
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 356, Number 8, Pages 3209–3225
S 0002-9947(03)03450-0
Article electronically published on November 25, 2003

UNCORRELATEDNESS AND ORTHOGONALITY
FOR VECTOR-VALUED PROCESSES

PETER A. LOEB, HORST OSSWALD, YENENG SUN, AND ZHIXIANG ZHANG

Abstract. For a square integrable vector-valued process f on the Loeb prod-
uct space, it is shown that vector orthogonality is almost equivalent to com-
ponentwise scalar orthogonality. Various characterizations of almost sure un-
correlatedness for f are presented. The process f is also related to multilinear
forms on the target Hilbert space. Finally, a general structure result for f
involving the biorthogonal representation for the conditional expectation of f
with respect to the usual product σ-algebra is presented.

1. Introduction

This paper considers the almost sure uncorrelatedness and almost sure orthog-
onality of vector-valued processes. If a vector-valued process with almost surely
uncorrelated random variables is assumed to be jointly measurable in the usual
sense, then the vector-valued random variables are almost surely trivial (see Re-
mark 4.5 below). Thus a richer product measure-theoretic framework is needed
to work with such processes. As demonstrated in [13], the Loeb product measure
spaces do provide such a rich framework for scalar-valued processes with almost
surely uncorrelated random variables. Here we show that the Loeb product frame-
work works well in the vector case.

Our probability spaces are formed from two internal probability spaces (T,A, ν)
and (Ω,B, p). We denote by (T × Ω,A⊗ B, ν ⊗ p) the internal product space of T
and Ω. The Loeb spaces over (T,A, ν) and (Ω,B, p) are denoted by (T, Lν(A), ν̂)
and (Ω, Lp(B), p̂), respectively (see Chapter 5 in [11] for the detailed construc-
tion and properties of Loeb spaces). The Loeb space over the internal prod-
uct (T × Ω,A⊗ B, ν ⊗ p) is called the Loeb product space; it is denoted by(
T × Ω, Lν⊗p (A⊗ B) , ν̂ ⊗ p

)
. Although the definition of the Loeb product in-

volves the internal factor spaces (T,A, ν) and (Ω,B, p), it is shown in [8] that
it actually depends only on the Loeb spaces of the internal factors, i.e., only on
(T, Lν(A), ν̂) and (Ω, Lp(B), p̂).

The Loeb product space is much richer than the completion of the usual prod-
uct (T × Ω, Lν (A)⊗ Lp (B) , ν̂ ⊗ p̂). For simplicity, we shall use the same notation
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(T × Ω, Lν (A)⊗ Lp (B) , ν̂ ⊗ p̂) to denote both the usual product and its comple-

tion. As already noted in [2],
(
T × Ω, Lν⊗p (A⊗ B) , ν̂ ⊗ p

)
extends the product

space (T × Ω, Lν (A)⊗ Lp (B) , ν̂ ⊗ p̂). It is shown in [13] that the inclusion is al-
ways proper when the factor spaces (T, Lν(A), ν̂) and (Ω, Lp(B), p̂) are non-atomic
(a specific example can be found in [1] p. 74). In fact, Theorem 6.2 in [13] shows
that the Loeb product space is very rich in the sense that it can be endowed with
independent processes that are not measurable with respect to the usual product
σ-algebra Lν (A)⊗Lp (B) but have almost independent random variables with any
variety of distributions. In addition, it is shown in [3] that there is a continuum
of increasing Loeb product null sets with large gaps in the sense that their set
differences have ν̂ ⊗ p̂-outer measure one.

The rest of this paper is organized as follows. It is obvious that the orthogonal-
ity condition for vector-valued random variables is weaker than the orthogonality
condition for scalar-valued random variables obtained from each fixed component.
It is surprising that when a large collection of vector-valued random variables is
considered, vector orthogonality is almost equivalent to componentwise scalar or-
thogonality. This result is shown in Section 2. Section 3 presents a Keisler-type
Fubini theorem for Banach-valued processes on Loeb product spaces. Based on
this kind of Fubini property and on some standard measure-theoretic methods, we
generalize in Section 4 to the vector case some results on scalar orthogonality and
uncorrelatedness in [13], including the characterization of a version of the law of
large numbers for vector-valued processes via almost sure uncorrelatedness. In Sec-
tion 5, we relate processes taking values in separable Hilbert spaces to multilinear
forms on such spaces. Many new results are obtained. A general structure result
for a square integrable Hilbert space valued process on the Loeb product space is
presented in Section 6.

2. Vector versus componentwise orthogonality

In this section we demonstrate the equivalence between the almost sure orthog-
onality (defined below) of an l2-valued vector function and of its components on
the Loeb product space. Note that every separable Hilbert space is isomorphic to
l2, so we can also say that this equivalence holds in general for a separable Hilbert
space H. Throughout this paper the Hilbert spaces that we work with are always
assumed to be separable.

To avoid convergence problems and problems caused by the difference between
the measures ν̂ ⊗ p and ν̂⊗ p̂, we shall work with a ∗finite-dimensional space F that
is closely related to H. If E is a ∗finite-dimensional subspace of ∗H with an internal
orthonormal basis (ei)i≤γ , then for elements a, b ∈ ∗H we set

〈a, b〉E :=
∑
i≤γ
〈a, ei〉 · 〈b, ei〉 = 〈πE(a), πE(b)〉 ,

where πE denotes the orthogonal projection from ∗H onto E. Set

‖a‖E := ‖πE(a)‖ =

∑
i≤γ
〈a, ei〉2


1
2

.

Note that the values 〈a, b〉E and ‖a‖E do not depend on the choice of the or-
thonormal basis of E. If a, b ∈ ∗H, then we shall write a ≈E b when ‖a− b‖E ≈ 0.
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We will identify each a ∈ H with ∗a ∈ ∗H. The following result is a straightforward
consequence of saturation.

Proposition 2.1. There exists a ∗finite-dimensional subspace F of ∗H such that
(1) ∗E ⊂ F for each finite-dimensional subspace E ⊂ H.
(2) ‖∗a‖F ≈ ‖a‖ for each a ∈ H.
(3) Each orthonormal basis (ei)i∈N of H can be extended to an internal orthonor-

mal basis (ei)i≤γ of F, where γ is the internal dimension of F.
Moreover, since the polarization identity allows the scalar product to be defined

in terms of the norm, 〈∗a,∗ b〉F ≈ 〈a, b〉 for each a, b ∈ H.

Fix a real number q ≥ 1. Denote by Lq(p̂,H) the set of Lp(B)-measurable
functions f : Ω → H for which ‖f‖q is p̂-integrable. We identify two functions f
and g in Lq(p̂,H) if ‖f − g‖ = 0 p̂-a.s. If H = R, we will write Lq(p̂) instead of
Lq(p̂,H).

Let SLq(p,F) denote the set of all internal B-measurable functions F : Ω → F
such that ω 7→ ‖F (ω)‖qF is S-integrable with respect to the internal measure p (see
Chapter 5 in [11]). If F = ∗R, we shall simply write SLq(p).

The following result is a slight modification of well-known results of Anderson
and Loeb ([2], [9]).

Proposition 2.2. Given a function f : Ω→ H,
(1) f is Lp(B)-measurable iff f has a lifting F : Ω→ F, i.e., F is internal and

B-measurable and for p̂-almost all ω ∈ Ω
∗ (f(ω)) ≈F F (ω);

(2) f ∈ Lq(p̂,H) iff f has a lifting F : Ω→ F in SLq(p,F).

We call an Lν⊗p(A⊗B)-measurable function f : T ×Ω→ H an almost surely
orthogonal process if fs ⊥ ft for ν̂2-almost all (s, t) ∈ T 2, where fs and ft are the
random variables f(s, ·) and f(t, ·) defined on Ω, and fs ⊥ ft means

∫
Ω
〈fs, ft〉 dp̂ =

0.

Lemma 2.3. Fix F : T × Ω → F in SL2 (ν ⊗ p,F) and Φ : Ω → F in SL2 (p,F).
Then

(1) 〈Fs, Ft〉F ∈ SL1(p) for ν̂2-almost all (s, t) ∈ T 2.
(2) (s, t) 7→

∫
Ω
〈Fs, Ft〉F dp ∈ SL2(ν2).

(3) 〈Fs,Φ〉F ∈ SL1(p) for ν̂-almost all s ∈ T .
(4) s 7→

∫
Ω
〈Fs,Φ〉F dp ∈ SL2(ν).

Proof. (1) By Keisler’s Fubini theorem (see [7] and Chapter 5 in [11]), there exists
a set U ⊆ T such that ν̂(U) = 1 and ‖Ft‖F ∈ SL2(p) for all t ∈ U . Now fix
(s, t) ∈ U × U and an N ∈ B. Then, by Hölder’s inequality,(∫

N

〈Fs, Ft〉F dp
)2

≤
∫
N

‖Fs‖2F dp ·
∫
N

‖Ft‖2F dp
{
≈ 0 if p(N) ≈ 0,

is limited.

This proves (1).
(2) By Keisler’s Fubini Theorem, t 7→

∫
Ω ‖Ft‖

2
F dp ∈ SL1(ν). It follows that

(s, t) 7→
∫

Ω

‖Fs‖2F dp ·
∫

Ω

‖Ft‖2F dp ∈ SL1(ν2).
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Since (∫
Ω

〈Fs, Ft〉F dp
)2

≤
∫

Ω

‖Fs‖2F dp ·
∫

Ω

‖Ft‖2F dp,

(2) is true.
The proofs of (3) and (4) are similar. �

Let α be a real-valued random variable with mean zero and variance one on Ω.
Define two vector-valued random variables Φ and Ψ by letting Φ(ω) = (α(ω), α(ω))
and Ψ(ω) = (α(ω),−α(ω)). It is obvious that Φ and Ψ are orthogonal, i.e.,∫

Ω
〈Φ,Ψ〉 dp̂ = 0; but the first component of Φ and the first component of Ψ are not

orthogonal. Thus vector orthogonality is not equivalent to componentwise scalar
orthogonality. It is surprising that these two concepts are essentially equivalent for
a large collection of vector-valued random variables (taking values in the Hilbert
space l2).

Theorem 2.4. Suppose f : T×Ω→ l2 is in L2
(
ν̂ ⊗ p, l2

)
. Then f is almost surely

orthogonal if and only if each component function f i ∈ L2
(
ν̂ ⊗ p

)
, i = 1, 2, . . . , is

almost surely orthogonal.

Proof. Since f ∈ L2
(
ν̂ ⊗ p, l2

)
, ‖f‖ ∈ L2(ν̂ ⊗ p). Keisler’s Fubini theorem implies

that there exists a ν̂-full set T0 such that ‖ft‖ ∈ L2(p̂) for all t ∈ T0.
Sufficiency. Suppose for each i, f i is almost surely orthogonal in L2(p̂). Then

there is a ν̂2-full set Di for every i, such that∫
Ω

f isf
i
tdp̂ = 0 for all (s, t) ∈ Di.

Let D = (T0 ×T0)∩ (
⋂∞
i=1 Di). Then D is a ν̂2-full subset of T × T . We then have

that, for (s, t) ∈ D, supn |
∑n
i=1 f

i
s(ω)f it (ω)| ≤ ‖fs(ω)‖ · ‖ft(ω)‖ for any ω ∈ Ω, and

the Dominated Convergence Theorem implies that

0 =
∞∑
i=1

∫
Ω

f isf
i
tdp̂ =

∫
Ω

∞∑
i=1

f isf
i
tdp̂ =

∫
Ω

〈fs, ft〉 dp̂.

Thus f is almost surely orthogonal in L2(p̂, l2).
Necessity. It suffices to show that for each t′ ∈ T0,

∫
Ω f

i
tf
i
t′dp̂ = 0 for ν̂-almost all

t ∈ T . Here, we need only show
∫
T

(∫
Ω 〈ft, ϕ〉 dp̂

)2
dν̂(t) = 0 for any ϕ ∈ L2(p̂, l2).

We use the above propositions and lemma with H = l2. Fix an internal orthonormal
basis (ei)i≤γ of F, and fix liftings F ∈ SL2

(
ν̂ ⊗ p,F

)
and Φ ∈ SL2 (p̂,F) of f, ϕ,

respectively. Then we have∫
T

(∫
Ω

〈ft, ϕ〉 dp̂
)2

dν̂(t) = (by Prop. 2.1),∫
T

(∫
Ω

◦ 〈Ft,Φ〉F dp̂
)2

dν̂(t) = (by Lemma 2.3(3)),∫
T

(
◦
∫

Ω

〈Ft,Φ〉F dp
)2

dν̂(t) ≈ (by Lemma 2.3(4)),
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T

(∫
Ω

〈Ft,Φ〉F dp
)2

dν(t)

=
∫
T

∫
Ω2
〈Ft(ω),Φ(ω)〉F 〈Ft(λ),Φ(λ)〉F dp2(ω, λ)dν(t)

=
∫

Ω2

∑
i,j≤γ

〈Φ(ω), ei〉 〈Φ(λ), ej〉 ·
∫
T

〈Ft(ω), ei〉 〈Ft(λ), ej〉 dν(t)dp2(ω, λ)

≤ A · B ≈ 0.

Here, the quantity A is given by

A2 :=
∫

Ω2

∑
i,j≤γ

〈Φ(ω), ei〉2 〈Φ(λ), ej〉2 dp2(ω, λ)

=
∫

Ω2
‖Φ(ω)‖2F ‖Φ(λ)‖2F dp2(ω, λ) =

(∫
Ω

‖Φ(ω)‖2F dp(ω)
)2

,

and this is limited since Φ ∈ SL2 (p,F). The quantity B is given by

B2 :=
∫

Ω2

∑
i,j≤γ

(∫
T

〈Ft(ω), ei〉 〈Ft(λ), ej〉 dν(t)
)2

dp2(ω, λ)

=
∫

Ω2

∑
i,j≤γ

∫
T 2
〈Ft(ω), ei〉 〈Ft(λ), ej〉 〈Fs(ω), ei〉 〈Fs(λ), ej〉 dν2(t, s)dp2(ω, λ)

=
∫
T 2

∫
Ω

∑
i≤γ
〈Ft, ei〉 〈Fs, ei〉 dp ·

∫
Ω

∑
j≤γ
〈Ft, ej〉 〈Fs, ej〉 dpdν2(s, t)

=
∫
T 2

∫
Ω

∑
i≤γ
〈Ft, ei〉 〈Fs, ei〉 dp

2

dν2(s, t),

∫
T 2

(∫
Ω

〈Ft, Fs〉F dp
)2

dν2(s, t) ≈ (by Lemma 2.3(2)),∫
T 2

(
◦
∫

Ω

〈Ft, Fs〉F dp
)2

dν̂2(s, t) = (by Lemma 2.3(1)),∫
T 2

(∫
Ω

◦ 〈Ft, Fs〉F dp̂
)2

dν̂2(s, t) = (by Prop. 2.1),∫
T 2

(∫
Ω

〈ft, fs〉 dp̂
)2

dν̂2(s, t) = 0,

since f is almost surely orthogonal. Thus B is an infinitesimal, and hence A·B ≈ 0,
and ∫

T

(∫
Ω

〈ft, ϕ〉 dp̂
)2

dν̂(t) = 0,

whence we are done. �
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3. Vector-valued Fubini theorem on Loeb product space

In this section we extend Keisler’s Fubini theorem to the Banach case, even
though only the Hilbert-valued case is needed here in later sections. We will need
the following well-known result.

Lemma 3.1. Let Ψ be a bounded linear operator from a Banach space X to a Ba-
nach space Y . If f is Bochner integrable with respect to measure µ on a measurable
space (S,S), then for each U ∈ S,

Ψ
(∫

U

fdµ

)
=
∫
U

Ψfdµ.

Proof. See, e.g., [15] or [6]. �
Theorem 3.2 (Keisler’s Fubini theorem for vector-valued random variables). Fix
f : T × Ω→ B in L1

(
ν̂ ⊗ p,B

)
, where (B, ‖ · ‖) is a Banach space. Then

(1) For ν̂-almost all t ∈ T , f(t, ·) is Bochner integrable with respect to p̂;
(2) t 7→

∫
Ω ftdp̂ is Bochner integrable with respect to ν̂; and

(3)
∫
T×Ω

fdν̂ ⊗ p =
∫
T

∫
Ω
ftdp̂dν̂(t).

Proof. Since the function f is Bochner integrable, there exists a sequence (fn)n∈N
of Lν⊗p (A⊗ B) -measurable simple functions such that

(i) (‖fn − f‖)n∈N is a decreasing sequence of non-negative functions and tends
to 0 ν̂ ⊗ p-a.s., and

(ii) limn→∞
∫
T×Ω ‖fn − f‖ dν̂ ⊗ p = 0.

(See G. Da Prato, J. Zabczyk [5].)
It follows, by Keisler’s scalar-valued Fubini theorem and Lebesgue’s theorem,

that there exists a ν̂-full set T1 such that for all t ∈ T1,
(iii) limn→∞ ‖fn(t, ·)− f(t, ·)‖ = 0 p̂-a.s.,
(iv) limn→∞

∫
Ω
‖fn(t, ·)− f(t, ·)‖ dp̂ = 0.

It follows that ft is Bochner integrable for all t ∈ T1, whence (1) is true.
Fix t ∈ T1. It follows from (iv) and the fact that

∫
Ω fn(t, ·)dp̂ is Lν (A)-

measurable that
∫

Ω
ftdp̂ is Lν (A)-measurable. Since∫
T

∥∥∥∥∫
Ω

ftdp̂

∥∥∥∥ dν̂(t) ≤
∫
T×Ω

‖f‖ dν̂ ⊗ p <∞,

t 7→
∫

Ω
ftdp̂ is ν̂-Bochner integrable. Thus (2) is true.

Now we turn to the proof of (3). It follows from Lemma 3.1 and the scalar-valued
Keisler Fubini theorem that for every ϕ ∈ B′ (the topological dual space of B)

ϕ

(∫
T×Ω

fdν̂ ⊗ p
)

= ϕ

(∫
T

∫
Ω

ftdp̂dν̂(t)
)
.

Thus
∫
T×Ω

fdν̂ ⊗ p =
∫
T

∫
Ω
ftdp̂dν̂(t). This finishes the proof. �

4. Properties of vector uncorrelatedness and orthogonality

Let U denote the conventional product Lν (A)⊗Lp (B) of respective Loeb spaces.
In this section it will be shown that the almost sure uncorrelatedness and orthogo-
nality for Hilbert space valued vectors on the Loeb product space can be character-
ized by the conditional expectation with respect to U . For a p̂-integrable function
g on Ω, denote the integral

∫
Ω gdp̂ by Eg.
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We call an Lν⊗p(A ⊗ B)-measurable function f : T × Ω → H almost surely
uncorrelated if E 〈fs, ft〉 = 〈Efs,Eft〉 for ν̂2-almost all (s, t) ∈ T 2. For each
ω ∈ Ω, the sample function f(·, ω) defined on T is denoted by fω. We have the
following results resembling those in the scalar-value case in [13] and [14].

Lemma 4.1. Fix a function f : T × Ω → H in L1
(
ν̂ ⊗ p,H

)
. If E (f |U) = h,

where h is an element in L1 ((T, Lν(A), ν̂),H), then for p̂-almost all ω ∈ Ω,fω is
integrable on (T, Lν(A), ν̂), and for any given A ∈ Lν(A),

∫
A fωdν̂ =

∫
A htdν̂(t)

for p̂-almost all ω ∈ Ω. Furthermore, ht = Eft for ν̂-almost all t ∈ T .

Proof. By Theorem 3.2, Eft is Lν(A)-measurable. Theorem 3.2 also yields the
result that for each A ∈ Lν(A), B ∈ Lν(B),∫

B

∫
A

f(t, ω)dν̂(t)dp̂(ω) =
∫
A×B

fdν̂ ⊗ p =
∫
A×B

E (f |U) dν̂ ⊗ p

=
∫
A×B

hdν̂ ⊗ p =
∫
B

∫
A

hdν̂dp̂.

Note that H is a separable Hilbert space. Choose a sequence {ϕn}∞n=1 that is dense
in H′. Then for any fixed n ≥ 1 and A ∈ Lν(A),∫

B

ϕn

(∫
A

f(t, ω)dν̂(t)
)
dp̂(ω) =

∫
B

ϕn

(∫
A

hdν̂

)
dp̂

holds for all B ∈ Lν(B). By the uniqueness of the Radon-Nikodým derivatives and
by grouping countably many null sets together, it follows that for p̂-almost all ω ∈ Ω,
ϕn
(∫
A fωdν̂

)
= ϕn

(∫
A htdν̂(t)

)
holds for all n ≥ 1. Thus,

∫
A fωdν̂ =

∫
A htdν̂(t).

Note that we also have∫
A

∫
Ω

fdp̂dν̂ =
∫
A

∫
Ω

hdp̂dν̂ =
∫
A

hdν̂

for any A ∈ Lν(A). By the same argument as above, we have ht = Eft for ν̂-almost
all t ∈ T . �

As in the scalar case in [13], [14], we say that the vector valued process f satisfies
the consistency law if the first result in the above lemma holds, that is, if for
any given A ∈ Lν(A),

∫
A
fωdν̂ =

∫
A
htdν̂(t) for p̂-almost all ω ∈ Ω, where h is an

element in L1 ((T, Lν(A), ν̂),H).
To characterize the almost sure orthogonality, we say the random variables ft

are almost surely orthogonal as defined in Section 2, i.e., E 〈fs, ft〉 = 0 for
ν̂2-almost all (s, t) ∈ T 2. The sample functions fω are said to be almost surely
orthogonal if

∫
T 〈fω1(t), fω2(t)〉 dν̂(t) = 0 for p̂2-almost all (ω1, ω2) ∈ Ω2. We

will show these two definitions are equivalent. For this purpose we first prove the
following properties about orthogonality.

Lemma 4.2. Fix f : T × Ω→ H ∈ L2
(
ν̂ ⊗ p,H

)
.

(i) If the random variables ft are almost surely orthogonal in L2(p̂,H), then
E(f |U) = 0, and for all A ∈ Lν(A),

∫
A fωdν̂ = 0 for p̂-almost all ω ∈ Ω.

(ii) If the sample functions fω are almost surely orthogonal in L2(ν̂,H), then
E(f |U) = 0, and for all B ∈ Lν(B),

∫
B f(t, ω)dp̂(ω) = 0 for ν̂-almost all t ∈ T , in

particular, Eft = 0 for ν̂-almost all t ∈ T .
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Proof. Suppose ft’s are almost surely orthogonal. Keisler’s Fubini theorem implies
that for all A ∈ Lν(A),

0 =
∫
A×A

E〈ft1 , ft2〉dν̂2(t1, t2)

=
∫

Ω

〈∫
A

ft1dν̂(t1),
∫
A

ft2dν̂(t2)
〉
dp̂ = E

(∥∥∥∥∫
A

ftdν̂(t)
∥∥∥∥)2

.

Thus
∫
A ftdν̂(t) = 0, p̂-a.s. It follows from Keisler’s Fubini theorem that the integral∫

A×B fdν̂ ⊗ p = 0 for any A ∈ Lν(A), B ∈ Lp(B). Since {D ∈ U :
∫
D fdν̂ ⊗ p = 0}

is a sigma-field containing all A1×B1 with A1 ∈ Lν(A), B1 ∈ Lp(B), the Monotone
Class Theorem (see, e.g., [4]), implies that

∫
D fdν̂ ⊗ p = 0 for all D ∈ U . Thus

E(f |U) = 0.
If the fω’s are almost surely orthogonal, the corresponding results can be proved

similarly by symmetry. �

Theorem 4.3. For f : T × Ω→ H in L2
(
ν̂ ⊗ p,H

)
, the following statements are

equivalent:
(1) E(f |U) = 0;
(2) the ft’s are almost surely orthogonal in L2(p̂,H);
(3) the fω’s are almost surely orthogonal in L2(ν̂,H).

Proof. (1)=⇒(2): Suppose E(f |U) = 0. It follows from Lemma 4.1 that Eft = 0
for ν̂-almost all t. Since f ∈ L2

(
ν̂ ⊗ p,H

)
, Keisler’s Fubini Theorem implies that

there is a ν̂-full set T0 such that for all t ∈ T0, ft ∈ L2 (p̂,H). Therefore for t′ ∈ T0,
E [〈f, ft′〉|U ] (t, ω) = 0. By Lemma 4.1,

∫
Ω
〈ft, ft′〉dp̂ = 0 for ν̂-almost all t ∈ T .

Keisler’s Fubini theorem implies that for ν̂2-almost all (t, t′), E [〈ft, ft′〉] = 0, i.e.,
the ft’s are almost surely orthogonal in L2(p̂,H).

By symmetry, (1)=⇒(3) follows.
(2)=⇒(1) and (3)=⇒(1) have been proved in Lemma 4.2. �
Next we characterize uncorrelatedness.

Theorem 4.4. Fix f : T ×Ω→ H in L1
(
ν̂ ⊗ p,H

)
. The following are equivalent:

(1) E(f |U) = h, where h is an integrable function on (T, Lν(A), ν̂).
(2) f satisfies the consistency law, i.e., for any given A ∈ Lν(A),

∫
A
fωdν̂ =∫

A×Ω
fdν̂ ⊗ p for p̂-almost all ω ∈ Ω.

Furthermore, for f : T×Ω→ H in L2
(
ν̂ ⊗ p,H

)
, both (1) and (2) are equivalent

to either of the following:
(3) The ft’s are almost surely uncorrelated.
(4) The centered random variables ft − Eft are almost surely orthogonal.

Proof. (1)=⇒(2): This follows from Lemma 4.1.
(2)=⇒(1): For all A ∈ Lν(A),

∫
A
fωdν̂ =

∫
A

Eftdν̂(t) for p̂-almost all ω ∈ Ω.
Thus for any A ∈ Lν(A) and B ∈ Lp(B),∫

A×B
fdp̂⊗ ν =

∫
B

∫
A

fωdν̂dp̂(ω)

=
∫
B

∫
A

Eftdν̂(t)dp̂ =
∫
A×B

Eftdν̂ ⊗ p(t, ·).
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Thus we obtain (1) by the similar argument as in the proof of Lemma 4.2 using the
Monotone Class Theorem.

(3)⇐⇒(4): This follows from the identity that

E [〈ft − Eft, fs − Efs〉] = E [〈ft, fs〉]− 〈Eft,Efs〉
for all t, s ∈ T .

(4)=⇒(1): This follows from Lemma 4.2.
(1)=⇒(4): It follows from Lemma 4.1 that ht = Eft for ν̂-almost all t. Let

e(t, ω) = f(t, ω) − Eft. Then E (e|U) = 0. By Theorem 4.3, e is an almost surely
orthogonal process; i.e., the centered random variables ft − Eft are almost surely
orthogonal. �

Remark 4.5. We know from Theorem 4.4 that if an almost surely uncorrelated
Hilbert-valued process f is measurable with respect to the usual product σ-algebra
U = Lν(A) ⊗ Lp(B), then for ν̂-almost all t ∈ T , the random variable ft(·) is non-
random. Note that this type of result holds not only for the product of two Loeb
spaces but also for the product of any two probability spaces as in Proposition 1.1
of [14]. We mention here that it is shown in Theorem 6.2 of [13] that there are
many almost surely pairwise independent processes on the Loeb product spaces.
Therefore there are many almost surely uncorrelated processes; see Remark 5.9
below.

5. Applications to multilinear forms

In this section we apply the results above to continuous multilinear forms.
Throughout the section, H,Hi, . . . ,Hn are separable Hilbert spaces. For brevity,
their norms are simply expressed by ‖ · ‖. There should be no confusion.

Multilinear forms play an important role in Malliavin Calculus: let CB be the
space of continuous functions, defined on [0, 1], with values in an abstract Wiener
space B over H: let W be the Wiener measure on CB. Then the kernel of the n-th
level of the chaos decomposition of a functional ϕ ∈ L2(W ) is a function g, defined
on [0, 1]n, with values in the space of continuous n-fold real multilinear forms on
H. Thus g : H1 × · · · ×Hn × [0, 1]n → R with Hi = H. Since the Lebesgue space
[0, 1]n can be represented by a Loeb probability space T n, we may assume that
g : H1 × · · · ×Hn × T n → R. For more details see [12].

Note that, since H = H′, the dual of H, a multilinear function on H1 × · · · ×Hn
with values in H is a real-valued multilinear function, defined on H1×· · ·×Hn×H.
Therefore it suffices to study real-valued continuous multilinear functions (called
multilinear forms).

The following lemma provides a tool to verify the integrability. Its routine proof
is omitted.

Lemma 5.1. If Ψ : H1×· · ·×Hn → R is multilinear (that is, Ψ(h1, . . . , hi, . . . , hn)
is linear in each hi) and continuous, then there exists a constant A > 0 such that
for any hi ∈ Hi, i = 1, . . . , n,

|Ψ(h1, . . . , hn)| ≤ A
n∏
i=1

‖hi‖.

The following result is crucial in proving other results on multilinear forms in
this section.
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Theorem 5.2. Let Φ : H1× · · ·×Hn×Ω→ R be a Borel ⊗ Loeb measurable func-
tion, and f i an Hi-valued process on T×Ω for each i ∈ {1, . . . , n}. Suppose that for
some j, Φ(h1, . . . , hj , . . . , hn, ω) is linear and continuous with respect to hj, and f j

is an almost surely orthogonal process. Assume that Φ(f1(t1, ω), . . . , fn(tn, ω), ω)
is integrable on (T n×Ω, Lνn⊗p(An⊗B), ν̂n ⊗ p). Then it follows that for ν̂n-almost
all (t1, . . . , tn) ∈ T n, ∫

Ω

Φ
(
f1
t1(ω), . . . , fntn(ω), ω

)
dp̂(ω) = 0.

Proof. Without loss of generality, suppose j = 1. By Keisler’s Fubini theorem in
Section 3, there is a ν̂n−1-full set D ⊂ T n−1, such that for any (t2, . . . , tn) ∈ D,
g(t, ω) := Φ

(
f1
t (ω), f2

t2(ω), . . . , fntn(ω), ω
)
∈ L1(ν̂ ⊗ p,H). It suffices to show that

Egt = 0 for ν̂-almost all t ∈ T . For this, it suffices to show that E [g|U ] = 0 by
Theorem 4.3. By Lemmas 3.1 and 4.1, and Theorem 3.2, we have for all A ∈
Lν(A), B ∈ Lp(B),∫

A×B
gdν̂ ⊗ p

=
∫
A×B

Φ
(
f1(t, ω), f2

t2(ω), . . . , fntn(ω), ω
)
dν̂ ⊗ p(t, ω)

=
∫
B

∫
A

Φ
(
f1(t, ω), f2

t2(ω), . . . , fntn(ω), ω
)
dν̂(t)dp̂(ω)

=
∫
B

Φ
(∫

A

f1(t, ω)dν̂(t), f2
t2(ω), . . . , fntn(ω), ω

)
dp̂(ω)

=
∫
B

Φ
(
0, f2

t2(ω), . . . , fntn(ω), ω
)
dp̂(ω) = 0,

whence we are done. �

Remark 5.3. If Φ(f1
t (ω), f2

t2(ω), . . . , fntn(ω), ω) ∈ L2(ν̂n ⊗ p,H), then Theorem 4.3
implies that the process g(t, ω) is almost surely orthogonal.

It should also be mentioned that there exists a Loeb space (Ω, p̂) that repre-
sents the probability space (CB,W ). Here, the Malliavin derivative of a Malliavin
differentiable functional ϕ ∈ L2(p̂) belongs to L2(ν̂ ⊗ p,H) (see [12]).

Corollary 5.4. For i = 1, . . . , n, fix f i : T × Ω → Hi and ϕi : Ω → Hi. Suppose
that (1) for each i, f i ∈ L2n

(
ν̂ ⊗ p,Hi

)
and ϕi ∈ L2n(p̂,Hi); or (2) for each i,

ϕi ∈ Hi is deterministic and f i ∈ Ln
(
ν̂ ⊗ p,Hi

)
. Assume that one of the processes

f i is almost surely orthogonal. Then for ν̂n-almost all (t1, . . . , tn) ∈ T n,

E
n∏
i=1

〈f iti , ϕ
i〉 = 0.

Proof. This follows from Theorem 5.2 by taking Φ(h1, . . . , hn, ω)=
∏n
i=1〈hi, ϕi(ω)〉.

Note that
∏n
i=1〈f i, ϕi〉 ∈ L1(ν̂n ⊗ p,R) follows from Hölder’s inequality. �

By symmetry, we also have results similar to those in Theorem 5.2 for a t-
parameterized function that is continuous and linear with respect to some of its
arguments. Here is an example.
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Proposition 5.5. Suppose f : T × Ω → H in L2
(
ν̂ ⊗ p,H

)
is almost surely

orthogonal, and fix a bounded measurable function h : T → H and Ψ, a bilinear
form on H × H. Then the process g defined by g(t, ω) = Ψ(f(t, ω), h(t)) is also
almost surely orthogonal.

Proof. Note that g is still square integrable. For all A ∈ Lν(A), B ∈ Lν(B), Lemma
4.2 implies that∫

A×B
Ψ(f, h)dν̂ ⊗ p =

∫
A

Ψ(
∫
B

fdp̂, h)dν̂ =
∫
A

Ψ(0, h)dν̂ = 0.

Thus, E [g|U ] = 0. The result then follows from Theorem 4.3. �

The following theorem relates almost surely uncorrelated processes with stochas-
tic multilinear forms.

Theorem 5.6. Let n ≥ 2 be a fixed integer. Suppose that for all i ∈ {1, . . . , n},
f i : T × Ω → Hi in Ln

(
ν̂ ⊗ p,Hi

)
are almost surely uncorrelated processes. Let

Φ : H1 × · · · × Hn × Ω → R be a measurable function, continuous and multilinear
with respect to arguments in H1× · · ·×Hn that satisfies the following condition for
a positive constant A:

|Φ(h1, . . . , hn, ω)| ≤ A
n∏
i=1

‖hi‖, hi ∈ Hi, i = 1, . . . , n, ω ∈ Ω.

Then for ν̂n-almost all (t1, . . . , tn) ∈ T n,∫
Ω

Φ
(
f1
t1 , . . . , f

n
tn , ω

)
dp̂(ω) =

∫
Ω

Φ
(∫

Ω

f1
t1dp̂, . . . ,

∫
Ω

fntndp̂, ω

)
dp̂(ω).

Proof. Note that the processes f iti−Ef iti , i = 1, . . . , n, are almost surely orthogonal.
Repeatedly applying Theorem 5.2, we almost surely have

E
[
Φ
(
f1
t1 , . . . , f

n
tn , ·
)]

=EΦ
(
f1
t1 − Ef1

t1 , f
2
t2 . . . , f

n
tn , ·
)

+ EΦ
(
Ef1

t1 , f
2
t2 . . . , f

n
tn , ·
)

=EΦ
(
Ef1

t1 , f
2
t2 . . . , f

n
tn , ·
)

= . . . . . .

=EΦ
(

Ef1
t1 , . . . ,Ef

n−1
tn−1

,Efntn , ·
)
.

Note that all the integrals exist by Hölder’s inequality. �

Recall that membership of ϕ : Ω → H in L∞(p̂,H) means that ‖ϕ‖ : Ω → R is
in L∞(p̂).

Theorem 5.7. Fix f i : T × Ω → Hi in Ln
(
ν̂ ⊗ p,Hi

)
and ϕi : Ω → Hi in

L∞(p̂,Hi), i = 1, . . . , n, where n is a positive integer. Suppose that f i is almost
surely uncorrelated for i = 1, . . . , n. Suppose ϕ1, . . . , ϕn are mutually independent.
Then for ν̂n-almost all (t1, . . . , tn) in T n,

E

[∏
i

〈
f iti , ϕ

i
〉]

=
∏
i

〈
Ef iti ,Eϕ

i
〉
.
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Proof. Note that for hi ∈ Hi, i = 1, . . . , n, Ψ(h1, . . . , hn, ω) :=
∏
i

〈
hi, ϕ

i(ω)
〉

is continuous and multilinear with respect to (h1, . . . , hn), thus satisfying all the
conditions in Theorem 5.6 with A being the product of the p̂-essential bounds of
‖ϕi(ω)‖. Thus E

[∏
i

〈
f iti , ϕ

i
〉]

= E
∏
i

〈
Ef iti , ϕ

i
〉

for ν̂n-almost all (t1, . . . , tn) ∈
T n. By the mutual independence of the ϕi’s, E

∏
i

〈
Ef iti , ϕ

i
〉

=
∏
i E
〈
Ef iti , ϕ

i
〉
.

The result then follows from Lemma 3.1. �
The next theorem extends Theorem 2.4.

Theorem 5.8. Fix f : T × Ω → H in L2
(
ν̂ ⊗ p,H

)
. Then f is almost surely

orthogonal (resp., uncorrelated) if and only if for every a ∈ H, the real-valued
process 〈ft, a〉 is almost surely orthogonal ( resp., uncorrelated).

Proof. Note that for a ∈ H, 〈f, a〉 ∈ L2
(
ν̂ ⊗ p

)
. By Theorem 4.4, we need only

prove the orthogonality result.
The proof of sufficiency is similar to the proof of the sufficiency in Theorem 2.4

by replacing the ith component f i by 〈f, ai〉, where {a1, a2, . . . } is an orthonormal
basis of H.

Necessity follows from Theorem 5.7 and Lemma 4.2, by taking n = 2, H1 = H2 =
H, f1 = f2 = f (note that here f i is not the ith component of f), and ϕ1 = ϕ2 ≡ a
(non random). �

Remark 5.9. Fix f : T × Ω→ H ∈ L2
(
ν̂ ⊗ p,H

)
. Suppose that f is almost surely

pairwise independent. Then for any a ∈ H, the process 〈a, f〉 is still almost surely
pairwise independent, and thus almost surely uncorrelated. Hence Theorem 5.8
implies that the process f is almost surely uncorrelated.

The following is a corollary of Theorem 5.6.

Corollary 5.10. Let n ≥ 2 be a fixed integer. Suppose that for all i ∈ {1, . . . , n},
f i : T × Ω → Hi is in Ln

(
ν̂ ⊗ p,Hi

)
. Suppose for each fixed i, f iω, ω ∈ Ω, are

almost surely exchangeable, i.e., there is a distribution µi on Hi×Hi such that
for p̂2-almost all (ω1, ω2), (f iω1

, f iω2
) has distribution µi. Let Φ : H1×· · ·×Hn → R

be a multilinear form on H1×· · ·×Hn. We then have for ν̂n-almost all (t1, . . . , tn),∫
Ω

Φ
(
f1
t1 , . . . , f

n
tn

)
dp̂ = Φ

(∫
Ω

f1
t1dp̂, . . . ,

∫
Ω

fntndp̂

)
.

Proof. By Theorem 5 in [14] and the symmetric roles of T and Ω, we know that
the exchangeability of f iω implies the almost sure pairwise independence, hence
uncorrelatedness (by the above remark), of f it , t ∈ T . The result then follows from
Theorem 5.6. �

There are many variations of results concerning multilinear forms, orthogonality
and uncorrelatedness. When multiple t’s and ω’s are involved, different sub-σ-
algebras of the product Loeb space appear. We give the following two relevant
theorems to end this section.

Theorem 5.11. Suppose f i : T × Ω → Hi in Ln
(
ν̂ ⊗ p,Hi

)
is almost surely

orthogonal, i = 1, 2, . . . , n with n ≥ 2. Let Ψ : H1 × · · · ×Hn → R be a multilinear
form. Then

(1) E
[
Ψ
(
f1(t1, ω), . . . , fn(tn, ω)

)
|Lνn(An)⊗ Lp(B)

]
= 0;
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(2) E
[
Ψ
(
f1(t, ω1), . . . , fn(t, ωn)

)
|Lν(A)⊗ Lpn(Bn)

]
= 0;

(3) if 0 ≤ k 6= l ≤ n and 1 ≤ k + l < 2n, then

E
[
Ψ
(
f1(t1, ω1), . . . , fn(tn, ωn)

)
|U(k, l;n− k, n− l)

]
= 0,

where U(k, l;n− k, n− l) denotes

Lνk⊗pl(Ak ⊗ Bl)⊗ Lνn−k⊗pn−l(An−k ⊗ Bn−l);

(4) for ν̂n-almost all (t1, . . . , tn) ∈ T n,∫
Ω

Ψ
(
f1
t1 , . . . , f

n
tn

)
dp̂ = 0;

(5) for p̂n-almost all (ω1, . . . , ωn) ∈ Ωn,∫
T

Ψ
(
f1
t (ω1), . . . , fnt (ωn)

)
dν̂(t) = 0;

(6) if 0 ≤ k 6= l ≤ n and 1 ≤ k + l < 2n, then for any permutations σ, τ of
{1, 2, . . . , n} and for ν̂k ⊗ pl-almost all (tσ1 , . . . , tσk , ωτ1, . . . , ωτl) in T k × Ωl, the
integral of the function Ψ

(
f1(t1, ω1), . . . , fn(tn, ωn)

)
with respect to the variables

(tσk+1 , . . . , tσn , ωτl+1, . . . , ωτn) is zero. That is,∫
Tn−k×Ωn−l

Ψ
(
f1
t1(ω1), . . . , fntn(ωn)

)
d ̂νn−k ⊗ pn−l(tσi , ωτj)i≥k+1,j≥l+1 = 0.

Proof. By Theorem 4.3, (1) implies (4), (2) implies (5), and (3) implies (6). To
prove (1), we start with any A ∈ Lνn(A⊗ · · · ⊗ A), B ∈ Lp(B), and set At2,...,tn =
{t1 ∈ T, (t1, t2, . . . , tn) ∈ A}. Then∫

A×B
Ψ
(
f1
t1(ω), . . . , fntn(ω)

)
dν̂n ⊗ p(t1, . . . tn, ω)

=
∫
Tn−1×B

∫
At2,··· ,tn

Ψ
(
f1
t1(ω), . . . , fntn(ω)

)
dν̂(t1)d ̂νn−1 ⊗ p(t2, . . . , tn, ω)

= 0,

because the almost sure orthogonality of f1 implies that∫
At2,...,tn

Ψ
(
f1(t1, ω), . . . , fn(tn, ω)

)
dν̂(t1)

=Ψ

(∫
At2,...,tn

f1(t1, ω)dν̂(t1), . . . , fn(tn, ω)

)
=Ψ (0, . . . , fn(tn, ω)) = 0

by Lemmas 3.1 and 4.2. Thus we obtain (1) while (2) has a similar proof.
To prove (3) and (6), simply note that there is an index i ∈ {1, . . . , n} such

that the pair (ti, ωi) is neither part of (tσ(1), . . . , tσ(k), ωτ(1), . . . , ωτ(l)) nor part of
(tσ(k+1), . . . , tσ(n), ωτ(l+1), . . . , ωτ(n)) (i.e., ti belongs to one group while ωi belongs
to the other group). Then use a proof similar to the one above. �
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We also have the following result for the uncorrelatedness.

Theorem 5.12. Suppose f i : T × Ω → Hi ∈ Ln
(
ν̂ ⊗ p,Hi

)
is almost surely

uncorrelated, i = 1, 2, . . . , n with n ≥ 2. Let Ψ : H1×· · ·×Hn → R be a multilinear
form. For any fixed positive integer m ≤ n, if τ is a map from {1, . . . , n} onto
{1, . . . ,m}, then for ̂νn ⊗ pm-almost all (t1, . . . , tn, ω1, . . . , ωm),

E
[
Ψ
(
f1(t1, ωτ(1)), . . . , fn(tn, ωτ(n))

)
|Lνn(An)⊗ Lpm(Bm)

]
=Ψ

(
Ef1

t1 , . . . ,Ef
n
tn

)
.

Proof. For any A in Lνn(An) and any B in Lpm(Bm), set At2,··· ,tn = {t1 ∈ T :
(t1, t2, . . . , tn) ∈ A}. Then by Keisler’s Fubini theorem and Lemma 3.1,∫

A×B
Ψ
(
f1(t1, ωτ(1)), . . . , fn(tn, ωτ(n))

)
d ̂νn ⊗ pm

=
∫
Tn−1×B

∫
At2,...,tn

Ψ
(
f1(t1, ωτ(1)), . . . , fn(tn, ωτ(n))

)
dν̂(t1)d ̂νn−1 ⊗ pm

=
∫
Tn−1×B

Ψ

(∫
At2,...,tn

f1(t1, ωτ(1))dν̂(t1), . . . , fn(tn, ωτ(n))

)
d ̂νn−1 ⊗ pm

=
∫
Tn−1×B

Ψ

(∫
At2,...,tn

Ef1
t1dν̂(t1), . . . , fn(tn, ωτ(n))

)
d ̂νn−1 ⊗ pm

=
∫
Tn−1×B

∫
At2,...,tn

Ψ
(
Ef1

t1 , . . . , f
n(tn, ωτ(n))

)
dν̂(t1)d ̂νn−1 ⊗ pm

=
∫
A×B

Ψ
(
Ef1

t1 , . . . , f
n(tn, ωτ(n))

)
d ̂νn ⊗ pm(t1, . . . , tn, ω1, . . . , ωm)

= . . . . . .

=
∫
A×B

Ψ
(
Ef1

t1 , . . . ,Ef
n
tn

)
d ̂νn ⊗ pm(t1, . . . , tn, ω1, . . . , ωm),

where d ̂νn−1 ⊗ pm is shorthand for d ̂νn−1 ⊗ pm(t2, . . . , tn, ω1, . . . , ωm). This com-
pletes the proof. �

6. Biorthogonal representation

In this section we show that every f ∈ L2(ν̂ ⊗ p,H) can be represented as the
sum of a series of biorthogonal products and an almost surely orthogonal process
as in Theorem 4.2 of [13].

Let f ∈ L2(ν̂ ⊗ p,H). Define K : L2(p̂)→ L2(p̂) as follows. For ϕ ∈ L2(p̂),

(1) Kϕ(ω) =
∫
T×Ω

〈f(t, ω), f(t, ω′)〉ϕ(ω′)dν̂ ⊗ p(t, ω′), ω ∈ Ω.

Then we have the following result.

Lemma 6.1. Suppose that f ∈ L2(ν̂ ⊗ p,H) and the operator K is defined by
equation (1). Then K is a self-adjoint, positive semi-definite, compact operator.

Proof. The routine proof, using in part well-known facts about Hilbert-Schmidt
operators, is left to the reader. �
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Let γ1, γ2, . . . be the non-increasing sequence of all the positive eigenvalues of
K with each eigenvalue being repeated up to its multiplicity. Let ϕ1, ϕ2, . . . be the
corresponding eigenfunctions adjusted to form an orthonormal family. Set

(2) ψn(t) = γ−1/2
n

∫
Ω

ϕn(ω)f(t, ω)dp̂(ω), n = 1, 2, . . . .

Now we turn to the main result of this section. Recall that U = Lν (A)⊗Lp (B).

Theorem 6.2. For f : T × Ω→ H in L2
(
ν̂ ⊗ p,H

)
, the operator K is defined by

equation (1), with γ1, γ2, . . . eigenvalues of K in non-increasing order repeated up to
its multiplicity, ϕ1, ϕ2, . . . the corresponding eigenfunctions, forming a orthonormal
system. Let ψ1, ψ2, . . . be defined by (2). Then ψ1, ψ2, . . . form an orthonormal
system; and

(3) E(f |U)(t, ω) =
∞∑
n=1

γ1/2
n ϕn(ω)ψn(t).

Moreover, f can be decomposed as

(4) f =
∞∑
n=1

γ1/2
n ϕn(ω)ψn(t) + ε,

where ε = f − E(f |U) is an almost surely orthogonal vector-valued process.

Proof. We first demonstrate that ψ1, ψ2, . . . form an orthonormal system in
L2(p̂,H). For any m,n, Lemma 3.1 and Theorem 3.2 imply that

〈ψm, ψn〉L2(ν̂,H)

= γ
−1/2
m γ

−1/2
n

∫
T

[
〈
∫

Ω ϕm(ω)ft(ω)dp̂(ω),
∫

Ω ϕn(ω′)ft(ω′)dp̂(ω′)〉
]
dν̂(t)

= γ
−1/2
m γ

−1/2
n

∫
T

[∫
Ω
〈ϕm(ω)ft(ω),

∫
Ω
ϕn(ω′)ft(ω′)dp̂(ω′)〉dp̂(ω)

]
dν̂(t)

= γ
−1/2
m γ

−1/2
n

∫
T

[∫
Ω

∫
Ω〈ϕm(ω)ft(ω), ϕn(ω′)ft(ω′)〉dp̂(ω)dp̂(ω′)

]
dν̂(t)

= γ
−1/2
m γ

−1/2
n

∫
T×Ω2 ϕm(ω)ϕn(ω′)〈ft(ω), ft(ω′)〉dν̂ ⊗ p2(t, ω, ω′)

= γ
−1/2
m γ

−1/2
n

∫
Ω
ϕm(ω)Kϕn(ω)dp̂(ω)

= γ
−1/2
m γ

−1/2
n

∫
Ω ϕm(ω)γnϕn(ω)dp̂(ω),

which is zero if m 6= n, and one if m = n. Thus, ψ1, ψ2, . . . form an orthonormal
system.

To prove (3), we need only prove that for all A ∈ Lν(A), B ∈ Lp(B), the
integrals of the two sides of (3) with respect to ν̂ ⊗ p on A ×B are equal. Let χA
and χB be the indicator functions of A and B. Note that by the self-adjointness of
K, ϕ ∈ ker(K) iff ϕ ⊥ range(K). By Theorem 3.2, we can obtain∫

A×B
E[f |U ]dν̂ ⊗ p =

∫
A×B

fdν̂ ⊗ p =
∫
T×Ω

χAχBfdν̂ ⊗ p

=
∫
T×Ω

χAπrangeK(χB)fdν̂ ⊗ p+
∫
T×Ω

χAπkerK (χB)fdν̂ ⊗ p,
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where πrangeK and πkerK are the orthogonal projections from L2(p̂,H) to rangeK
(range of K) and kerK (kernel of K), respectively. By equation (2), we see that∫

T×Ω

χAπrangeK(χB)fdν̂ ⊗ p

=
∫
T×Ω

χA(t)
∞∑
n=1

∫
Ω

χB(ω′)ϕn(ω′)dp̂(ω′)ϕn(ω)f(t, ω)dν̂(t)dp̂(ω)

=
∫
T×Ω

χA(t)χB(ω′)
∞∑
n=1

ϕn(ω′)γ1/2
n ψn(t)dν̂(t)dp̂(ω′)

=
∫
A×B

∞∑
n=1

γ1/2
n ϕn(ω)ψn(t)dν̂ ⊗ p(t, ω).

Therefore, we need only show that∫
T×Ω

χAπkerK(χB)fdν̂ ⊗ p = 0.

By Theorem 3.2,∫
T×Ω

χAπkerK(χB)fdν̂ ⊗ p =
∫
T

χA

∫
Ω

πkerK(χB)fdp̂dν̂.

So we obtain the desired result if we show
∫

Ω πkerK(χB)ftdp̂ = 0 for ν̂-almost all
t ∈ T . To this end, we show that for any ϕ ∈ kerK,

∫
Ω
ϕ(ω)f(t, ω)dp̂(ω) = 0 for

ν̂-almost all t. In fact,∫
T

∥∥∥∥∫
Ω

ϕfdp̂

∥∥∥∥2

dν̂

=
∫
T

〈∫
Ω

ϕ(ω)f(t, ω)dp̂(ω),
∫

Ω

ϕ(ω′)f(t, ω′)dp̂(ω′)
〉
dν̂(t)

=
∫
T

∫
Ω

ϕ(ω)
〈
f(t, ω),

∫
Ω

ϕ(ω′)f(t, ω′)dp̂(ω′)
〉
dp̂(ω)dν̂(t)

=
∫
T

∫
Ω

∫
Ω

ϕ(ω)ϕ(ω′) 〈f(t, ω), f(t, ω′)〉 dp̂(ω′)dp̂(ω)dν̂(t)

=
∫

Ω

ϕ(ω)Kϕ(ω)dp̂(ω) = 0.

Note that (4) follows from (3) and Theorem 4.3. �

Remark 6.3. Define K̃ : L2(ν̂,H)→ L2(ν̂,H) such that for ψ ∈ L2(ν̂,H),

K̃ψ(t) =
∫
T

∫
Ω

〈f(t1, ω), ψ(t1)〉f(t, ω)dp̂(ω)dν̂(t1), t ∈ T.

Then it is easy to verify that K̃ is a compact operator, and for each n, ψn is an
eigenfunction of K̃ with corresponding eigenvalue γn. We further remark that it is
also true that ϕn(ω) = γ

−1/2
n

∫
T
〈fω(t), ψn(t)〉ν̂(t) for n = 1, 2, . . . .

We conclude this section by mentioning that the biorthogonality representation
can also be of the above form but with ϕn belonging to L2(p̂,H) and ψn belonging
to L2(ν̂) for all n.
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