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Uncovering and quantifying the subduction zone
sulfur cycle from the slab perspective
Ji-Lei Li 1,2,3*, Esther M. Schwarzenbach4, Timm John4*, Jay J. Ague3, Fang Huang 5, Jun Gao1,2,6*,

Reiner Klemd7, Martin J. Whitehouse 8 & Xin-Shui Wang1,2

Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles.

High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been

attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and

isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure

rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for

a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the pre-

dominance of reduced sulfur species in slab fluids; those derived from metasediments,

altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and

+8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% max-

imum) of total subducted sulfur is released between 30–230 km depth, and the predominant

sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude

that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide

negligible sulfate to oxidize the sub-arc mantle and cannot deliver 34S-enriched sulfur to

produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is

subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth

surface reservoirs.
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S
ulfur is one of the most common volatiles on Earth. It plays
key roles in, for example, the redox evolution of the sub-arc
mantle1,2, the formation of ore deposits2, and the compo-

sition of the atmosphere through volcanic SO2 degassing3. Sub-
duction zones are the primary locations for the global sulfur cycle,
transporting sulfur to the deep mantle via the descending slab or
returning it to the surface by arc magmatism2,4,5. Compared to
fresh MORB, the relatively high sulfur concentrations ([S], up to
3000 µg g−1) and positive δ34S values (+5 to +11‰) of volcanic
rocks and melt inclusions in some arcs (e.g., Western Pacific)4–7,
and the presence of sulfate in mantle xenoliths8, have been
attributed to the addition of slab-derived sulfate to arc magmas by
fluids8,9. Alternatively, some deep arc cumulates (e.g., Eastern
Pacific) with mantle-like δ34S values suggest more limited slab-
derived sulfate contributions to arc lavas and that the positive
δ34S signature of the lavas results from crustal assimilation10.

The role of slab fluids in delivering sulfur species to the mantle
wedge is central to this debate. Experimental results suggest that
slab-derived aqueous fluids are an effective agent for transporting
sulfur from the slab to the mantle wedge11,12. In addition, some
studies predict that sulfates are likely the dominant sulfur species
in slab-derived fluids9,13. On the other hand, sulfate is relatively
rare in high-pressure (HP) rocks13–18, and experimental studies
have proposed that reduced sulfur species are dominant in slab
fluids11. Furthermore, in situ measurements of the δ34S compo-
sitions of sulfides from HP eclogites and serpentinites reveal
significant isotopic heterogeneity and complicated sulfur behavior
during slab metamorphism and metasomatism13–16.

Clearly, large gaps in our knowledge of the speciation, flux, and
isotopic composition of sulfur in slab fluids remain. Understanding
these is of utmost importance for addressing slab–arc sulfur recy-
cling, and has global geochemical significance for deciphering the
redox state of the mantle2 and constraining the formation of arc-
related ore deposits12. Direct examination of devolatilization path-
ways in exhumed HP rocks is essential to provide independent new
perspectives critical to resolving this debate, as it provides the
necessary field-based evidence for the sulfur redox state and δ34S
signature of fluids released from subducted slabs.

Sulfur is transported into the subduction zone by sediments,
variably altered oceanic crust (AOC), and hydrated slab mantle
(serpentinites)19–22. Sulfides are commonly observed in exhumed
fragments of the oceanic lithosphere such as eclogites, blueschists,
HP-metapelites, and serpentinites, as well as related HP
veins13–18,23. Such vein systems represent fossilized pathways for
channelized flow of dehydration-related slab fluids and, thus,
directly record fluid geochemical signatures17,24,25. Consequently,
the study of HP vein–rock systems provides important information

regarding sulfur behavior during slab dehydration and fluid
transfer17. Isotopic constraints on S-bearing HP rocks and veins
linked to the sequence of slab dehydration allow quantification of
sulfur release during subduction of oceanic lithosphere.

Here, we report bulk-rock and in situ sulfur isotope compo-
sitions for sulfide-bearing HP rocks and veins from the late
Paleozoic southwestern Tianshan (ultra-)high-pressure/low-tem-
perature ((U)HP/LT) metamorphic belt (China). The sulfides in
these HP rocks and veins17 provide an exceptional window into
the fate of subducted sulfur. Analytical data and thermodynamic
calculations point to low sulfur concentrations in slab fluids,
which have negative δ34S values and are dominately composed of
reduced sulfur species. Hence, we determine modest slab-to-arc
sulfur transport, and find neither significant slab sulfate flux to
the mantle wedge nor a direct link between slab-derived sulfur
and the positive δ34S signature of arc settings.

Results
Sample background. The Tianshan (U)HP/LT terrane is an
example of deeply buried, uppermost oceanic crust covered by
km-thick trench metasediments26. We selected 10 pristine sam-
ples from different sequences within a subducted oceanic slab (2
metapelites, 5 metabasites, 3 serpentinites, Supplementary
Table 1) to obtain a general picture of sulfur reservoirs. Mineral
assemblages suggest that one metapelite reached low blueschist-
facies conditions (300–400 °C, 1.0–1.5 GPa), whereas the other
metapelite (garnet–glaucophane-bearing) reached blueschist-
facies conditions (400–500 °C, 1.5–2.0 GPa)27. Metabasites with
oceanic affinity are eclogites and blueschists (lawsonite relic
identified) with peak metamorphic conditions clustering around
540 °C and 2.5 ± 0.2 GPa26. Sulfides in all HP metapelites and
metabasites are mainly pyrite with minor amounts of chalcopyrite
and bornite17. Sulfide occurs both as inclusions in garnet and in
the matrix. Matrix pyrite contains garnet, omphacite, glauco-
phane, lawsonite and dolomite inclusions (Supplementary
Table 1). Serpentinites, composed mostly of antigorite and
magnetite with minor pentlandite and millerite, are considered to
be part of the subducted slab that underwent UHP metamorph-
ism (∼520 °C, >3.0 GPa)28 in the Tianshan.

In addition, three representative sulfide-bearing dehydration-
related veins in blueschists or eclogites were investigated to
reconstruct the sulfur behavior in subduction fluids derived from
different sources (Fig. 1). Vein_1 (JTS) consists of a well-studied
wallrock–selvage–vein system25,29 formed by fluid–rock interaction
during prograde metamorphism (Fig. 1a). The wallrock (host
blueschist, garnet–glaucophane-dominated) along the vein traverse
was progressively altered to an eclogite selvage (garnet–omphacite-
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Fig. 1 Field photographs of three sulfide-bearing veins in blueschists/eclogites (SW Tianshan). a Sample JTS containing host blueschist (HB),

blueschist–eclogite transition zone (BETZ), eclogite selvage (ES) and vein. Six drill samples (JTS-B, -D, -E, -G, -H, -I) along the traverse were taken

for petrological investigation and chemical measurements. b HB–BETZ–ES–vein system L1422. Nine drill cores (see numbers) along the profile were

investigated in this study. Petrological features of underlined drill samples are shown in Fig. 2. c Eclogite–vein sample L1013. Mineral abbreviations:

dolomite (Dol), epidote (Ep), omphacite (Omp), pyrite (Py), quartz (Qz), and rutile (Rt).
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dominated) and a blueschist–eclogite transition zone due to reaction
with an external fluid (Fig. 1a). The wallrock–selvage–vein system
equilibrated at peak metamorphic conditions of ∼510 °C and 2.1
GPa29. Sr and Ca isotope compositions trace the fluid source to
seawater-altered lithospheric slab–mantle and/or oceanic crust25.
Vein_2 (L1422) is a 2-cm-wide dolomite–quartz–epidote-dominated
vein crosscutting a massive host blueschist (Fig. 1b). Similar to
Vein_1, the blueschist–eclogite transition zone and eclogite
selvage formed due to interaction with Ca-rich fluid along the
conduit (Fig. 1b). The similar structure, mineral assemblages, and
compositions of Vein_1 and Vein_2 indicate that they formed at
similar P–T conditions. Vein_3 (L1013) is a 1–3 cm wide

dolomite–quartz–epidote-dominated vein cutting massive eclogite
(Fig. 1c). Occurrences of high-pressure minerals such as omphacite
and rutile in Vein_3 along with the observation that no reaction halo
occurs between the vein and host eclogite (Fig. 1c) indicate that the
vein also formed at eclogite-facies conditions. Considering most
eclogite samples in the Tianshan HP metamorphic belt were
exhumed from ∼80 km depth26, all three HP veins are thought to
represent the fluid activity that took place at 70–90 km depths in the
subduction zone.

Sulfides are found in all vein samples. In sample JTS, pyrite is the
dominant sulfide inclusion in garnet, but pyrrhotite dominates in the
matrix (Fig. 2a, b). This demonstrates a pyrite–pyrrhotite transition
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Fig. 2 Photomicrographs and element mapping of sulfides. a–c Sulfides in sample JTS. Sulfides in garnet are mainly pyrite with minor pyrrhotite and

chalcopyrite, whereas the matrix contains mainly pyrrhotite with minor chalcopyrite and pyrite in both the host blueschist (a) and blueschist–eclogite

transition zone (b). d–i Photomicrographs and Co–Ni maps of pyrite in the host blueschist (d–f), eclogite selvage (g–i), and vein (j–l) in sample L1422. m–p

Pyrite, δ34S values, and Co–Ni maps in sample L1013. Trace-element concentrations (µg g−1) of pyrite are given in the white rectangles. δ34S values and

Co–Ni maps in vein pyrite (n–p) suggest two growth generations. All photomicrographs (except Co–Ni maps) use superposed transmitted and reflected

light to simultaneously image silicates and sulfides. Mineral abbreviations: chalcopyrite (Ccp), dolomite (Dol), epidote (Ep), garnet (Grt), glaucophane

(Gln), omphacite (Omp), phengite (Ph), pyrite (Py), pyrrhotite (Po), quartz (Qz), and rutile (Rt). Scale bar: 200 μm.
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during garnet growth due to changing sulfur fugacity–oxygen
fugacity (fS2–fO2) conditions associated with fluid metasomatism.
Sulfide in the vein is mostly pyrite but also includes minor pyrrhotite
(Fig. 2c). Along the traverse of samples L1422, sulfide (mainly
pyrite) abundances increase toward the vein. The Co–Ni element
distribution maps (Method 1) reflect distinct differences between
host blueschist pyrite (Fig. 2d–f) and selvage–vein pyrites (Fig. 2g–i).
Both selvage and vein pyrites display multiple growth generations
(Fig. 2g–i). In sample L1013, Co–Ni element distribution maps and
contents show core–rim textures in both eclogite (Fig. 2m) and vein
pyrite (Fig. 2n–p).

In most samples, fine fractures were occasionally observed
surrounding sulfide grains, reflecting rigidity contrasts between
sulfide and matrix minerals. These fractures are usually filled with
albite+magnetite+ calcite ± chalcopyrite ± barite due to late-
stage fluid infiltration, accompanying variable retrogression of
neighboring omphacite and glaucophane. Sulfate and magnetite
were observed only in these late-stage, retrograde fractures.

Bulk-rock sulfur geochemistry of different lithologies. The 10
HP rocks and 15 representative subsamples from two
host–selvage–vein systems (JTS and L1422) were analyzed for their
whole-rock sulfur contents ([S]WR) and δ34S compositions (δ34SWR,
Method 1). The metapelites have [S]WR= 1101–5612 µg g−1 and
negative δ34SWR of −12 to −7.9‰ (Fig. 3, Supplementary Table 1)
and the metabasites have [S]WR= 841–3978 µg g−1 and a range in
δ34SWR of −7.2 to +3.6‰, averaging −2.7‰ (n= 5). In contrast,
all measured serpentinites ([S]WR= 124–422 µg g−1) have positive
δ34SWR values (+3.6 to +12‰), signifying high-temperature water-
rock interaction during oceanic serpentinization30. These results are
similar to unmetamorphosed oceanic lithosphere19–21,30 and sug-
gest that the main slab sulfur reservoirs have distinct δ34SWR

compositions, which are generally consistent with previous studies
of exhumed slab rocks14,15 (Fig. 3). Sulfur in nearly all samples is
present as reduced S2− or S−, whereas S6+ contents are very low
([S6+]/[S]WR < 0.06). Only one serpentinite sample has more sulfate
than sulfide ([S6+]/[S]WR ≈ 0.89).

Sulfur geochemistry in HP vein systems. In the host blueschist
to blueschist–eclogite transition zone of Vein_1 the [S]WR varies
between 698 µg g−1 and 841 µg g−1, but toward the vein and vein-
like eclogite selvage, the [S]WR increases up to 2183 µg g−1

(Fig. 4a). In contrast, the δ34SWR values decrease gradually from
+0.43‰ to −0.98‰ toward the vein (Fig. 4a). The in situ δ34S
values of sulfides in garnet show little variation; however, matrix
sulfides display a decreasing trend from host rock toward the vein
(Fig. 4b; Method 1). The local bulk isotopic compositions of
sulfides (δ34Ssulfide), calculated using mean in situ δ34S values of
individual sulfides (Fig. 4b) and their mineral volume ratios
(Supplementary Fig. 1), have a narrow range of +0.34–+0.72‰
(mean +0.60‰) in the garnet along the traverse (Fig. 4b). This
reflects shielding of the sulfide inclusions by garnet during
fluid–rock interaction. In contrast, the δ34Ssulfide in the matrix
decreases gradually from about 0.00‰ to −1.35‰ toward the
vein (Fig. 4b). The δ34SWR and δ34Ssulfide display similar
decreasing trends along the traverse. Vein sulfides have uniform
δ34Ssulfide values of about −1.0‰ (Fig. 4b).

The host blueschist of Vein_2 has the lowest [S]WR of 604 µg g−1

and δ34SWR values of −11.0‰ (Fig. 5a, Supplementary Table 1).
Within the blueschist–eclogite transition zone, both [S]WR

and δ34SWR increase and have relatively narrow ranges of
1465–1854 µg g−1 and −8.1 to −7.7‰, respectively. These values
increase further to [S]WR= 2167–2848 µg g−1 and δ34SWR=−1.7
to −0.9‰ in the eclogite selvage (Fig. 5a). The vein has the highest
[S]WR (9251 µg g−1) and δ34SWR value (−0.7‰) (Fig. 5a). In situ
pyrite δ34S compositions (Fig. 5b–d) are consistent with the bulk-
rock analyses. Pyrite in the host blueschist has Ni-rich cores with
negative δ34S values of −16.0 to −10.1‰ (weighted mean −12‰)
and Ni-poor rims with δ34S values of −7.7 to −5.0‰ (weighted
mean −7‰) (Fig. 5b). The vein and selvage pyrites show uniform
core–mantle–rim textures recorded by Co–Ni element distribution
maps (Fig. 2g–l): a Ni-rich core with modest enrichment in Co
(Py_1, Co: 367 µg g−1, Ni: 1277 µg g−1, δ34S: +7.4 to +8.6‰); a
massive Co-poor and moderately Ni-enriched mantle (Py_2, Co:
174 µg g−1, Ni: 813 µg g−1, δ34S: +0.9 to +4.0‰); and a thin Co-
rich and Ni-poor rim (Py_3, Co: 3803 µg g−1, Ni: 229 µg g−1,
δ34S: −6.7 to −2.3‰) (Fig. 5c, d). These three pyrite generations
with variable Co–Ni contents and δ34S values likely represent three
stages of fluid infiltration.

The vein pyrite of Vein_3 has a thick Co-poor but Ni-rich core
(δ34S=−8%) and a thin Co-rich but Ni-poor rim (δ34S=−5‰)
(Figs. 2n–p, 5f). In contrast, pyrite in the host eclogite contains a
Co–Ni-rich core with MORB-like δ34S values (−1.3 to −0.5‰),
but its rim is analogous to the vein pyrite core in Co–Ni–As
contents, δ34S values (about −8%), and mineral inclusions
(omphacite and rutile) (Figs. 2m, 5e). This indicates that the
vein-forming fluid also altered the immediate eclogite and caused
pyrite regrowth surrounding the cores.

Sulfur concentrations in aqueous fluids from DEW modeling.
The sulfur concentration in fluids ([S]fluid) is the most important
factor determining the slab sulfur output, as aqueous fluids are
thought to be the major agent for slab–mantle sulfur transfer11.
We use the DEW (Deep Earth Water) model31,32 to calculate
subduction zone [S]fluid (Method 2), as this allows a quantitative
prediction of speciation and solubilities in fluids at upper mantle
conditions. Because sulfur solubility and speciation is redox-
dependent, an estimate of the fO2 is required prior to calculation.
The fO2 of subducted AOC is FMQ+ 1 (ref. 33) (one log unit
above Fayalite–Magnetite–Quartz buffer) at the trench and
decreases gradually with increasing depth (below FMQ at depths
corresponding to eclogite-facies conditions)17, as generally
reducing fluids (<FMQ) are generated17,34. In contrast, the redox
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state of slab serpentinite is more complicated (either above or
below FMQ) and is suggested to vary due to different degrees of
pre-subduction serpentinization35, producing both highly oxi-
dizing or reducing fluids35. Dehydration of incompletely ser-
pentinized rocks (usually those beneath oceanic crust) in which
awaruite is present produces reducing H2-bearing fluids, whereas
deserpentinization of completely serpentinized rocks (usually
those once directly exposed to seawater) in which awaruite is
absent produces oxidizing fluids in the subduction zone35. The
former is applicable in our case, as the majority of slab mantle
occurs beneath oceanic crust and is not fully serpentinized. For
details regarding slab fO2 estimates see the Supplementary Note 1.

Following a typical subduction geothermal gradient36, [S] and
its speciation in slab fluids were calculated for given fO2

conditions at 60 km (FMQ), 75 km (FMQ), 90 km (FMQ-1),
120 km (FMQ-2), and 150 km (FMQ-3) for subducted sediments
and oceanic crust, whereas fO2 was 1–2 log units higher for
serpentinites at the corresponding depths (Supplementary
Table 2). Results show that [S]fluid is largely dependent on P–T
conditions (Fig. 6a) and is generally very low (<0.1 molal), similar
to previous thermodynamic modelling37–39. Critically, however,
our results reveal a distinct [S]fluid peak (0.20–0.35 molal) at
∼3.0 GPa, regardless of whether the fluids equilibriated with

metasediments, metabasalts or serpentinites (Fig. 6a), indicating a
sulfur release pulse at ∼90 km depth. Sulfur species are fO2-
dependent and dominated by reduced aqueous H2S and HS− at
all model subduction zone P–T–fO2 conditions (Supplementary
Fig. 2), consistent with our natural observations. Oxygen fugacity
variations of ±1 unit will only change the proportion of sulfur
species in the fluid (e.g., slight increases of SO4

2− and/or HSO4
−

abundances), but will not cause significant [S]fluid changes
(Supplementary Fig. 2).

Hydrothermal sulfur isotope fractionation. Effects of sulfur
isotope fractionation during hydrothermal processes are largely
influenced by pressure, temperature, fO2 and the pH of the
fluids40,41. We thermodynamically calculated fO2–pH diagrams42

(Fig. 7a–d) (Method 3) for different P–T conditions to reveal δ34S
fractionation in subduction zones. Our DEW calculations suggest
that slab fluids are generally alkaline and the pH value ranges
from neutral (pHn) to pHn+ 2, consistent with previous work43.
According to fO2 (Supplementary Table 2) and pH estimates of
subduction zone fluids, all the fO2–pH conditions plot in fields
dominated by the species H2S or HS− (yellow area, Fig. 7a–e), in
agreement with DEW results (Supplementary Fig. 2). The
fO2–pH diagram indicates limited sulfur isotope fractionation
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(<3‰) at different P–T conditions along the subduction interface
(Fig. 7a–d). In particular, at the vein-forming P–T conditions of
this study, fO2 (<FMQ)17 and pH range (pHn to pHn+ 2) suggest
sulfur isotope fractionations <1.3‰ (Fig. 7e). In addition, pre-
cipitation styles of sulfide in hydrothermal settings (closed- or
open-system) may also influence the sulfur isotope fractiona-
tion41. In both closed and open systems, theoretical calculations
(Method 3) display <1‰ fractionation if pyrite precipitated from
H2S−dominated fluids at 550 °C (Fig. 7f, g), consistent with
previous calculations for subduction conditions14,15.

δ34S values of fluids from different slab reservoirs. The small
sulfur isotope fractionation between sulfides and equilibrated
H2S-bearing fluids40,41 (Fig. 7) demonstrates that the δ34S values
of vein sulfides approximately represent the fluid δ34S composi-
tion and can be used as a tracer for source discrimination. Our
measured negative δ34SWR values of −12 to −8‰ in metasedi-
ments (Fig. 3) are similar to their protoliths, the young marine
sedimentary rocks (Phanerozoic) that mostly have δ34S values of
−24 to −8‰ due to the presence of biogenically produced sul-
fide19,44. It is suggested that sulfide in sediments retains its δ34S
characteristics during subduction metamorphism13 and that
metasediments may act as a negative δ34S reservior in subducting

slabs. The vein pyrite core with negative δ34S (−8‰) in sample
L1013 (Fig. 2n) thus likely represents the δ34S signature of fluids
derived from the abundant subducted metasediments in the
Tianshan HP belt16,26.

Pristine oceanic crust is typically within the range of the
average mantle δ34S of −0.91 ± 0.50‰45. However, pre-
subduction seafloor processes lead to considerable δ34S hetero-
geneities in the upper crust (Fig. 3, Supplementary Table 1). For
instance, microbial sulfate reduction during seafloor alteration
moves the δ34S of the volcanic section toward negative values
(average −6‰), some as low as −19.5 to −45‰22. The
blueschists studied herein with more negative δ34SWR (−15‰
and −11‰, Supplementary Table 1) may record this microbially
produced δ34S heterogeneity. In contrast, sulfide grains in some
eclogites from the Alps and New Caledonia show positive δ34S
compositions (+7‰ and +12‰)15. However, these sulfides are
associated with blueschist/greenschist retrogression15, which may
record the oxidizing fluids at shallow depth that usually cause
retrogression of exhumed eclogites/blueschists17. The positive
δ34S may originally come from seawater hydrothermal alteration,
or represent the fluids derived from serpentinite dehydration (see
below). Therefore, although pre-subduction seafloor processes
cause negative or positive δ34S shifts in metabasites, bulk-rock
geochemistry shows that many mafic eclogites and blueschists
still retain their mantle-like sulfur isotope signature throughout
HP metamorphism (Fig. 3). Furthermore, the lower crust (dike
and gabbro) retains its mantle-like δ34S values as well46.
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Consequently, the δ34S of vein sulfides from sample JTS (−1‰)
is interpreted to record the sulfur isotope signature of fluids
released from the oceanic crust (the dike and gabbro part, in
particular). This fluid source interpretation is consistent with the
δ34SWR of the host blueschist (+0.43‰, Supplementary Table 1)
and trace-element contents29 and Sr–Ca isotope compositions25

of the vein.
Serpentinites are quite heterogeneous in [S], S6+/∑S, and bulk-

rock δ34S (refs 21,30), and are readily influenced by late-stage
fluids during exhumation23. Our three measured Tianshan UHP
serpentinites all have positive δ34SWR compositions, consistent
with bulk-rock results for Voltri Massif serpentinites21,47,48

(Fig. 3) and in situ sulfide δ34S compositions from Corsican
serpentinites14. We suggest that variably serpentinized slab
mantle beneath oceanic crust is characterized by positive δ34S
compositions as a result of sulfide addition via sulfate reduction at
high-temperatures30 during partial serpentinization. Thus, the
Py_1 with positive δ34S (+8‰) in vein sample L1422 (Figs. 2k,
5d) is interpreted to reflect the characteristic δ34S composition of
fluids derived from the partly serpentinized slab mantle. The
pyrite mantle (Py_2) with positive but decreasing δ34S (from
+4.0 to +0.9‰) of vein sample L1422 (Figs. 2k, 5d) likely
represents fluid mixing with an increased AOC contribution
relative to slab serpentinites. The negative δ34S (−5‰) of thin

rims on vein pyrite (Figs. 2n, 5d) with the sharply increasing Co
concentrations (Fig. 2k, o) may represent retrograde oxidized
fluids during exhumation17, as evidenced by the surrounding
fractures with albite-calcite-magnetite infillings and neighboring
retrogression of matrix omphacite.

Discussion
Thermodynamic modelling shows that at subduction zone P–T–
fO2–pH conditions sulfur in fluids is dominated by the reduced
H2S and HS− species, whereas sulfate species (e.g. SO4

2−,
HSO3

−) are rare (Supplementary Fig. 2). This is consistent with
our petrological evidence for the occurrence of sulfide, but not
sulfate, in the veins (Figs. 1–2), the very low sulfate concentra-
tions in rocks and veins (Fig. 4a; Supplementary Table 1), and
previous experimental results11. If slab fluids are dominated by
sulfate as some recent studies propose13, several predictions fol-
low. First, the oxidizing fluid will produce a redox gradient in the
immediate wallrock, but this is not recorded in the selvages we
examined. Second, reduction from S6+ to S2− will cause oxidation
within the immediate rock and vein (in particular during vein
crystallization) in the form of hematite or magnetite17, which,
however, are absent from the veins or selvages. Third, complete
sulfate–sulfide transformation will produce very high δ34S values
in the product phases, which is also not observed in the veins or
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selvages. The sulfate introduced during pre-subduction hydro-
thermal seafloor alteration20,21,30 may have been lost or converted
to sulfide at early stages of subduction, for example, at fore-arc
depths10,12. Thus, we conclude that the dehydration-related slab
fluids likely transport reduced sulfur species such as aqueous H2S
and HS− at sub-arc depths.

Mass-balance calculations were used to estimate the sulfur
influx (FS) and outflux (fS) of subduction zones, as well as their
δ34S values. The sulfur input estimate was computed (Method 4)
based on the average [S] and δ34S compositions of our best
current understanding of oceanic lithosphere stratigraphy (Sup-
plementary Fig. 3, Note 2) in combination with the global length
of subduction zones and their average convergence rate, sequence
thickness, and density. The resulting subduction zone sulfur
influx is estimated to be 4.65 × 1013 gram per year (g yr−1) with a
bulk negative δ34S value of −3.60‰. Gabbro (49%) and sediment
(23%) are two important sulfur reservoirs (Fig. 8a), whereas
serpentinite is insignificant due to its low [S]. This influx is
slightly lower than, but generally within the same order of
magnitude of, previous estimates2,19,21,22 (Fig. 8b).

The sulfur output can be calculated from the product of [S]fluid
and the fluid fluxes from the dehydrating slab. Previous ther-
modynamic constraints37–39 on [S]fluid predict a rather low pro-
portion of H2S (<0.01 mol.% in equilibrium with H2O+ pyrite+
pyrrhotite)38,39. This low [S]fluid, in turn, predicts negligible slab
sulfur output (fS/FS < 1%), which is not compatible with the high
sulfur contents observed in arc settings. Based on our novel
[S]fluid results from the DEW calculations (Fig. 6a) and depth-
dependent fluid fluxes from the dehydrating slab49 (Fig. 6b), a
total sulfur outflux (Method 5) of 2.91 × 1012 g yr−1 (6.3% of FS)
is estimated via fluids derived from the subducting slab between
30–230 km (Fig. 8a). The sheeted dikes (31%) and the upper
volcanic layer (26%) contribute most of the sulfur release, but the
sediment (15%) and the lower volcanic layer (15%) are also
important (Fig. 8a). This sulfur outflux from the slab is about 1/5
to 1/3 of the sulfur output estimates from arcs2,50,51 (Fig. 8b).

Importantly, our sulfur output estimate shows a major sulfur
release of 2.46 × 1012 g yr−1 (5.3% of FS) to the mantle wedge at
depths of 70–100 km (Fig. 9) due to both elevated [S]fluid (Fig. 6a)
and released H2O flux49 (Fig. 6b). The volcanic layers, dikes,
gabbro, and sediments contribute to the major sulfur release at

this depth interval (Fig. 8a). This sulfur release window coincides
with pyrite-to-pyrrhotite breakdown12 (releasing H2S) and the
major slab fluid release (∼32% H2O/H2Ototal)49, which subse-
quently acts as the trigger for partial melting of the mantle wedge
and ultimately arc magmatism25,52,53. The release of slab sulfur is
minor at other depths (Fig. 9). The DEW model may under-
estimate [S]fluid due to unknown sulfur species. In addition,
considering the uncertainties on the thermodynamic data (±0.3 to
±0.5 of logK)31, the slab sulfur loss estimate may extend to a
maximum of ∼20%. This is comparable to the estimate obtained
from natural rocks and experiments (30%, Supplementary
Note 3), and previous estimates (8–18%, Fig. 8b) from arcs2,50,51.

Knowing [S]fluid (Fig. 6a) and water fluxes49 (Fig. 6b) liberated
from slab sequences as well as the δ34Sfluids of sediments (−8‰),
oceanic crust (−1‰) and serpentinites (+8‰), mass-balance
calculations (Method 5) predict a δ34S value of slab fluids of
−1.8 ± 3‰ at depths of 70–100 km. Both the gradually decreasing
δ34SWR and δ34Ssulfide values (sample JTS, Fig. 4a) and the trend
of increasing δ34SWR values within the studied profile (sample
L1422, Fig. 5a) provide clear evidence for isotope exchange
during fluid–rock interaction, despite rapid fluid transport
rates24,25. The sulfur isotope composition of channelized fluids
generated in the lower parts of a slab could be slightly altered
within the upper parts during fluid transport. Assuming a 10%
sulfur isotopic contamination rate by sediment and 20% by
oceanic crust for underlying sulfur sources, the net δ34S value is
calibrated to −2.5 ± 3‰ at depths of 70–100 km (Fig. 9). If
δ34Sfluids values from different reservoirs are kept constant at
different depths, δ34S of slab fluids at shallower depths remains
negative but shifts to positive at greater depths, and a net δ34S of
−2.1‰ is obtained for slab fluids between the whole 30–230 km
(Fig. 9). Regardless of flux uncertainties, we emphasize that the
negative δ34S value of slab fluids is robust and insensitive to a
range of different model scenarios (Method 6), including thick
serpentinized slab-mantle scenarios54, which may supply more
fluids with positive δ34S values.

This study provides the first comprehensive and quantitative
view of the flux and isotope compositions of sulfur-bearing slab
fluids, which likely mirror the slab sulfur contributions to arcs25,55.
We show that dehydration-related fluids transfer modest amounts
of sulfur (6.4% of total subducted sulfur, up to 20% maximum)
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from the slab to the mantle wedge. This maintains elevated sulfur
contents of the mantle source for arc magmas (250–500 µg g−1)6,7

in comparison to MORB (80–300 µg g−1)56. Additional significant
release by, for example, slab melting is unlikely, as [S] in melts is
much lower than in aqueous fluids (DS

fluid/melt usually >200)11.
This slab-arc sulfur cycle is operated by fluid-mediated H2S and/or
HS− transport with negative δ34S composition, which has no direct
links to the high oxygen fugacity and heavy δ34S signature observed
in arc volcanic rocks.

Our work also sheds further light on the nature of arc magmas.
The reason for the higher fO2 of arc magmas57,58 relative to
MORBs is still debatable. Intraoceanic or rare continental arcs,
like those of the Western Pacific, may record flux melting; mantle
peridotites with elevated fO2 values in these settings have been
thought to be influenced by slab-derived oxidizing agents59,60. In
contrast, continental arcs, like those of the Eastern Pacific arcs
where crust thickness may modulate the melting degree61, may
represent a complicated melting mode involving decompression
and mantle peridotite that is not necessarily oxidized59,62.
Direct comparisons of Western and Eastern Pacific arcs may be
challenging due to their different melting modes and arc
maturity59,60. The P–T evolution of the Tianshan eclogites
(representing cold/old subducted oceanic slab) corresponds more
closely to the thermal structure of subduction zones beneath the
Western Pacific arcs59. However, our finding of negligible sulfate

in the slab fluids indicates that slab SO4
2− was unlikely to be the

main oxidizing agent during South Tianshan Ocean subduction.
In such environments, the high fO2 of sub-arc mantle may
instead result from addition of slab H2O and CO2 (refs 63,64),
instead of oxidized sulfur species. Processes including incor-
poration of H2 into orthopyroxene63 and the formation of dia-
mond64 and CH4 (ref. 65) in the mantle wedge may produce
oxidized melts that elevate the fO2 of Western Pacific arc
magmas.

The calculated negative δ34S (−2.5 ± 3‰) released from the sub-
ducted slab (Fig. 9) contrasts with the positive δ34S values found in
the inclusions of Western Pacific arc rocks4,5,8. In general, the mantle
wedge should have mantle-like δ34S values of ∼0‰. Therefore, the
positive δ34S signature in arc-related rocks requires additional sulfur
sources or processes for 34S enrichment. Volcanic degassing effects
on melt δ34S are highly dependent on redox state66,67. But even
under oxidizing conditions (>FMQ+ 2), increases in melt δ34S
caused by degassing are modest (∼1.5‰)66. Therefore, the negative-
to-positive shift in the δ34S composition of melts must happen as part
of the partial melting processes, such that significant sulfur isotope
fractionation accompanies the melt oxidization. For example, 32S
may be scavenged into surrounding mantle to form sulfides while H2

is incorporated into orthopyroxene63, producing 34S-rich sulfate in
oxidizing melt and finally isotopically heavier arc magmas. Thus,
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Fig. 9 Diagram illustrating fluid-mediated sulfur release in the subduction zone. a Schematic lithologic succession of typical subducted oceanic

lithosphere. The bold arrows refer to channelized fluid flow, and the dashed rectangle refers to the sequences of this case study in the Tianshan.

b Estimated sulfur flux (arrow sizes represent the relative sulfur amounts) and isotope compositions released from the subducting slab at different depths

via fluid flow. Inset circle shows the key parameters during net δ34S calculation of slab fluids to sub-arc mantle, such as global H2O flux, sulfur

concentration and isotopic composition of fluids derived from different sequences of the subducting slab. fS/FS ratio of 20% is the maximum value from

DEW results. Numbers in ellipsoids refer to bulk sulfur isotope compositions in reservoirs of subduction settings (data sources see text). Red stars

represent the depths of metasediments, metabasites (including veins) and serpentinites in this study formed in the subduction zone. Not to scale. Source

data are provided in Supplementary Data.
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further studies will be necessary to assess the processes that may lead
to the positive δ34S compositions in arc magmas.

Our comparison of subduction input with output fluxes indi-
cates that most of the sulfur (>80%) with negative δ34S values
(<−3.7‰) is retained in the descending slab and recycled to the
deep mantle (Fig. 9). This may have resulted in a progressive 34S-
enrichment of Earth’s surface sulfur reservoirs19, and can explain
the negative δ34S values of alkaline magmas related to ocean
island basalts (OIBs) since the Phanerozoic68.

Methods
Analytical methods. Bulk-rock sulfur contents and isotope compositions were
measured at the Geological Institute at the Freie Universität Berlin. Extraction of the
bulk-rock sulfur was performed by extracting the acid volatile sulfide (AVS),
chromium reducible sulfide (CRS), and the sulfate fraction69. Sulfur isotope mea-
surements of AVS, CRS, and sulfate fractions were done on a Thermo Fisher
Scientific MAT 253 mass spectrometer combined with a Eurovector elemental
analyzer. The [S]WR of individual samples were calculated by summing sulfur
amounts of measured AVS, CRS, and sulfate. The δ34SWR was calculated by mea-
sured δ34S values of AVS, CRS, and sulfate in combination with their amounts. In
situ sulfur isotopes of sulfides on epoxy discs were analyzed via Secondary Ioni-
zation Mass Spectrometry (SIMS) using a Cameca IMS 1280 instrument located at
the Swedish Museum of Natural History, Stockholm, Sweden (NORDSIM facility)70

for sample JTS and at the Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS, Beijing, China)71 for other samples. Measurements were con-
ducted over a rastered 10 × 10 μm area using a 133Cs+ primary beam with 20 kV
incident energy (10 kV primary, −10 kV secondary) and a primary beam current of
∼1.0 nA. All δ34S results are reported with respect to the V-CDT standard72.
Detailed descriptions of δ34S measurement parameters and standard references are
given in the Supplementary Note 4. Elemental Co and Ni X-ray maps of pyrite were
made in wavelength-dispersive spectrometer mode by electron microprobe
(CAMECA SXFive FE) at the IGGCAS. An acceleration voltage of 20 kV, beam
current of 100 nA, 3–5 μm pixel size, and dwell time of 50ms were used. In situ
trace-element analyses by laser ablation inductively-coupled plasma mass spectro-
metry of sulfides were made on thin sections in the GeoZentrum Nordbayern of the
University Erlangen–Nürnberg, Erlangen, Germany.

DEW calculation of sulfur concentration in fluids. The DEW model31,32 enables
the calculation of reaction equilibrium constants involving minerals, aqueous
inorganic and organic ions, complexes, and neutral species. These equilibrium
constants combined with the EQ3 fluid speciation code73 can be used to develop an
aqueous speciation and solubility model at high-pressure and temperature condi-
tions. The DEW model has been successfully applied to predict organic species,
diamond formation, and nitrogen cycling in subduction zones74,75. EQ3 computes
the equilibrium aqueous speciation of a fluid in equilibrium with certain mineral
assemblages at specified temperature, pressure, and oxygen fugacity. We calculated
sulfur concentrations and speciation (Fig. 6a, Supplementary Fig. 2) in slab fluids at
different P–T conditions along a typical subduction geothermal gradient36, mod-
eling cases at 60 km (2 GPa, 400 °C), 75 km (2.5 GPa, 550 °C), 90 km (3 GPa,
700 °C), 120 km (4 GPa, 770 °C), and 150 km (5 GPa, 800 °C). The fO2 of sub-
ducted oceanic crust decreases with increasing depths and increasing capacity of
Fe3+ in garnet and pyroxone17. Considering mineral assemblages in subduction
zone rocks17,76, fO2 was set at ΔFMQ+ 1 (30 km), ΔFMQ (60 and 75 km), ΔFMQ-
1 (90 km), ΔFMQ-2 (120 km), and ΔFMQ-3 (150 km) for subducted oceanic crust
(garnet+ clinopyroxene+ pyrite/pyrrhotite ± lawsonite/kyanite ± carbonate/gra-
phite ± quartz/coesite) and overlying metasediment (muscovite+ quartz/coesite+
pyrite/pyrrhotite ± chlorite ± paragonite ± talc ± garnet ± clinopyroxene ± law-
sonite/kyanite ± carbonate/graphite). For slab serpentinite (antigorite+ orthopyr-
oxene+ pyrite/pyrrhotite ± magnetite ± olivine ± talc ± magnesite), fO2 was set at
ΔFMQ+ 1 (30, 60 and 75 km), ΔFMQ (90 and 120 km), and ΔFMQ-1 (150 km). In
order to test calculation sensitivity and improve the robustness, we calculated the
results at ±1 fO2 unit for every case. Aqueous sulfur species are in equilibrium with
pyrite or pyrrhotite based on fO2. Aqueous sulfur species considered here are
H2S(g), H2S(aq), HS−, HSO3

−, SO3
2−, HSO4

−, SO4
2−, CaSO4

0, MgSO4
0, KSO4

−,
NaSO4

−, S3−, SO2(g) and SO2(aq), and the corresponding thermodynamic data are
reported in the DEW 2019 spreadsheet32.

Effect of sulfur isotope fractionation. Sulfur isotope fractionation of pyrite
during hydrothermal processes was contoured on log fO2–pH diagrams based on
the method of Ohmoto42. These calculations monitor sulfur isotope fractionation
at prograde P–T stages at depths 30 km (200 °C, 1 GPa), 60 km (400 °C, 2 GPa),
75 km (550 °C, 2.5 GPa), 90 km (700 °C, 3 GPa) and 120 km (770 °C, 4 GPa).
Reactions and equations of sulfur species include H2S(aq), HS−, HSO4

−, and SO4
2−,

and the relative isotopic fractionation (Δi=
34Si – 34SH2S) for sulfur species were

calculated at higher temperatures according to the equation40:

1000 ln αð Þ ¼
a � 106

T2 þ
b � 106

T
þ c

where a, b, and c are empirically-determined constants, and T is temperature in
Kelvin. The equilibrium constants for reactions and activity coefficients of aqueous
species were recalculated for higher P–T conditions based on the DEW model31,32.
The abundance of sulfur species and contours of sulfur isotope fractionation
(compared to initial sulfur isotope of hydrothermal fluid at δ34S∑S= 0‰) as
functions of fO2 and pH were calculated using Eqs. (17–25) listed in ref. 42.

The changes in isotope fractionation during pyrite crystallization from slab
fluids (H2S dominated or SO4

2−-dominated) in closed system and open-system
(Rayleigh fractionation) processes were modeled at the vein-formation temperature
550 °C. In a hydrothermal system, the isotope composition of an instantaneously
separated solid phase i from a fluid is:

δ34Si ¼ δ34S0 � 1� Fð Þ � 1000 � ln αð Þ ðclosed systemÞ

or

δ34Si ¼ δ34S0 þ 1000 � Fðα�1Þ � 1
� �

ðopen systemÞ

where δ34S0 is the initial fluid isotope composition (set as 0‰) and F is the fraction
of sulfur remaining in the fluid.

Estimate of global sulfur input into subduction zones. The input sulfur flux FS
and its isotope composition into subduction zones are:

FS ¼
X

L � R � t � ρ � CSð Þ

and δ34S ¼
X

δ34St � L � R � t � ρ � CS

� �

=
X

L � R � t � ρ � CSð Þ

where L is the global length of subduction zones, R is the convergence rate, t is the
thickness of the sequence layers in the slab, ρ is the density of the sequence layers,
CS is the sulfur concentration [S], and δ34St is the sulfur isotope composition of the
sequence layers. The total effective length of subduction zones is ~38,500 km,
which covers more than 90% of global trench length49. The convergence rate of
6.2 cm yr−1 used here is taken from an average rate of 17 active oceanic subduction
zones36. Based on the oceanic lithosphere stratigraphy (Penrose style) and its
average [S] and δ34S composition from the best current understanding (Supple-
mentary Fig. 3), the calculated global sulfur input via subducting slabs is estimated
to be 46.5 × 1012 g yr−1. The bulk slab sulfur isotope composition of this sulfur
input is estimated at −3.60‰. Using the same method, the calculated global water
flux (1.06 × 1015 g yr−1) of subducted slabs is very close to previous estimates
(1.0 × 1015 g yr−1)49.

Sulfur output and net δ34S released by slab fluids. The output sulfur flux
released from the subducted slab via fluids (fS) is:

f S ¼ CS�fluid � f fluid

and the net sulfur isotope composition of fluids released from the subducted slab
(δ34Snet) is:

δ34Snet ¼
X

δ34S � f S
� �

=
X

f S:

where CS-fluid refers to [S]fluid and ffluid to the fluid flux released from the sub-
ducting slab. Based on water flux (0.32 × 1015 gyr−1) and [S]fluid from the DEW
model, the calculated sulfur output at 70–100 km is 2.46 × 1012 g yr−1 (5.3% of total
input FS) with a δ34S value of −1.84 ± 3 ‰. The net δ34S value of slab fluids
released at 70–100 km depths is further adjusted to −2.54 ± 3 ‰ (Fig. 9) con-
sidering fluid–rock isotopic exchange.

Our calculations indicate that along the subduction thermal gradient, at different
subduction depths, the variations of temperature, pressure, fO2 and pH will not
cause large sulfur isotope fractionation (Fig. 7). Thus, the fluid δ34S compositions
obtained at 70–100 km depths can be extrapolated to different depths in the
subduction zone. Following the similar assumptions and calculation approach,
we obtained sulfur outfluxes and associated δ34S values of slab fluids released at
30–50 km (0.00004 × 1012 g yr−1, −1.0‰), 50–70 km (0.009 × 1012 g yr−1, −3.2‰),
100–150 km (0.32 × 1012 g yr−1, −0.1‰), and 150–230 km (0.11 × 1012 g yr−1,
+1.0‰), based on the water flux released from the slab at different depths as
calculated by van Keken et al.49. The total sulfur output at 30–230 km is calculated
at 2.91 × 1012 g yr−1 (6.3% of total input FS) with a δ34S value of −2.13‰ (Fig. 9).

Uncertainties on output sulfur δ34S estimates. The estimates of sulfur fluxes
released from the slab have significant uncertainties. However, our study provides a
robust isotopic signature for the slab fluids. The δ34S estimate remains at slightly
negative values in all of the following scenarios:

The uncertainty of δ34Snet is mostly dependent on the δ34S value of fluids
released by the AOC at 70–100 km, which provides the major fluid flux and has a
relatively high sulfur concentration (0.74 wt.%). Although we consider a large δ34S
range of fluidAOC (−6 to +4‰), the errors on the δ34S of slab fluid released at
70–100 km are all less than ±2.5‰ (2σ). Changes in other parameters and
assumptions cause variations of less than ±1‰ in δ34S. Hence, we estimate ±3‰ as
a reasonable uncertainty.

Our study is based on the best current knowledge of slab structure and water
budget49. However, new research based on ocean-bottom seismic data reports that
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mantle hydration may extend up to 24 km beneath the Moho54, which indicates
that the subducting plate may contain much more water than previously thought49.
If we adopt this assumption of a thicker serpentinized upper mantle54 and
recalculate the water and sulfur fluxes (i.e., enlarged the serpentinite-dehydrated
water amounts in the subduction zone accordingly), the sulfur input increases to
7.6 × 1013 g yr−1 and sulfur output increases to 3.93 × 1012 g yr−1 but the sulfur
productivity (5.2%) of the subducting slab shows little variation. More importantly,
the net δ34S displays almost no change at 70–100 km (−2.4‰). This consolidates
our prediction of slab-released sulfur regarding the δ34S signatures of arc settings.

Subducted sediment types and their redox state may have a potential effect on
our results, even though there currently is no firm consensus about how much
sediment is subducted. Metasediment in the Franciscan complex contains red
ferruginous chert, but its proportion is subordinate compared to greywackes77.
Moreover, at the major sulfur release window (70–100 km), the sediment
contribution to the total sulfur loss is small (less than 20%). The channelized
fluids24,25 in subducted slabs (instead of pervasive fluids) prevent intensive sediment
contamination of deeply-derived fluids. Here we conclude that the variable sediment
protoliths and redox state will not influence our results significantly.

Data availability
The source data underlying Figs. 3–9 and Supplementary Figs. 1 and 2 are provided as

Supplementary Data.

Code availability
The computer code including the Deep Earth Water model (2019) and EQ3 packages to

perform the DEW calculations in this study is publicly available from the DEEP

CARBON OBSERVATORY website [www.dewcommunity.org/resources.html] for

research purposes.

Received: 19 June 2019; Accepted: 17 December 2019;

References
1. Wallace, P. J. & Edmonds, M. The sulfur budget in magmas: evidence from

melt Inclusions, submarine glasses, and volcanic gas emissions. Rev. Mineral.
Geochem. 73, 215–246 (2011).

2. Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32
(2012).

3. Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s
earliest sulfur cycle. Science 289, 756–758 (2000).

4. Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction
zones: the geochemistry of sulfur in the Mariana-island arc and back-arc
trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).

5. de Hoog, J. C. M., Taylor, B. E. & van Bergen, M. J. Sulfur isotope systematics
of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction
zones. Earth Planet. Sci. Lett. 189, 237–252 (2001).

6. de Hoog, J. C. M., Mason, P. R. D. & van Bergen, M. J. Sulfur and chalcophile
elements in subduction zones: Constraints from a laser ablation ICP-MS study
of melt inclusions from Galunggung Volcano, Indonesia. Geochim.
Cosmochim. Acta 65, 3147–3164 (2001).

7. Metrich, N., Schiano, P., Clocchiatti, R. & Maury, R. C. Transfer of sulfur in
subduction settings: an example from Batan Island (Luzon volcanic arc,
Philippines). Earth Planet. Sci. Lett. 167, 1–14 (1999).

8. Bénard, A. et al. Oxidising agents in sub-arc mantle melts link slab
devolatilisation and arc magmas. Nat. Commun. 9, 3500 (2018).

9. Pons, M. L., Debret, B., Bouilhol, P., Delacour, A. & Williams, H. Zinc isotope
evidence for sulfate-rich fluid transfer across subduction zones. Nat. Commun.
7, 13794 (2016).

10. Lee, C. T. A. et al. Sulfur isotopic compositions of deep arc cumulates. Earth
Planet. Sci. Lett. 500, 76–85 (2018).

11. Jégo, S. & Dasgupta, R. Fluid-present melting of sulfide-bearing ocean-crust:
experimental constraints on the transport of sulfur from subducting slab to
mantle wedge. Geochim. Cosmochim. Acta 110, 106–134 (2013).

12. Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release
from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).

13. Walters, J. B., Cruz‐Uribe, A. M. & Marschall, H. R. Isotopic compositions of
sulfides in exhumed high‐pressure terranes: implications for sulfur cycling in
subduction zones. Geochem. Geophys. Geosyst. 20, 3347–3374 (2019).

14. Crossley, R. J., Evans, K. A., Jeon, H. & Kilburn, M. R. Insights into sulfur
cycling at subduction zones from in-situ isotopic analysis of sulfides in high-
pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chem. Geol.
493, 359–378 (2018).

15. Evans, K. A., Tomkins, A. G., Cliff, J. & Fiorentini, M. L. Insights into
subduction zone sulfur recycling from isotopic analysis of eclogite-hosted
sulfides. Chem. Geol. 365, 1–19 (2014).

16. Su, W. et al. Sulfur isotope compositions of pyrite from high-pressure
metamorphic rocks and related veins (SW Tianshan, China):
Implications for the sulfur cycle in subduction zones. Lithos 348–349, 105212
(2019).

17. Li, J. L., Gao, J., Klemd, R., John, T. & Wang, X. S. Redox processes in
subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and
veins (SW Tianshan, China). Contrib. Mineral. Petrol. 171, 72 (2016).

18. Brown, J. L., Christy, A. G., Ellis, D. J. & Arculus, R. J. Prograde Sulfide
Metamorphism in Blueschist and Eclogite, New Caledonia. J. Petrol. 55,
643–670 (2014).

19. Canfield, D. E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci.
304, 839–861 (2004).

20. Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur:
seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54
(2013).

21. Alt, J. C. et al. Recycling of water, carbon, and sulfur during subduction of
serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet.
Sci. Lett. 327, 50–60 (2012).

22. Alt, J. C. & Shanks, W. C. Microbial sulfate reduction and the sulfur budget for
a complete section of altered oceanic basalts, IODP Hole 1256D (eastern
Pacific). Earth Planet. Sci. Lett. 310, 73–83 (2011).

23. Schwarzenbach, E. M. et al. Sulphur and carbon cycling in the subduction
zone mélange. Sci. Rep. 8, 15517 (2018).

24. Taetz, S., John, T., Bröcker, M., Spandler, C. & Stracke, A. Fast intraslab fluid-
flow events linked to pulses of high pore fluid pressure at the subducted plate
interface. Earth Planet. Sci. Lett. 482, 33–43 (2018).

25. John, T. et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting
slabs. Nat. Geosci. 5, 489–492 (2012).

26. Bayet, L., John, T., Agard, P., Gao, J. & Li, J. L. Massive sediment accretion at
∼80 km depth along the subduction interface: Evidence from the southern
Chinese Tianshan. Geology 46, 495–498 (2018).

27. Tan, Z. et al. Architecture and P-T-deformation-time evolution of the Chinese
SW-Tianshan HP/UHP complex: implications for subduction dynamics.
Earth-Sci. Rev. 197, 102894 (2019).

28. Shen, T. T. et al. UHP metamorphism documented in Ti-chondrodite- and Ti-
clinohumite-bearing serpentinized ultramafic rocks from Chinese
Southwestern Tianshan. J. Petrol. 56, 1425–1458 (2015).

29. Beinlich, A., Klemd, R., John, T. & Gao, J. Trace-element mobilization during
Ca metasomatism along a major fluid conduit: Eclogitization of blueschist as a
consequence of fluid-rock interaction. Geochim. Cosmochim. Acta 74,
1892–1922 (2010).

30. Schwarzenbach, E. M., Gill, B. C., Gazel, E. & Madrigal, P. Sulfur and carbon
geochemistry of the Santa Elena peridotites: comparing oceanic and
continental processes during peridotite alteration. Lithos 252–253, 92–108
(2016).

31. Sverjensky, D. A., Harrison, B. & Azzolini, D. Water in the deep Earth: the
dielectric constant and the solubilities of quartz and corundum to 60 kb and
1200 degrees C. Geochim. Cosmochim. Acta 129, 125–145 (2014).

32. Huang, F. & Sverjensky, D. A. Extended Deep Earth Water Model for
predicting major element mantle metasomatism. Geochim. Cosmochim. Acta
254, 192–230 (2019).

33. Foley, S. F. A reappraisal of redox melting in the Earth’s mantle as a function
of tectonic setting and time. J. Petrol. 52, 1363–1391 (2011).

34. Tao, R. B. et al. Formation of abiotic hydrocarbon from reduction of
carbonate in subduction zones: constraints from petrological observation
and experimental simulation. Geochim. Cosmochim. Acta 239, 390–408
(2018).

35. Evans, K. A., Reddy, S. M., Tomkins, A. G., Crossley, R. J. & Frost, B. R. Effects
of geodynamic setting on the redox state of fluids released by subducted
mantle lithosphere. Lithos 278–281, 26–42 (2017).

36. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of
subduction zone thermal models. Phys. Earth Planet. 183, 73–90 (2010).

37. Connolly, J. A. D. & Cesare, B. C-O-H-S fluid composition and oxygen
fugacity in graphitic metapelites. J. Metamorph. Geol. 11, 379–388 (1993).

38. Tomkins, A. G. Windows of metamorphic sulfur liberation in the crust:
Implications for gold deposit genesis. Geochim. Cosmochim. Acta 74,
3246–3259 (2010).

39. Evans, K. A. & Powell, R. The effect of subduction on the sulfur, carbon, and
redox budget of lithospheric mantle. J. Metamorph. Geol. 33, 649–670 (2015).

40. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits (ed.
Barnes, H. L.) 509–567 (Wiley, 1979).

41. Marini, L., Moretti, R. & Accornero, M. Sulfur isotopes in magmatic-
hydrothermal systems, melts, and magmas. Rev. Mineral. Geochem. 73,
423–492 (2011).

42. Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore
deposits. Econ. Geol. 67, 551–578 (1972).

43. Galvez, M. E., Connolly, J. A. D. & Manning, C. E. Implications for metal and
volatile cycles from the pH of subduction zone fluids. Nature 539, 420–424
(2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14110-4 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:514 | https://doi.org/10.1038/s41467-019-14110-4 | www.nature.com/naturecommunications 11

http://www.dewcommunity.org/resources.html
www.nature.com/naturecommunications
www.nature.com/naturecommunications


44. Farquhar, J., Wu, N. P., Canfield, D. E. & Oduro, H. Connections between
sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide
deposits. Econ. Geol. 105, 509–533 (2010).

45. Labidi, J., Cartigny, P., Birck, J. L., Assayag, N. & Bourrand, J. J. Determination
of multiple sulfur isotopes in glasses: a reappraisal of the MORB δ34S. Chem.
Geol. 334, 189–198 (2012).

46. Alt, J. C. Sulfur isotopic profile through the oceanic crust: sulfur mobility and
seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23,
585–588 (1995).

47. Alt, J. C. et al. Uptake of carbon and sulfur during seafloor serpentinization
and the effects of subduction metamorphism in Ligurian peridotites. Chem.
Geol. 322, 268–277 (2012).

48. Schwarzenbach, E. M. Serpentinization, Fluids and Life: Comparing Carbon
and Sulfur Cycles in Modern and Ancient Environments. Thesis, ETH Zurich
(2011).

49. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction
factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J.
Geophys. Res. 116, B01401 (2011).

50. Hilton, D. R., Fischer, T. P. & Marty, B. Noble gases and volatile recycling at
subduction zones. Rev. Miner. 47, 319–370 (2002).

51. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes
based on melt inclusion and volcanic gas data. J. Volcanol. Geoth. Res. 140,
217–240 (2005).

52. Bebout, G. E. Metamorphic chemical geodynamics of subduction zones. Earth
Planet. Sci. Lett. 260, 373–393 (2007).

53. Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337
(1990).

54. Cai, C., Wiens, D. A., Shen, W. & Eimer, M. Water input into the Mariana
subduction zone estimated from ocean-bottom seismic data. Nature 563,
389–392 (2018).

55. Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by
fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).

56. Chaussidon, M., Albarede, F. & Sheppard, S. M. F. Sulphur isotope variations
in the mantle from ion microprobe analyses of micro-sulphide inclusions.
Earth Planet. Sci. Lett. 92, 144–156 (1989).

57. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone
magmas. Science 325, 605–607 (2009).

58. Evans, K. A., Elburg, M. A. & Kamenetsky, V. S. Oxidation state of subarc
mantle. Geology 40, 783–786 (2012).

59. Foden, J., Sossi, P. A. & Nebel, O. Controls on the iron isotopic composition of
global arc magmas. Earth Planet. Sci. Lett. 494, 190–201 (2018).

60. Benard, A., Woodland, A. B., Arculus, R. J., Nebel, O. & McAlpine, S. R. B.
Variation in sub-arc mantle oxygen fugacity during partial melting recorded
in refractory peridotite xenoliths from the West Bismarck Arc. Chem. Geol.
486, 16–30 (2018).

61. Chin, E. J., Shimizu, K., Bybee, G. M. & Erdman, M. E. On the development of
the calc-alkaline and tholeiitic magma series: A deep crustal cumulate
perspective. Earth Planet. Sci. Lett. 482, 277–287 (2018).

62. Kilgore, M. L., Peslier, A. H., Brandon, A. D. & Lamb, W. M. Water and
oxygen fugacity in the lithospheric mantle wedge beneath the Northern
Canadian Cordillera (Alligator Lake). Geochem. Geophys. Geosyst. 19,
3844–3869 (2018).

63. Tollan, P. & Hermann, J. Arc magmas oxidized by water dissociation
and hydrogen incorporation in orthopyroxene. Nat. Geosci. 12, 667–671
(2019).

64. Malaspina, N., Scambelluri, M., Poli, S., Van Roermund, H. L. M. &
Langenhorst, F. The oxidation state of mantle wedge majoritic garnet
websterites metasomatised by C-bearing subduction fluids. Earth Planet. Sci.
Lett. 298, 417–426 (2010).

65. Song, S. G., Su, L., Niu, Y., Lai, Y. & Zhang, L. CH4 inclusions in orogenic
harzburgite: evidence for reduced slab fluids and implication for redox melting
in mantle wedge. Geochim. Cosmochim. Acta 73, 1737–1754 (2009).

66. Fiege, A. et al. Experimental investigation of the S and S-isotope distribution
between H2O S ± Cl fluids and basaltic melts during decompression. Chem.
Geol. 393–394, 36–54 (2015).

67. Fiege, A. et al. Sulfur isotope fractionation between fluid and andesitic melt: an
experimental study. Geochim. Cosmochim. Acta 142, 501–521 (2014).

68. Hutchison, W. et al. Sulphur isotopes of alkaline magmas unlock long-term
records of crustal recycling on Earth. Nat. Commun. 10, 4208 (2019).

69. Liebmann, J. et al. Tracking water-rock interaction at the Atlantis Massif
(MAR, 30 degrees N) using sulfur geochemistry. Geochem. Geophys. Geosyst.
19, 4561–4583 (2018).

70. Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation
of reference sulfides for Δ33S with observations and a case study on the
determination of Δ36S. Geostand. Geoanal. Res. 37, 19–33 (2013).

71. Chen, L. et al. Extreme variation of sulfur isotopic compositions in pyrite from
the Qiuling sediment-hosted gold deposit, West Qinling orogen, central

China: an in situ SIMS study with implications for the source of sulfur. Miner.
Depos. 50, 643–656 (2015).

72. Ding, T. et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur
isotope reference materials and V-CDT with a reassessment of the atomic
weight of sulfur. Geochim. Cosmochim. Acta 65, 2433–2437 (2001).

73. Wolery, T. J. EQ3NR, a computer program for geochemical aqueous
speciation-solubility calculations: theoretical manual, user’s guide, and related
documentation (Version 7.0); Part 3 (DOE, 1992).

74. Sverjensky, D. A. Thermodynamic modelling of fluids from surficial to mantle
conditions. J. Geol. Soc. 176, 348–374 (2019).

75. Sverjensky, D. A. & Huang, F. Diamond formation due to a pH drop during
fluid-rock interactions. Nat. Commun. 6, 8702 (2015).

76. Debret, B. et al. Evolution of Fe redox state in serpentine during subduction.
Earth Planet. Sci. Lett. 400, 206–218 (2014).

77. Wakabayashi, J. Anatomy of a subduction complex: architecture of the
Franciscan Complex, California, at multiple length and time scales. Int. Geol.
Rev. 57, 669–746 (2015).

78. Kagoshima, T. et al. Sulphur geodynamic cycle. Sci. Rep. 5, 8330 (2015).

Acknowledgements
This project was supported by the National Key R&D Program of China

(2018YFA0702701), National Natural Science Foundation of China (41772056 and

41390445). J.L.L. thanks the funding from Youth Innovation Promotion Association CAS

(2018090) and the CSC for supporting his one-year stay at Yale University and three

months at Freie Univeristät Berlin. J.J.A. gratefully acknowledges support from the U.S.

National Science Foundation (EAR–1650329). NordSIMS is a Swedish infrastructure sup-

ported under VR grant 2017-00671; this is contribution 610. We thank U. Wiechert and F.

Schmid for help with bulk-rock S analyses; Q. Mao and D. Zhang for help with EMP

analyses; and H. Jeon, L. Chen, L.L. Dong, and J. Li for help with SIMS analyses.

We are grateful to J.A.D. Connolly, S. Tassara, B.T. Li, and X.Q. Zhou for their

helpful discussions and suggestions. Special thanks go to P. van Keken for providing detailed

global water flux data, which enhances the reliability of our mass-balance calculation

significantly.

Author contributions
J.L.L. and T.J. designed the study. J.L.L., T.J., J.G. and R.K. collected the samples. J.L.L., R.

K. and X.S.W. performed the microprobe mapping and laser trace-element analysis. E.M.

S. and J.L.L. conducted the bulk sulfur isotope analysis. J.L.L. and M.J.W. conducted the

SIMS analysis. F.H. performed the DEW calculation. J.L.L., E.M.S., T.J. and J.J.A. per-

formed the mass-balance calculations. All authors contributed to the extensive discussion

and manuscript writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

019-14110-4.

Correspondence and requests for materials should be addressed to J.-L.L., T.J. or J.G.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14110-4

12 NATURE COMMUNICATIONS |          (2020) 11:514 | https://doi.org/10.1038/s41467-019-14110-4 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-14110-4
https://doi.org/10.1038/s41467-019-14110-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective
	Results
	Sample background
	Bulk-rock sulfur geochemistry of different lithologies
	Sulfur geochemistry in HP vein systems
	Sulfur concentrations in aqueous fluids from DEW modeling
	Hydrothermal sulfur isotope fractionation
	δ34S values of fluids from different slab reservoirs

	Discussion
	Methods
	Analytical methods
	DEW calculation of sulfur concentration in fluids
	Effect of sulfur isotope fractionation
	Estimate of global sulfur input into subduction zones
	Sulfur output and net δ34S released by slab fluids
	Uncertainties on output sulfur δ34S estimates

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


