
Uncovering Global Icebergs in Distributed Streams:
Results and Implications

Guanyao Huang • Ashwin Lall • Chen-Nee Chuah • Jun Xu

Published online: 24 October 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Discovering icebergs in distributed streams of data is an important

problem for a number of applications in networking and databases. While previous

work has concentrated on measuring these icebergs in the non-distributed streaming

case or in the non-streaming distributed case, we present a general framework that

allows for distributed processing across multiple streams of data. We compare

several of the state-of-the-art streaming algorithms for estimating local elephants in

the individual streams. However, since an iceberg may be hidden by being dis-

tributed across many different streams, we add a sampling component to handle

such cases. We provide a novel taxonomy of current sketches and perform a

thorough analysis of the strengths and weaknesses of each scheme under various

QoS metrics, using both real and synthetic Internet trace data. We summarize their

performance and discuss the implications for the future design of sketches.

Keywords Iceberg � Sketch � Sampling

G. Huang (&) � C.-N. Chuah

Department of Electrical and Computer Engineering,

University of California Davis, Davis, CA 95616, USA

e-mail: gyhuang@ucdavis.edu

C.-N. Chuah

e-mail: chuah@ucdavis.edu

A. Lall � J. Xu

Georgia Institute of Technology, College of Computing, 801 Atlantic Drive,

Atlanta, GA 30332-0280, USA

e-mail: alall@cc.gatech.edu

J. Xu

e-mail: jx@cc.gatech.edu

123

J Netw Syst Manage (2011) 19:84–110

DOI 10.1007/s10922-010-9186-5

1 Introduction

Detecting icebergs—items whose frequency of occurrence are above a certain

threshold—is important for both computer networking and database applications.

One example of an iceberg is a network traffic flow (e.g., all the traffic coming from

a particular source IP address or targeting a particular destination IP address) that

has high aggregate volume across many different monitors, even if it does not

appear large at any single monitor. Detecting this type of event is important for a

number of applications, including detecting DDoS attacks [1], finding heavy-hitters

in Content Delivery Networks [2], discovering worms and other anomalies [3], as

well as ensuring SLA compliance [4]. Applications that detect DDoS attacks need to

find destination IP addresses that occur frequently across multiple ingress points. To

detect SLA violations, an Internet Service Provider (ISP) typically monitors its

different ingress links to detect any incoming traffic that violated the stipulated rate

limit. In worm detection, the worm signature which appears widely and frequently

can be viewed as a global iceberg among all the machines in the network. Global

iceberg detection is therefore important for a variety of applications, especially

those related to network management and security.

Monitoring and analyzing current Internet traffic is challenging due to increasing

link speeds and traffic volume. An offline solution that dumps all the traffic requires

prohibitively large space and loses the ability to react in real time. To cope with the

high speed and volume, it is only viable to perform low rate sampling [5] or very

succinct sketching. The sketches can be constructed using small but high-speed

SRAM by either intelligent sampling or data streaming algorithms. Recently, there

has been a lot of study on detecting local heavy-hitters (also called elephants) in

both networking and database scenarios [6, 7] based on sketching. The problem is

difficult since there is no prior information about the identities of local heavy-hitters

and the sheer volume of the data precludes maintaining per-flow states. The

proposed methods include the count-min sketch [6], the count-sketch [8], sticky

sampling, lossy counting [9], shared-state sampling (SSS) [10], multistage filters

and sample-and-hold [7]. They use hash-based sketches, intelligent sampling, or

intricate data structures [11] to preserve the information of local elephants.

However, the aforementioned work only focused on detecting high frequency

items (flows) at a single monitor. Since global icebergs may be adversarially split in

some scenarios, they are not necessarily local heavy-hitters. It is therefore not

enough to only report these local elephants. For example, a DDoS attack might be

generated from many botnet zombies such that the traffic volume is moderate at

local monitors to evade detection. For these security-related applications we need to

accurately measure the aggregated traffic volume from distributed monitors. The

detection mechanism should be effective regardless of how the iceberg is split.

In order to detect icebergs, distributed monitors should first measure local traffic

for iceberg candidates and then report the measured datasets to a central server,

which aggregates count values and extracts the most frequent ones. There are

therefore two aspects related to this problem: how to measure local traffic and how

to report the datasets. For the first aspect, it is important to detect not only local

heavy-hitters but also the split global icebergs. For the second aspect, since

J Netw Syst Manage (2011) 19:84–110 85

123

available bandwidth is considerably less than the sheer volume of data, it is

necessary to reduce the communication cost.

We identify three QoS metrics for the identification of icebergs: false positive

rate, false negative rate, and the average relative error of the size of the icebergs.

Besides these, the communication cost (between the distributed monitors and the

central server) should be reduced to orders of magnitude smaller than in the naive

solution in which every local flow is stored and reported. We must also ensure that

the local memory requirement of our solution is reasonable, given the limits on

SRAM.

We approach the global iceberg detection problem using a combination of local

sketching and uniform sampling at each distributed monitor. We will demonstrate

that both these components are necessary for accurate detection of global icebergs.

Uniform sampling across all the monitors significantly improves the likelihood that

the split icebergs will also get detected. The local sketches are necessary for

obtaining accurate estimates for the counts of the icebergs. We perform a

comprehensive study on the combinations, showing how our solutions perform for

each of the performance metrics. Our contributions are as follows:

– First, we introduce the new problem of detecting distributed icebergs in the

streaming setting, i.e., with non-zero local measurement errors. We propose a

combined sketching and sampling approach for detecting and measuring them.

While sketches are useful in detecting local elephants, we verify the importance

of uniform sampling in capturing distributed global icebergs.

– Second, we perform a thorough evaluation of the solution space for the sampling

and sketching methodology described above. We develop a taxonomy of

different sketches based on the techniques they use. According to this taxonomy,

we develop and compare two main strategies that combine sketching and

uniform sampling in local measurement using real network data. Our

comparisons are conducted using both real and synthetically-generated data sets.

– Third, we modify an existing algorithm to improve global iceberg detection in

all the aforementioned metrics. Although this modification is not optimal for

detecting local elephants, we demonstrate its efficacy in detecting global

icebergs when it is combined with uniform sampling. This study helps

understand the difference between local elephant detection and global iceberg

detection.

– Finally, we compare the performance of existing sketches for different split

patterns of global icebergs. This helps in understanding the relationship between

detection efficiency and the underlying traffic pattern. We show that our

methodology is robust against several split patterns that may be used by an

adversary to hide an attack.

This paper extends our previous work [12]. We add in more detailed discussion

of the different sketches and the ways they can be combined with sampling. We

conduct experiments on more traces, and present sensitivity analysis. The paper also

analyzes the communication cost associated with our different combinations of

sketching and sampling solutions. The implications of our results for future design

of sketches are included in the discussion section.

86 J Netw Syst Manage (2011) 19:84–110

123

The rest of the paper is structured as follows. Section 2 discusses related work. In

Sect. 3 we formally define our problem. We present our solution in Sect. 4 and also

describe the sketches that we use and a taxonomy via which we can compare their

properties. Section 5 presents our experimental study on comparing different

sketches as well as different combinations. Both real Internet traffic traces and

synthetic data are used. Our results and observations are discussed in Sect. 6.

Contributions and results are summarized in Sect. 7.

2 Related Work

While there has been considerable work that focuses on identifying heavy-hitters at

a single node [6–9, 11], we believe that detecting global icebergs is a far more

interesting and challenging problem. Streaming processing techniques have been

closely studied in the theoretical setting [13–15] for various purposes. However, our

goal is to come up with practical algorithms for both detecting and estimating the

size of icebergs in real data sets. Recently, Cormode et al. [16] proposed the

problem of functional monitoring, where the local nodes continuously send updates

only insofar as needed to satisfy some global constraint (e.g., detecting all the

icebergs). Our work differs from theirs since we assume fixed measurement periods,

which potentially allows us to have more communication-efficient mechanisms.

Manjhi et al. [17] studied the problem of discovering icebergs in a distributed

environment when nodes are arranged in a multi-level communication hierarchy.

We study the simpler, practically motivated single-level communication scheme

instead. Additionally, their scheme is dependent on a global iceberg being frequent

in one or more local sites We do away with this assumption by leveraging the

sampling component of our algorithm to detect, with high probability, global

icebergs that may not have a high count at any site.

An alternate way of defining an iceberg is to consider top-k queries rather than

fixing a threshold [18]. This is studied by Babcock et al. [18] in the distributed

setting, and extended by Olston et al. [19] to support sum and average queries.

These approaches aim to keep the local elephants aligned with the global ones and

hence face the same issue as the above solution [17]—icebergs that are finely

distributed among the local nodes are hard to discover.

In [20], Zhao et al. propose two methods for discovering global icebergs in

distributed data. Their first scheme involves size-based sampling where they derive

the optimal sampling rate for local sites. In their second scheme, they use Bloom

filters to summarize the information at local nodes, and demonstrate a quantization

scheme that is independent of the manner in which the iceberg may be split. Our

goal is to also design split-independent algorithms. However, the main difference of

our work from [20] is that we study the much more challenging streaming version of

the problem, where we cannot assume that the local frequencies are known exactly

at the local sites.

Recently, [21] proposed a sketch to summarize local streams and provide

unbiased estimators for subpopulation sizes. This sketch retains more information

J Netw Syst Manage (2011) 19:84–110 87

123

(i.e., distributions) than we require and hence is more complicated and expensive.

Cormode and Hadjieleftheriou [22] compared the different sketches in detecting

local elephants. We differ from their work since we focus on a more challenging

problem: detecting icebergs from distributed streams. The goal of our work is to find

a practical and efficient solution for this problem.

3 Formulation

Let us assume that there are n monitors, each with comparable numbers of items. At

each of the n distributed points there are streams of items presented as update pairs

hid; ci, where id is the identity and c is the update value for this pair. An item may

appear many times at the same monitor and also at multiple different monitors. The

global count for an item is defined as the aggregate count value of all pairs which

belong to this item across all the monitors. We denote by S the sum of the global

counts of all the items. An iceberg is defined to be any item whose count aggregated

across all n points is at least T = hS, for some h [(0, 1).

Our primary goal is to detect all such icebergs. Secondly, for each iceberg

detected, we want to estimate its aggregate size accurately. Finally, we would like to

achieve all this while keeping the false positive rate as low as possible. It may be the

case that our methods will erroneously count items with counts slightly less than the

threshold as icebergs. Since this is unavoidable, we introduce a parameter x\ h
and say that we will not count as a false positive any item whose count lies within

(xS, hS). For many security applications, it is more important to not miss an iceberg

than it is to not report items smaller than the iceberg threshold.

We define I to be the set of items whose global count values are larger than

T. Then, our goal is to find an estimation set I* as well as their estimated count

values. The solution should satisfy the following requirements:

– The estimated set I* should have few to no false negatives and false positives.

Meanwhile, the estimated count values of items in I
T

I* should be close to the

real count values of these items.

– The communication cost from the n nodes to the central server should be

considerably smaller than the cost when every node aggregates and reports all

their counts exactly.

In order to find I*, every monitor first measures and generates a local data set

which is a summary of the local traffic. The nodes then send the distributed data sets

to the central server. We call these estimated distributed streams because exact

summarization of the local streams is impossible due to resource constraints at the

local nodes.

Note that, for traffic data, we may be interested in either the total number of

bytes that comprise a flow or simply in the total number of packets (i.e., every

update is of the form hid; 1i in our above notation). Our solution is for the latter

case, though we note that it can be easily extended to apply to the former case as

well.

88 J Netw Syst Manage (2011) 19:84–110

123

4 Sketching and Sampling

By understanding the capability of both uniform sampling and sketching, we

propose efficient combinations of them to attack the global iceberg detection

problem. The combination works as follows. Every monitor first uses uniform

sampling and a sketch to summarize its traffic. We denote by LS the items that are

captured locally by uniform sampling. Similarly, LH denotes the set captured by the

local sketch, i.e., the local heavy-hitters. We exclude items in LS which are already

present in LH since the sketch is better at estimating the count values of local

elephants. Define SH = LS - LH to be the set of items that are found exclusively

by sampling. Finally, the distributed monitors send the LH and SH lists as well as

their estimated count values to the central server, which aggregates these estimates

to get the global icebergs. This methodology is illustrated in Fig. 1 and the rationale

behind it will be explained in the following section.

4.1 Advantages of Sketching and Sampling

In this section we summarize the properties of sketching and uniform sampling to

demonstrate the importance of combining both of them in capturing global icebergs.

The sketches we study include count-min [6], count-sketch [8], sticky sampling,

lossy counting [9], SSS [10], sample-and-hold, and multistage filters [7]. The sketch

in [11] can only extract the top k most frequent items without estimating their values

in one pass. Since our goal includes estimating the size, we do not consider this

sketch further. Next, we briefly describe each of these sketches; for a detailed

description please refer to the respective papers.

Among the sketches we compare, sticky sampling, lossy counting, and sample-

and-hold continuously keep track of current large flows.

The sample-and-hold [7] sketch samples every incoming packet with some fixed

probability. Once a flow gets sampled, its later packets will keep being captured.

Sticky sampling [9] improves sample-and-hold by periodically excluding small

and medium flows from the sketch. Even if one flow was sampled, it might be

removed once its size is not large enough.

Fig. 1 Our solution

J Netw Syst Manage (2011) 19:84–110 89

123

Lossy counting [9] goes further in that it can estimate the past sizes of a flow.

Note that a flow that initially has low frequency might not have a record created for

it. After this flow becomes large, it will be estimated as an elephant; the previously

unrecorded packets for it should therefore also be estimated. Lossy counting

maintains a pair hf ; di for every item, where f stands for its approximate count value

after it is inserted into the sketch and d is the maximum value by which f is under-

counted. Items will also be continuously deleted from the sketch if their f ? d
values are not large enough.

Different from the sketches above, SSS, multistage, count-min and count-sketch

use arrays of counters to maintain the information of every flow. Every packet will

update every array of counters, the locations of which depends on hash functions

applied to the flow identity. An elephant is detected if the estimated size from the

counters is above a threshold.

In multistage [7], every packet encountered in the stream is used to increment a

set of counters (indexed using hashing) by the packet size, and the estimated size is

the smallest size of all the corresponding counters in the sketch. If the estimated size

is larger than a threshold, the flow is retained as an elephant and inserted into flow

memory.

Count-min [6] shares similar algorithm and architecture with multistage.

However, count-min uses heap to store the large items, while multistage uses

hardware hash tables.

Different from the above two sketches, count-sketch [8] estimates the sizes in a

different way. In count-sketch, an incoming item might increase or decrease the

counters, based on the results of hash functions. The estimation of the item size is no

longer the smallest of all the associated counters, but the median of them.

SSS [10] can be viewed as an improvement of multistage. In SSS, a packet will

pass a sampling component before it updates the counters. The sampling component

helps discard small flows.

We make the following observations on the seven sketches above:

Observation 1 In all seven of the sketches that we consider, the estimation error
for an item (flow) is independent of its real count value.

For sketches that maintain counts using hash functions, the estimation error is

caused by hash collision which is independent of the real sizes. The error of sample-

and-hold is introduced by sampling the initial packets before the item is first

sampled, which depends only on the sampling probability. In sticky sampling, the

error is introduced by missing the first packets as well as randomly deleting packets

from the sketch, which are both independent of the real count value. In lossy

counting, the error is introduced by estimating the count values of the item before it

is inserted into the sketch, which is related to the arrival pattern instead of the size.

Please refer to the original papers for details.

Therefore, the estimation error for one item can be viewed as a function of traffic

arrival pattern and sketch setting, instead of a function of its own count value. For

instance, the error introduced by count-min is bounded by a constant multiplied by

the first order norm of the total traffic volume [6], which is relatively small

90 J Netw Syst Manage (2011) 19:84–110

123

compared to large items; however, for small items, it might be larger than the error

introduced by sampling.

Observation 2 The estimation variance by reverting uniform sampling is an
increasing function of the true count value.

The second observation can be easily proved assuming independence of the

samples. The reason why we combine sketching and uniform sampling is therefore

obvious. First, sketches generally sacrifice the estimation accuracy of small- to

medium-size items in order to preserve information for large items. They are

insufficient since the global iceberg can be split and appear as non-elephant flows

locally. Second, even if the global iceberg is split, the probability that this item is

sampled by uniform sampling remains large. This suggests that we can use sketches

to capture local heavy-hitters and use uniform sampling to capture local non-

elephants which might be global icebergs.

4.2 Why Sampling and Sketching are Both Necessary

Based upon the observations above, we further justify our combination by

analytically studying their different roles in detecting global icebergs. First, we

show that local sketches can assist us in detecting global icebergs. Second, we show

that sampling helps us estimate their counts when they are hidden as non-elephants

locally. Namely, the sketching can capture iceberg identities while the uniform

sampling helps more accurately estimate their sizes.

Recall that our goal is to find all icebergs with aggregate frequency of at least hS,

where S is the total packet count across all n monitors. Let us denote by s1, s2, …, sn

the packet counts at each of the monitors. We fix a single global iceberg with count

c C hS that is distributed across the monitors with counts c1, c2, …, cn. Suppose

that the local elephant detection sketches can successfully identify all items that

comprise at least h0 of the local traffic. Let us assume, without loss of generality,

that our item of interest does not appear as a local elephant at monitors 1, …, k, i.e.,

for each i [{1, …, k}, ci B h0si. Then, at all the other monitors, this item appears

with count at least

Xn

i¼kþ1

ci ¼ c�
Xk

i¼1

ci� hS�
Xk

i¼1

ci

� hS�
Xk

i¼1

h0si� hS� h0S:

Hence, assuming that the local sketches detect all the h0 local elephants and report

their full counts, at least (h - h0)S of the iceberg’s count gets reported to the central

server. Now, if we choose h0 = h - x, we get that at least xS of the iceberg count

gets reported to the central server, which can safely declare the item an iceberg.

There are two drawbacks to the above analysis. First, sketches are not guaranteed

to return the h0 local elephants; they may miss some with some small probability.

Second, while some local monitors successfully report the iceberg identity, its

J Netw Syst Manage (2011) 19:84–110 91

123

aggregated size may be severely underestimated since parts of it are not reported.

Both these issues can be resolved by the sampling component. Since packets are

sampled uniformly at all the measurement points, the results of sampling are

independent of the manner in which the global iceberg is split between them. In the

case where the global iceberg is a not a local elephant, uniform sampling will still

identify many samples of it; the expectation of the sampled flow size is linear with

the actual flow size.

Now, one may ask why we did not rely exclusively on uniform sampling. This can

be answered by studying the estimation error for reverting sampling. With sampling

rate p, an item of count c has estimation variance c(1 - p)/p [23]. In comparison, the

sketches that we are using have considerably less error. The combination therefore

has smaller estimation error than exclusively using uniform sampling.

Therefore, leveraging the synergy of local elephant detection sketches and

uniform sampling is ideal for this problem.

4.3 Taxonomy of Sketches and Combinations

In this section we present different combinations of uniform sampling and

sketching. We categorize the combinations based on a novel taxonomy of the seven

sketches mentioned earlier. The sketches can be divided into two main categories:

– Implicit Counters (IC), in which an identity can be used to query counters for

an estimate. SSS, multistage, count-min, and count-sketch belong to this

category.

– Explicit Sketches (ES), which includes sample-and-hold, sticky sampling, and

lossy counting. The sketch itself does not include any counter arrays.

SSS, multistage, count-min, and count-sketch can be viewed as multiple stages of

counting Bloom filters, where multiple stages are used to reduce hash collisions.

Since the arrays of counters store lossy information of all the underlying traffic, they

can be used to estimate the size of an identity. In contrast, sample-and-hold, sticky

sampling, and lossy counting have no such counters. If one sampled item is not

contained in the sketch (estimated as potential elephant), its count value can only be

estimated from the uniform sampling component through our combination of sketch

and sampling.

Based on the taxonomy of the sketches, there are two main combinations of

sampling and sketching:

– RS (Revert sampling 1 sampling): Use a sketch to detect and report local

elephants as well as sampled non-elephants to the central server. The count

values for sampled non-elephants are estimated by reverting the sampling rate.

This combination works for the seven sketches.

– QC: (Query counter 1 sampling): For the implicit counters, the count value

for local non-elephants can be estimated by querying the counters. Distributed

monitors may therefore report the counters, and use the sampled identities to

query the collected counters. This combination works for the four sketches

belonging to Implicit Counters.

92 J Netw Syst Manage (2011) 19:84–110

123

The combinations correspond to different methods in estimating sizes of items in

SH in Fig. 1. For QC, local monitors report the local elephants and sampled non-

iceberg identities as well as their count values. They do not send the entire counters.

Measurement points locally estimate count values for non-icebergs by querying the

counter. In our detailed study [24] we also analyze other variations for QC.

We next show the results of comparative studies where we tested our

methodology, including the various RS and QC combinations, on both real and

synthetic data.

5 Evaluation

In this section we evaluate our approach through experiments performed on real and

synthetic Internet traffic data. We compare the performance of different sketches to

find the the best one that can be combined with uniform sampling to give the best

estimate of the set (size) of global icebergs. We also use synthetic data to study how

the split of the global iceberg influences the detection accuracy.

We compare the seven sketches as well as the naive sampling and naive iceberg

approach.

1. Naive Sampling Approach: uniform sampling alone is used and count values

are estimated by reverting sampling. There is no local sketch to detect local

elephants.

2. Naive Iceberg Approach: only local heavy-hitters are collected by the sketch

and reported to the central server. There is no sampling component.

We show that our combination outperforms these naive approaches for comparable

communication costs. Besides the comparison of different sketches and combina-

tions, we improve multistage by a slight modification of the original algorithm. This

modification helps us understand the capability of combining sampling and

sketching in global iceberg detection.

Internet traffic data serves as a good candidate to test our methodology since

there are several practical applications for measuring globally distributed icebergs,

e.g., detecting DDoS attacks, SLA measurements, and detecting Internet worm

proliferation. The item identities over which we can detect global icebergs can be

any subset of the standard IP five-tuple (hsrcIP, dstIP, srcPort, dstPort, protocoli).
We choose the destination address for our experiments because of its usefulness

(e.g., for DDoS attack detection), though our methods will work equally well for

any other combination.

5.1 Experiment Settings

5.1.1 Data Trace

We use two traces from Abilene [25] network collected at different times. There are

11 and 9 sites for the two traces respectively; Abilene network reduced 2 sites after

the year 2009. This helps us evaluate the performances under different number of

J Netw Syst Manage (2011) 19:84–110 93

123

monitors. The records are sampled data with sampling interval 100, i.e., 1 out of

every 100 packets get sampled. We revert this sampled data to construct the original

data. Since sampled records miss many of the smaller flows, we generate and insert

small flows such that 10% of the flows contribute about 80% of all the traffic. This

emulates heavy-tail flow size distribution [26]. We introduce 9 9 N small flows

where N is the number of iceberg flows contained in the traces. The size of

introduced small flow follows a uniform distribution with an aggregated size about

20% of the total traffic. This simple conversion does not guarantee the precise

percentage. However, it is enough to showcase the performance under heavy-tail

flow size distribution. These small flows are not icebergs. However, they will effect

the accuracy of iceberg detection. We use the time stamps of flows to determine the

ordering of the items in each stream, assuming that interleaving flows that were

temporally close to each other did not significantly affect the performance of the

sketches. For instance, the number of concurrent flows is small; the probability that

they are hashed into the same counter in multistage is also small. Therefore, the

performance should not be much influenced even without packet level traces. Note

that these traffic reverting procedures do not affect our set of global icebergs, though

they do affect the performance of our sketching and sampling components.

5.1.2 Iceberg Parameters

In our experiments, we attempt to detect icebergs whose sizes are larger than

h = 0.1% and h = 0.01% of the total number of packets across all the monitors. As

we mentioned earlier, it is difficult to distinguish items whose counts are slightly

below the threshold from those above the threshold, so we introduce a parameter x
that is the ratio above which we do not penalize the detection algorithm for

detecting a false positive. In all our experiments we set x = 2h/3, i.e., two thirds of

the iceberg threshold.

5.1.3 Metrics Examined

In our experiments, we measure the following three metrics in diminishing order of

importance. First, we are concerned with the probability that we miss an iceberg. It

is of paramount importance that an anomaly is detected in most applications.

Second, we measure the average relative error of the detected icebergs. We define

relative error in the standard way: the absolute error divided by the true size.

Accurate estimation of the sizes of the icebergs is important for gauging the

magnitude of the problem. Finally, we aim to minimize the false positive rate. This

is also important because a false positive will cause resources to be unnecessarily

wasted in responding to a false alarm. Besides these three metrics, we also perform

sensitivity analysis with respect to different traces and different SRAM memory

sizes.

Another metric we should compare is the average number of operations per

packet. Since we intend to process all the packets at line speed, we must use fast

SRAM which allows a few operations per packet. We will come to this point at the

end of the comparisons.

94 J Netw Syst Manage (2011) 19:84–110

123

5.1.4 Settings of Sampling and Sketches

We vary the uniform sampling interval from 100 to 30,000 to study the influence of

different sampling intervals. In our data, the number of distinct flows is about

70,000-90,000 at every point. For Implicit Counters, we vary the counter settings

from 4 9 5,000 (4 stages each with 5,000 counters) to 5 9 6,000, since these sizes

can yield better results than other settings [24]. We chose this range of sizes from

our exhaustive experimental study. Estan and Varghese[7] measures in continuous

intervals of 5 s, while our experiments use traces of 5 min.

All our local sketches use the same amount of memory and hence have identical

parameters. We set the local SRAM size to be 1 Mbit, which is about 5,000 entries

for local elephants, as suggested by [7]. In Implicit Counters, the counter occupies

additional space and thus can only store fewer records. For instance, when the

counter size is 5 9 5,000, there are only about (5,000 9 32 - 5 9 5,000 9 4)/

32 = 1,875 (32 bytes are used for one entry [7]) entries available to store elephants.

In our experiment we try different parameters to satisfy the memory requirement.

Note that it is usually difficult to guarantee the exact amount of memory used by the

sketch. Therefore we also experiment with different memory sizes. This helps us

understand the robustness of the sketches.

5.2 Comparison Roadmap

In these experiments, we first compare the seven sketches, using RS to estimate sizes

of non-local-elephants. We find that SSS and multistage are generally the best

sketches. This result is also confirmed when comparing four IC sketches using the QC

combination. We then compare both QC and RS combinations with naive approaches

to find the best combination and the best sketch. Based on the observations we slightly

modify multistage to study the difference between global iceberg and local elephant

detection. Finally, we use synthetic data to examine our best sketch as well as to study

the influence of different split patterns on global iceberg detection.

5.3 Comparison for RS

In this section, we first compare different counter sizes for Implicit Counters to find

the best counter size setting. We found that the best counter size is 4 9 7,000. We

use this counter size to compare the four sketches (Implicit Counters) with sticky

sampling, lossy counting, and sample-and-hold. The comparison of different

sketches are illustrated in Figs. 2 and 3. For all the experiments below, the graphs

for h = 0.1% have similar trends as h = 0.01%, therefore we omit the graphs for

h = 0.1% and focus on the smaller threshold. Details can be found in [24].

SSS and multistage have the best results in almost all the metrics. Sample-and-

hold and sticky sampling always show large probability of false negative while

countmin and countsketch show large average relative error. Lossy counting has a

large probability of false positive. Figures 2 and 3 suggest a larger sampling interval

will always deteriorate the overall performance. When the sampling interval

becomes larger, inaccuracy introduced by sampling dominates.

J Netw Syst Manage (2011) 19:84–110 95

123

10
2

10
3

10
4

10
5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

sampling interval

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

pr
ob

. o
f f

al
se

 a
la

rm

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

0

0.05

0.1

0.15

0.2

0.25

pr
ob

. o
f f

al
se

 n
eg

at
iv

e

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

Fig. 2 Comparison of sketches
in RS, trace 1 (h = 0.01%)

96 J Netw Syst Manage (2011) 19:84–110

123

We also evaluate their performance by changing the memory size of SRAM. In

Fig. 4, the x-coordinate is the number of bytes used by SRAM divided by 32 (32

byte per entry). For Implicit Counters this number also includes the space for

0

0.02

0.04

0.06

0.08

0.1

0.12

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

0

0.05

0.1

0.15

0.2

0.25

pr
ob

. o
f f

al
se

 p
os

iti
ve

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

0

2

4

6

8

10
x 10

8

pr
ob

. o
f f

al
se

 n
eg

at
iv

e

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

Fig. 3 Comparison of sketches
in RS, trace 2 (h = 0.01%)

J Netw Syst Manage (2011) 19:84–110 97

123

4 5 6 7 8 9

x 10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

memory size (number of entries)

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

4 5 6 7 8 9

x 10
4

0

0.05

0.1

0.15

0.2

memory size (number of entries)

pr
ob

. o
f f

al
se

 p
os

iti
ve

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

4 5 6 7 8 9
x 10

4

0

0.05

0.1

0.15

0.2

0.25

memory size (number of entries)

pr
ob

. o
f f

al
se

 n
eg

at
iv

e

Multistage

Countmin

Countsketch

Sticky

Sampleandhold

SSS

LC

Fig. 4 Sketches in RS under
different memory size, trace 1
(h = 0.01%)

98 J Netw Syst Manage (2011) 19:84–110

123

counters. We only plot the results when the uniform sampling interval is 30,000. As

discussed later, only at this large sampling interval can the communication cost be

reduced to an acceptable level. Results suggest that the performances are stable;

SSS and multistage remain the best sketches.

We have the following four propositions to explain the results.

Proposition 1 Multistage is better than count-min in terms of probability of false
alarms. This is because multistage uses hash table in the flow memory to keep the
estimated elephants. When a new packet comes in, multistage first checks whether
this packet is already contained in flow memory. It therefore has the opportunity to
directly update the flow memory, instead of increasing hash collisions in the
counters [7]. Instead, countmin always uses packets to update counters. With every
packet entangled in the counters, a small or medium item is more likely to be
misreported as an elephant.

Proposition 2 Sticky sampling is a combination of sample-and-hold and the KSP
algorithm. Sticky sampling acts stickily: an item’s record will keep being updated
once it is sampled. However, the sampling rate is decreasing as more packets are
processed. This makes it similar with KSP, i.e, decrease count values to delete the
smallest existing elephant. The deletion of smallest elephant is random, which is
different from KSP. The combination of sample-and-hold and KSP makes it better
than sample-and-hold in most cases. Sample-and-hold is inferior since it never
deletes items from the sketch. An initially burst flow (which is not elephant) will
occupy the sketch without vacating locations for the later elephants.

Proposition 3 SSS is better than multistage since it is more selective in items with
size around the threshold [10]. This is achieved by the sampling component (filter)
before arrays of counters. An item can only update the counters after it passes the
sampling component, which helps to discard small flows. The sampling component
therefore reduces both the probability of false negative and probability of false
positive. We also notice that their performances are very close to each other.

Proposition 4 Lossy counting has large probability of false positive, but extremely
small probability of false negative. In lossy counting, the count value of an item
before it is inserted into the sketch will also get estimated, which is the maximum
value it could have appeared [9]. Therefore, lossy counting actually introduces
large overestimation.

Another interesting observation is that countsketch actually has large probability

of false positive and average relative error. Although it was designed to be an

unbiased estimator, its experimental results are unpromising.

5.4 Comparisons for QC

In this section, we compare Implicit Counters using QC. Similar with Sect. 5.3, the

best counter size is still 4 9 7,000. From the results in Fig. 5, we see that still SSS

and multistage generally have smaller average relative error and probability of false

alarm than other sketches, but larger probability of false negative than count-min,

J Netw Syst Manage (2011) 19:84–110 99

123

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

sampling interval

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage4*6000

Multistage4*7000

Countmin4*6000

Countmin4*7000

Countsketch4*6000

Countsketch4*7000

SSS4*6000

SSS4*7000

102 103 104 105
0

0.05

0.1

0.15

0.2

0.25

sampling interval

pr
ob

. o
f f

al
se

 a
la

rm

Multistage4*6000

Multistage4*7000

Countmin4*6000

Countmin4*7000

Countsketch4*6000

Countsketch4*7000

SSS4*6000

SSS4*7000

102 103 104 105
0

0.01

0.02

0.03

0.04

0.05

0.06

sampling interval

pr
ob

. o
f f

al
se

 n
eg

at
iv

e

Multistage4*6000

Multistage4*7000

Countmin4*6000

Countmin4*7000

Countsketch4*6000

Countsketch4*7000

SSS4*6000

SSS4*7000

Fig. 5 Comparison of implicit
counters in QC, trace 1
(h = 0.01%)

100 J Netw Syst Manage (2011) 19:84–110

123

for most counter size settings. We omit the results for the second trace since it is

very close to Fig. 5.

The trend of the figures are due to hash collisions in the counters; the count

values are estimated by using the sampled identities to query the counter. Since

smaller sampling rates cause more items to be missed, the average relative error and

probability of false positives improve with smaller sampling rates: the effects of

missing items and overestimating count values cancel each other out. However, the

probability of false negative deteriorates with larger sampling interval.

5.5 Comparing QC and RS

In this section we compare QC and RS. We omit count-sketch and count-min since

they are consistently worse than multistage and SSS in previous comparisons. We

omit sticky sampling and sample-and-hold since they show large probability of false

negative. Although lossy counting seems promising in probability of false negative,

its probability of false positive is high, and it require extremely large number of

operations per packet. We only present results for counter size 4 9 7,000.

Meanwhile, we also present the results for sketches using the naive iceberg

approach as well as the naive sampling approach. This helps us understand the

limitations of the naive approaches. The results are illustrated in Fig. 6. The results

for the second trace is similar and omitted here. Here ‘‘NaiveMultistage’’

(‘‘NaiveSSS’’) simply means naive iceberg approach with local multistage (SSS)

sketch.

The communication cost is the number of items that will be sent to the central

server. In our experiment, each reported item uses 32 bits (16 for item identity and

16 for its size). In both RS and QC, suspected icebergs are reported to central server

along with their sizes. We find out that the cost mostly depends on the sampling

interval and remains similar for different sketches under same combinations. This is

because most of the randomly sampled identities are non-elephants. Those non-

elephants usually dominate the reported items. Since we use the similar memory for

all the sketches, we only plot the communication cost for multistage in Fig. 7. For

the intervals we examined, the total costs are around 25 MB for sampling interval

100 and 580 KB for interval 30,000. The naive communication cost is roughly

64 MB, in which case every local packet is dumped and every item is reported. For

the naive iceberg approaches, the communication cost is irrelevant to the sampling

interval, and remains constantly smaller than other combinations. The combinations

generally utilize more memory to capture the split icebergs. When sampling interval

is 30,000, the number of entries reported by the sampling component is around 10%

of the number of entries in SRAM maintained in the sketch, which suggests we use

10% more memory to detect split icebergs [tbp].

There are a few points worth noting:

1. The naive sampling approach is accurate when the sampling interval is small.

This does not conflict with [7], since we are measuring the number of packets

instead of the number of bytes. For the latter case, the variation of individual

packet size introduces more error. The inferior performance of our combination

J Netw Syst Manage (2011) 19:84–110 101

123

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

sampling interval

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage/RS

Multistage/QC

SSS/RS

SSS/QC

NaiveMultistage

NaiveSSS

Sample

0

0.02

0.04

0.06

0.08

0.1

pr
ob

ab
ili

ty
 o

f f
al

se
 p

os
iti

ve

Multistage/RS

Multistage/QC

SSS/RS

SSS/QC

NaiveMultistage

NaiveSSS

Sample

0

0.05

0.1

0.15

0.2

pr
ob

ab
ili

ty
 o

f f
al

se
 n

eg
at

iv
e

Multistage/RS

Multistage/QC

SSS/RS

SSS/QC

NaiveMultistage

NaiveSSS

Sample

Fig. 6 Comparison of sketches
in QC and RS, trace 1
(h = 0.01%)

102 J Netw Syst Manage (2011) 19:84–110

123

also suggests that there are large hash collisions in one measurement interval of

5 min. However, naive sampling is very sensitive to the sampling interval; even

when it is as large as 100, the total communication cost is still prohibitively

large.

2. When sampling interval is small, RS is better. When the interval grows, QC

becomes better. Note that only when the sampling interval is around 30,000 can

the communication cost be reduced to 580 KB/64 MB & 1% of the naive

approach. QC is more feasible since we also aim to reduce the communication

cost.

3. The naive iceberg approach has similar average relative error and probability of

false alarm as RS and QC in large sampling intervals. However, it has larger

probability of false negatives. We will also show its inferiority in Sect. 5.7 .

The results suggest that QC is the most efficient combination. For small

communication cost, SSS and multistage perform better in QC rather than RS, in

terms of average relative error and probability of false alarm. However, RS has a

smaller probability of false negatives. This suggests that we can use the sampled

identities to query the local counters for estimation. This can yield good

performance even if the uniform sampling interval is large. The total communi-

cation cost can be reduced to 1% & 0.58/64 of the naive approach, i.e., two orders

of magnitude improvement.

5.6 Improving Multistage

In this section we slightly modify the original multistage algorithm. In our modified

multistage, once an elephant is reported from the counters to the flow memory, we

decrease the counters by the estimated count value. This is slightly different from

the original multistage in [7], in which it only refreshes the counters at the

10
2

10
3

10
4

10
5

0

2

4

6

8
x 10

5

sampling interval

nu
m

be
r

of
 r

ep
or

te
d

en
tr

ie
s

multistage

Fig. 7 Communication cost for
multistage. Combination RS.
Trace 1

J Netw Syst Manage (2011) 19:84–110 103

123

beginning of each measurement interval. Intuitively, the large flows which are

deleted from the counters and inserted into the flow memory (a hardware hash

table) will not influence any other future items. Note that the removal process will

not influence the reported elephants, since the estimate remains the same as it is in

original multistage algorithm. However, this process might underestimate other

items. This is because the decreased estimate might be larger than the true elephant

size (due to possible hash collision). The values of other items who happened to be

hashed into the same location thus might get underestimated. Interestingly, we find

the overall performance is better than the original multistage algorithm in every

aspect.

We come to this modified multistage because of two reasons. First, overesti-

mation does not always decrease the false negative probability. As we have shown

in Sects. 5.3 and 5.4, in some settings, the overestimation might cause non-icebergs

to mask real icebergs, which increases the overall probability of false negatives.

Secondly, in distributed global iceberg detection, we use sampling to complement

the sketch. Even if the sketch underestimates some items at one monitor, their

values can be estimated by the sampling component if they are global icebergs.

The results of the overall performance for this modified algorithm are in Fig. 8.

‘‘MMultistage’’ in the figures denotes our modified algorithm. ‘‘MMultistage’’ has

smaller average relative error, probability of false alarm and probability of false

negative than multistage for both QC and RS. It is even better than SSS for most

metrics.

By this modification, large flows have less impact on the small ones (since

counters are also decreased); fewer small flows will be misreported as elephants.

Therefore it decreases the elephant threshold for the same memory size: we can

maintain more elephants in the sketch. For example, suppose, initially, a flow will

be inserted into the flow memory once its estimated size is larger than 10000; now,

this value can be reduced to 8000 to allow more items. The earlier a flow is inserted

into flow memory, the more accurately it will be kept. To demonstrate how the local

detection influences global detection, we especially look into two split pattern of

global iceberg whose size is slightly above 0.01%S [tp].

– The iceberg is split uniformly. It appears with frequency slightly above the

threshold at every monitor. Since sampling can complement sketching, the

overestimation by hash collision in counters and the underestimation introduced

by the modified multistage have opportunities to cancel each other out.

– The iceberg is split following a Zipfian distribution. It appears much larger than

the threshold in some places and as small flows everywhere else. For the top

local heavy-hitters, the estimation is more accurate since they are inserted into

flow memory earlier. The small flows are estimated by reverting sampling; the

estimation remains the same for different detection schemes.

Meanwhile, we find that this modification increases the probability of false

negative when detecting local elephants in Table 1. Sampling does not necessarily

complement sketching in local elephant detection, but does help capture the

underestimated values in global iceberg detection.

104 J Netw Syst Manage (2011) 19:84–110

123

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

10
2

10
3

10
4

10
5

sampling interval

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage/RS

Multistage/QC

MMultistage/RS

MMultistage/QC

SSS/RS

SSS/QC

0

0.01

0.02

0.03

0.04

0.05

pr
ob

. o
f f

al
se

 a
la

rm

Multistage/RS

Multistage/QC

MMultistage/RS

MMultistage/QC

SSS/RS

SSS/QC

0

0.005

0.01

0.015

0.02

0.025

0.03

pr
ob

. o
f f

al
se

 n
eg

at
iv

e

Multistage/RS

Multistage/QC

MMultistage/RS

MMultistage/QC

SSS/RS

SSS/QC

Fig. 8 Modified multistage in
Combination QC and RS in real
data, trace 1 (h = 0.01%)

J Netw Syst Manage (2011) 19:84–110 105

123

5.7 Experiments on Synthetic Data

In this section we focus on the detection accuracy of one particular inserted iceberg

whose size is slightly above the threshold. We also study how the detection

accuracy will be influenced by different split patterns of this iceberg. We only use

combination QC and compare the results of multistage, SSS, and MMultistage since

they have shown promising results. The inserted iceberg size is 93,884, while the

total packet number (of all flows) is 93883075 (h = 0.1%). We split the inserted

iceberg in different nodes (n = 20) according to uniform, gaussian, and Zipfian

distributions. Every experiment is repeated 20 times. The results are in Fig. 9. More

results on the performance of different sketches on synthetic data can be found in

[12]. Our findings are as follows.

1. The naive iceberg approach is infeasible for all the cases, even if the iceberg is

split non-uniformly. The worst case for naive iceberg approach is uniform split:

none of the sketches manage to detect the iceberg. When iceberg size is small,

Table 1 Modified multistage in

local elephant detection

h = 0.01%

Multistage MMultistage

Average relative error 0.075725 0.047467

Probability of false alarm 0.141296 0.009615

Probability of false negative 0.000000 0.003391

10
2

10
3

10
4

0

5

10

15

20

sampling interval
10

2
10

3
10

4

sampling interval
10

2
10

3
10

4

sampling interval

10
2

10
3

10
4

sampling interval
10

2
10

3
10

4

sampling interval
10

2
10

3
10

4

sampling interval

nu
m

be
r

of
 d

et
ec

te
d

tim
es

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

0

5

10

15

20

nu
m

be
r

of
 d

et
ec

te
d

tim
es

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

0

5

10

15

20

nu
m

be
r

of
 d

et
ec

te
d

tim
es

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

(a) Number of times detected for uniform, gaussian, and zipfian split patterns

0

0.2

0.4

0.6

0.8

1

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

0

0.2

0.4

0.6

0.8

1

av
er

ag
e

re
la

tiv
e

er
ro

r

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

0

0.2

0.4

0.6

0.8

1
av

er
ag

e
re

la
tiv

e
er

ro
r

Multistage

MMultistage

SSS

NaiveMultistage

NaiveMMultistage

NaiveSSS

(b) Average relative error for uniform, gaussian and zipfian splits patterns

Fig. 9 Detection accuracy for one inserted iceberg in synthetic experiments

106 J Netw Syst Manage (2011) 19:84–110

123

even if it is large at some monitors, its overall size will be underestimated

because some count values are not included. When the split is non-uniform,

only naive SSS and naive multistage managed to detect the iceberg once.

2. When using QC, the gaussian and Zipfian split both have better results than

uniform split in terms of average relative error. However, the detection

accuracy is not necessarily better in gaussian and Zipfian split. This suggests

that it is not necessarily harder to detect uniform split iceberg after introducing

the sampling component. In uniform split, the iceberg has larger chance to be

captured by the sampling component with poorer estimation, even though, it

can still be estimated iceberg.

5.8 Processing Cost

In this section we briefly present the number of operations per packet. Although

sketches are different, we can assume they all use CAM (content addressable

memory) or hardware hash table whenever they need to query the locally collected

elephants for an identity; such process can be done in O(1) time. For count-min and

count-sketch, it is too costly to use a heap in SRAM (the number of operations per

packet can be as high as 200 using our parameters). The most costly part is the

procedure of finding an item already captured and updating its value. In sticky

sampling, this number is about 8. Multistage and sample-and-hold can be sustained

by SRAM [7]. We find that the number of operations per packet is around 30 for

lossy counting, which is also unpromising. In lossy counting algorithm, every new

item will be inserted into the sketch, and be deleted if it is not estimated to be an

elephant. It is costly to process every packet in such a costly manner.

6 Discussion

Our combination of local sketches and sampling out-performs all the naive

approaches for detecting global icebergs. The naive sampling approach is accurate

when the sampling interval is small. However, the prohibitive communication cost

precludes such a solution. The naive iceberg approach misses the distributed global

icebergs that appear as non-elephants at some monitors.

We compared different sketches as well as different combinations of sampling

and sketching. We conclude that SSS using QC with a large sampling interval is the

best choice. Not only does this solution give a small probability of false alarm and

average relative error, but also requires only a small number of operations per

packet. Its communication cost is only 1% of the naive approach. This does not

mean that SSS or QC are always best for all metrics. For instance, count-min often

has a smaller false negative probability, with much higher estimation error and

probability of false alarm. Also, RS is generally better than QC when uniform

sampling interval is small.

J Netw Syst Manage (2011) 19:84–110 107

123

We attain some interesting insights from the experiments on the combinations,

which help understand global iceberg detection in distributed streams.

First, it is better to follow the design of flow memory in multistage to store local

elephants, instead of using heaps, as in count-min or count-sketch. Since multistage

can query whether an item is already contained in the sketch, it has the opportunity

to directly update the count values of existing icebergs, which improves accuracy.

Second, comparing count-min and count-sketch reveals which method is better

for estimating the count values. Although the estimate from count-sketch is

unbiased [8], its overall performance is worse than count-min or multistage.

Thirdly, we presented a particular example in which global iceberg detection

differs from local elephant detection in Sect. 5.6 . The slight modification of

multistage can introduce underestimation, thus leading to increased probability of

false negatives in detecting local elephants. However, both the overall detection

accuracy and the accuracy for the small icebergs are improved for the global iceberg

detection problem.

Finally, although uniformly split icebergs are difficult to detect by any naive

iceberg approach, thanks to the sampling component, the QC combination makes

uniform split icebergs as detectable as non-uniform split icebergs.

We believe our comparison study provides a first step towards global iceberg

detection in distributed streams. The insights we gained will be useful in other

experiments with different parameter settings.

Our solution to this problem is not yet optimal. There are some methods we need

to explore. For instance, multistage [7] can be made to measure many shorter

intervals, which might be more accurate and practical. Also, we did not optimize the

process of reporting data sets to the central server, but only focused on combining

sampling and sketching in local measurement. Results from [20] might further

improve our solution. We will explore these in future work.

7 Conclusion

In this paper we introduce and motivate the study of distributed algorithms for

uncovering global icebergs across multiple streams. This is an important problem in

the context where resources are limited at both the local collection points as well as

the links connecting them to the central aggregator. This is a very useful application

for problems such as worm detection, SLA measurements, and DDoS attack

containment.

We studied the effect of combining several of the most widely used local heavy-

hitter detection algorithms with sampling across the local points to estimate the

global icebergs. We performed experiments on both real as well as synthetically

constructed data to compare these different sketches and algorithms. Our

experiments showed that one combination (QC) of uniform sampling with the

multistage algorithm gives the best detection and estimation of global icebergs.

Acknowledgments This work is supported in part by NSF grants CNS-0519745, CNS-0626979,

CNS-0716423, and CT-ISG-0716831.

108 J Netw Syst Manage (2011) 19:84–110

123

Open Access This article is distributed under the terms of the Creative Commons Attribution Non-

commercial License which permits any noncommercial use, distribution, and reproduction in any med-

ium, provided the original author(s) and source are credited.

References

1. Ayres, P.E., Sun, H., Chao, H.J., Lau, W.C.: ALPi: A DDoS defense system for high-speed networks.

IEEE J. Sel. Areas Commun. 24(10), 1864–1876 (2006)

2. Akamai Technologies Inc. (2004). http://www.akamai.com/

3. Cheetancheri, S.G., Agosta, J.M., Dash, D.H., Levitt, K.N., Rowe, J., Schooler, E.M.: A distributed

host-based worm detection system. In: Proceedings of the 2006 SIGCOMM Workshop on Large-

Scale Attack Defense (LSAD) (2006)

4. Sommers, J., Barford, P., Duffield, N., Ron, A.: Accurate and efficient sla compliance monitoring. In:

Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM) (2007)

5. Cisco Netflow (2007). http://www.cisco.com/

6. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its

applications. J. Algorithms 55(1), 58–75 (2005)

7. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceedings of

the ACM SIGCOMM (2002)

8. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. Theor. Comput.

Sci. 312(1), 3–15 (2004)

9. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows. In: Proceedings of

the ACM Symposium on Principles of Database Systems (PODS) (2004)

10. Raspall, F., Sallent, S., Yufera, J.: Shared-state sampling. In: IMC ’06: Proceedings of the 6th ACM

SIGCOMM Conference on Internet Measurement, pp. 1–14. ACM, New York, NY (2006)

11. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding frequent elements in

streams and bags. ACM Trans. Database Syst. 28(1), 51–55 (2003)

12. Huang, G., Lall, A., Chuah, C.-N., Xu, J.: Uncovering global icebergs in distributed monitors. In:

Proceedings of the IEEE IWQoS (2009)

13. Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator scheduling in data stream

systems. VLDB J. 13(4), 333–353 (2004)

14. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: Streaming algorithms for distributed,

massive data sets. In: Proceedings of the IEEE FOCS (1999)

15. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y., Zdonik, S.:

Scalable distributed stream processing. In: Proceedings of the 2003 CIDR Conference (2003)

16. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring. In:

Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2008)

17. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) frequent items in dis-

tributed data streams. In: Proceedings of the IEEE ICDE (2005)

18. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the ACM International

Conference on Management of Data (SIGMOD) (2003)

19. Olston, C., Jiang, J., Widom, Jennifer: Adaptive filters for continuous queries over distributed data

streams. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD)

(2003)

20. Zhao, Q., Ogihara, M., Wang, H., Xu, J.: Finding global icebergs over distributed data sets. In:

Proceedings of the ACM Symposium on Principles of Database Systems (PODS) (2006)

21. Cohen, E., Duffield, N., Kaplan, H., Lund, C., Thorup, M.: Sketching unaggregated data streams for

subpopulation-size queries. In: PODS ’07: Proceedings of the Twenty-Sixth ACM SIGMOD-SIG-

ACT-SIGART Symposium on Principles of Database Systems, pp. 253–262. ACM, New York, NY

(2007)

22. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. PVLDB 1(2), 1530–1541

(2008)

23. Kumar, A., Xu, J.: Sketch guided sampling—using on-line estimates of flow size for adaptive data

collection. In: Proceedings of the IEEE INFOCOM (2006)

J Netw Syst Manage (2011) 19:84–110 109

123

http://www.akamai.com/
http://www.cisco.com/

24. Huang, Guanyao, Lall, Ashwin, Chuah, ChenNee, Xu, Jun: Uncovering global icebergs in distributed

streams. Technical Report ECE-CE-2009-1, UCDavis (2009)

25. Internet2 Abilene Network (2005). http://abilene.internet2.edu/

26. Loiseau, P., Gonçalves, P., Girard, S., Forbes, F., Primet, P.V.-B.: Maximum likelihood estimation of

the flow size distribution tail index from sampled packet data. In: SIGMETRICS ‘09: Proceedings of

the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems,

pp. 263–274 (2009)

Author Biographies

Guanyao Huang is a third year Ph.D. candidate in Department of Electrical Computer Engineering,

University of California, Davis. His current research focuses on network measurement and anomaly

detection. He completed his undergraduate and postgraduate degree from the University of Science and

Technology, China.

Dr. Ashwin Lall is an Assistant Professor in the Department of Mathematics and Computer Science at

Denison University. He did postdoctoral work at Georgia Tech, received M.Sc. and Ph.D. degrees from

the University of Rochester, and a B.A. from Colgate University. His research interests are in

algorithmics, specifically streaming algorithms.

Chen-Nee Chuah is a Professor in Electrical and Computer Engineering at the University of California,

Davis. She received her B.S. from Rutgers University, and her M.S. and Ph.D. in Electrical Engineering

and Computer Sciences from the University of California, Berkeley. Her research interests include

Internet measurements, network management, anomaly detection, and online social networks.

Dr. Jun Xu is an Associate Professor in the College of Computing at Georgia Institute of Technology. He

received his Ph.D. in Computer and Information Science from The Ohio State University in 2000. He

received the NSF CAREER award in 2003 for his efforts in establishing fundamental lower bound and

tradeoff results in networking, and is a co-recipient of the Best Student Paper Award from 2004 ACM

Sigmetrics/IFIP Performance joint conference.

110 J Netw Syst Manage (2011) 19:84–110

123

http://abilene.internet2.edu/

	Uncovering Global Icebergs in Distributed Streams: Results and Implications
	Abstract
	Introduction
	Related Work
	Formulation
	Sketching and Sampling
	Advantages of Sketching and Sampling
	Why Sampling and Sketching are Both Necessary
	Taxonomy of Sketches and Combinations

	Evaluation
	Experiment Settings
	Data Trace
	Iceberg Parameters
	Metrics Examined
	Settings of Sampling and Sketches

	Comparison Roadmap
	Comparison for RS
	Comparisons for QC
	Comparing QC and RS
	Improving Multistage
	Experiments on Synthetic Data
	Processing Cost

	Discussion
	Conclusion
	Acknowledgments
	References

