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High-throughput data are a double-edged sword; for the benefit of large amount of data,

there is an associated cost of noise.To increase reliability and scalability of high-throughput

protein interaction data generation, we tested the efficacy of classification to enrich poten-

tial protein–protein interactions. We applied this method to identify interactions among

Arabidopsis membrane proteins enriched in transporters. We validated our method with

multiple retests. Classification improved the quality of the ensuing interaction network and

was effective in reducing the search space and increasing true positive rate. The final net-

work of 541 interactions among 239 proteins (of which 179 are transporters) is the first

protein interaction network enriched in membrane transporters reported for any organ-

ism. This network has similar topological attributes to other published protein interaction

networks. It also extends and fills gaps in currently available biological networks in plants

and allows building a number of hypotheses about processes and mechanisms involving

signal-transduction and transport systems.
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INTRODUCTION

Membrane proteins play an essential role in fundamental biolog-

ical processes including signaling, homeostasis, nutrient acquisi-

tion, and metabolism. Despite their importance, we know little

about the functions of most membrane proteins. For example,

transporters constitute a large functional class in any organism,

making up ∼4% of eukaryotic and ∼9% of prokaryotic genomes

on average (Ren and Paulsen, 2005). Furthermore, genes known

to cause disease in human are enriched in transporters. Over 9%

of characterized disease genes are transporters (Jimenez-Sanchez

et al., 2001) whereas only 3% of the human genome are annotated

as transporters (Ren et al., 2007; p-value <0.0001, Chi-square

test with Yates correction). However, we know the functions of

Abbreviations: CNGC, cyclic nucleotide-gated ion channel; Cub, C-terminal of

ubiquitin; Cub-PLV, Cub-protA-LexA-VP16 peptide; CV, coefficient of variation;

FDR, false discovery rate; GO, gene ontology; mbSUS, mating-based split ubiqui-

tin system; MLO, mildew resistance locus O; Nub, N-terminal of ubiquitin; ORF,

open reading frame; PO,plant ontology; pPPI,potential protein–protein interaction;

RLK, receptor-like kinase; SC, synthetic complete medium; SD, synthetic dextrose

minimal medium; SMO, sequential minimal optimization; SVM, support vector

machine; TF, transcription factor; VAMP, vesicle-associated membrane protein;

Y2H, yeast two hybrid; YPD, yeast extract peptone dextrose complete medium.

only a small portion of predicted transporters. For example, in

Arabidopsis, over 1200 proteins have been classified as transporters

(Ren et al., 2007), but only 267 transporters have been character-

ized experimentally (Lamesch et al., 2012). It has been difficult to

systematically elucidate the function of transport systems using

traditional genetic and biochemical approaches (Barbier-Brygoo

et al., 2001). Identifying physical partners of transporters could

provide a framework from which to generate strategies and test

hypotheses relating to the function, mechanism, and regulation of

transport systems.

Yeast two hybrid (Y2H) systems have been used successfully

to identify interactions between soluble proteins in plants (Ara-

bidopsis Interactome Mapping Consortium, 2011; Mukhtar et al.,

2011). To systematically elucidate a map of membrane protein

interactions, mating-based split ubiquitin system (mbSUS) was

developed (Obrdlik et al., 2004; Miller et al., 2005). The split ubiq-

uitin system is similar to the classical Y2H as it uses yeast as a

heterologous system and has a similar read-out, but it specifically

allows the detection of interactions of full-length membrane pro-

teins. The concept of mbSUS relies on the release of a transcription

factor (TF) from a membrane protein if it interacts with another

membrane (or soluble) protein. Similar to other detection systems
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based on the reconstitution of two halves of a protein, mbSUS

uses a ubiquitin split into two halves: The N-terminal domain

of ubiquitin (Nub) can reconstitute a functional ubiquitin when

co-expressed with its other, C-terminal half (Cub; Johnsson and

Varshavsky, 1994). Nub mutants such as NubG with a reduced

affinity to Cub reconstitute the full-length ubiquitin only when

brought into vicinity via interaction between two fusion partners.

The use of a mutated Nub and Cub to test for physical interaction

between two fused proteins is the basis of mbSUS.

The mbSUS has been used successfully to analyze interactions

among 705 integral membrane proteins in yeast in 2005 (Miller

et al., 2005). Plant mbSUS was developed and used to test inter-

actions of translocon complex at the outer chloroplast membrane

(Rahim et al., 2009). Recently, mbSUS was successfully used to

screen for potential interactions among 490 Arabidopsis mem-

brane and signaling proteins (Lalonde et al., 2010). However, the

currently available membrane interaction networks for Arabidopsis

covers only a small portion of the genome.

The sheer number of interactions to test and a high level of noise

hamper the generation of genome-wide physical interaction net-

works. For Arabidopsis, given its full set of 8000 membrane proteins

(Lalonde et al., 2010), we have to test about 32 million pairs to iden-

tify the genome-wide membrane interaction network. In addition,

previous studies indicate that physical interaction networks across

all genomes are sparse (August and Papachristodoulou, 2009) and

that the number of interactions grows linearly as the number of

proteins grows in a network (Streinu and Theran, 2009). These

facts suggest that if interactions among all possible pairs are tested,

most of the tests should result in negative interactions.

Similar to the interaction networks reconstructed with other

high-throughput techniques, mbSUS-based interaction networks

also have high levels of background noise (Fields, 2005; Vlas-

blom and Wodak, 2009). To improve the quality of the net-

work, several strategies have been used to eliminate false posi-

tives. First, expression of the Cub-PLV (protA-LexA-VP16 pep-

tide) fusion can be fine-tuned by using a methionine-repressible

promoter and titrated using different methionine concentra-

tions in the medium. Second, 3-aminotriazole or Nub affin-

ity mutants (Raquet et al., 2001) can be used to optimize the

selection conditions for eliminating auto-activators and clones

showing high expression. Third, the information content of

mbSUS screens could be improved by determining growth

curves quantitatively by measuring optical density of the cul-

tures. While the output may not necessarily reflect the kinet-

ics of the underlying interaction, the quantitative data may

help reduce artifacts and improve standardization over multiple

assays performed over the data collection period (Lalonde et al.,

2008).

The large number of assays that need to be performed to deter-

mine the whole complement of potential protein interactions

constrains the scalability of mbSUS. In this paper, we present a

system that combines computational and empirical approaches

to efficiently detect high quality Arabidopsis membrane interac-

tions by minimizing the overall search space initially, followed by

maximizing the number of interaction assays.

To minimize the search space, we used classification mod-

els to remove those interactions that are likely to be false

positive. Classification models, such as Bayesian networks, have

been applied successfully to predict genome-wide protein–protein

interactions (Jansen et al., 2003). In a classification model, func-

tional features are weighted and combined. At given levels of

sensitivity, classification predictions could be even more accu-

rate than the existing high-throughput experimental data sets

(Jansen et al., 2003). However, classification models often suffer

from noisy training data (Bi and Zhang, 2004). Therefore, we used

an ensemble of four types of classification models (decision tree,

logistic regression, Bayesian network, and support vector machine,

SVM) to identify false positives and leave all the potentially true

positive interactions to a more rigorous interaction testing. For

the decision tree model, we used AD-tree (Freund and Mason,

1999), which combines decision trees with boosting that gener-

ates classification rules that are usually smaller in size and thus

easier to interpret. These classification rules yield a natural mea-

sure of classification confidence, which can be used to improve

the accuracy. Logistic regression (le Cessie and van Houwelin-

gen, 1992) is a statistical model for predicting the probability

of occurrence of an event by fitting data to a logistic curve. It

is a generalized linear model used for binomial regression and

is used extensively in the biological sciences. Bayesian network

learning has various search algorithms and quality measures. We

used K2 (Cooper and Dietterich, 1992), which uses a Bayesian

score to rank different structures and a greedy search algorithm to

maximize the score. Finally, SVM (Cortes and Vapnik, 1995) is a

set of supervised learning methods that recognize patterns from

data, and is used for classification and regression analysis. Intu-

itively, an SVM model is a representation of the training data as

points in space, mapped in a way that the training data belong-

ing to different categories are divided by a gap that is as wide

as possible. Testing data are then mapped onto that same space

and predicted to belong to a category based on which side of

the gap they fall on. We used sequential minimal optimization

(SMO), an algorithm for training an SVM classifier (Keerthi et al.,

2001).

Our system has three steps (Figure 1). First, mbSUS is applied

to all protein pairs using two replicates (PRIMARY-NET). In this

step, most of the false positive and true negative interactions are fil-

tered out using a statistical analysis. Second, classification methods

are applied to detect and filter false positives from PRIMARY-

NET, resulting in DRAFT-NET. Third, several assays of mbSUS are

applied with multiple replicates under different conditions (in our

study, 48 tests for each protein pair). This approach resulted in a

high quality interaction network called FINAL-NET with 541 (532

unique) interactions between 239 proteins. Topological and func-

tional network characteristics show that our method is promising

in terms of scalability and accuracy.

MATERIALS AND METHODS

FIRST mbSUS INTERACTION ASSAYS

Strains and vectors

We used the following yeast strains and pSUgate vectors, which

have been described previously (Obrdlik et al., 2004): THY.AP4

(MATa ura3 leu2 lexA::lacZ::trp1 lexA::HIS3 lexA::ADE2) and

THY.AP5 (MATα URA3 leu2 trp1 his3 loxP::ade2), and the pSUg-

ate vectors pMetYCgate, pXNgate21, pNXgate32, and pNubWT-2.
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FIGURE 1 | Overall framework of our protein interaction assay system,

which has three steps. (1) First mbSUS testing; (2) Bioinformatics to

effectively remove false positive interactions; (3) Second mbSUS testing.

PRIMARY-NET = statistically positive (FDR <0.05) interactions from step 1,

GOLD-NET = high-confidence interactions from step 1,

LIT-NET = literature-curated interactions, RAND PPIs = randomly selected

interactions from non-significant interactions in step 1,

DRAFT-NET = classified as positive from step 2, NEGATIVE = classified as

negative from step 2, NOT-SIG = randomly selected interactions from step

1 that were retested in step 3, FINAL-NET = tested positive in step 3.

The materials are available from the Arabidopsis Biological

Resource Center1.

Cloning into pSUgate vectors and interaction screens

Arabidopsis open reading frames (ORFs; Table S1 in Supple-

mentary Material) were amplified from the first strand DNA

with TripleMaster DNA polymerase using gene specific primers

(acaagtttgtacaaaaaagcaggctctccaaccaccATGX19-25-5′ ORF) and

(tccgccaccaccaaccactttgtacaagaaagctgggtaX19-25-3′ strand ORF

without stop). Purified PCR products were cloned by in vivo

recombination in yeast (Fusco et al., 1999). For NubG fusions,

pXNgate21 was cleaved with EcoRI/SmaI and used for co-

transformation of THY.AP5 with the PCR products encoding the

ORFs. Transformation was performed in microplates. Transfor-

mants were selected on synthetic complete media (SC) lacking

1http://abrc.osu.edu

tryptophan (Trp) and uracil (Ura). For Cub-PLV-fusions pMetYC-

gate was cleaved with Pst I/HindIII and used for co-transformation

of THY.AP4 with the PCR products encoding the ORFs. Transfor-

mants were selected on SC lacking leucine (Leu). Several clones

from each THY.AP5 and THY.AP4 transformation were incubated

in appropriate SC media with or without G418. Stationary cultures

that grew without G418 were harvested, their plasmids isolated

and amplified in E. coli DH10, and their inserts sequence-verified.

Clones from each THY.AP5 and THY.AP4 transformation were

mixed, and these pools were incubated in appropriate SC media

with or without G418. Stationary cultures that grew without G418

were used for subsequent interaction assays.

Microplate-based screening for interaction

To assay the interactions between NubG-fusion and Cub-PLV-

fusion proteins, we used a mating–based screening assay. The

NubG library, comprising 412 constructs, was arrayed in five

96-well microtiter plates filled with liquid SC-trp medium

(130 µl/well) using an automatic microplate dispenser (QFill2,

Genetix, Boston, MA, USA). Positive (pNubWT-2 yeast transfor-

mant), negative (empty NubG vector yeast transformant), and

blank (no yeast cells) controls were also included at selected

wells in the arrayed library. After 2-days of growth at 28˚C, the

NubG library was pinned onto solid YPD OmniTray plates (Nunc,

Rochester, NY, USA) in a 96-spot format using a 96-pin replicator

and OmniTray copier (Nunc, Rochester, NY, USA). Each of the 147

MetYCub constructs to be assayed was grown individually in 10 ml

of SC-leu liquid media for 2 days at 28˚C, poured on an OmniTray

plate and pinned onto the YPD Omnitray plates containing the

spotted NubG library to allow the formation of diploids between

each of the clones of the NubG library (mating type alpha) and

the individual MetYCub clone (mating type a). After 10–12 h of

growth, the YPD Omnitray plates were first replica-pinned to ster-

ile water-filled 96-well microtiter plates and then replicated to

SC-leu-ura-trp 96-well microtiter plates to select the diploids.

Interactions among protein pairs in the diploids were initially

monitored by measuring the ability to grow in SC medium lacking

histidine as a consequence of induction of the HIS3 reporter. The

diploid library was tested in duplicate containing 0 or 250 µM

methionine to modulate the expression of the Cub-ORF fusion

protein. Growth rates were quantitatively determined for each

of the diploids by measuring the OD595 after 3, 4, and 5 days of

incubation using a microplate reader (Bio-Rad model 550, Her-

cules, CA, USA). After the statistical analysis of the growth curves,

diploids that showed an OD595 >0.2 after 3, 4, or 5 days of incu-

bation were considered as positive interaction pairs and selected

for further analyses.

STATISTICAL DETERMINATION OF FALSE POSITIVE PROTEIN

INTERACTION

Optical density values were normalized within in each plate, and

for each Nub clone across the plates. The median and inter-quartile

range of the optical density were taken as a robust measure of the

average and dispersion, respectively. These were used to calcu-

late z-scores, and raw p-values were obtained from the standard

normal distribution. For each protein pair under each methionine

treatment, a false discovery rate (FDR) value that took into account
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all of the 52310 concurrent hypotheses was then calculated using

the Bonferroni correction (Strassburger and Bretz, 2008). Interac-

tion pairs with FDR values of less than 0.05 were selected for the

PRIMARY-NET.

Typically an FDR threshold of 0.05 is used to identify positive

interactions in high-throughput interaction studies (Verhoeven

et al., 2005; Hesselberth et al., 2009). However, with this classical

yet arbitrary threshold, PRIMARY-NET might still have significant

numbers of false positives (∼100). The edge-node ratio (5.13) is

significantly higher than any known interaction networks, e.g.,

Saccharomyces cerevisiae (3.26), Drosophila melanogaster (3.08),

and Caenorhabditis elegans (1.54; data obtained from BIND; Bader

et al., 2003), suggesting that the false positives in the data might

affect the topology of the network. Therefore, we reasoned that a

more stringent FDR threshold should be applied to filter out more

false positive interactions.

To determine the FDR threshold that maximally separates true

and false positive interactions, we defined a reference network

called REF-NET that is more reliable than PRIMARY-NET as fol-

lows. First, we reasoned that REF-NET should be much smaller

than PRIMARY-NET. We defined an interaction with FDR values

smaller than 0.05 under both high and low methionine condi-

tions to belong to REF-NET. After determining the REF-NET, we

gradually reduced the FDR thresholds from 0.05 to 0 for both

REF-NET and PRIMARY-NET until their rates of reduction in

the number of interactions became indistinguishable. We rea-

soned that with the decreasing FDR threshold, if the two networks

had similar false positive rates, their rates of reduction in the

total number of interactions should also be similar. The largest

FDR value at which the rates first became indistinguishable was

chosen as the FDR threshold. Figure S1 in Supplementary Mate-

rial shows that from FDR value 10−4 the network sizes started

to change similarly. Therefore, by setting the FDR threshold at

10−4, we split PRIMARY-NET to SIG-NET (significant network)

and NSE-NET (non-significant network). We then applied differ-

ent strategies on SIG-NET and NSE-NET to further detect false

positive interactions using classification models.

CLASSIFICATION MODELS

Generation of training sets

To train a classification model, we used a set of training data that

included known interactions (positive training data) and a set

of protein pairs that are not likely to physically interact (neg-

ative training data). To compose the positive training data, we

first included 1831 interactions between 1048 Arabidopsis pro-

teins curated from the literature, BIND (Bader et al., 2003), and

IntAct (Kerrien et al., 2007) databases (Table S2 in Supplemen-

tary Material). Since most of the curated interactions were found

to occur between soluble proteins, we also added 97 interactions

detected in the first mbSUS with FDR values smaller than 10−8

and were positive in both methionine concentrations (all 4 tests) to

the positive training set (GOLD-NET, Table S3 in Supplementary

Material). We randomly sampled 10 interactions for individual

tests and treated the rest 87 interactions as part of positive train-

ing data. In summary, we composed the positive training set with

1831 interactions from the literature and 97 interactions from the

first mbSUS. We cross-validated the models using 10 randomly

sampled interactions from GOLD-NET. The negative training set

was composed of randomly selected pairs between the 412 Nubs

and 147 Cubs that were tested, and whose FDR values were greater

than or equal to 0.05. A total of 100 independent negative training

sets were generated, in which each set had the same number of

interactions as the positive training set.

Feature collection and selection

Based on the guilt-by-association rule, an interaction is likely if

both of the proteins are involved in the same biological process,

and an interaction is unlikely if the proteins are involved in differ-

ent processes. Hence we collected biological characteristics of the

proteins to compose the feature space of the classification models.

First, topology analysis of protein interaction networks shows that

true interactions fit the pattern of a small-world network while

false interactions are distributed randomly in the network (Bork

et al., 2004). Therefore, we reasoned that the local cohesiveness for

each interaction could be used to distinguish true and false positive

interactions. We used topological measures that determine overlap

between two sets of data in our classification model. Given a pro-

tein interaction interaction (a, b) with proteins a and b, let A be the

set of neighbors of protein a and B be the set of neighbors of pro-

tein b. We then calculated the overlap between A and B using the

above topological measures. Interaction (a, b) was deemed more

likely if A and B had a higher overlap. We used several overlap

measures in this study: Jaccard index, meet/min, geometric, hyper-

geometric, and Czekanowski–Dice distance (Brun et al., 2003; Tan

et al., 2005). The first four measures determine the extent of over-

lap between two data sets whereas Czekanowski–Dice distance

tests the dissimilarity between two sets.

Second, various kinds of biological features of protein interac-

tions were collected, including domain–domain interaction from

DIMA (Pagel et al., 2006), similarity scores based on Gene Ontol-

ogy (GO; Ashburner et al., 2000) function annotation, GO process

annotation and Plant Ontology (PO) annotation (Avraham et al.,

2008),gene expression correlation in 36 separate experiments from

TAIR (Lamesch et al., 2012)2, and overall gene expression correla-

tion from ATTED II database (Obayashi et al., 2009). We used the

overall mutual rank (MR) and Pearson’s correlation scores from

ATTED II as two of the 48 features. These scores were computed by

ATTED II based on 1388 microarray data collected from several

repositories, including ArrayExpress, Gene Expression Omnibus

(GEO) and the Center for Information Biology Gene Expression

Database (CIBEX; Obayashi and Kinoshita, 2010). Details about

normalization and correlation performed at ATTED II can be

found on their website3. Since many gene pairs with low corre-

lation scores are functionally relevant (Obayashi et al., 2009), we

used all of the correlation values for the training and testing of the

classification models without setting a specific threshold.

In total, 48 features were collected. We evaluated each fea-

ture by considering its predictive ability, along with the degree of

redundancy between them. Domain–domain interaction was the

most important feature, followed by the similarity scores based

on GO function and process annotations, and the topological

2ftp://ftp.arabidopsis.org/home/tair/Microarrays/analyzed_data/
3http://atted.jp/help/coex_cal.shtml
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feature using Czekanowski–Dice distance (Table S4 in Supple-

mentary Material). PO annotation similarity was not critical to

the classification due to too many missing values.

Classification models

We adopted data mining software Weka (Hall et al., 2009) to apply

classifiers to our data. To select the most appropriate classification

model, we tested 12 different types of classification models belong-

ing to four different categories and adopted meta-classification

methods (including bagging and boosting) to further improve

their performance (Table S5 in Supplementary Material). These

four categories are decision tree or decision rule, logistic regres-

sion, SVM, and Bayesian network implemented in Weka (Hall

et al., 2009). To evaluate classification performance, we adopted

the biased F-measure (Li et al., 2008). In our study, b (the

bias parameter) was set to 0.5 to emphasize the importance of

precision.

F(b) =
(1 + b) × Precision × Recall

b × Precision + Recall

We tested performance of each model by adjusting each model’s

parameters with cross-validation and then further optimizing

each model by boosting and bagging (Breiman, 1996; Freund and

Schapire, 1996). Since the best model in each category had similar

performance, rather than adopting one model that had the best

performance (Table S5 in Supplementary Material), we set up a

voting system using the best classifiers in each of the categories.

The models that were included in the voting are: boosted AD-tree

(Keerthi et al., 2001), boosted logistic (le Cessie and van Houwelin-

gen, 1992), bagged BayesNet (Hall et al., 2009), SMO with puk

kernel (Keerthi et al., 2001), and LibSVM with RBF kernel (Chang

and Lin, 2011). Two SVM models were used since SVM is par-

ticularly suitable for high dimensional data. For boosted AD-tree,

we only used the top four features by considering predictability of

each feature along with the degree of redundancy between them,

because tree-based models can easily be over-fitted if there are too

many features. For the other classification models, we used all the

features.

From the 1949 interactions in the PRIMARY-NET, 826 were

classified as potential positive interactions and were selected as

DRAFT-NET.

SECOND mbSUS INTERACTION ASSAYS

Conditions and interaction assays

In the second mbSUS, we tested all 826 interactions from DRAFT-

NET,a randomly selected set of 363 interactions that were classified

as negative, and a randomly selected set of 347 interactions that

were statistically negative. Each clone was re-verified for insert

identity by growing the yeast cells at 28˚C overnight, extracting

the plasmid, and sequencing the inserts using standard proto-

cols. Confirmed clones were grown in 96-well plates and were

re-arrayed into 16 96-well plates for interaction assays using a

BioRobot 3000 (Qiagen). These interaction pairs were replica-

plated using a colony replicator (Singer RoTor HDA) and tested

at three methionine concentrations (0, 150, and 500 µM). We

determined the optical density values of two reporter genes LacZ

(blue versus white colonies) and HIS3 (growth versus no growth)

as previously described (Lalonde et al., 2010). Each experiment

was repeated eight times (four times per plate and two plates). In

total, each interaction was tested 48 times (2 types of assays × 3

methionine concentrations × 8 replicates).

Interaction data processing and statistical analysis

Images of the interaction plates were scanned using a flatbed scan-

ner (CanoScan 8400F, Canon) and the intensity of the colony

growth was quantified using GenePix v6.1 software (Molecular

Devices, Sunnyvale, CA, USA) after converting the images to black

and white as described previously (Lalonde et al., 2010). For a given

protein pair, we obtained medians and inter-quartile ranges from

its 48 mbSUS colony growth intensities with GenePix. The inter-

quartile range is calculated by integrating the probability density

function of a continuous distribution. These values were used to

normalize the optical density values of the colonies.

We tested each interaction pair four times on the same plate

(placed randomly) and two plates at each methionine concentra-

tion. We found that variation of the intensities of the colonies

among the replicated interaction pairs came mainly from errors

in the image processing by GenePix. Specifically, a strong interac-

tion pair with a large interaction colony tended to occupy extra

space in the plate, causing reduced space for an adjacent colony

to grow, or worse, the two adjacent colonies could merge and

be treated as one colony by GenePix. However, the probability

is low for all the four colonies of the same interaction pair on

the same plate to be adjacent to a large neighbor. Based on this

observation, we set up an iterative process to remove such noise

as follows. First, we computed mean and coefficient of variation

(CV) values for each interaction from the optical density values

among all the biological replicates. Most of the interactions had

CV of less than 0.4 (Figures S2 and S3 in Supplementary Mate-

rial). For these interactions with low CV, the mean values were

saved as interaction likelihood values. Otherwise, we repeatedly

removed an optical density value that was most distant from

the mean and recomputed CV based on the updated mean and

standard deviation. The process stopped when the new CV was

below the threshold or there were only two optical density values

left.

Distribution of the interaction likelihood values was bimodal

for all three methionine treatments with a clear separation between

the modes as expected (Figure S4 in Supplementary Material). For

a bimodal distribution, to separate positive colonies from the back-

ground, negative colonies, we determined the threshold between

the two peaks with the following k-means likelihood method

(Choi et al., 2004). First, we chose a threshold randomly that sepa-

rated the dataset into two non-empty parts. Second, we computed

the centers of the two parts, which were the two center points with

mean values on each side. Third, we updated the threshold to be

the value that had the same distance from the two center points.

Finally, we iterated the steps until the algorithm converged. The

thresholds we used for different assays are listed in Table S6 in

Supplementary Material. Only the colonies with optical density

values greater than the threshold (labeled as 1) were labeled as

true interactions and the rests were labeled as false interactions

(labeled as −1 or 0).
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Finally, we employed a voting system to integrate the likeli-

hood values of each interaction under all conditions to construct

the final interaction network. We considered an interaction to be

strong if the tests for interaction in both 500 µM and at least

one 150 µM methionine concentrations were positive. We con-

sidered an interaction to be weak if the tests in only the 0 µM

methionine were positive. Finally we considered an interaction to

be likely if at least one test was positive and the other tests were

not negative. Most of the interactions were identified as strong

(214) or weak (252); only 75 interactions were called as likely.

In total, 541 interactions were labeled as positive (in which 532

interactions are unique), 887 interactions were labeled as negative,

and 108 interactions were labeled as unknown by a vote of all the

experiments.

TOPOLOGICAL AND FUNCTIONAL CHARACTERIZATION OF THE

NETWORK

All topological analyses including the distributions of degree,

clustering coefficient, shortest path length,and neighborhood con-

nectivity were conducted using Cytoscape (2.8.2; Smoot et al.,

2011) and its NetworkAnalyzer plug-in (Smoot et al., 2011). Gene

Ontology (GO) enrichment analysis was performed using agriGO

(Du et al., 2010). GO enrichment visualization was performed

using REVIGO (Supek et al., 2011). To determine whether the

pairs in the final network were more functionally similar than by

chance, GO annotation and co-expression data were downloaded

from TAIR (Lamesch et al., 2012) and ATTED II (Obayashi et al.,

2009). To compare the similarities to random networks, we ran-

domized the nodes 100 times. To find enriched network motifs in

a network that combines physical interactions and co-function, we

combined AraNet (Lee et al., 2010) and PAIR (Lin et al., 2011) with

our network. We used FANMOD (Wernicke and Rasche, 2006) to

detect enriched motifs and MAVisto (Schreiber and Schwobber-

meyer, 2005) to visualize the genes with the motifs. Transporter

family analysis was carried out using family annotations from

TransportDB (Ren et al., 2007).

RESULTS

We developed a system to effectively identify a high quality mem-

brane interaction network among 414 Arabidopsis membrane

and signaling proteins. Our procedure has three steps: (i) test-

ing mbSUS on all possible protein pairs with a few replicates; (ii)

applying statistical and data mining models to remove interactions

that are likely to be false positive; and (iii) retesting mbSUS on the

candidate interactions with multiple replicates and assays for false

positive detection.

FIRST mbSUS-BASED PROTEIN INTERACTION ASSAY

In the first run of mbSUS, we tested 412 Nub fusion proteins

against 147 Cub fusion proteins for interaction in duplicate at 0

or 250 µM methionine, resulting in 52310 putative interactions

(Table S7 in Supplementary Material). Of these, 145 proteins were

tested both as Nub and Cub clones, 267 as Nub clones only, and 2

protein as Cub clone only. There were fewer Cub than Nub clones

because fusion of the TF to the Cub domain for marker detec-

tion precludes soluble proteins to be fused with the Cub domain.

In addition, Cub fusion proteins were removed from being tested

for interaction if they gave reporter activation in the absence of an

interaction partner. The 414 proteins we tested for interaction were

enriched in transport and signaling proteins; 340 are membrane

proteins and 315 are involved in transport. These proteins are

involved in diverse processes including metabolism (27%), protein

modification (9%), response to abiotic or biotic stimulus (26%),

signal-transduction (14%), and development (12%; Table S8 in

Supplementary Material).

To identify both strong and weak interactions, two methionine

concentrations were applied to control the expression level of the

fusion proteins. One of the two constructs, the Cub fusions, uses a

methionine-repressible MET25 promoter. At high (e.g., 250 µM)

methionine concentrations, the expression of the genes is reduced,

favoring the detection of stronger interactions. Decreasing the

amount of methionine in the media increases the expression level

and decreases the stringency; allowing weaker interactions to be

detected.

We took the normalized optical density values for each inter-

action as a measure of the significance of interaction. We calcu-

lated an FDR for each protein pair tested under each methionine

concentration using the Bonferroni correction (Strassburger and

Bretz, 2008; Table S7 in Supplementary Material). We removed

the interactions whose FDR values ≥0.05 under both high and

low methionine treatments. In addition, we removed 21 sticky

proteins that interacted with most proteins (Table S9 in Sup-

plementary Material). In total, 50361 (96.3%) interactions were

removed. We also removed 13 proteins that did not interact with

any protein (Table S9 in Supplementary Material). The remain-

ing 1949 interactions were between 380 proteins. We called this

network PRIMARY-NET (Figure 1; Table S10 in Supplementary

Material).

COMPUTATIONAL PREDICTION OF FALSE POSITIVE PROTEIN

INTERACTION

We employed a voting system from the best performing classifica-

tion models to further remove false positive interactions in both

networks. The PRIMARY-NET interactions were divided into two

datasets based on the FDR values: SIG-NET (FDR <10−4) and

NSE-NET (0.05 > FDR > 10−4). SIG-NET had 931 interactions

and NSE-NET 1018 interactions (Tables S11 and S12 in Sup-

plementary Material). Because SIG-NET was more reliable than

NSE-NET based on the statistical analysis, we employed a more

stringent rule for detecting false positives in SIG-NET where an

interaction was classified to be false positive if all the classifiers

predicted it to be false positive. Otherwise, the interaction was

subjected to the second run of mbSUS. In NSE-NET, since it was

considered less reliable than SIG-NET, we marked an interaction

as false positive if four out of five classifiers predicted it to be false

positive.

We obtained 826 interactions (524 and 302 interactions from

SIG-NET and NSE-NET) that were classified as positive (DRAFT-

NET) and 1123 interactions that were classified as negative (NEG-

ATIVE; Figure 1). We tested the classification model by randomly

hiding 10 interactions from the GOLD-NET and predicting their

labels with our model. Eight out of 10 were predicted to be true

by at least four classifiers, the other two were predicted to be true

by 2–3 classifiers.
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SECOND mbSUS PROTEIN INTERACTION ASSAY

In order to test the performance of the statistical and classification

methods and to derive a more accurate protein interaction map,

we tested three types of interaction data from the previous run in

the second mbSUS assay: (i) 826 interactions that were tested pos-

itive from both the statistical and classification tests (DRAFT-NET

in Figure 1); (ii) 363 interactions that were statistically significant

but were classified to be false positive by our classification mod-

els (a random subset of NEGATIVE in Figure 1); and (iii) 347

interactions from RAW-NET that were not statistically significant

(FDR values were greater than but close to 0.05). In total, we tested

1536 interactions in the second run of mbSUS. Since the number

of interactions is much smaller than the first run (52310), it was

possible to apply multiple biological replicates and test them under

several methionine concentrations.

We obtained the FINAL-NET with 541 (532 unique) interac-

tions between 239 proteins (Table S13 in Supplementary Material).

This network contained 214 strong interactions (positive in both

500 µM methionine and at least one 150 µM methionine condi-

tions), 252 weak interactions (positive only in both 0 µM methio-

nine condition) and 75 additional interactions that were positive

in at least one condition and were classified as neither positive nor

negative in the other conditions. The FINAL-NET is composed

mainly of interactions that were statistically significant and classi-

fied as positive (402). In addition, the FINAL-NET contained 42

interactions that were statistically significant but classified as nega-

tive and 97 interactions that were statistically not significant (FDR

near 0.05; Figure 2). There are 11 proteins shared by the interaction

network described by Lalonde et al. (2010) and the FINAL-NET,

but none of these 11 proteins interact with each other in either of

the networks.

PERFORMANCE OF CLASSIFICATION

We tested the performance of our system by analyzing the data

from the second mbSUS assays (Figure 2). We found that the

interactions that were positive from both the statistical and classi-

fication tests were enriched in positives and depleted in negatives

in the second run compared to those that were tested positive in

either models or neither of the models. Logistic regression of true

positive rate on FDR values from the statistical test also showed

that the statistical test alone was not sufficient to predict pos-

itives (p-value = 0.0527, Figure S5 in Supplementary Material).

Incorporating classification increased precision significantly (p-

value <0.0001, Fisher’s exact test). In summary, classification, in

addition to statistical test, increased the probability of detecting a

positive interaction in the second mbSUS.

PERFORMANCE OF FINAL NETWORK

To test the biological relevance of the final network, we examined

the tendency of the interacting pairs to have similar annotations

to GO terms or co-expression compared to randomized networks

(100 randomizations). The interacting pairs in our network were

more likely to be annotated to the same GO molecular function

or cellular component terms than random expectation, and had

significantly higher co-expression than random expectation (p-

values <0.01, Wilcoxon signed-rank test, Figures 3A,B,D). The

functional similarities based on GO biological process annotations

FIGURE 2 | Performance of the statistical and classification methods

measured by the results of the second, much more rigorous mbSUS

assays. TP, true positive (positive in the second mbSUS) and FP, false

positive (negative in the second mbSUS).

were not significantly different from randomized network (p-

value = 0.26, Wilcoxon signed-rank test, Figure 3C). The number

of genes annotated to GO biological process was much smaller

than those annotated to GO molecular function and cellular com-

ponent terms, which could be a reason for the statistical insignif-

icance. Overall, the assessment of functional similarity between

interacting pairs showed that the network was enriched in pairs

with biological coherence.

TOPOLOGICAL CHARACTERISTICS OF THE NETWORK

The final network of 532 unique interactions among 239 pro-

teins shows topological properties that are consistent with pub-

lished interaction networks (Figure 4; Yamada and Bork, 2009).

First, the network has a degree distribution in which most pro-

teins interact with few other proteins and a few proteins interact

with many others (hubs), similar to previously published bio-

logical networks (Yamada and Bork, 2009). However, when the

degrees of the Nub-proteins and Cub-proteins were examined

separately, all of the hubs with degrees greater than 20 were in

the Cub-proteins (Figure 4A). It is possible that interactions with

these Cub-protein hubs may be non-specific biologically. There-

fore, we performed functional characterization on the network

that excluded Cub-proteins with more than 20 interactions. This

sub-network consisted of 227 interactions among 145 proteins

(Table S14 in Supplementary Material). All of the degree distri-

butions fitted a power-law (p-values = 0.253 (all proteins), 0.246

(Nubs only), 0.182 (Cubs only), goodness of fit tests based on
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FIGURE 3 | Functional similarity distribution of interaction pairs in our

final network compared to an average of 100 randomized networks

with the Resnik method (Resnik, 1995) by using GO molecular

function annotations (A), GO cellular component annotations (B), GO

biological process annotations (C), and gene co-expression from

ATTED II (Obayashi et al., 2009) (D).

FIGURE 4 |Topological characteristics of our final network as

measured by degree distributions of the Nub (blue diamonds) and Cub

(pink squares) proteins in the final network (A) or total proteins [(A)

inset], clustering coefficients as a function of degree suggesting a

hierarchically modular structure (B), distribution of path lengths (C),

and average neighborhood connectivity as a function of degree

showing a disassortative network (D).
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the Kolmogorov–Smirnov statistic, 1000 randomizations; Clauset

et al., 2009).

Second, the network has a diameter (longest shortest path

between any two proteins) of 6 and an average path length of 3.14

with an average clustering coefficient of 0.079, indicating that it is

a small-world network, like most published interaction networks

(Barabasi and Oltvai, 2004; Arabidopsis Interactome Mapping

Consortium, 2011; Figures 4B,C). Third, the average clustering

coefficient decays logarithmically with increasing degree, suggest-

ing a hierarchical organization of topological modules (Barabasi

and Oltvai, 2004; Ravasz, 2009; Figure 4B). Finally, distribution

of the neighborhood connectivity of a protein indicates that the

neighborhood connectivities decrease as the number of neighbors

increase (Figure 4D). This “opposites attract” pattern (called dis-

assortativity) is commonly found in physical interaction networks

(Yamada and Bork, 2009). In summary, our membrane protein

interaction network has topological properties that are consistent

with other published interaction networks.

FUNCTIONAL CHARACTERISTICS OF THE NETWORK

Because of the possible non-biological specificity of the Cub hubs

(Figure 4A), we focused functional analysis on the sub-network

that excludes the Cubs with more than 20 interactions. This net-

work of 227 interactions among 145 proteins is enriched in pro-

teins involved in transport, response to environmental signals, and

cellular homeostasis (Tables S14 and S15 in Supplementary Mate-

rial). Of the 145 proteins, 98 (68%) are annotated as transporters

and 122 (84%) are annotated to membrane (TAIR4; Lamesch et al.,

2012). In addition to the transporters, the network includes pro-

teins that are likely to be involved in signal-transduction such

as kinases, receptors, and G-proteins. Furthermore, the network

includes proteins localized to other cellular components such as

the cell plate, plasmodesma, and pollen tube.

To determine the extent of overlap between our network and

other functional networks, we compared our network with two

co-function networks of Arabidopsis, AraNet (Lee et al., 2010) and

PAIR (Lin et al., 2011). Out of the 145 proteins in our network,

116 and 54 genes were found in AraNet and PAIR, respectively.

There were 277 and 58 interactions among these proteins in AraNet

and PAIR. However, only two interactions in AraNet and none in

PAIR were found in our protein interaction network, underscor-

ing the fact that these inferred co-function networks are devoid of

membrane protein interaction data.

To determine to what extent our protein interaction network

could expand existing knowledge and help infer new genetic rela-

tionships, we combined our network with the overlapping nodes

and their interactions in AraNet and PAIR. The resulting union

was more cohesive and dense than any of the individual networks

(Figure 5). The union network generally reduced the number of

disconnected components, network diameter, and average path

length, while it increased the number of neighbors in average

(Table S16 in Supplementary Material).

Incorporating protein interaction data into genetic interaction

networks have shown to increase the predictability of new genetic

interactions in yeast (Wong et al., 2004). Particularly, three-node

4http://www.arabidopsis.org/tools/bulk/go/index.jsp

FIGURE 5 | Network diagrams of our final protein interaction network

(without the Cub hubs) (A), AraNet (Lee et al., 2010) co-function links

(B), PAIR DB (Lin et al., 2011) co-function links (C), and a union of the

protein interaction, AraNet, and PAIR DB links (D) visualized by

Cytoscape.

motifs with two genetic interaction links or one genetic interac-

tion and one protein interaction links were highly predictable for

the third link to have a non-additive genetic interaction. There-

fore, we looked for enriched 3-node motifs and found that of the 16

possible motifs, 10 were significantly enriched in the network com-

pared to randomized expectation (p-value <0.05). Of these, six

included at least one physical interaction link that could predict a

new genetic interaction linkage (Figure 6). In total, these enriched

motifs predict 2804 new genetic interactions/co-functions.

We illustrate an example of inferring a potential new genetic

interaction. AT4G23180, AT1G44100, and AT1G77690 form a

three-node motif with two physical interactions and a co-function

interaction (Figure 6). A receptor-like kinase (AT4G23180), which

has been shown to be regulated by WRKY transcription fac-

tors upon salicylic acid treatment or bacterial infection (Du and

Chen, 2000), physically interacts with a well-characterized amino

acid transporter in the root (AT1G44100, AAP5) (Svennerstam

et al., 2008) and another well-characterized auxin influx car-

rier LAX3 (AT1G77690) that promotes lateral root emergence

(Vandenbussche et al., 2010). The two transporters have a co-

function link based on domain co-occurrence in AraNet (Lee

et al., 2010). Auxin-induced expression of LAX3 induces the

expression of cell-wall-remodeling enzymes, which are likely to

promote cell separation in advance of developing lateral root pri-

mordia. Two hypotheses can be made from this information: (i)

the RLK (or its homolog) perceives a signal in the root that will

activate the auxin influx carrier LAX3 and (ii) AAP5 is perhaps

also involved in transporting auxin (or its precursor) into the

cells.
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FIGURE 6 | Statistically enriched three-node motifs in the union of the

protein interaction (black line), AraNet (Lee et al., 2010; green line), and

PAIR DB (Lin et al., 2011; red line) links. Potentially new genetic

interactions are shown with red dashed lines. The example motif belongs to

class D with two protein interactions and one genetic interaction.

Because our network is enriched in transporters, we analyzed

patterns of interactions among members of transporter families

to ask questions about mechanism and regulation of transport

systems. For example, are members of a certain transporter fam-

ily more likely to interact with members of another family? We

used transporter annotations from TransportDB (Ren et al., 2007),

which classifies 1278 Arabidopsis proteins into 75 families based on

sequence similarities to known proteins in the Transporter Classifi-

cation (TC) system (Saier et al., 2009). The 75 families are grouped

as carriers (782 members or 61%), pumps (293 members or 23%),

channels (150 members or 12%), or unclassified (53 members or

4%). Among these, 20 families were represented in our network.

The carriers in our network were represented in a similar frac-

tion as the genome (69 or 70%), while there was a depletion of

pumps (8 or 8%) and unclassified (1 or 1%) and an enrichment of

channels (20 or 20%). In addition to the transporters, the network

includes 14 additional classes of proteins involved in signaling

such as receptors, kinases, membrane fusion proteins, GTPases,

and calmodulin (Table S17 in Supplementary Material).

Our network contained interactions between proteins belong-

ing to 34 families of transporters and signaling protein classes

(Table S18 in Supplementary Material). Among these, 24 family

level interactions with at least two interactions between families

were significantly enriched in the network than by random expec-

tation (p-value <0.01, binomial distribution; Table S19 in Supple-

mentary Material). These family level relationships may provide

frameworks for building and testing new hypotheses. For exam-

ple, there is an enriched interaction between MLOs and membrane

fusion proteins (VAMP71 and VAMP72 members), a voltage-gated

ion channel (CNGC18), and major facilitator superfamily mem-

bers, implications of which are described in Section “Discussion.”

DISCUSSION

Here we present a new hybrid (computational and empirical)

method to efficiently detect Arabidopsis membrane protein–

protein interactions by minimizing the search space for pair-wise

interaction assays. Our process is built on three steps. First, mbSUS

is applied to all the preselected genes with minimal replication (in

our dataset, two replicates in each of two methionine concentra-

tions). Second, statistical and classification methods are applied

to detect and remove false positives. Our computational method

is different from existing protein interaction prediction or enrich-

ment methods because those methods generally focus on mining

the positives from high-throughput experiment results, while we

focus on the identification of false positives and pass the potential

true positive interactions to the next step. Third, a more rigorous

run of mbSUS is applied to the pre-screened network with multi-

ple replications under different conditions (in our dataset, 48 tests

per interaction pair). The final network contains 541 (532 unique)

interactions among 239 proteins.

To determine how much of our network recapitulates the lim-

ited membrane interaction data in the literature, we compared

all of the Arabidopsis interaction data available in databases and

curated from the literature (5723 interactions between 2695 pro-

teins) against the interactions we tested in this study. There were

38 published interaction pairs that we tested. Of these, none of

them were found to be positive in our final network. This breaks

down into 17 true negatives; They were found to interact only

in an active state (Trotochaud et al., 2000; Li et al., 2002), inter-

acted with only partial protein (Stone et al., 1994; Park et al., 2001;

Geisler et al., 2003), or the C-terminal fusion did not work (Schulze

et al., 2003; Obrdlik et al., 2004). Fifteen interactions were found

using in vivo pull-down assays and may not have been possible to

find interactions in a binary test such as ours (Sanderfoot et al.,

2001; Blakeslee et al., 2007). Only four interactions that used in

vitro pull down or binding assays, we did not identify as positive

and could possibly be considered false negative in our study (Qin

et al., 1997; Chen et al., 2005; Mishra et al., 2006). However, it is

possible that these in vitro assays may have used a lot of the recom-

binant proteins, which may not be recapitulated in our system. In

summary, our network contributes, albeit in a small way, to fill

a large gap in the publicly available interactome space by adding

new membrane-protein interaction data.

While this is a small fraction of the full in vivo network, it

may nevertheless contain interactions that could generate novel

hypotheses for many processes. We illustrate this with mildew

resistance locus O (MLO) genes. Mildew resistance locus Os

have seven membrane-spanning regions and represent a plant-

specific protein family (Stein and Somerville, 2002). The first

characterized member from barley, called Mlo, is involved in fun-

gal pathogen susceptibility and when mutated, causes resistance

to fungal pathogens. Arabidopsis has 15 MLO members divided

into four clades. Clade 4 represents the orthologous group to

the barley Mlo and the triple mutant, atmlo2;6;12, exhibits fun-

gal resistance, just like the barly Mlo (Consonni et al., 2006).

Plasma membrane syntaxin PEN1 (a Q-SNARE) acts antagonis-

tically to MLO in defense; resistance of mlo mutants requires

PEN1, suggesting that vesicle fusion is important for MLO func-

tion (Consonni et al., 2006). While a Q-SNARE of the vesicle

fusion complexes was found to be involved in MLO-mediated

susceptibility, R-SNAREs, or synaptobrevins (VAMPs), that are

located on the vesicles to mediate fusion with the Q-SNAREs

in the plasma membrane have not yet been found. In our net-

work, MLOs interact with VAMPs more frequently than by chance
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(Table S19 in Supplementary Material). Specifically, we found

MLO4 to interact with two VAMPs, AT1G04760 and AT4G32150.

AT1G04760 is a member of the VAMP72-clade involved in secre-

tion and AT4G32150 is a member of the VAMP71-clade involved

in late endosomal and vacuolar vesicles (Bassham et al., 2008).

Recently MLO4 and MLO11, two members of clade 1, were

found to be required for thigmomorphogenesis in Arabidopsis

root (Chen et al., 2009). MLO4 is localized to plasma mem-

brane and endomembranes, suggesting that it may be involved

in endocytotic cycling (Chen et al., 2009). Therefore, our network

suggests that VAMPs may also be involved in root thigmomorpho-

genesis by facilitating the endocytotic cycling of MLO4, and that

VAMPs may also interact with MLOs involved in fungal pathogen

susceptibility.

Similarly, our network shows that MLOs also interact with

voltage-gated channel (VLC) family more frequently than

expected (p-value = 1.7622E−05, binomial distribution, Table S19

in Supplementary Material). The member of VLC that interacts

with MLOs is a cyclic nucleotide-gated channel, CNGC18, which

is required for polarized tip growth of pollen tube (Frietsch et al.,

2007). This is intriguing because MLO7, a member of clade 2 sub-

mily, is required for pollen tube reception by the synergid cells

in the female gametophyte (Kessler et al., 2010). Its localization

is polarized upon pollen tube entry and this polar localization

requires the activity of a receptor-like kinase FER. Mutants carry-

ing a loss of function allele, fer/fer, are resistant to powdery mildew

infection, indicating conservation of mechanism between pollen

tube reception and fungal hyphae invasion (Kessler et al., 2010).

Our network suggests that CNGCs may interact with MLOs gen-

erally and might be involved not only in pollen tube reception but

also in other MLO-mediated processes such as fungal susceptibility

and thigmomorphogenesis.

In summary, our network contains interactions between mem-

brane and signaling proteins that may suggest possible mecha-

nisms in various biological processes. We highlighted this using

the MLO family’s interactions, which suggest that there may be

a common molecular mechanism involving vesicle fusion and

calcium signaling involved in the perception of a tip growing

cell, whether the cell be of a different genotype (pollen tube), a

different organism (fungal hypha), or a different cell type (root

thigmomorphogenesis).

Caution should be applied that even if these interactions occur

in yeast, they might not be relevant in planta because of differ-

ential expression, localization, amount, or functional states of the

proteins in planta. The interactions in this system only indicate

possible interaction and co-function in planta and the actual inter-

actions could take place with a different homolog that is expressed

and localized in the right place. The potential interactions in our

network represent only a starting point in further investigating the

roles and mechanisms of these proteins. Further studies in veri-

fying their interactions in planta will be needed to elucidate their

roles in plants.
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(GOLD-NET).

Table S4 | Feature selection. We evaluated the merit of a subset of features by

considering the predictive ability of each feature, along with the degree of

redundancy between them.

Table S5 | Classification performance. This table lists all the classification

models tested in our study. Five classifiers (boosted AD-tree, boosted logistic,

bagged BayesNet, SMO with puk kernel, and LibSVM with RBF kernel) showed

the best performance in each category (highlighted in red).

Table S6 | Thresholds for different mbSUS assays. For a bimodal distribution, to

separate potential positive interactions from noise, we determined the

threshold between the two peaks with a k -means likelihood method.

Table S7 | A list of interaction pairs from the first mbSUS assay, whose FDR

values are equal to or less than 1 (RAW-NET).

Table S8 | GO annotations of the 414 genes tested in this study.

Table S9 | A list of 21 sticky proteins that interacted with most proteins and 13

proteins that did not interact with any protein.

Table S10 | A list of 1949 interactions between 380 proteins from the first

mbSUS assay whose FDR values were less than 0.05 (PRIMARY-NET).

Table S11 | A list of 931 interactions from the first mbSUS assay whose FDR

values are less than 10−4 (SIG-NET).

Table S12 | A list of 1018 interactions from the first mbSUS assay whose FDR

values are between 0.05 and 10−4 (NSE-NET).

Table S13 | A list of 541 (532 unique) interactions between 239 proteins that

were tested positive in the second mbSUS assay (FINAL-NET).

Table S14 | A list of 227 interactions among 145 proteins from FINAL-NET,

excluding the interactions with CUB-proteins with greater than 20 interactions.

Table S15 | GO annotations for the 145 proteins in the sub-network that was

analyzed functionally.

Table S16 | Topological characteristics of overlapping nodes in AraNet, PAIR, and

our network.
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Table S17 | Family classification of the 145 proteins in the sub-network that was

analyzed functionally.

Table S18 | Family classification for each of the 227 interaction pairs.

Table S19 | A list of significantly enriched family level interactions.

Figure S1 | Comparison of number of potential positive interactions in REF-NET

(blue) and PRIMARY-NET (red) at different FDR thresholds.

Figure S2 | Distribution of coefficient of variation of the replicates for the

second mbSUS assays using cell growth in the absence of histidine in different

concentrations of methionine (MET0 = 0 µM, MET150 = 150 µM,

MET500 = 500 µM).

Figure S3 | Distribution of coefficient of variation of the replicates

for the second mbSUS assays using LacZ reporter gene in different

concentrations of methionine (MET0 = 0 µM, MET150 = 150 µM,

MET500 = 500 µM).

Figure S4 | Distribution of optical density of the interaction pairs in the second

mbSUS assays based on the growth and LacZ reporter assays in different

concentrations of methionine (MET0 = 0 µM, MET150 = 150 µM,

MET500 = 500 µM).

Figure S5 | Logistic regression of the probability of a true positive interaction on

the statistical analysis of the first mbSUS runs. Histograms of the positive and

negative data from the second mbSUS assay are shown on top and bottom,

respectively.
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