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ABSTRACT: Recent technological advances equipped researchers with capabilities that go beyond traditional genotyping of
loci known to be polymorphic in a general population. Genetic sequences of study participants can now be assessed directly.
This capability removed technology-driven bias toward scoring predominantly common polymorphisms and let researchers
reveal a wealth of rare and sample-specific variants. Although the relative contributions of rare and common polymorphisms
to trait variation are being debated, researchers are faced with the need for new statistical tools for simultaneous evaluation
of all variants within a region. Several research groups demonstrated flexibility and good statistical power of the functional
linear model approach. In this work we extend previous developments to allow inclusion of multiple traits and adjustment for
additional covariates. Our functional approach is unique in that it provides a nuanced depiction of effects and interactions
for the variables in the model by representing them as curves varying over a genetic region. We demonstrate flexibility and
competitive power of our approach by contrasting its performance with commonly used statistical tools and illustrate its
potential for discovery and characterization of genetic architecture of complex traits using sequencing data from the Dallas
Heart Study.
Genet Epidemiol 40:210–221, 2016. © 2016 Wiley Periodicals, Inc.

KEY WORDS: multivariate analysis; pleiotropy; genome-wide association studies; sequencing studies; quantitative traits; qual-
itative traits; functional analysis

Introduction

Genome-wide association studies (GWAS) have identified
numerous risk loci for common complex diseases, and next-
generation sequencing based association strategies are now
emerging to characterize the contribution of rare genetic
variants to human genetic disorders. Analysis of the “rare
variant—common complex disease” hypothesis requires tai-
lored statistical methods, as single marker tests fail to uncover
these rare variants [Carvajal-Carmona, 2010]. An entirely
new powerful class of statistical methods based on nonpara-
metric functions was recently developed for genetic asso-
ciation testing that can accommodate both rare and com-
mon variants, or the combination of the two [Fan et al.,
2013, 2014; Lee et al., 2014; Luo et al., 2011, 2012a, b;
Svishcheva et al., 2015; Vsevolozhskaya et al., 2014; Wang
et al., 2015; Zhu and Xiong, 2012]. A comprehensive com-
parison of nonparametric functional-based methods (FBMs)
via simulation studies and real data applications have re-
peatedly shown that FBMs have a valid type I error rate

†These authors contributed equally to this work.
∗Correspondence to: Olga A. Vsevolozhskaya, Department of Biostatistics, College

of Public Health, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082.

E-mail: vsevolozhskaya@uky.edu

and a substantially higher power to detect an association
compared with alternative approaches. Additionally, FBMs
were proven to be a powerful approach for genetic associa-
tion studies with longitudinal data [Reimherr et al., 2014],
or for the analysis of gene expression data [Storey et al.,
2005].

Recently, our research group has demonstrated that within
FBMs, functional analysis of variance (FANOVA) attains
higher power to detect an association between a genetic re-
gion and a dichotomous trait compared to methods based
on functional linear models (FLMs) [Vsevolozhskaya et al.,
2014]. Specifically, we have shown that FANOVA outper-
forms FLM for small to moderate effect sizes of the variants
within a genetic region. Nonetheless, from a practical point of
view, FANOVA had a notable limitation in that it was not able
to accommodate quantitative traits or adjust for continuous
covariates.

In light of these shortcomings, our aim was to extend the
existing FANOVA method to association analyses of multiple
quantitative and qualitative traits and to accommodate situa-
tions in which (1) a gene influences more than one trait (i.e.,
pleiotropy), (2) where there are confounding/mediation ef-
fects (due to population substructure or other sources), and
(3) where the effect of disease risk can be modified by a

Published 2016. This article is a U.S. Government work and is in the public domain in the USA.



trait or an exposure—a phenomena that we refer hereafter as
‘treatment by trait” (T×T) interaction.

To conceptualize T×T interaction, consider a study of ge-
netic risk factors of substance abuse disorder. It is well known
that personality traits such as impulsivity and sensation seek-
ing are highly prevalent in drug-dependent individuals [e.g.,
De Wit, 2009]. It is also known that personality traits are sub-
stantially influenced by genes [e.g., Bouchard Jr and Loehlin,
2001]. Suppose there are genetic risk factors that contribute
to the increased risk of developing drug addiction among
individuals with high trait impulsivity. Suppose, further, that
a different genetic disposition might be involved in the in-
creased risk of developing drug addiction among individuals
with low trait impulsively. Hence, risk alleles for drug depen-
dence (i.e., “treatment”) might vary by the level of personality
traits, which will be modeled as T×T interaction in our gen-
eralized FANOVA approach—more on this later.

A distinctive contribution of the approach presented here
to the emerging field of FBMs for genetic association studies
is the introduction of an efficient way to estimate the effects
of phenotypes, confounding factors, and T×T interactions
using continuous curves smoothly varying over genetic loci.
Previously proposed functional methods for genetic associ-
ation studies [e.g., Fan et al., 2013; Luo et al., 2011, 2012a]
and other methods that combine information across multi-
ple variants within a gene [e.g., Liu and Leal, 2010; Wu et al.,
2011] aggregate across both the association signals of genetic
variants as well as over covariate effects. We exploit the flex-
ibility of the functional approach to unveil a more nuanced
blueprint of how covariate and interaction effects vary within
a genetic region by estimating partial regression coefficient
curves that change over variant positions.

Unlike traditional statistical models that treat a disease
phenotype as an outcome (i.e., on the left-hand side of the
equation), our model puts nongenetic variables on the right-
hand side, including traits, environmental exposures, and
confounders. The response function in our model is an al-
lelic dosage curve, fitted through genetic variants within a
region. If we start our modeling by including a binary trait
such as drug dependence as a single predictor, the continuous
regression coefficient will be the difference between average
allelic dosages over multiple variants of the two groups. That
is, a continuous intercept curve will estimate smoothed aver-
age allelic dosage among nondrug-dependent controls, and
a continuous regression coefficient will estimate a deviation
from this baseline allelic dosage over multiple variants among
drug-dependent cases. Further, if we include personality trait
as a covariate, the regression coefficient curve for drug ad-
diction will be adjusted for personality trait. Finally, if we
include a T×T interaction between drug-dependence status
and a personality trait, the deviation from the baseline allelic
dosage among drug-dependent cases will vary by the level of
a personality trait.

Functional models where genetic predictor (X ) and the
outcome (Y) are swapped in the regression equation are rem-
iniscent of the reverse regression approach [Maddala, 1992].
In general, coefficients of the direct and the reverse regres-

sions are not the same, however the test statistic for the X
(adjusted for any covariates) as well as the corresponding par-
tial correlation coefficient remain the same after the swap-
ping. For example, adjustment for confounding or media-
tion is unaffected and remains valid in the reverse regression
approach.

To estimate continuous coefficient curves, our new gener-
alized FANOVA approach utilizes a connection between pe-
nalized spline regression and best linear unbiased predictors
(BLUPs), enabling a straightforward practical implementa-
tion using standard linear mixed models statistical software. A
connection between BLUPs and penalized functional regres-
sion has been explored in statistical and machine learning
literature [Brumback et al., 1999; Crainiceanu et al., 2005;
Crainiceanu and Goldsmith, 2010; Eilers and Marx, 1996;
Goldsmith et al., 2010; Ivanescu et al., 2015; Lian, 2007;
Nosedal-Sanchez et al., 2012; Pearce and Wand, 2006; Rup-
pert et al., 2003; Wand and Ormerod, 2008; Wang, 1998].
However, this connection has largely been ignored in func-
tional method approaches for genetic association studies.

We provide an illustration of our method using data from
the Dallas Heart Study [Romeo et al., 2007], by characteriz-
ing associations of sequence variants with plasma triglyceride
(TG) levels, modified by race and adjusted for sex. In addition
to identifying the originally reported association between TG
levels and the ANGPTL4 gene, our new FANOVA approach
identified specific subregions of the ANGPTL4 gene asso-
ciated with plasma TG levels among European Americans,
African Americans, and Hispanics.

Methods

Genotypic Functions: A Brief Overview

In brief, our method is an extension of the previously pro-
posed FANOVA methodology, which seeks to quantify the
relationship between scalar phenotypes X 1, X 2, . . . , X k and
smooth genotypic functions G (t)’s, with t indexing a genetic
variant’s position over a genetic region, t ∈ [0, τ] [Vsevolozh-
skaya et al., 2014]. By using the term “genotypic functions,”
we refer to nonparametric functions fitted with a basis expan-
sion method [Ramsay and Silverman, 2005; Ruppert et al.,
2003; Wood, 2006]. Thus, for each subject, the genetic data is
not of a discrete (i.e., counted) nature, such as would be the
case for genotype frequencies, but rather a single nonpara-
metric genotypic function, G (t), of a continuous nature.

A genotypic function is obtained by either (i) a cubic B-
spline basis expansion over a dense set of knots, κ1, . . . , κK ,
over the range of the variant’s genomic positions ti ’s (in the
one-base coordinate system) or (ii) penalized spline smooth-
ing that avoids the knot selection problem completely [e.g.,
Luo et al., 2012a, Vsevolozhskaya et al., 2014]. Earlier in-
vestigations of FLMs designed for genetic association testing
include comprehensive coverage of the estimation procedure
for the genotypic functions G (t)’s [Fan et al., 2013, 2014;
Lee et al., 2014; Luo et al., 2011, 2012a, b; Svishcheva et al.,
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2015; Vsevolozhskaya et al., 2014; Wang et al., 2015; Zhu and
Xiong, 2012].

If we let G 1(t), . . . , G N (t), t ∈ [0, τ] denote the functional
genotypic data for N individuals, and we let X 1i, . . . , X Pi, i =

1, . . . , N denote a set of P variables that consists of covariates
and traits (either quantitative or qualitative) that may con-
tribute to a disease, our model for each individual’s genotypic
function is:

G i(t) = β0(t) + β1(t)X 1i + · · · + βP (t)X Pi + εi(t), (1)

where βi(t)’s are continuous regression coefficients that de-
scribe an association between a scalar trait and a set of vari-
ants in a genetic region t ∈ [0, τ], and where ε(t) is a residual
function. Unlike traditional models where the outcome is re-
gressed on a set of predictors, this model treats genetic infor-
mation as an outcome. Outside of the functional approach,
utility of such “reverse regressions” has been explored previ-
ously for analysis of genetic associations [Feng, 2014; Kwan
et al., 2011]. Although coefficient estimates change, in gen-
eral, due to swapping of variables between two sides of a
regression equation, the partial correlations as well as the test
statistics and P -values for the coefficients remain invariant:
this follows simply from expressing these quantities in terms
of the entries of the inverse of the correlation matrix between
all variables including the outcome. Thus, testing for effects
or for validity of regression adjustments are preserved under
the reversal. There is also convenience in having the same type
of outcome (i.e., genetic information) and thus the same type
of a link function regardless of the type and the number of
other variables in the model. Additionally, within the func-
tional approach, exploration of β̂(t)’s may allow researchers
to determine subregions of [0, τ] that harbor causal genetic
variants (i.e., subregions over which β̂(t) �= 0).

To estimate β̂(t)’s, we place a function-on-scalar regression
in Equation(1) into the context of a mixed-effects model or,
more generally, embed the penalized splines problem into
the class of reproducing kernel methods. To introduce the
method, we first present a case of a single curve estimation,
and conclude with the general case that allows us to estimate
continuous coefficients of multiple traits, construct their con-
fidence intervals, and test for an association. We finally note
that in the context of this paper, the word “kernel” should not
be confused with a weight function as in the local regression
(or local smoothing), which is also called a kernel [Hastie
et al., 2009].

Estimating a Single Curve

To draw connections between smoothing splines and re-
producing kernels, first consider a simpler problem of es-
timating a single curve from the observed yi ’s and ti ’s,
i = 1, . . . , n. One possible approach to estimating a nonpara-
metric function f (t) from discrete data is to invoke penalized
spline smoothing [e.g., Wahba, 1990]. This smooth interpo-
lation of the data is achieved by minimizing least squares fits

with an additional roughness penalty (i.e., penalized sums of
squares) as follows:

min

{
n–1

n∑
i=1

(yi – f (ti))2 + λ

∫ 1

0
[L y(t)]2 dt

}
. (2)

Here, the roughness of a function is quantified by the square
of a linear differential operator L y(t) (a typical choice is
L y(t) = f ′′(t) that corresponds to penalizing curvature of the
function). The constant term, λ, referred to as a smoothing
or a tuning parameter, should be either specified by a user or
determined through the generalized cross-validation (GCV)
[Wood, 2006].

The above minimization problem is analogous to a corre-
sponding regularization problem within the machine learn-
ing domain:

min
f ∈H

{
n∑

i=1

L (yi, f (ti)) + λ‖Pf ‖2
H

}
, (3)

where L (yi, f (ti)) is a loss function, ‖Pf ‖2 penalizes f in
terms of the variability of its function values, and H is the
reproducing kernel Hilbert space (RKHS) of real functions
f . The theory of RKHS was developed by Aronszajn [1950]
and Saitoh [1988], with good overviews provided by Wahba
[1990], Smola and Schölkopf [1998], and Rasmussen and
Williams [2006]. Briefly, a RKHS on Rd is a Hilbert space
of real-valued functions generated by a bivariate symmetric,
positive definite kernel k(·, ·) with the following properties:
(i) for every t in Rd , k(t, t′) is a function of t′ in H and (ii)
k has the reproducing property 〈k(·, ti), f 〉H = f (ti), where
〈·, ·〉 denotes the inner product. To conceptualize penalized
splines in Equation (2) as BLUPs in a mixed model frame-
work, we explore the solution to the regularization problem
in Equation (3) from the machine learning theory. Based on
the results of the representer theorem [Kimeldorf and Wahba,
1971], it can be shown that each minimizer f ∈ H of Equa-
tion (3) can be written as a linear combination of kernel
functions, as follows:

f (t) =

n∑
i=1

αik(t, ti). (4)

The solution for α = [α1, . . . , αn]′ can be obtained as α̂ =

(K + λIn)–1y, in which K is the n × n matrix with the ij th
entry of k(ti, tj ), I is the n × n identity matrix, and y is the
n × 1 vector of observed yi ’s [Hastie et al., 2009; Rasmussen
and Williams, 2006]. Further, the vector of n fitted values
is given by f̂ = K α̂. This solution looks very similar to that
from a linear regression model (i.e., ŷ = Tβ̂ because we used ti

instead xi in Eqs. (2–3)). Regrettably, this reproducing kernel
transformation of ti ’s does not simply move our nonlinear
problem into the “friendly” linear model domain, because
the solution for α depends on λ.

A slight variation to the representer theorem can be achieved
by decomposing H into H0 ⊕ H1, where H0 is a finite-
dimensional null space containing terms that will not be
penalized, and H1 is its orthogonal complement (i.e., penal-
ized terms). For example, for ‖Pf ‖2 defined by differential
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operators of the form L y(t) = f (m)(t), the null space H0 is
spanned by polynomials of degree up to m – 1. More specif-
ically, if m = 2, then constant and linear functions are in the
null space, because they are not penalized for “curvature.”
With the decomposition of H, the minimizer f of the regu-
larization function in Equation (3) now has the form:

f (t) =

m∑
j =1

dj φj (t) +

n∑
i=1

c ik1(t, ti), (5)

where φ1(t), . . . , φm(t) form the basis of H0 and k1(·, ·) is
a reproducing kernel that generates H1. If m = 2 as in the
example above, then φ1(t) = 1 and φ2(t) = t span the null
space of unpenalized functions.

There are relatively few published recommendations in the
statistical literature on how to construct k1(·, ·). For example,
Lian [2007] writes “[...]the construction of k1 in general is
difficult and a search of the literature does not seem to provide
us with any clues about how to construct a positive definite
kernel in general.” Nonetheless, if we shift our attention to
the machine learning literature, we see that k1(t, ti) = G (t, ti),
where G (t, ti) is a Green’s function of the linear differential
operator L y(t) [Fasshauer, 2012; Fasshauer and Ye, 2013;
Poggio and Girosi, 1990; Rasmussen and Williams, 2006].
Note that the Green’s function also depends on the bound-
ary conditions. A “natural” choice is the ‘natural boundary
condition” f (j )(a) = f (j )(b) = 0, j = 1, . . . , m; where a and
b are the boundaries of the functional domain [Green and
Silverman, 1993].

How can we estimate the fitted values of the coefficients d̂
and ĉ in Equation (5) for a specific problem? If we rewrite
Equation (5) using linear algebra notations as:

f̂ = �d̂ + K1ĉ, (6)

it becomes evident that Equation (6) represents a solution to
the linear mixed-effects model with design matrices � and
K1, and d̂ and ĉ estimated as BLUPs from this model [Speed,
1991]. In addition, the BLUP solution for the coefficients is
independent of the smoothing parameters λ, which is equal
to the ratio of the variances of the residuals and random ef-
fects. For numerical stability reasons, the design matrices are
specified for a sequence of knots k1, . . . , kκ places at sample
quantilies over the range of ti ’s [Ruppert, 2002] as:

� =

⎡
⎢⎣

1 t1
...

...

1 tn

⎤
⎥⎦ and K1 =

⎡
⎢⎣

(t1 – k1)+ · · · (t1 – kκ)+

...
. . .

...

(tn – k1)+ · · · (tn – kκ)+

⎤
⎥⎦ ,

(7)

where G (ti, tj ) = (ti – tj )+ is the Green’s function of the linear
differential operator f (2)(t), and x+ = max{0, x}. This specifi-
cation of the design matrices corresponds to a truncated lines
series basis expansion f̂ (t) = d̂0 + d̂1t +

∑κ
i=1 ĉ i(t – ki)+. Other

choices of basis functions can also be used with correspond-
ing changes to penalized terms. Possible choices include, but
are not limited to, (a) truncated power basis (t – ki)p

+ , (b)
O’Sullivan splines [Wand and Ormerod, 2008], (c) thin plate

splines [Ivanescu et al., 2015], or (d) the Gaussian kernel
[Lian, 2007].

Some readers might wonder whether the mixed model for-
mulation for penalized splines bear the same parameter in-
terpretation as in a typical application to nested hierarchical
data. We should clarify that the functional representation in
Equation (6) is just a convenient way of shifting a nonlinear
problem into a linear domain, while simultaneously estimat-
ing a smoothing parameter. Similarly, the random effects in
c are just a convenience device to model the curvature in f
and should not be interpreted as random effects, per se.

Estimating β(t)’s

With respect to the conceptual model in Equation (1),
continuous regression coefficients can be estimated as fol-
lows. For each subject, the genotypic function is evalu-
ated on the grid of genomic positions t1, . . . , tn, i.e, Ĝ i(t) =

Ĝ i(t1), . . . , Ĝ i(tn). For the sequence of knots k1, . . . , kκ, each
functional regression coefficient is expanded in terms of the
linear combination of φ’s and k1’s. This expansion yields the
following mixed-model representation of Equation (1):

Ĝ i(t) = β̂0(t) + β̂1(t)X 1i + · · · + β̂P (t)X Pi (8)

= (d̂1 + d̂2t +

κ∑
i=1

k1(t, ki)ĉ i)︸ ︷︷ ︸
β̂0(t)

+ (d̂∗
1 + d̂∗

2 t +

κ∑
i=1

k1(t, ki)ĉ∗
i )

︸ ︷︷ ︸
β̂1(t)

X 1i + · · ·

+ (d̂′
1 + d̂′

2t +

κ∑
i=1

k(t, ki)ĉ ′
i)︸ ︷︷ ︸

β̂P (t)

X Pi.

Conceptually, the generalized FANOVA-based regression
coefficients, β(t)’s, are similar to the genetic effect coeffi-
cients in the recently published paper by Wang et al. [2015].
Specifically, Wang et al. [2015] also proposed to estimate
regression coefficients, βl(t)’s, smoothly varying over the ge-
netic position t. However, unlike the methodology proposed
in the present study, their approach cannot simultaneously
handle quantitative and qualitative traits, adjust coefficients
for confounders/mediators over a continuum [0, τ], or mod-
ify effects by the level of another trait. With our approach,
this adjustment can be easily incorporated into the model.

Suppose we want to adjust the effect of a risk factor X 1 by
trait X 2 overall t. The model will be written as:

Ĝ i(t) = β̂0(t) + β̂1(t)X 1i + β̂2(t)X 2i.

Suppose, further, we want to modify the effect of a risk factor
X 1 by the level of trait X 2, i.e., model a T×T interaction (for
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simplicity, assume that X 2 has only two levels). The model
can be expressed as:

Ĝ i(t) = β̂0(t) + β̂1(t)X 1i + β̂2(t)X 2i + β̂12(t)X 1iX 2i.

Then, for the first level of X 2, dummy coded as 0, the associ-
ation between a gene and X 1 will be estimated by β̂1(t):

Ĝ i(t) = β̂0(t) + β̂1(t)X 1i,

and for the second level of X 2, dummy coded as 1, the asso-
ciation between a gene and X 1 will be modified as:

Ĝ i(t) = (β̂0(t) + β̂2(t)) + (β̂1(t) + β̂12(t))X 1i.

To facilitate the data analysis using mixed-effects
software, an input response should be a vectorized
matrix of genotype functions for N subjects eval-
uated on the grid of genomic positions, vec(Ĝ) =

[Ĝ 1(t1), . . . , Ĝ 1(tn), . . . , Ĝ N (t1), . . . , Ĝ N (tn)]. Input pre-
dictors should be N · n × 1 vectors X1, . . . , XP , which are
generated by repeating each phenotype observation n times
and stacking them on top of one another. The fixed- and
the random-effects design matrices, � and K1, are then con-
structed as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 X 11 t1X 11 · · · X P 1 t1X P 1

...
...

...
...

. . .
...

...

1 tn X 11 tnX 11 · · · X P 1 tnX P 1

...
...

...
...

. . .
...

...

1 t1 X 1N t1X 1N · · · X PN t1X PN

...
...

...
...

. . .
...

...

1 tn X 1N tnX 1N · · · X PN tnX PN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣1N ⊗

⎡
⎢⎣

1 t1

...
...

1 tn

⎤
⎥⎦, X1 ⊗

⎡
⎢⎣

1 t1

...
...

1 tn

⎤
⎥⎦ , . . . , XP ⊗

⎡
⎢⎣

1 t1

...
...

1 tn

⎤
⎥⎦

⎤
⎥⎦,

and K1 = [1N ⊗ K, X1 ⊗ K, . . . , XP ⊗ K], where 1N is
N × 1 vector of 1’s, ⊗ is the Kronecker product, and K is
the n × κ matrix with the ij th entry of k1(ti, kj ) calculated
over the sequence of knots k1, . . . , kκ.

Confidence Interval for β̂(t)

Because the conceptual model in Equation (1) can be ex-
pressed as a mixed-effects model in Equation (8), the typical
inferential machinery for mixed-effects models can be used
to obtain the variance-covariance estimates of the model pa-
rameters [Ruppert et al., 2003]. An explicit formulation for
the estimated standard deviation of β̂(t) is:

ŝt.dev(β̂(t)) = σ̂ε

√
C(C�C + λ̂D)–1C�C(C�C + λ̂D)–1C�,

(9)

where σ̂ε is a REML estimate of σε, C = [� K1] is formed
by two design matrices described in Equation (7), λ̂ = σ̂2

ε/σ̂
2
c

is the estimated smoothing parameter, and D is formed as
follows:

D =

[
0m×m 0m×κ

0κ×m Iκ×κ

]
,

where m is the number of “fixed effects” and κ is the
number of “random effects.” An approximate pointwise

100%(1 – α) confidence interval is β̂(t) ± z(1–α/2)ŝt.dev(β̂(t)).
Alternatively, Bayesian credible intervals can be obtained
by realizing a connection between Gaussian processes and
spline construction [Crainiceanu et al., 2005; Rasmussen and
Williams, 2006], or “subject re-sampling” bootstrap error
bars can be obtained to construct the confidence intervals
[Wu and Yu, 2002].

In the application of pointwise bands to functional geno-
type data, the issue of bias-variance trade-off associated with
the selection of the degree of smoothing might deserve more
careful attention. Specifically, in the context of the mixed-
effects model in Equation (8), the response variable is a fitted
genotypic function Ĝ (t). If the fitted function is somewhat
wiggly, this “noise” will account for the increased width of
the pointwise standard error bands for β̂(t). We previously
proposed the “flipping algorithm” for genotype relabeling
that decreases the number of noisy oscillations for smoothed
genotype data and showed that this approach results in a
substantial increase of statistical power to detect a genetic
association [Vsevolozhskaya et al., 2014]. Nonetheless, too
smooth genotype functions might result in narrow standard
error bands for β̂(t) and thus estimate a biased version of a
true function with great reliability. Further research is needed
on the issue of optimal choice of a smoothing parameter in
the context of genotype function fitting.

Testing for an Association

In this section we turn our attention to a test statistic used
for evaluating an association between a genetic region and
one or more phenotypes. Whereas different types of point-
wise confidence intervals for the coefficient curves can be
constructed, the hypothesis testing problem of distinguish-
ing an optimal submodel of β(t)’s is still of interest. To ad-
dress this issue, we will use the function F statistic [Shen and
Faraway, 2004] as previously used in our FANOVA method-
ology [Vsevolozhskaya et al., 2014]. Specifically, suppose we
want to test the nullity of a single predictor:

H0 : βi(t) = 0, i = 1, . . . , P.

By using Theorem 2 in Shen and Faraway [2004], a test statis-
tic to determine if β(t) is equivalent to the zero function can
be constructed as follows:

F =
(N – P )

∫
β̂2

i (t)dt

rss1(X�X)–1
ii

, (10)

where X = (1 X1 . . . XP ) is a design matrix for the full
model containing all phenotypic variables, and rss1 =∑N

i=1

∫
(Ĝ i(t) – Xβ̂)2dt is the residual sum of squares for the

full model. Under the null hypothesis, it can be easily shown
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[e.g., Reimherr et al., 2014; Shen and Faraway, 2004; Zhang,
2013] that the distribution of F can be approximated by an
F-distribution as:

F ∼ F d̂,(N–P )d̂,

where d̂ =
(
∑n

i=1 ri )2∑n
i=1 r2

i
, with n being the number of genetic vari-

ants, and ri is the ith order eigenvalue of the empirical
variance-covariance matrix under the full model, 
̂1.

Alternatively, if we want to test the nullity of K predictors
simultaneously, that is, to compare the full model:

Ĝ i(t) =

P∑
j =1

β̂j (t)X ij ,

to the reduced model:

Ĝ i(t) =

(P –K )∑
j =1

β̂j (t)X ij ,

the test statistic F can be defined in terms of the reduction
in the sums of squared errors, as follows:

F =
(rss0 – rss1)/K

rss1/(N – P )
≈ trace(
̂0 – 
̂1)/K

trace(
̂1)/(N – P )
, (11)

where rss0 is the residual sum of squares for the reduced
model, and 
̂0 is the empirical variance-covariance matrix
under the reduced model. Under the null hypothesis, the
distribution of F is approximated by F K d̂,(N–P )d̂ .

We note that the test statistic in Equation (11) is computa-
tionally more complex than the one in Equation (10). That is,
if the goal is to test the nullity of only one predictor at a time,
the test statistic in Equation (10) can be calculated directly
by fitting only the full model, and thus omitting fitting the
reduced model. Further details and comparisons of the two
formulas can be found in Shen and Faraway [2004].

Simulation Study

Design

The flexibility of our method allows us to accommodate
various analysis settings and types of variables, including
multiple, possibly correlated or pleiotropic phenotypes, and
T×T interactions. One way to analyzing multiple traits is to
test for an association one trait at a time. For a proper control
of the experiment-wise false-discovery error rate, this “one at
a time” testing approach requires accounting for the number
of tests performed and correcting for each individual trait’s P -
value. This individual correction typically leads to an inflation
in the observed P -values. However, our method provides an
efficient way of testing multiple traits simultaneously, with
no P -value correction required, and thus naturally provides
superior performance in terms of statistical power to detect
an association. Moreover, to handle T×T interactions, or
to assess modification of genetic susceptibility to disease by
trait, our model requires a test of nullity for an interaction
term. Previously, we investigated the power of FANOVA to
detect an association with a single predictor [Vsevolozhskaya

Figure 1. The genetic information (G (t )) is directly associated with
the outcome of interest (X) and indirectly through the third variable (Z).

et al., 2014]. Simulation studies presented here reflect the
extension of our previous basic model with the addition of
mediation/confounding scenarios.

Figure 1 aids in conceptualization of our data simula-
tion process. We focused on a three variable system and
hypothesized that there is a genetic predisposition (G) to
continuous phenotypes (Z) and (X). We also assumed a
relationship between (Z) and (X) and were interested in
testing for an association between (G) and (X), while ad-
justing for the third variable (Z). Clearly, data generated
under this scenario fits the mediation analysis framework,
but MacKinnon et al. [2000] point out that the label of (Z)
(i.e., either as a mediator or a confounder) depends on the
framework used to conceptualize the phenomenon. From
a statistical modeling point of view, directionality and the
causality are indistinguishable, making these seemingly dif-
ferent concepts of mediation and confounding statistically
equivalent. Therefore, data generated under our design can
be used to check for both a mediator and a confounding
control.

Data Generation

We generated genetic data (G) using the 1000 genome
project [Durbin et al., 2010] to mimic the real sequencing
data structure (e.g., linkage disequilibrium patterns, allele
frequencies, and randomly missing genotype data). Specif-
ically, at each simulation iteration, a random 30 kb section
of genetic region was drawn. Within this 30 kb region, each
simulated data contained an average of 300 variants with mi-
nor allele frequencies (MAFs) ranging from less than 0.001
to almost 0.5. The complete distribution of MAF for all
variants across simulations is provided in the left panel of
Figure 2.

Next, a continuous trait (Z) was simulated as:

Z i =

n∑
j =1

G χ
i (tj ) × γ(tj ) + εi, i = 1, . . . , N, j = 1, . . . , n,

(12)

where N is the number of subjects, n is the number of variants,
tj indexes the position of variants, γ(tj ) is the effect of the
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Figure 2. Panel (A): The range and the distribution of MAF for all variants. Panels (B) and (C): MAF distribution of causal variants by the effect
size.

variant in tj ’s, εi ∼ N(0, 1), and “χ” indicates a subset of
genetic variants harboring causal alleles. For example, if χ =

10%, then a random sample of 10% of all variants for subject
i were causal, and the effect of each causal variant j , γ(tj ),
was drawn from an N(μγ, σ

2
γ) distribution (the rest of γ(t)’s,

corresponding to noncausal variants, were zero). If μγ = 0,
the effect of a given causal variant was either protective or
deleterious . If μγ > 0, then the majority of causal variants
had the same direction of the effects (i.e., deleterious), and
the magnitude of the effect size varied by manipulating σ2

γ .
The middle panel of Figure 2 illustrates simulated effects by
MAF for the choice μγ = 0 and σ2

γ = 1; the right panel for
μγ = 0.25 and σ2

γ = 1. The reader should note that under our
simulation scenario, the causal variants can be both rare and
common. Alternative situations with only rare or common
causal variants were previously investigated by our group and
showed favorable performance by FANOVA [Vsevolozhskaya
et al., 2014].

Another continuous trait (X) was simulated as:

X i =

n∑
j =1

G χ
i (tj ) × α(tj ) + β × Z i + εi. (13)

Similar to γ(tj ), α(tj ) ∼ N(μα, σ
2
α) represents the effect of a

causal variant j on the trait (X), and β ∼ N(3, 1) represents
the effect of the third variable (Z) on the trait (X).

Type I Error Results

For empirical type I error simulations, we set the genetic
effect on the continuous trait (X) to zero, i.e., α(tj ) = 0 for all
j , and tested for an association between (G) and (X), while
adjusting for (Z). The percentage of risk variants for the as-
sociation between (G) and (Z) in Equation (12) was set to
χ = 30% and γj ’s were simulated from an N(μγ = 0, σγ = 3)
distribution. For the different sample sizes, we compared the
generalized FANOVA approach to the sequence kernel associ-
ation test (SKAT) methodology [Wu et al., 2011]. The results

Table 1. Empirical type I error rates for the association tests
between (G) and (X), while adjusting for (Z)

Sample size Nominal level α FANOVA SKAT

50 0.05 0.04319 0.04164
0.01 0.01037 0.00845
0.001 0.00191 0.00018
0.0001 0.00036 0.00000

500 0.05 0.04346 0.04854
0.01 0.00941 0.01002
0.001 0.00108 0.00123
0.0001 0.00023 0.00000

are summarized in Table 1. For both methods, all empirical
type I error rates are around the nominal α levels with the
exception of SKAT for a small sample size. To further contrast
the differences between FANOVA and SKAT, we proceeded
to a comparison of power simulations.

Statistical Power Results

For the statistical power comparison, both traits (Z) and
(X) shared the same percentage, but a random set of risk
variants. The percent of risk variants were set to 5%, 10%,
30%, 50%, 70%, 90%, and 100%. The sample size values
were N = 50, 500, 2,500, and 5,000. The execution time of
a single iteration of the simulations (the statistical power is
presented based on at least 1,000 iterations) on a single core
(2.5 Ghz Intel Xeon E5-2670v2) of high-performance com-
puting center (HPCC: https://wiki.hpcc.msu.edu/) ranged
from 20 sec for N = 50 up to an hour for N = 5,000. The
allocated memory for N = 5,000 subjects was 64 GB.

Figure 3 summarizes empirical power results for the sce-
nario with risk variants having either positive or negative
effects (i.e., μγ = μα = 0) for the different number of sub-
jects. In Figure 4 the majority of risk variants had deleteri-
ous effects for both traits (i.e., μγ > 0 and μα > 0). In each
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Figure 3. Empirical power of FANOVA (solid line) and SKAT (dashed line) when the variants can have either protective or deleterious effects
(i.e., μγ = μα = 0). Panel (A): N = 50, σγ = σα = 0.05; (B): N = 50, σγ = σα = 1; (C): N = 500, σγ = σα = 0.05; (D): N = 1, 000, σγ = σα = 0.05; (E)
N = 2, 500, σγ = σα = 0.015; (F) N = 5, 000, σγ = σα = 0.015.

figure, the generalized FANOVA statistical power to detect an
association between (G) and (X), while adjusting for (Z), is
represented by a solid line, and the power of SKAT is repre-
sented by a dashed line.

In general, the proposed FANOVA approach attained
higher power than SKAT, especially for small sample sizes,
small effect sizes, and when the percentage of risk variants is
small. The empirical power of the two approaches become
comparable if the effect sizes and the proportion of risk vari-
ants were large.

Application to Real Data: ANGPRL4 Association
with TG

To further illustrate the utility of our generalized FANOVA
approach, we turn to the issue of association testing be-
tween sequence variations in ANGPTL4 gene and lipid
metabolism. In mice, the involvement of ANGPTL4 in lipid
metabolism was shown by intravenous injection of recom-

binant ANGPTL4, resulting in an increase in plasma TGs
levels [Yoshida et al., 2002]. In humans, the involvement of
ANGPTL4 in lipid metabolism is probable and may be asso-
ciated with a higher risk of cardiovascular disorder [Kathire-
san et al., 2009; Muendlein et al., 2014; Romeo et al., 2007].
However, each individual ANGPTL4 variant confers a mod-
est effect [Kathiresan et al., 2009], suggesting an improved
statistical power for methods such as generalized FANOVA
that perform a joint gene-based association analysis.

We conducted an analysis of 93 sequence variations in
ANGPTL4 that were identified among 3,551 participants in
the Dallas Heart Study [Romeo et al., 2007]. To examine an
increase in plasma TG levels, we binned individuals into the
“low-triglyceride” group (660 individuals with plasma TG
level ≤25th percentile) and into the “high-triglyceride” group
(679 individuals with plasma TG level ≥75th percentile). The
resulting sample included 443 individuals of mixed European
descent, 651 African Americans, and 245 Hispanics.

As discussed elsewhere [e.g., Svishcheva et al.,
2015; Vsevolozhskaya et al., 2014], statistical power of
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Figure 4. Empirical power of FANOVA (solid line) and SKAT (dashed line) when the majority of variants have deleterious effect (i.e., μγ > 0 μα > 0).
Panel (A): N = 50, μγ = μα = 0.05, σγ = σα = 0.25; (B): N = 50, μγ = μα = 0.05, σγ = σα = 1; (C): N = 500, μγ = μα = 0.05, σγ = σα = 0.15; (D):
N = 500, μγ = μα = 0.25, σγ = σα = 0.15; (E): N = 1, 000, μγ = μα = 0.05, σγ = σα = 0.05.

functional methods may depend on the quality of genotype
data smoothing. To obtain smooth genotypic functions, we
first coded allelic dosage based on the minor allele counts
(i.e., either 0, 1, or 2) and applied the “flipping algorithm”
[Vsevolozhskaya et al., 2014] to minimize the number of 0-2
(or 2-0) patterns in every two subsequent variant positions.
However, because the majority of 93 sequenced variants were
rare [Romeo et al., 2007], the coding based on minor allele
counts was concluded to be optimal and no recoding of allelic
dosage was necessary.

To examine an effect of increase in TG levels, modified by
race and adjusted for sex, we built the following model:

Ĝ i(tj ) = β0(tj ) + β1(tj )X TGi

+ β2(tj )X AAi + β3(tj )X Hi + β12(tj )X TGiX AAi

+ β13(tj )X TGi(tj )X Hi

+ β4(tj )X Sexi + εi(tj ),

where β0(tj ) is the smoothed baseline allelic dosage j =

1, . . . , 93; β1(tj ) is the effect of TG increase on allelic dosage.
The next four terms are added to examine T×T interaction
or whether the effect of TG increase varies among European
Americans (β1(tj )), African Americans (β1(tj ) + β12(tj )), and
Hispanics (β1(tj ) + β13(tj )). Finally, β4(tj ) is the adjustment
for sex.

To determine the most parsimonious model, we first
performed a test for T×T interaction, i.e., H0 : β12(tj ) =

β13(tj ) = 0 for all tj , and found statistically significant
differences in TG increasing effect among individuals of dif-
ferent racial descent (P -value = 0.0028). We note that the
magnitude of this P -value remained the same for different
choices of kernels and as such, we proceeded to explore spe-
cific subregions of the ANGPTL4 gene that may harbor causal
variants for the different racial groups.

Each panel of Figure 5 illustrates the estimated TG-
increasing effect among different racial groups and across 93
variants of the ANGPTL4 gene. Further, the positions of the
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Figure 5. TG-increasing effect among European Americans (left panel), African Americans (middle panel), and Hispanics (right panel) with the
95% confidence bands (shaded regions).

recently identified variants E40K and T266M [Romeo et al.,
2007; Talmud et al., 2008] are added as vertical lines to each
panel. The left panel of Figure 5 shows β̂1(t) or the estimated
effect of TG increase among European Americans. From this
panel we can infer that the region around the E40K variant
has the top contribution among European Americans, be-
cause it is the region over which β̂1(t) deviates the most from
the zero line. Additionally, the direction of β̂1(t) around E40K
is negative, indicating that TG increase is associated with a
lower dosage of E40K variant, which implies that European
American E40K carriers can be expected to have lower TG
levels. However, the confidence bands for β̂1(t) include zero
and indicate lack of statistical significance.

The right panel of Figure 5 shows β̂1(t) + β̂13(t) or the
estimated effect of TG increase among Hispanics. Once again,
the effect has the top magnitude around E40K region, but its
direction is reversed, indicating that Hispanic E40K carriers
tend to have higher TG levels. Additionally, among Hispanics,
E40K region association with TG increase reached statistical
significance.

The middle panel of Figure 5 shows β̂1(t) + β̂12(t) or the
estimated effect of TG increase among African Americans.
Unlike European Americans and Hispanics, the contribution
of E40K variant does not appear to be appreciably associated
with TG increase. Also, no contribution of T266M variant to
either TG increase (or decrease) was found among any racial
groups.

Finally, to compare our T×T interaction results to SKAT,
we performed a subgroup analysis on data from European
Americans, African Americans, and Hispanics. The P -values,
adjusted for sex, for the test of an association between TG lev-
els and variants in the ANGPTL4 gene were as follows: among
European Americans P SKAT = 0.0006, P FANOVA = 0.0262; among
Hispanics P SKAT = 0.1738, P FANOVA = 0.0001; among African
Americans P SKAT = 0.2321, P FANOVA = 0.9447. Accordingly, both
methods concluded an association between ANGPTL4 vari-
ants and plasma TGs levels among European Americans, no
association among African Americans, and discordant re-

sults among Hispanics. The reader should not be surprised
by seemingly disagreeing FANOVA conclusions for European
Americans summarized via the confidence bends in Figure 5
and via the P -value for an association test. It has been noted
multiple times, including by our research group [Vsevolozh-
skaya et al., 2015], that a combination of multiple “marginally
significant” outcomes across different variants may result in
the overall significance for a genetic region.

Discussion

By generalizing previously proposed FANOVA method-
ology, we offer a novel approach not previously explored
in FLM-based association studies for estimating multiple
phenotype-specific effects smoothly varying over genetic
variants. Furthermore, by treating genetic information as
the response variable and all traits as predictors (qualita-
tive or quantitative), the generalized FANOVA provides a
straightforward way to account for hidden population strati-
fication, confounders, mediators, and T×T interactions. The
established connection between penalized least squares and
BLUPs allows for a straightforward implementation of the
proposed methodology using standard mixed linear model
software.

The introduced notion of T×T interaction deserves addi-
tional clarification. We are not necessarily putting emphasis
on the interaction itself or the value of its coefficient. Rather,
the inclusion of this term gives a simple way of detecting
possible effects of various combinations of treatment and
trait values that may go beyond what is captured by the sum
of their individual effects.

How well do our generalized FANOVA regression coef-
ficient estimates replicate what others have found in prior
studies of ANGPTL4? Studies of Romeo et al. [2007] and
Talmud et al. [2008] revealed that among European Amer-
icans E40K carriers have significantly lower TG levels. Tal-
mud et al. [2008] also showed TG-lowering effect of T266M
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variant, but only among E40K carriers (i.e., whenever E40K
men were excluded from the reanalysis, there was no longer
a significant association between T266M and TG levels).
T266M is more prevalent than E40K and in our sample out of
620 T266M carriers only 16 were also carriers of E40K, which
may be a reason behind lack of association. Furthermore, no
studies presented conclusive findings over TG-lowering effect
and mutations in ANGPTL4, so a replication of the reported
association is required.

Our generalized FANOVA model is a functional model
analogue of “reverse regression” [e.g., Maddala, 1992], where
genetic information, X , becomes the response while pheno-
types, Y, are treated as predictors. Regression coefficients are
not invariant to swapping of predictor and response vari-
ables. However, partial correlations, as well as test statistics
and the corresponding P -values remain the same after swap-
ping. Thus, effects of adjustments for covariates in a direct
model are properly preserved when testing for association in
a reverse model. With multiple correlated predictors at an ar-
bitrary variant’s position tj , the test statistic for the regression
coefficient βi can be re-expressed based on the partial corre-
lation between Y and X i , which is not affected by swapping of
variables, and the test statistic (and therefore the P -value) is
also invariant under the reversal in a functional model. One
limitation of this approach is that for the direct and reverse
tests to be equivalent, X i cannot enter any interaction terms
with other variables.

The generalized FANOVA is an extension of the previ-
ously proposed FANOVA approach and thus inherits some of
its features. For example, generalized FANOVA fully utilizes
variants’ position information and linkage-disequilibrium
structure when computing the test statistic F . However, un-
like the previously proposed FANOVA, our current approach
allows inclusion of multiple traits and adjustment for ad-
ditional covariates. Moreover, our new functional approach
provides a unique way of graphically depicting phenotypic
effects and interactions by representing them as continuous
curves varying over a genetic region. We also hypothesize
that the functional approach may hold increased robustness
to genotyping errors. This may be due to the fact that the
estimated genotype functions, Ĝ (t), are used for the analysis
in place of allele frequencies of the marked locus. It is noted
that genotyping errors can have severe consequences for the
analysis of low frequency alleles [e.g., Abecasis et al., 2001].
Although genotype functions are estimated via allele counts,
they incorporate a certain degree of smoothing, therefore the
fitted functions are expected to be less prone to genotyping
errors.

In terms of the application of the generalized FANOVA
methodology, practitioners can use standard mixed-effects
software to estimate continuous regression coefficients as il-
lustrated in Methods section of this article. Previous research
in penalized regression models [Scheipl and Greven, 2012]
suggests that a penalty with a small null space should be pre-
ferred (a typical choice for the number of “fixed effects” is 2)
and a “rule of thumb” for the number of “random effects” is
κ = 35. However, the specific number of kernel functions is

unimportant as long as the fitted genotype functions are not
too smooth.
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