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Abstract. In a complex network, different groups of nodes may have existed for different amounts of time.
To detect the evolutionary history of a network is of great importance. We present a spectral-analysis
based method to address this fundamental question in network science. In particular, we find that there
are complex networks in the real-world for which there is a positive correlation between the eigenvalue
magnitude and node age. In situations where the network topology is unknown but short time series
measured from nodes are available, we suggest to uncover the network topology at the present (or any
given time of interest) by using compressive sensing and then perform the spectral analysis. Knowledge of
ages of various groups of nodes can provide significant insights into the evolutionary process underpinning
the network. It should be noted, however, that at the present the applicability of our method is limited to
the networks for which information about the node age has been encoded gradually in the eigen-properties
through evolution.

1 Introduction

Many large, complex networks in existence today are the
results of some evolutionary processes such as growth [1].
The Internet is one best example, which has undergone
tremendous expansion in the past two decades. Growth in
a decentralized manner also appears to be the hallmark of
other types of networks such as various biological, social
and economical networks (e.g., Facebook). Given a com-
plex network but without any knowledge of its evolution-
ary history, one might be interested in the distribution
of the “ages” of various nodes or subgroups of nodes in
the network. Information about the node ages can pro-
vide deep insights into the organization and structure of
the underlying network, and may have significant appli-
cations. For example, in a social network, the lifetimes
of certain subgroups of nodes may be closely related to
the network backbone structure in terms of the roles that
these subgroups play in the function of the network, e.g.,
leadership roles. In a biological network, nodes of longer
lifetimes can be more critical to the various functions of
the network. It is thus of considerable interest to develop
a systematic method to uncover the evolutionary ages of
subgroups of nodes in complex networks.
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Two situations arise when addressing the age-detection
problem in complex networks: (1) network topology is
known and (2) the topology is unknown but only time
series measured or observed from various nodes are avail-
able. In the first case we shall establish that the spectrum
of the network connectivity matrix, or the Laplacian ma-
trix, is directly related to the evolutionary ages of var-
ious subgroups of nodes in the network. In the second
case, we make use of a recently developed method of time-
series based reverse engineering of complex networks [2,3]
to uncover the network topology, and then could analyze
the spectrum of the predicted Laplacian matrix to ob-
tain estimates of the age distribution of nodes. Our ap-
proach thus defines a framework in which the problem of
evolutionary-age detection of nodes in complex networks
can be addressed in systematic way. While our method
does not require a positive correlation between the node
degree and age, a correlation between the eigenvalue and
the node age is necessary.

It is useful to point out that for the class of scale-free
networks that are generated according to the preferential-
attachment rule [4], the problem of evolutionary-age
estimation may be trivial. In particular, this growth rule
stipulates that the probability for an existing node to ac-
quire new links is proportional to its degree, implying a
strong correlation between the node degree and its life-
time. Thus, for a scale-free network evolved predominantly
according to the preferential-attachment rule, the ages of
various nodes can be predicted simply by examining the
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degrees. However, many real-world networks deviate sig-
nificantly from the scale-free topology [1] and, for them
the problem of detecting node evolutionary ages is non-
trivial. Nonetheless, scale-free networks provide an ideal
testbed to validate our spectrum-analysis method.

We emphasize that, although our method is suitable
even for networks for which there is no positive correlation
between node degree and age, its applicability is limited to
networks for which there is a positive correlation between
the properties of the eigenmodes and the node age. For
networks with which no evolutionary process can be affil-
iated, such as various citation networks and twitter-type
of social networks where the importance of a node may
not be related with its age, our method is not applicable.

In Section 2, we describe the main idea underly-
ing our method. In Section 3, we validate the method
by using scale-free networks generated by the stan-
dard preferential-attachment rule and by the duplica-
tion/divergence mechanism, which are especially relevant
to social and biological systems, respectively. In Section 4,
we consider a realistic biological network, the protein-
protein interaction network for which the age distribu-
tion of nodes is available, to further validate our method.
In Section 5, we address the situation where the net-
work topology is not known a priori but only time series
are available, make use of the reverse-engineering ap-
proach [2,3] to map out the network topology, and demon-
strate that the approach yields correctly and accurately
the spectrum of the Laplacian matrix. A brief conclusion
is presented in Section 6.

2 Method

For a complex network of N nodes, its topological
structure can be described by the Laplacian matrix
L [5–9], where the off-diagonal elements of L are Li�=j =
Lj �=i = 1(0) if the nodes i and j are connected (discon-
nected), respectively. The diagonal elements are Lii =
−

∑
j �=i Lij = −ki, where ki is the number of the nodes

connected directly with the node i (node degree). The
eigenvalues of L are nonnegative and can be ranked as
0 = λ1 ≤ λ2 . . . ≤ λN . The corresponding eigenvectors
are X1, X2, . . . , XN , whose wavelengths are sorted in a
descending order. Each eigenvector contains components
concentrated on various nodes in the network.

For a regular or a small-world network [10], the eigen-
vectors typically exhibit some wave patterns with certain
wavelengths [11,12]. When a perturbation is applied to the
network, the affected eigenvectors are those whose wave-
lengths match the size of the perturbation (i.e., the num-
ber of nodes that it affects). In this case, some localized
structure in the affected eigenvectors can emerge. Eigen-
vectors associated with small eigenvalues usually have
large wavelengths, and so they are sensitive to pertur-
bation on a global scale. In contrast, eigenvectors associ-
ated with large eigenvalues are most sensitive to localized
perturbations that are applied to a small set of nodes in
the network. The responses of the eigenvectors to per-
turbations thus reflect the structure of the network at

Fig. 1. (Color online) For a regular ring network of 100 nodes
where each node has four neighbors, (a) examples of typical,
periodic-wave like eigenvectors, (b) typical eigenvectors when
each node in the group of indices between 40 and 60 acquires
two additional links, one on each side. We observe significant
distortions from the periodic-wave pattern, which are localized
between the 40th and 60th components of eigenvectors asso-
ciated with relatively large eigenvalues. (c) Representation of
all eigenvectors, where those associated with eigenvalues from
λ′

90 to λ′

100 are significantly more sensitive to the structural
perturbation to the network.

different scales. An example is given in Figure 1 for a one-
dimensional regular lattice of N = 100 nodes with periodic
boundary condition, where each node is connected with
2 neighbors on either side so that the node has 4 nearest
neighbors. Shown in Figure 1a are representative eigenvec-
tors, where the values of N ×X2

i (s) are plotted and X2

i (s)
is the sth component of the eigenvector Xi. We see that
the eigenvectors represent periodic waves of wavelengths
ranging from N to 2. To observe the effect of local struc-
tural perturbation on the eigenvectors, we add two more
links to each node in the group of nodes whose indices are
between 40 and 60 so that each node in this perturbed
group now has six nearest neighbors. Let λ′

i (i = 1, . . . , N)
be the eigenvalues in the perturbed network. Figure 1b
shows some representative eigenvectors. We observe that
the eigenvectors associated with small eigenvalues, e.g.,
λ′

1, λ′
20, λ′

40, λ′
60, and λ′

80, are basically unchanged. How-
ever, eigenvectors associated with relatively large eigenval-
ues, such as λ′

100
, are strongly altered by the perturbation

but the changes are focused on the perturbed group of
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nodes. Figure 1c shows the distribution of the magnitudes
of all eigenvectors on nodes in the network, where we see
that those associated with eigenvalues λ′

90 to λ′
100 are sen-

sitive to the perturbation with large variations appearing
on the perturbed nodes.

For complex networks that do not possess a regu-
lar backbone, such as random [13] and scale-free [4] net-
works, the eigenvectors in general do not exhibit any peri-
odic wave structure. Nonetheless, the observation that the
eigenvectors associated with larger eigenvalues are more
sensitive to structural perturbations can be used to in-
fer the evolutionary age of nodes. To see this, consider a
scale-free network evolved according to the preferential-
attachment rule [4], for which there is a positive correla-
tion between the node degree and lifetime. That is, nodes
of “old” ages tend to have more links and they are thus
more susceptible to perturbations applied randomly to the
network during the evolutionary process. Since the eigen-
vectors of large eigenvalues are quite sensitive to pertur-
bations (cf., Fig. 1), we expect the large-degree nodes to
dominate these eigenvectors. As a result, large eigenval-
ues tend to correspond to nodes of long lifetime. This ar-
gument suggests that, nodes having the most significant
components of the eigenvectors associated with the largest
eigenvalues are likely to possess the longest lifetime in the
network.

3 Validation using scale-free networks

To exemplify the relation between eigenvalues and node
ages, we consider standard scale-free networks [4]. Each
network has N = 2000 nodes, which is evolved following
the preferential-attachment rule so that the age of the ith
node is N − i + 1. For a given eigenvalue, the lifetime of
the associated eigenvector is the average age of all nodes
contained in the vector, weighted by the respective com-
ponents of the eigenvector. Figures 2a–2c show the ages of
the eigenvectors Xi versus the index i for three networks
of different edge density w. The significant feature com-
mon to all three cases is that the average age of the nodes
dominating some eigenvector increases on average with the
eigenvalue. The average degree of each eigenvector, i.e.,
the weighted average of the degrees of all nodes associ-
ated with the vector, shows the same tendency, as shown
in Figures 2d–2f, where the average degree is presented
on a logarithmic scale. For each network, the sizes of the
eigenvectors are shown in Figures 2g–2i, where the size of
an eigenvector is defined to be the number of nodes on
which the vector component is larger than a small thresh-
old value. For sufficiently dense network, e.g., Figure 2i,
the size tends to decrease on average with the eigenvalue,
indicating that a small group of nodes have extraordinar-
ily long lifetimes in the network and their relative ages can
be identified simply by examining the associated eigenval-
ues. Figures 2j–2l show, for W = 2, 4 and 8, respectively,
the average evolution age versus the node degree. We ob-
serve an approximately monotonic relation for small de-
gree. However, when the node degree is larger than 10, the
relation deteriorates quickly and the relations approach a
constant.

Fig. 2. (Color online) For three scale-free networks generated
according to the standard preferential-attachment rule with
edge density w = 2, 4, 8 (corresponding to the left, middle,
and right column, respectively), (a–c) average ages, (d–f) av-
erage degree (on a logarithmic scale), and (g–i) size of eigenvec-
tor versus the eigenvalue index i. Eigenvectors associated with
large eigenvalues generally have small sizes, but their ages are
“older” in the network. (j–l) Average age versus degree. We
see that, while small degree is related with the average age,
information about node age deteriorates quickly as the degree
is increased.

To further demonstrate our method, we have ana-
lyzed a scale-free cellular network generated by mechanism
different than that of the preferential-attachment rule,
namely the protein-protein interaction (PPI) networks. In
such a network, duplication and divergence are believed
to be responsible for the topological structure [14]. We
start from a small, connected graph as a seed and dupli-
cate a randomly selected existing protein at each step.
The new comer duplicates exactly the connection pat-
tern of its generator in the network. Due to mutations,
some of the duplicated edges are broken with probabil-
ity p, while new edges are generated with probability q
between the new comer and other existing nodes. To com-
pare with the PPI network of the Baker’s Yeast (to be
described in the next Section), we generate networks with
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Fig. 3. (Color online) For scale-free networks generated by
duplication/divergence-based mechanism from PPI network of
the Baker’s Yeast, (a) average age versus eigenvalue index, (b)
average degree versus eigenvalue index, and (c) size of eigenvec-
tor versus the eigenvalue index. Eigenvectors associated with
large eigenvalues generally have small sizes, but their ages are
“older” in the network. (d) Average age versus degree. Because
of large fluctuation, the degree cannot give age-related infor-
mation, but the eigenvalues can.

comparable parameters. In particular, a typical network
has 2235 nodes and average degree of 10.52, and degree
distribution follows power-law with exponent 2.3. In a
wide range of eigenvalues there exists a strong correlation
between the eigenvalue and average age, as shown in Fig-
ure 3a. We observe that, the curve of average age versus
degree exhibits large fluctuations, as shown in Figure 3d.
It is thus not possible to obtain information about node
age from degree. However, behaviors of the eigenmodes
can reveal the age information, as will be demonstrated in
Section 4.

4 Evolution ages of nodes in a protein-protein

interaction network

To lend more credence to our proposition that the evolu-
tionary ages of nodes can be inferred from the eigenval-
ues, we now consider a class of networks in systems bi-
ology, protein-protein interaction (PPI) networks. These
networks are the result of a number of evolutionary mech-
anisms such as duplications of genes and reattachments
of links between the proteins. Specifically, we analyze the
PPI network of the baker’s yeast (Saccharomyces cere-
visiae) [15,16]. Von Mering et al. [17] analyzed a total of
80 000 interactions among 5400 yeast proteins reported
previously and assigned each interaction a confidence
value. In order to reduce the effect of false positives, we
focus on 11 855 interactions with high and medium con-
fidence values among 2617 yeast proteins. In a PPI net-
work, each protein is a node and each pairwise interaction
represents a link between two nodes. Since our goal is to
assess, through the eigenvalues, the evolutionary ages of

Fig. 4. (Color online) For the largest connected component of
the PPI network of the baker’s yeast with 2235 nodes, (a) the
evolutionary age, (b) average degree (on a logarithmic scale),
and (c) size of eigenvector versus the eigenvalue index i. These
results further indicate that the evolutionary ages of various
nodes in the network can be inferred from the eigenvalue spec-
trum of the Laplacian matrix. (d) Average age versus degree.
We see that degree does not reveal age-related information.

the nodes, we neglect the directions of the edges. The
largest connected component of the PPI network con-
tains 2235 nodes. In systems biology, the evolutionary pro-
cesses of the proteins are classified into four iso-temporal
groups [18]: prokaryotes, eukarya, fungi, and yeast, to
which numbers 4, 3, 2 and 1 are assigned according to their
evolutionary process from ancient to modern times, re-
spectively. The evolutionary age of a protein is the largest
number from the groups it presents. For example, the
protein YHR037w occurs in the groups prokaryotes(4),
eukarya(3), fungi(2), which means that it can be found
from the ancient prokaryotes, so that its age is 4. Fig-
ure 4a shows the average evolutionary age of nodes in
eigenvector versus the eigenvalue index, which is similar
to the behavior in Figures 2a–2c. This suggests that for a
realistic biological network, there is indeed a positive cor-
relation between the eigenvalues of the Laplacian matrix
and the evolutionary ages of groups of nodes. Since PPIs
typically possess a scale-free structure [19], we expect the
average degree of groups of nodes to exhibit similar be-
haviors as in Figures 2d–2f. This is indeed the case, as
shown in Figure 4b. The sizes of various eigenvectors are
shown in Figure 4c. Again the behavior is similar to those
in Figures 2g–2i. From Figure 4d, relation of average age
versus degree, we see that the degree contains no informa-
tion about the node age.

5 Time-series based detection of evolutionary

ages of nodes

We now address the situation where the network topol-
ogy is unknown but only time series measured or ob-
served from various nodes are available. We shall apply
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Fig. 5. (Color online) Schematic illustration of the largest
component of the SFI collaboration network and the clustered
structure revealed by an eigenvalue/eigenvector analysis.

a recently developed approach [2,3] based on compressive
sensing [20–26] to uncover the complex-network topology
and then could analyze the spectrum of the predicted
Laplacian matrix to estimate the evolutionary ages of
nodes. The unique feature of compressive sensing lies in
its extremely low data requirement: very little observa-
tion is needed to obtain a target sparse signal. In general,
the problem of compressive sensing can be described as to
reconstruct a sparse vector a ∈ RN from linear measure-
ments X about a in the form: X = G · a, where X ∈ RM

and G is an M × N matrix. Accurate reconstruction can
be achieved by solving the following convex optimization
problem [20,21]

min ‖a‖1 subject to G · a = X, (1)

where ‖a‖1 =
∑N

i=1
|ai| is the L1 norm of vector a and

M ≪ N , i.e., the number of measurements can be much
less than the number of components of the unknown sig-
nal. Various solutions of the convex optimization prob-
lem (1) have been worked out in the applied-mathematics
literature [20–26].

To uncover network topology based on data, it is nec-
essary to cast the problem in the form (1). The basic
hypothesis is that a complex networked system can be
viewed as a large dynamical system that generates oscil-
latory time series at various nodes. Under this hypothe-
sis, it is straightforward to formulate the problem under
the compressive-sensing paradigm, details of which can be
found in reference [2,3].

To give a concrete example, we consider a real-world
network, the Santa Fe Institute (SFI) collaboration net-
work [27]. There are N = 76 nodes in the largest
connected component of the network and the average de-
gree is about 3. A schematic illustration of the network
is shown in Figure 5. A spectral analysis reveals that
the eigenvectors associated with λ76, λ75 and λ74 char-
acterize the three hubs: 40, 7 and 67, all marked by red.
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Fig. 6. (Color online) Sorted eigenvalues of the predicted and
actual Laplacian matrix of the SFI collaboration network. The
number of data points used in uncovering the network structure
is about 40% of the number of total unknown coefficients in
the power-series expansion.

The eigenvector associated with λ73 involves a group of
nodes numbered between 17 and 25 (marked by green).
For λ72, the corresponding eigenvector covers nodes 26 to
29, and node 34 (marked by cyan). The three clusters:
nodes 41 to 47 (blue), 1 to 6 (magenta), and 48 to 53 (vi-
olet), are represented by eigenvectors λ70, λ69, and λ68,
respectively. In fact, clusters of larger scales can be iden-
tified for smaller eigenvalues.

Now assume that the network topology is unknown
but an oscillatory time series from each node is available.
To simulate the situation, we assume that the dynamics
of each node is described by the chaotic Rössler oscilla-
tor [28]. Applying the compressive-sensing based method
to uncover the network topology, we can then perform a
spectral analysis to estimate the ages of various nodes in
the network. Figure 6 shows the eigenvalues of the pre-
dicted and the actual Laplacian matrix. We observe an
excellent agreement.

6 Conclusions

In summary, we have developed a procedure to estimate
the evolutionary ages of nodes in complex networks. The
basic observation is that eigenvectors associated with dif-
ferent eigenvalues of the Laplacian matrix can typically
represent highly localized groups of nodes in the network.
A qualitative argument can then be made for the exis-
tence of positive correlation between the node ages and
the magnitudes of the eigenvalues. This means that, when
the network topology is known, a simple eigenvalue anal-
ysis can lead to reliable information about the age distri-
bution of nodes in the network. For situations where the
network topology is unknown but time series from nodes
are available, it is necessary to uncover the topology in or-
der to estimate the node ages, and we have demonstrated
that this can be done efficiently using compressive sensing.
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Examples from model and real-world networks, including
a PPI network, are used to validate our approach. We hope
our method to find applications in fields such as systems
biology, the propagation of a rumor, a fashion, a joke, or a
flu, where estimating node ages can be of significant value.

The network-reconstruction technique used in our
work is based on compressive sensing, which works for
situations where the types of mathematical forms of
the nodal dynamical systems and coupling functions are
known (although details of these functions are not re-
quired) and can be represented by series expansion. So
far the method has not been applied to gene-regulatory
networks due to difficulty to find suitable series expan-
sions. The recent method by Hempel et al. [29] is based
on extracting statistical information and has been demon-
strated to work well for gene-regulatory networks.

While many real-world systems such as gene regula-
tory and supply chain networks are directed, our present
work focused on undirected networks. The main consid-
eration is that many networks generated by some kind
of evolutionary processes or constructed through experi-
ments tend to undirected. For example, the Baker Yeast
obtained through the approach of prey and predator con-
tains no information about the directionality of the nodal
interactions. Our method is based on the observation that
local structures, e.g., densely connected clusters, can in-
duce large components in the eigenvectors. Hubs or clus-
ters of hubs can then be detected by the eigenvectors cor-
responding to largest eigenvalues, while clusters of larger
sizes can be uncovered by eigenvectors of smaller eigenval-
ues. Different eigenmodes can be used to detect clusters
of varying scales, providing a correlation with the evolu-
tionary ages in situations where hubs or clusters of hubs
are formed by history. The principle on which our method
is based thus does not take into account directionality in
the node-to-node interactions. To develop a method to
uncover the evolutionary ages for directed complex net-
works remains to be an interesting but open question at
the present.
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