilinear projection {u(1)T

,u(2)T

, ...,u(N)T

}, hereafter

named an elementary multilinear projection (EMP), is the

projection of a tensor on a single multilinear projection di-

rection, and it consists of one projection vector in each mode.

The projection of a tensor object X to y ∈ R
P in a

P -dimensional vector space consists of P EMPs

{u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p = 1, ..., P, (3)

which can be written concisely as {u
(n)T

p , n = 1, ..., N}P
p=1.

This tensor-to-vector multilinear projection is therefore writ-

ten as

y = X ×N
n=1 {u

(n)T

p , n = 1, ..., N}P
p=1, (4)

where the pth component of y is obtained from the pth EMP

as:

y(p) = X ×1 u(1)T

p ×2 u(2)T

p ... ×N u(N)T

p . (5)

3. UNCORRELATED MULTILINEAR

DISCRIMINANT ANALYSIS WITH

REGULARIZATION FOR GAIT RECOGNITION

In a typical tensor object classification task, a set of M train-

ing tensor object samples {X1, X2, ..., XM} is available.

For the convenience of discussion, the mean of these sam-

ples is assumed to be zero, without loss of generality. Each

tensor object Xm ∈ R
I1×I2×...×IN assumes values in the

tensor space R
I1

⊗

R
I2 ...

⊗

R
IN , where In is the n-mode

dimension of the tensor. The objective of uncorrelated mul-

tilinear discriminant analysis (UMLDA) is to find a set of

P EMPs {u
(n)
p ∈ R

In×1, n = 1, ..., N}P
p=1 mapping from

the original tensor space R
I1

⊗

R
I2 ...

⊗

R
IN into a vector

subspace R
P (with P <

∏N

n=1 In):

ym = Xm ×N
n=1 {u

(n)T

p , n = 1, ..., N}P
p=1, m = 1, ...,M,

(6)

such that the Fisher’s discriminant criterion is maximized

in each EMP direction, subject to the constraint that the P

coordinate vectors {gp ∈ R
M , p = 1, ..., P} are uncorre-

lated. The mth component of the pth coordinate vector gp,

gp(m), is the projection of the mth sample Xm on the pth

EMP {u
(n)T

p , n = 1, ..., N}:

gp(m) = Xm ×N
n=1 {u

(n)T

p , n = 1, ..., N}. (7)

The objective function for the pth EMP can be written, in

terms of the between-class scatter S
y
Bp

and the within-class

scatter S
y
Wp

of the pth projected features {ymp
, m = 1, ...,M},

where ymp
is the projection of the mth sample by the pth



EMP, as following:

{u(n)T

p , n = 1, ..., N} = arg max
S

y
Bp

S
y
Wp

, (8)

subject to gT
p gq = δpq, p, q = 1, ..., P,

where S
y
Bp

=
∑C

c=1 Nc(ȳcp
− ȳp)

2, ȳp = 1
M

∑

m ymp
= 0,

S
y
Wp

=
∑M

m=1(ymp
− ȳcmp

)2, ȳcp
= 1

Nc

∑

m,cm=c ymp
,

and δpq is the Kronecker delta (defined as 1 for p = q and

as 0 otherwise).

The P EMPs {u
(n)T

p , n = 1, ..., N}P
p=1 are determined

as follows:

Step 1: The first EMP {u
(n)T

1 , n = 1, ..., N} is obtained

by maximizing
S
y

B1

S
y

W1

without any constraint.

Step 2: The pth(p > 1) EMP {u
(n)T

p , n = 1, ..., N} is

obtained by maximizing
S
y

Bp

S
y

Wp

subject to the constraint

that gT
p gq = 0 for q = 1, ..., p − 1.

In the following, the two-step UMLDA solution will be

described in detail. The procedures are summarized in the

pseudo-code in Fig. 1.

3.1. Determine the first EMP

The problem of projecting the tensor samples onto a line

where the projected samples are well separated is consid-

ered first. Through the first EMP {u
(n)T

1 , n = 1, ..., N}, a

corresponding set of M samples {ym1 , m = 1, ...,M} is

obtained with the objective of maximizing the Fisher’s cri-

terion J1({u
(n)T

1 , n = 1, ..., N}) =
S
y

B1

S
y

W1

.

As in the case of other multilinear algorithms [4–8],

there is currently no way to simultaneously obtain in all

modes those projection vectors {u
(1)
1 ,u

(2)
1 , ...u

(N)
1 } that max-

imizes J1({u
(n)T

1 , n = 1, ..., N}). The commonly used

alternating projection principle is used instead. In other

words, the projection vector is solved one by one and while

solving the projection vector in a particular mode n∗, the

projection vectors in all the other modes {n 6= n∗} are as-

sumed to be known and fixed, based on some projection

initialization procedure.

When {u
(n)
1 , n 6= n∗} is given, the tensor samples are

projected in these (N − 1) modes {n 6= n∗} first to obtain

ỹ
(n∗)
m1 = Xm×1u

(1)T

1 ...×n∗
−1u

(n∗

−1)T

1 ×n∗+1u
(n∗+1)T

1 ...×N

u
(N)T

1 , ỹ
(n∗)
m1 ∈ R

In∗ . Thus, the problem becomes a classi-

cal LDA problem, with input samples {ỹ
(n∗)
m1 , m = 1, ...,M}

and the projection to be solved is given by u
(n∗)
1 . In the in-

put space, the between-class scatter S̃
(n∗)
B1

and within-class

Input: A set of tensor samples {Xm ∈ R
I1×I2×...×IN , m =

1, ..., M} with class labels c ∈ R
M , the desired feature vector

length P , the maximum number of iterations K and a small num-

ber ǫ for testing convergence.

Output: The P EMPs {u
(n)T

p , n = 1, ..., N}P
p=1 that best separate

classes in the projected space and the feature vectors {ym ∈
R

P , m = 1, ..., M} of the input tensor samples.

Algorithm:

Step 1 (The first EMP) :

• For n = 1, ..., N , initialize u
(n)
1(0)

∈ R
In .

• For k = 1 : K

– For n = 1 : N

∗ Calculate ỹ
(n)
m1 = Xm ×1 u

(1)T

1(k−1)
...×n−1

u
(n−1)T

1(k−1)
×n+1 u

(n+1)T

1(k−1)
... ×N u

(N)T

1(k−1)
,

for m = 1, ..., M .

∗ Calculate S̃
(n)
B1

and S̃
(n)
W1

. Set u
(n)
1(k)

to be the

(unit) eigenvector of S̃
(n)−1

W1
S̃

(n)
B1

associated

with the largest eigenvalue.

– If ‖ u
(n)
1(k)

− u
(n)
1(k−1)

‖2< ǫ for all n, set

u
(n)
1 = u

(n)
1k

for all n and break.

• The coordinate vector g1 is obtained with g1(m) =

Xm ×1 u
(1)T

1 ×2 u
(2)T

1 ... ×N u
(N)T

1 .

Step 2 (The rest EMPs) :

For p = 2 : P

• For n = 1, ..., N , initialize u
(n)
p(0)

∈ R
In .

• For k = 1 : K

– For n = 1 : N

∗ Calculate ỹ
(n)
mp

= Xm ×1 u
(1)T

p(k−1)
...×n−1

u
(n−1)T

p(k−1)
×n+1 u

(n+1)T

p(k−1)
... ×N u

(N)T

p(k−1)
,

for m = 1, ..., M.

∗ Calculate R
(n)
p , S̃

(n)
Bp

and S̃
(n)
Wp

. Set

u
(n)
p(k)

to be the (unit) eigenvector of
(

S̃
(n)
Wp

)

−1
R

(n)
p S̃

(n)
Bp

associated with the

largest eigenvalue.

– If ‖ u
(n)
p(k)

− u
(n)
p(k−1)

‖2< ǫ for all n, set

u
(n)
p = u

(n)
pk

for all n and break.

• The coordinate vector gp is obtained with gp(m) =

Xm ×1 u
(1)T

p ×2 u
(2)T

p ... ×N u
(N)T

p .

Step 3 (Projection) :

The feature vector after projection is obtained as ym =

Xm ×N
n=1 {u

(n)T

p , n = 1, ..., N}P
p=1, for m = 1, ..., M ,

or ym can be obtained with ym(p) = gp(m).

Fig. 1. The pseudo-code implementation of the UMLDA

algorithm.



scatter S̃
(n∗)
W1

are defined as

S̃
(n∗)
B1

=

C
∑

c=1

Nc(¯̃y
(n∗)
c1

− ¯̃y
(n∗)
1 )(¯̃y(n∗)

c1
− ¯̃y

(n∗)
1 )T ,(9)

S̃
(n∗)
W1

=

M
∑

m=1

(ỹ(n∗)
m1

− ¯̃y(n∗)
cm1

)(ỹ(n∗)
m1

− ¯̃y(n∗)
cm1

)T (10)

where ¯̃y
(n∗)
c1 = 1

Nc

∑

m,cm=c ỹ
(n∗)
m1 , and ¯̃y

(n∗)
1 = 1

M

∑

m

ỹ
(n∗)
m1 = 0. Thus, the u

(n∗)
1 that maximizes the Fisher’s cri-

terion
u

(n∗)T

1 S̃
(n∗)
B1

u
(n∗)
1

u
(n∗)T

1 S̃
(n∗)
W1

u
(n∗)
1

in the projected space is obtained as

the eigenvector of S̃
(n∗)−1

W1
S̃

(n∗)
B1

associated with the largest

eigenvalue (provided that S̃
(n∗)
W1

is nonsingular). Starting

with initialized {u
(n)
1 }, this procedure is repeated for each

mode in sequence until a maximum number of iterations K

is reached or the EMP converges, i.e., ‖ u
(n)
1(k)

−u
(n)
1(k−1)

‖2<

ǫ for all n, where ǫ is a small number chosen empirically.

3.2. Determine the pth EMP given the first (p−1) EMPs

Now, assuming that the first (p−1) EMPs are available, the

pth EMP is to be determined so that the scatter ratio
S
y

Bp

S
y

Wp

is

maximized, subject to the constraint that the projection by

the pth EMP is uncorrelated with the projections by the first

(p − 1) EMPs.

An alternating projection approach is considered. With

given {u
(n)
p , n 6= n∗}, the tensor samples are projected

in these (N − 1) modes first to obtain ỹ
(n∗)
mp = Xm ×1

u
(1)T

p ...×n−1 u
(n−1)T

p ×n−1 u
(n−1)T

p ×n+1 u
(n+1)T

p ...×N

u
(N)T

p , ỹ
(n∗)
mp ∈ R

In∗ . Let Ỹ
(n∗)
p ∈ R

In∗×M be a matrix

with its mth column to be ỹ
(n∗)
mp , then the pth coordinate

vector is obtained as gp = Ỹ
(n∗)T

p u
(n∗)
p . The constraint

that gp is uncorrelated with {gq, q = 1, ..., p − 1} can be

written as

u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p − 1. (11)

Thus, u
(n∗)
p can be determined by solving the following

optimization problem:

u(n∗)
p = arg max

u
(n∗)T

p S̃
(n∗)
Bp

u
(n∗)
p

u
(n∗)T

p S̃
(n∗)
Wp

u
(n∗)
p

, (12)

subject to u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p − 1,

where S̃
(n∗)
Bp

=
∑C

c=1 Nc(¯̃y
(n∗)
cp − ¯̃y

(n∗)
p )(¯̃y

(n∗)
cp − ¯̃y

(n∗)
p )T ,

S̃
(n∗)
Wp

=
∑M

m=1(ỹ
(n∗)
mp − ¯̃y

(n∗)
cmp

)(ỹ
(n∗)
mp − ¯̃y

(n∗)
cmp

)T , ¯̃y
(n∗)
cp =

1
Nc

∑

m,cm=c ỹ
(n∗)
mp , and ¯̃y

(n∗)
p = 1

M

∑

m ỹ
(n∗)
mp = 0.

The solution is given by the following theorem:

Theorem 1 The solution to the problem (12) is the (unit)

generalized eigenvector corresponding to the largest gen-

eralized eigenvalue of the following generalized eigenvalue

problem:

R(n∗)
p S̃

(n∗)
Bp

u = λS̃
(n∗)
Wp

u, (13)

where

R(n∗)
p = IIn∗

− Ỹ(n∗)
p Gp−1

(

GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ(n∗)

p

Gp−1

)

−1

GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
,

(14)

Gp−1 = [g1 g2 ...gp−1] ∈ R
M×(p−1), (15)

and IIn∗
is an identity matrix of size In∗ × In∗ .

Proof The proof is not included due to space limitation.

3.3. Intialization

The iterative determination of each EMP {u
(n)
p , n = 1, ..., N}

requires initialization. In this paper, the EMP initialization

procedure is as follows: Let {v
(n)
jn

, jn = 1, ..., Jn}, where

Jn = min{In, C − 1}, be the Jn projection bases obtained

by applying the classical LDA on the n-mode vectors (treat-

ing each n-mode vector as a sample), with corresponding

eigenvalues as λ
(n)
jn

. From these bases, a total number of
∏N

n=1 Jn candidate EMPs are obtained by considering all

possible combinations, and each of them is associated with a

discrimination score Dj1j2...jN
=

∏N

n=1 λ
(n)
jn

. These EMP

candidates are ordered according to Dj1j2...jN
in descend-

ing order and the pth candidate is taken sequentially as the

initialization for the pth EMP.

3.4. Regularized UMLDA for gait recognition

Although multilinear subspace solutions for gait recognition

usually do not have the numerical small-sample-size (SSS)

problems associated with traditional discriminant method-

ologies, the SSS problem does exist in gait recognition as

well, especially when iterative discriminant analysis meth-

ods are considered. Since there is a large number of pos-

sible EMPs which can be used for the projection of gait

tensors, when the number of samples per class is small, it

is always possible to find some EMPs such that the pro-

jected features of the same class has almost zero within-

class scatter. In the simulation studies reported here, it has

been observed that when iterations maximize the scatter ra-

tio, they tend to decrease the within-class scatter towards

zero, severely overfitting the training data. However, in the

challenging problem of gait recognition, large within-class

scatter should be expected. Therefore, a regularization term



is introduced to prevent the iterative procedure to shrink

the within-class scatter while focusing on maximizing the

between-class scatter, i.e., S̃
(n∗)R
Wp

= S̃
(n∗)
Wp

+η ·IIn∗
is used

instead of S̃
(n∗)
Wp

in (13), where η is the regularization pa-

rameter and it is determined empirically in this paper. In

addition, in computing the matrix inverse in (14), a small

term (10−6 ·Ip−1) is added, where Ip−1 is a (p−1)×(p−1)
identity matrix, in order to get better conditioned matrix for

the inverse computation.

4. EXPERIMENTAL RESULTS

In this section, i) the compactness of the projected features

obtained by UMLDA is illustrated on the problem of ten-

sorial gait classification, and ii) the effectiveness of the reg-

ularization is demonstrated. The gait recognition experi-

ments are carried out on the USF HumanID “Gait Chal-

lenge” data sets version 1.7 [1] for preliminary evaluation.

The human gait sequences in these data sets were captured

under different conditions (walking surfaces, shoe types and

viewing angles). The gallery set contains 71 sequences (sub-

jects) and seven experiments (probe sets) are designed for

human identification. Gait samples (half gait cycles) of size

64×44×20 are obtained following the procedures in [4] and

Fig. 2 shows two examples as unfolded images. There are

725 gait samples in the Gallery set and each subject has an

average of roughly 10 samples available. The nearest mean

classifier and the L1 distance measure are used in the fol-

lowing experiments for preliminary testing, and the correct

classification rate (CCR) is used for performance evalua-

tion. In all the experiments, we set K = 10 and ǫ = 10−6.

Fig. 2. Two gait silhouette samples (unfolded).

In the first experiment, the small-sample-size problem

in gait recognition is illustrated. The first five samples of

each sequence (355 in total) from the gallery set are used

as the training data and the rest 370 samples are used as

the test data. Since the test data and the training data are

captured under the same condition, the classification per-

formance is expected to be good. However, the UMLDA

performs poorly in this experiment, which is due to the SSS

problem explained above. The results obtained with the reg-

ularized UMLDA (R-UMLDA) on the training samples and

test samples are shown in Figs. 3(a) and 3(b), respectively,

with η = 100, 1 and 10−6. From the figures, it can been

seen that although a stronger regularization results in less

compact clusters on the training set, it has better classifica-

tion results on the test set, indicating better generalization.

(a) The classification of training samples.

(b) The classification of test samples.

Fig. 3. The SSS problem in gait recognition and the effects

of regularization.

Next, the R-UMLDA with η = 100 is applied on the

whole gallery samples to extract P = 70 features and com-

pared against the MPCA and DTROD algorithms in gait

recognition. The regularization parameter η = 100 is em-

pirically selected here for illustration. It is not optimized

and a systematic way to set η will be investigated in fu-

ture work. The classification results on the gallery set are

shown in Fig. 4(a), where the R-UMLDA outperforms the

others significantly, showing the R-UMLDA results in more

compact and well-separated clusters in the projected space.

The averaged recognition results for the probe samples and

probe sequences 1 from the seven probe sets (probes A to

G) are shown in Figs. 4(b) and 4(c), respectively, where R-

UMLDA is the best performing algorithm in the figures. In

particular, the first a few features extracted by R-UMLDA

1The matching score of a sequence is obtained as the average matching

score of its samples.



are very powerful. Nevertheless, a current limitation of the

R-UMLDA is that the discriminability of features extracted

by R-UMLDA drops to small values as P increases, e.g., the

scatter ratio is less than 1 after the 11th feature and it is less

than 0.5 after the 24th feature in this experiment. Therefore,

the number of discriminative features is limited and further

research needs to be done to solve this problem.

5. CONCLUSIONS

In this paper, a novel uncorrelated multilinear discriminant

analysis (UMLDA) algorithm is proposed to extract uncor-

related discriminative features directly from tensorial data

using the tensor-to-vector projection of tensor objects. A

regularized UMLDA is further developed to tackle the small-

sample-size problem in the challenging gait recognition prob-

lem. Experiments demonstrates the effectiveness of the reg-

ularization procedure and the R-UMLDA has achieved bet-

ter gait recognition results than other multilinear subspace

solutions.
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