
Uncovering MicroRNA and Transcription Factor Mediated
Regulatory Networks in Glioblastoma

Jingchun Sun1, Xue Gong1, Benjamin Purow2, Zhongming Zhao1,3,4*

1Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 2Division of Neuro-Oncology,

Neurology Department, University of Virginia Health System, Charlottesville, Virginia, United States of America, 3Department of Psychiatry, Vanderbilt University School of

Medicine, Nashville, Tennessee, United States of America, 4Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of

America

Abstract

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that
patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting
that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs
play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we
systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors
(TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory
network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-
node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a
comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite
GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical
miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and
functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-
92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we
have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF
regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in
GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies,
demonstrates that our network-based approach is promising for the identification of new and important miRNAs in GBM
and, potentially, other cancers.
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Introduction

Glioblastoma multiforme (GBM) is the most common and lethal

primary brain tumor in humans and is classified as a grade IV

astrocytoma by the World Health Organization (WHO) [1]. The

tumor is characterized by rapid growth, a high degree of

invasiveness, and strong resistance to radiation and chemotherapy

[2]. To illuminate its complex characteristics, an understanding of

the underlying genetics is critical. During the last decade,

numerous genetic studies, including microRNA (miRNA) and

mRNA expression profiling, somatic mutation, copy number

variation and methylation studies performed by the Cancer

Genome Atlas (TCGA) project, and genome-wide association

studies (GWAS) by other groups, have substantially contributed to

the comprehensive profiling of GBM [3–6]. In addition to

confirming previous findings, such as TP53mutation, NF1 deletion

or mutation, and EGFR amplification, these results included

several new genetic discoveries such as frequent mutations of the

IDH1 and IDH2 genes in secondary GBM [3]. Most importantly,

these studies support the idea that many of the current risk factors

are likely coordinated at the biological pathway or network level

rather than at an individual molecular level [6]. Several studies

have interrogated networks in the context of gene expression

profiles and/or protein interactions to identify novel critical genes

and core pathways for GBM, which provides us with new insights

into the mechanisms of the disease pathology [7–10]. Another

important type of biological network, a miRNA-transcription

factor (TF) regulatory network, acts as a functional unit in the

regulation of cell fate in many cell types and systems, including

cancer [11,12], but this type of network has not yet been

systematically investigated in GBM.

In recent years, an increasing number of miRNAs have been

identified and linked to cancer [13,14]. miRNAs are small (,22

nucleotides) non-coding RNAs that mainly regulate gene expres-

sion at the post-transcriptional level in animals [14]. They are

involved in cellular development, differentiation, proliferation,

apoptosis and tumorigenesis [15,16]. Similar to other types of

cancer, patterns of differential miRNA expression versus normal
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tissues have been identified for GBM [17–19]. For example,

several studies consistently confirmed the overexpression of miR-

21 in GBM [20–24], and several miRNAs are weakly expressed

compared with the normal brain, including miR-124, miR-7, and

miR-128 [18,24].

In addition to traditional low-throughput studies, the TCGA

project assessed the expression of 534 miRNAs in 240 tumor tissue

samples and 10 normal tissue samples. The results have been used

to establish GBM subclasses [25], identify miRNA expression

signatures to predict GBM patient survival [17], and identify

important miRNAs in GBM [26]. These and other studies have

made it clear that miRNAs play important roles in GBM, and it

appears increasingly likely that miRNAs will be clinically useful as

biomarkers and/or therapeutic targets for brain tumors and other

cancers [19]. Despite a number of miRNAs reported to be

dysregulated in GBM, little is known about which miRNAs play

critical roles in the pathology of GBM and their relevant targets

[27]. To address these questions, we hypothesized that an

investigation of miRNAs in the context of the regulatory

transcriptional and post-transcriptional networks will provide a

far more comprehensive view of their functional roles in GBM.

TFs regulate gene expression by translating cis-regulatory codes

into specific gene-regulatory events [28]. Since TFs and miRNAs

are both categorized as gene-regulatory molecules and share a

common regulatory logic [29], they are capable of cooperatively

regulating the same gene: TFs regulate a gene’s transcription in

the gene’s promoter region, while miRNAs regulate a gene’s post-

transcription in the gene’s 39 untranslated region (UTR). At the

network level, it has been demonstrated that the regulation of

transcription by TFs and post-transcriptional regulation by

miRNAs are tightly coupled [30,31]. Moreover, the examination

of regulatory networks showed that TFs, miRNAs and genes form

a combination of transcriptional/post-transcriptional feed-forward

loops (FFLs), which comprise over-represented motifs in the

mammalian regulatory network [30,31]. Therefore, the analysis of

mixed FFLs in a cellular system has emerged as a powerful tool to

understand specific biological events, such as the control of cell

fate in many cell types and systems [11].

In a regulatory network, a typical mixed FFL motif contains

three components: TF, miRNA and gene. This mixed FFL motif is

defined as a 3-node FFL. Considering co-expressed genes may

have similar regulation patterns [32,33], i.e., genes regulated by

the same TF and the same miRNA, we hypothesized that

inclusion of co-expressed genes in FFL analysis would have more

power to detect disease-specific regulatory modules. Accordingly,

we extended the 3-node FFL model to a 4-node FFL model, which

might complement to the former.

Here, we pursued a regulatory network-based approach for a

comprehensive investigation of gene regulation patterns in GBM.

This method can be used to identify network modules containing

known GBM-related miRNAs and genes. It can also be used to

reveal new components for core pathways. Among GBM

candidate genes, we identified the potential targets of TFs and

GBM-related miRNAs. These datasets and their regulations were

used to construct a comprehensive GBM-specific miRNA-TF

mediated regulatory network. Furthermore, we constructed the

subnetwork from one well-known core pathway in GBM, the

Notch signaling pathway, and identified miRNA components

involved in it. Based on the network topological analysis and

functional analysis, we identified six functionally critical miRNAs

in this pathway. Among them, four have been implicated in GBM

by previous work. These results demonstrated that the compre-

hensive GBM-specific miRNA-TF mediated regulatory network

contains valuable information for GBM investigators to identify

critical miRNAs and their targets for further experimental design,

providing further understanding of the regulatory mechanisms of

GBM.

Results

A novel computational framework for regulatory network
construction
One major purpose of this study was to develop an integrative

framework for the construction of a comprehensive regulatory

network for GBM. This network consisted of feed-forward

regulation among three components: GBM-related genes, GBM-

related miRNAs and known human TFs. GBM-related genes and

miRNAs with evidence of involvement in the pathology of GBM

were collected and curated from public databases and literature.

For GBM-related genes, we restricted our analyses to the 415

genes with mutation evidence in previous studies (Table S1 and

Text S1). For GBM-related miRNAs, we collected 124 mature

miRNAs that were reported to be dysregulated in studies assessing

miRNA expression only in GBM tissue samples or cell lines.

Human TFs were extracted from TRANSFAC Professional

(release 2011.4) [34], a manually curated database of eukaryotic

TFs, their genomic binding sites and DNA binding profiles. There

are five types of regulatory relationships: TF regulation of gene

expression (TF-gene) or miRNA expression (TF-miRNA), miRNA

repression of gene expression (miRNA-gene) or TF expression

(miRNA-TF), and gene-gene coexpression (gene-gene). Each of

these regulatory relationships was predicted using computational

approaches (Table 1). Considering the disadvantage of these

reverse engineering methods, we applied stringent parameters in

prediction to obtain high confidence regulations.

To integrate these regulations into a miRNA-TF regulatory

network, we only included FFLs with significant miRNA-TF pairs,

pinpointed by the hypergeometric test, that potentially cooperate

in regulating the same targets. Based on the combinatory

regulatory network, we performed further analyses of the network

topological properties and functional associations to identify

critical miRNAs (see Figure 1 for the framework and the Materials

and Methods for details). It is necessary to point out that, in this

computational framework, a novel FFL model (4-node model) was

developed for the construction of the regulatory network. To

Author Summary

Several recent studies have implicated the critical role of
microRNAs (miRNAs) in the pathogenesis of glioblastoma
(GBM), the most common and lethal brain tumor in
humans, suggesting that miRNAs may be clinically useful
as biomarkers for brain tumors and other cancers.
However, to date, the regulatory mechanisms of miRNAs
in GBM are unclear. In this study, we have systematically
constructed miRNA and transcription factor (TF) mediated
regulatory networks specific to GBM. To demonstrate that
the GBM-specific regulatory network contains functional
modules that may composite of critical miRNA compo-
nents, we extracted a subnetwork including GBM-related
genes involved in the Notch signaling pathway. Through
network topological and functional analyses of the Notch
signaling pathway subnetwork, several critical miRNAs
have been identified, some of which have been reinforced
by previous studies. This study not only provides novel
miRNAs for further experimental design but also develops
a novel computational framework to construct a miRNA-TF
combinatory regulatory network for a specific disease.

Glioblastoma microRNA-TF Regulatory Network
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Table 1. Summary of relationships among GBM-related genes, GBM-related miRNAs, and TFs.

Relationship Number of pairs Number of miRNAsa Number of genes Number of TFsb Method

miRNA-genec 1476 105 214 - TargetScan

miRNA-TFd 2079 103 - 283 TargetScan and TRANSFAC

TF-.genee 6642 - 296 207 MatchTM

TF-miRNAf 1543 65 - 184 MatchTM

Gene-geneg 383 - 112 - ARACNE

amiRNA: microRNA.
bTF: transcription factor.
cmiRNA-gene: miRNA repression of gene expression.
dmiRNA-TF: miRNA repression of TF expression.
eTF-gene: TF regulation of gene expression.
fTF-miRNA: TF regulation of to miRNA expression.
gGene-gene: gene-gene coexpression.
doi:10.1371/journal.pcbi.1002488.t001

Figure 1. Computational framework for constructing the comprehensive GBM-specific miRNA-TF regulatory network and its
application for identifying critical miRNA components in a given pathway. This framework involves four main steps. 1) Data collection. We
compiled glioblastoma (GBM)-related genes, GBM-related microRNAs (miRNAs) and known human transcription factors (TFs) from public databases
and literature. 2) Regulation prediction. We predicted five types of regulation (TF-gene, TF-miRNA, miRNA-gene, miRNA-TF, and gene-gene
coexpression) by integrating TF binding profiles, miRNA target profiles, and gene expression profiles. 3) Identification of significant feed-forward
loops (FFLs). Based on the regulation data in step 2, we assembled two types of feed-forward loops (FFLs): 3-node FFLs and 4-node FFLs. 4)
Construction of a GBM-specific miRNA-TF regulatory network and performing further subnetwork analyses. By merging the FFLs identified in step 3,
we constructed a GBM-specific miRNA-TF regulatory network, which consists of three types of nodes and five types of edges. Furthermore, we
extracted subnetworks for core pathways reported for GBM from the GBM-specific regulatory network and predicted the miRNA components
involved in these pathways.
doi:10.1371/journal.pcbi.1002488.g001

Glioblastoma microRNA-TF Regulatory Network
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illustrate that the framework has a promising application in cancer

investigation, in this study, we focused on the GBM regulatory

network and identified the miRNA components for the Notch

signaling pathway. The analyses illustrated the framework is

promising for further identification of critical miRNAs in the

pathology of cancer.

Highly confident regulatory relationships among
miRNAs, genes and TFs
Table 1 summarizes the five types of potential regulatory

relationships mentioned above and their related methods. We

provide more details below.

miRNA-gene and miRNA-TF repression. We predicted

miRNA targets in genes by parsing TargetScan prediction results

[35] and filtered out the false positive assignments of miRNAs to

genes by applying stringent requirements (see Materials and

Methods). Consequently, among 415 GBM-related genes, 214

were potential targets of 105 miRNAs of our compiled 124 GBM-

related miRNAs; they formed 1,476 miRNA-gene pairs. Among

the 214 target genes, the top genes targeted by the largest number

of GBM-related miRNAs were DLGAP2 and SOX11, which were

targeted by 33 GBM-related miRNAs. Among the 105 GBM-

related miRNAs, the miRNA that targeted the largest number of

GBM-related genes was miR-340. To test whether we observed

more GBM miRNA targets in the 415 GBM-related genes than

the randomly selected 415 genes, we performed a permutation to

count the number of targets of each GBM miRNA in the same

number of genes (415 genes), which were randomly selected from

human protein-coding genes. We repeated this process 10,000

times to obtain an empirical P-value. Most of the miRNAs had a

significantly larger number of targets in these genes than randomly

selected genes (t-test, P-value = 1.3861025). Using the same

miRNA target prediction method, we screened the miRNA

targets of 428 human TFs. We obtained 2,079 miRNA-TF pairs

among 103 GBM-related miRNAs and 283 TFs. Among the 103

GBM-related miRNAs, the miRNA that targeted the largest

number of TFs (i.e., 60 TFs) was miR-124. Among the 283 TFs,

the TF gene targeted by the largest number of miRNAs (i.e., 44

miRNAs) was NFAT5.

TF-gene and TF-miRNA regulation. To find the regulation

of TF to genes or miRNAs, we explored the TFs and their binding

profiles from the TRANSFAC Professional database and predict-

ed TF binding sites using its MatchTM software [36] by applying

stringent criteria (see Materials and Methods). For a TF, if there is

one binding site within the transcription start site (TSS) proximal

region of a gene (from 1 kb upstream to 500 bp downstream), the

gene was defined as the target of the TF. We thus identified 296

GBM-related genes as targets of 207 TFs, which formed a total of

6,642 TF-gene pairs. In these pairs, the range of number of genes

regulated by one TF was from 1 to 245. Among the 207 TFs, the

TF that targeted the largest number of GBM-related genes was

PAX4 (paired box 4). PAX4 plays critical roles during both fetal

development and cancer growth [37].

As with the GBM-related genes, we applied the same prediction

process to identify miRNA targets of TFs, since previous studies

have shown that miRNA expression is regulated in a similar

manner to protein-coding genes [38]. We identified 1,543 TF-

miRNA pairs, which consisted of 65 GBM-related miRNAs and

184 human TFs. Among these pairs, the range of the number of

TFs potentially targeting one miRNA was from 7 to 65. miR-9 was

predicted to be targeted by 65 TFs. The range of the number of

miRNAs targeted by a TF was from 1 to 58. The TF that targeted

the largest number of GBM-related miRNAs was ELF1 (E74-like

factor 1).

Gene-gene coexpression. Based on the filtered gene expres-

sion profiles from three different microarray platforms [39], we

identified 383 co-regulated genes using the software ARACNE

[40] (see Materials and Methods). The degree of coexpression

ranged from 1 to 23. Specifically, gene CAST co-expressed with 23

other genes; this particular gene is involved in numerous

membrane fusion events, such as neural vesicle exocytosis and

platelet and red-cell aggregation [41].

Significant 3-node and 4-node feed-forward loops
FFLs have been demonstrated as one of the most common types

of transcriptional network motifs [42]. Typically, a FFL consists of

three components: a miRNA, a TF, and a joint target, which is

defined as a 3-node FFL. In this study, we expanded the 3-node

FFL model to a 4-node FFL model to explore more regulatory

modules. Figure 2A shows the detailed relationships in these FFLs.

According to the regulatory relationship between two regulators

(TF and miRNA) in each FFL, we classified FFLs into 3 types: TF-

FFL, miRNA-FFL and composite FFL (Figure 2). Specific to the 3-

node FFLs, the TF-FFL model includes TF regulation of a

miRNA and a gene, and it also includes miRNA repression of a

target gene. The miRNA-FFL model includes miRNA repression

of both a target gene and a targeted TF, as well as TF regulation of

a target gene. The composite-FFL model includes TF regulation of

both a miRNA and a target gene, as well as miRNA repression of

the TF gene and the target gene. The three types of FFLs are

exclusive to each other. For 4-node FFLs, the design is similar to

the 3-node FFL model, but each TF or miRNA may regulate both

co-expressed genes.

Furthermore, we merged those FFLs with the same TF-miRNA

regulation. Thus, the merged FFLs composed of a known TF, a

mature miRNA, and a list of GBM-related genes or a list of GBM

co-regulated gene pairs (Figure S1). Table 2 summarizes the

number of nodes and links in the 3-node and 4-node FFLs.

3-node FFLs. Starting from two types of regulation, miRNA-

gene and TF-gene, we assembled all possible miRNA-gene-TF

units (relationships). After filtering the random TF-miRNA pairs

using the hypergeometric test based on the common targets of

miRNAs and TFs [43], we obtained a total of 3,914 unique FFLs,

which grouped to 1,128 merged FFLs based on the definition in

Figure S1 (Table S2). The merged FFLs involved a total of 153

GBM-related genes, 97 GBM-related miRNAs and 135 TFs. The

number of targets in these merged FFLs ranged from 1–15, and

70.74% of the 3-node FFLs targeted up to 2 genes.

For the genes targeted by the TF and miRNA from a merged

FFL (co-targeted genes), we examined if they have more similar

function than randomly selected genes from all human genes. We

computed Gene Ontology (GO) semantic similarity scores using

the R GOSemSim package [44]. For GO categories biological

process (BP), molecular function (MF), and cellular component

(CC), the semantic scores of these genes in 3-node FFLs tended to

significantly skew towards higher scores than those of randomly

selected genes (Figure S2). We further tested whether the targets in

each merged FFL tended to belong to the same protein family

than randomly selected human proteins using the Pfam annota-

tions [45] (Text S2). We found that the numbers of target pairs

from 3-node FFLs with the same Pfam annotation were

significantly higher than those from the randomly selected genes

(Table S3). The results indicated that the genes regulated by the

same TF-miRNA pairs in 3-node FFLs were more likely to share

Pfam annotation than randomly selected genes (Fisher’s exact test,

P-value,2.2610216). In summary, according to these function

and protein family similarity analyses, the co-targeted genes

Glioblastoma microRNA-TF Regulatory Network
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Figure 2. A catalogue of mixed feed-forward regulatory loops (FFLs). According to the relationship between the transcription factor (TF) and
microRNA (miRNA), the mixed FFLs were classified as the TF-FFL model (the TF directly regulates the miRNA), miRNA-FFL model (the miRNA only
directly regulates the TF) or composite-FFL model (the TF and the miRNA regulate each other). The relationships represented by solid lines are
required while the relationships represented by dot lines are not required. B) Five types of putative regulations involved in these FFLs: miRNA-gene
represents that the miRNA represses gene expression; miRNA-TF represents that the miRNA represses the TF gene expression; TF-gene represents the
regulation by TF of the expression of the gene; TF-miRNA represents the regulation of TF to expression of miRNAs; and, gene-gene represents gene
coexpression.
doi:10.1371/journal.pcbi.1002488.g002

Table 2. Summary of 3-node and 4-node feed-forward loops based on glioblastoma related data.

Number of nodesb Number of linksb

Motif

Number of

merged FFLsa Genes miRNAs TFs Total TF-gene

Gene-

gene

miRNA-

gene

miRNA-

TF TF-miRNA

3-node

TF-FFL 656 144 59 122 2473 1227 - 590 0 656

miRNA-FFL 432 131 84 83 1768 592 - 744 432 0

Composite-FFL 40 76 24 23 344 130 - 134 40 40

Total 1128 153 97 135 3709 1570 - 971 472 696

4-node

TF-FFL 482 51 46 90 1144 438 99 125 0 482

miRNA-FFL 299 53 78 62 775 189 88 199 299 0

Composite-FFL 24 40 17 14 173 47 43 35 24 24

Total 805 55 80 105 1647 494 104 220 323 506

aFFL: feed-forward loop.
bDefinitions of the nodes and links were provided in Table 1.
doi:10.1371/journal.pcbi.1002488.t002

Glioblastoma microRNA-TF Regulatory Network

PLoS Computational Biology | www.ploscompbiol.org 5 July 2012 | Volume 8 | Issue 7 | e1002488



tended to participate in the same biological processes, locate in the

same cellular components, or belong to the same protein family.

Among the 1,128 merged 3-node FFLs, 656 (58.16%) belonged

to TF-FFLs, 432 (38.30%) belonged to miRNA-FFLs, and 40

(3.54%) belonged to composite-FFLs. The numbers of nodes and

links in composite-FFLs were much smaller than those in TF-FFLs

and miRNA-FFLs. However, the 40 composite-FFLs (3.54%) were

comprised of 24 (24.74%) GBM-related miRNAs and 23 (17.04%)

TFs regulating 76 (49.67%) GBM-related genes (Table 2),

indicating that only a few composite-FFLs recruited nearly half

of GBM-related genes via a few regulators. Additionally, among

the 76 genes regulated by the composite-FFL model, 72 (94.74%)

of GBM-related genes in composite-FFLs were also regulated

through the TF-FFL and miRNA-FFL models (Figure S3).

Similarly, most of the TFs and miRNAs (87.50% and 95.65%,

respectively) involved in composite-FFLs participated in the other

two regulation models. These observations suggest that most of the

GBM-related genes could be regulated in multiple ways. To

further illustrate the functional importance of the 72 genes, we

performed pathway enrichment analyses using the software

WebGestalt [46]. Thirteen KEGG pathways were significantly

enriched. Interestingly, 9 were within the top 10 enriched KEGG

pathways identified using the 153 genes in all 3-node FFLs (Table

S4), further suggesting the efficiency of composite-FFLs.

4-node FFLs. Using a process similar to the 3-node model,

we identified a total of 2,042 4-node FFLs, each of which included

a human TF, a GBM miRNA and two co-expressed genes in

GBM. These FFLs were grouped as 805 merged FFLs, each of

which was composed of a known TF, a mature miRNA and a list

of GBM co-regulated genes (Table S5). These 805 merged FFLs

involved a total of 55 GBM-related genes, 80 miRNAs and 105

TFs. The number of targets in these merged FFLs ranged from 1–

13, and 44.10% of the 4-node FFLs targeted up to 2 pairs of co-

regulated GBM-related genes. Similarly, these co-targeted gene

pairs tended to have higher pair-wise functional similarity scores

(Figure S2) or had significantly more gene pairs sharing Pfam

annotations (Table S3) than randomly selected gene pairs (Fisher’s

exact test, P-value,2.2610216). The results again indicated that

co-targeted genes in 4-node FFLs tended to have more similar

functions than the randomly selected genes. Additionally, com-

pared to co-targeted genes in 3-node FFLs, genes in 4-node FFLs

tended to have higher similarity scores or have more gene pairs

sharing Pfam annotations. This comparison indicated that genes in

4-node FFLs might have stronger functional relationship than

those in 3-node FFLs.

Among the 805 merged FFLs, 482 (59.88%) belonged to TF-

FFLs, 299 (37.14%) belonged to miRNA-FFLs and 24 (2.98%)

belonged to composite-FFLs. Similar to the 3-node FFLs, the 24

(2.98%) 4-node composite-FFLs were composed of 17 (20.00%)

GBM-related miRNAs and 14 (10.07%) TFs, which regulated 40

(72.73%) GBM-related genes. Forty (100%) of the GBM-related

genes were also regulated through the TF-FFL and miRNA-FFL

models (Figure S3). Additionally, most of the regulatory elements

(TFs: 100% and miRNAs: 85.71%, respectively) also participated

in the other two regulation models. This result further supported

that a few composite-FFLs could recruit the majority of GBM-

related genes via a few regulators, as observed in the 3-node FFL

analysis above.

4-node FFLs complement 3-node FFLs. To further explore

the relationship between 4-node FFLs and 3-node FFLs, we

examined their nodes and edges. We observed that the number of

nodes in 4-node FFLs was less than that in 3-node FFLs (Table 2).

Figure S4A summarized the overlap of the three types of nodes

between 3-node FFLs and 4-node FFLs. For GBM-related genes,

32 were shared by both types of FFLs. These genes accounted for

only 18.18% of the total 176 genes. We performed a pathway

enrichment analysis to examine if these 32 genes have any

biological bias with the reference of whole human protein-coding

genes. Ten KEGG pathways were found to be significantly

enriched with these genes (adjusted P-value,0.05). All of these

pathways were related to cancer: ‘‘Pathways in cancer,’’ ‘‘Focal

adhesion,’’ ‘‘ECM-receptor interaction,’’ ‘‘Colorectal cancer,’’

‘‘Cytokin-cytokin receptor interaction,’’ ‘‘Endocytosis,’’ ‘‘Renal

cell carcinoma,’’ ‘‘Pancreatic cancer,’’ ‘‘Glioma,’’ and ‘‘Melano-

ma.’’ Among them, 7 could be found in the top 10 pathways

enriched in the 176 genes (Table S6). The 4-node FFLs recruited

an additional 23 GBM-related genes. Pathway analysis found these

genes were enriched in two pathways (‘‘ECM-receptor interac-

tion’’ and ‘‘Focal adhesion’’) detected by the common 32 genes, as

well as three other pathways (‘‘Leukocyte transendothelial

migration,’’ ‘‘Lysosome,’’ and ‘‘Regulation of actin cytoskeleton’’).

These comparisons indicated that, compared to 3-node FFLs, the

4-node FFLs could recruit genes that are not only directly involved

in cancer related pathways but also associated with cell motility

and cell proliferation, both of which have been implicated in the

pathology of glioma [47]. In contrast, the majority of miRNAs (78

out of 99 miRNAs, 78.79%) and TFs (98 out of 142 TFs, 69.01%)

were recruited by both the 4-node and 3-node FFLs, indicating

that miRNAs and TFs had no significant difference between these

two types of FFLs.

Figure S4B summarizes the overlap of the four types of links

(TF-gene, miRNA-gene, miRNA-TF, and TF-miRNA) between 3-

node FFLs and 4-node FFLs. We observed that the majority of

TF-gene links (293 out of 494, 59.31%) in 4-node FFL had not

been covered by 3-node FFLs, while the majority of miRNA-gene

(158 out of 220, 71.82%), miRNA-TF (245 out of 323, 75.85%),

and TF-miRNA (398 out of 506, 78.66%) links were covered by 3-

node FFLs. Overall, these observations suggested that 4-node

FFLs could recruit novel GBM-related genes and novel regulatory

relationships, which might complement 3-node FFLs.

A GBM-specific miRNA-TF mediated regulatory network
After converging the significant 3-node and 4-node FFLs

identified in the previous subsection, we constructed a miRNA-TF

mediated regulatory network for GBM, the major biological output

of our computational analysis. The resultant network contained a

total of 4,354 edges and 408 unique nodes (Table S7). Among the

4,354 edges, 1,033 belonged to miRNA-gene pairs, 550 to miRNA-

TF pairs, 1,863 to TF-gene pairs, 804 to TF-miRNA pairs, and 104

to gene-gene pairs. Among the 408 nodes, 176 belonged to GBM-

related genes, 99 to GBM-related miRNAs and 142 to human TFs.

Among GBM-related genes and TFs in this regulatory network, 9

genes overlapped (ARNT, FLI1, FOXO3, FOXO4, GATA3, SMAD4,

STAT3, TCF12, and ZEB1). Although the network only recruited

176 (43.46%) of the 415 GBM-related genes and 99 (79.84%) of the

124 GBM-related miRNAs, given the uncertainty of associations

between candidate genes and the disease, we regarded it as a

representation of the regulatory network in GBM.

To provide a general view of this regulatory network, we

calculated degrees (connectivity) and their distribution, which are

basic topological network measures [47]. In this complicated

network, degree values of genes, miRNAs and TFs ranged from 2

to 66, 2 to 77, and 2 to 123, respectively. The average degrees of

genes, miRNAs and TFs were 18.70, 24.11, and 23.80,

respectively. The degree distribution for genes, miRNAs and

TFs were strongly right-skewed, indicating that most nodes had a

low degree, while only a small portion of nodes had a high degree

(Figure S5). Therefore, we observed only a few miRNAs, GBM-
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related genes and TFs exhibited a high degree in the network. In

the context of this regulatory network, these molecules act as hubs

that might play important roles in GBM.

Hubs are highly connected nodes in a network, suggesting critical

roles in maintaining the overall connectivity of the network [47].

Consistently, hubs in the PPI network are more likely to be essential

genes [48,49]. Using the hub definition method proposed by Yu

et al. [50], we determined the degree cutoff values 38, 49, and 71 for

genes, miRNAs and TF hubs, respectively. Accordingly, we

identified 15 hub genes (FOXO3, SMAD4, TCF12, BCL11A,

PDGFRA, KLF4, NRAS, SOX11, CACNA1E, ELAVL2, PIK3R1,

RPS6KA3, SLC9A2, CYLD, and PTCH1), 4 hub miRNAs (miR-9,

let-7i, miR-495 and miR-130a) and 6 hub TFs (TEAD1, SP1,

MZF1, NEUROD1, GATA1, and TCF7). Among them, genes

PIK3R1 and PDGFRA had been reported to have high mutation

frequencies in 91 GBM samples (9% and 13%, respectively), and are

involved in the RTK/PI3K signaling pathway, a core GBM

pathway [6].

In the above FFL analyses, we noticed that composite 3-node

and 4-node FFLs recruited the most GBM-related genes in each

category (49.67% and 72.73%, respectively), which indicated that

composite-FFLs could play important roles in regulating GBM

candidate genes. Therefore, we converged these composite-FFLs

and generated a regulatory subnetwork that only included

composite-FFLs. The resulting subnetwork included 457 edges

and 101 GBM-related genes, which accounted for 57.38% of

GBM-related genes (176) in the GBM-specific miRNA-TF

mediated regulatory network and were regulated by only 26

GBM-related miRNAs (24.24%) and 24 TFs (16.90%). We

defined this subnetwork as the composite miRNA-TF regulatory

network in GBM; it could provide a main framework for the

regulatory systems involved in GBM (Figure 3A). In this regulatory

network, the distribution of all nodes was again strongly right-

skewed; that is, only a few nodes had high degree in the network

(Figure 3B). Using the same method to define hubs, we identified

four hub genes (NRP1, FOXO3, SMAD4, and TNFRSF1B), six hub

miRNAs (miR-495, miR-9, miR-137, miR-30d, miR-181c, and

miR-30e), and three hub TFs (TEAD1, SP1, and ZBTB7A).

Previously, Zhang et al. [51] proposed that a higher-order network

structure is a frequently observed motif in integrated mRNA-

protein networks. In our regulatory network, we also found several

miRNAs and TFs involved in higher-order subnetworks. For

instance, we identified three higher-order composite subnetworks.

The first one (Figure 3C) included one hub TF (SP1) and one hub

miRNA (miR-137), which together regulated 10 genes. The

second composite subnetwork included one TF, one hub miRNA,

and 6 genes (Figure 3D). The third one included one hub TF, two

hub miRNAs, and 12 genes (Figure 3E).

We further examined enriched pathways in these 101 GBM-

related genes involved in the GBM composite regulatory network.

This further examination was important, as biological pathways

that are statistically enriched in a set of disease genes may provide

important cellular process information for our understanding of

the molecular pathology of the disease. For the 101 genes, we

identified 39 pathways that were significantly enriched (adjusted P-

value,0.01) (Table 3). Among these 39 pathways, 10 (25.6%)

were directly related to cancer, including glioma and GBM.

Several are well-known core pathways involved in GBM, such as

PTEN signaling, PI3K/AKT signaling and Notch signaling.

Identification of miRNA components in the Notch
signaling pathway in GBM
To demonstrate that the GBM-specific miRNA-TF mediated

regulatory network is useful to identify miRNA components for

core pathways, we took a convergent strategy to narrow down the

candidate list. We first generated subnetworks for core pathways in

GBM and then performed network characteristic analyses,

including degree and degree distribution, hub, network modular-

ity, to identify key components. Aside from degree of the node and

degree distribution and hub definition mentioned before, the most

frequently used approach for biological network analysis is to

cluster or partition the whole network into subcomponents, i.e.,

modularity. Previous studies have revealed that highly connected

groups of proteins tend to participate in the same biological

process or complex [52]. In this study, we selected the Notch

signaling pathway as an example to illustrate that the network is a

useful resource for hypothesis generation and that our computa-

tional framework is promising.

The Notch signaling pathway strongly influences stem cell

maintenance, development and cell fate [53]. Growing evidence

indicates it plays a key role in cancer, including gliomas [54,55].

According to pathway information recorded in the KEGG

database [56] and Ingenuity Canonical Pathways (http://www.

ingenuity.com/), there were five genes in the GBM miRNA-TF

mediated regulatory network that belonged to the Notch pathway:

EP300, NOTCH1, NOTCH2, FURIN, and JAG1. We generated a

subnetwork for these 5 genes by merging the FFLs that included at

least one of these five genes (Figure 4A). We defined it as the GBM

Notch-specific miRNA-TF regulatory network, which included

222 edges, 17 GBM-related genes, 32 GBM-related miRNAs and

31 TFs. These 32 miRNAs might be involved in the Notch

signaling pathway, providing a potential pool for further

experimental determination of miRNAs involved in this pathway

(Table S8). We noticed that there was no 4-node FFL involved in

the GBM Notch-specific regulatory network.

To identify the critical candidates from the above 32 miRNAs,

we further evaluated their importance based on network

topological and functional analyses. The degree distribution of

all nodes in this subnetwork was also strongly right-skewed. Using

the same method to identify the hubs above, we identified four

GBM hub genes (NOTCH1, FURIN, NOTCH2, and EP300), four

hub miRNAs (miR-9, miR-92b, miR-137 and miR-295-5p) and

four hub TFs (EP300, SP1, TEAD1, and TBX5). Thus, the

network global property analysis indicated that these four hub

miRNAs might play important roles in the Notch signaling

pathway.

To investigate other miRNAs in the GBM Notch-related

miRNA-TF regulatory network, we used the software CFinder

[57] to identify tightly connected subnetworks. CFinder is a

popular network analysis tool for examination of nodes’ distribu-

tions in networks and communities. We obtained four communi-

ties in the Notch regulatory network. The first one (Figure S6A)

included 15 GBM-related genes, 14 GBM-related miRNAs and 18

TFs. Since the subnetwork included the most GBM-related genes

(88.2%) involved in the GBM Notch related regulatory network,

we called this subnetwork the gene-centered subnetwork. The

second community (Figure S6B) includes two GBM-related genes,

17 GBM-related miRNAs and 15 TFs. Since most of the nodes in

this subnetwork are regulators, we defined it as the regulator-

centered subnetwork. The third one includes one GBM-related

gene, two miRNAs, and three TFs (Figure S6C); the last one

includes one GBM-related gene, one miRNA and one TF (Figure

S6D). Considering that the last two subnetworks had one common

GBM-related gene, JAG1, and both were located in the center of

the Notch-specific network, we merged these subnetworks together

and defined it as a centered subnetwork (Figure 4). Consequently,

three Notch-specific subnetworks were identified (Figure 4B, 4C,

and 4D).
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The centered subnetwork included 8 nodes, none of which

belonged to the hubs we identified above. When the centered

subnetwork was removed, the connection between the other two

subnetworks was lost (Figure S7). To further examine this feature,

we removed the nodes directly linked to the centered subnetwork;

most parts of the Notch regulatory network were loosely connected

except among GBM-related genes (Figure S8). These local

network analyses showed that the centered subnetwork could

serve as a bridge subnetwork and play an important role in the

development of GBM. To further examine the role of the centered

subnetwork, we used a GO enrichment analysis to identify

biological processes associated with the three subnetworks. The

gene-centered subnetwork mainly corresponded to the develop-

ment processes. The centered subnetwork corresponded to

regulation of biological processes and developmental processes.

The regulator-centered subnetwork corresponded to regulation of

biological processes and metabolic processes. These functional

association analyses revealed that the centered subnetwork could

play the central role in this subnetwork. Based on the important

role of this centered subnetwork in the Notch-specific pathway,

and two miRNAs, miR-124 and miR-34a, which have direct

connections with two other subnetworks, we proposed that these

two miRNAs might play important roles in the Notch signaling

pathway involved in GBM.

In summary, based on the network topological analysis of the

GBM Notch regulatory network and its subnetworks, we identified

32 human miRNAs that might be involved in the Notch signaling

pathway, and six of them (miR-124, miR-137, miR-219-5p, miR-

34a, miR-9, and miR-92b) might play important roles in this

pathway.

Discussion

In this study, we explored the combinatory regulation of

miRNAs and TFs that have an impact on genes involved in the

pathology of GBM. We developed a computational framework to

construct and analyze a regulatory network for complex diseases.

Our framework started with a compilation of numerous data

sources to identify disease candidate genes and miRNAs and then

inferred regulatory relationships using a large panel of computa-

tional tools. Based on these relationships, we focused on 3-node

FFLs and 4-node FFLs to generate a GBM-specific regulatory

network. This unique computational framework illustrated that it

is indeed possible to process multiple types of data (e.g., mutation

Figure 3. Graphical representations of the composite glioblastoma-related miRNA-TF regulatory network and its network
characteristics. A) Graphical representation of the composite glioblastoma miRNA-TF regulatory network. The network was generated from 3-node
and 4-node composite-FFL motifs. B) Degree distribution of all nodes (genes, miRNAs and TFs) in the network. The Y-axis represents the proportion of
nodes with a specific degree. C–E) Three higher-order subnetworks. In each subfigure, nodes in red correspond to GBM-related miRNAs, nodes in
green correspond to GBM-related genes, and nodes in blue correspond to transcription factors. The edge colors represent different relationships: red
for the repression of miRNAs to genes or TFs, blue for the regulation of TFs to genes or miRNAs, and black for the coexpression of GBM-related genes.
doi:10.1371/journal.pcbi.1002488.g003
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data, gene expression data, and knowledgebase) by combining a

large collection of methods to identify potential miRNAs in

complex diseases.

A significant concern regarding the computational approaches

used in this study is controlling false positives from both public

databases and prediction results caused by computational tools. In

our framework, to minimize the effect of these false positives, we

first performed a comprehensive compilation from multiple data

sources to identify genes and miRNAs relevant to GBM. Next, we

chose the most popular databases and software to conduct the

prediction. Finally, we applied stringent parameters in the

prediction of TF-gene/miRNA, miRNA-gene/TF, and gene-gene

relationships. For TF-gene/miRNA and miRNA-gene/TF, we

further required conservation among multiple mammalian

genomes. Thus, our framework could potentially detect the most

important regulatory relationships and might be applied to other

complex diseases for the purpose of deciphering their regulatory

systems and identifying critical miRNAs.

Compared to high-throughput and low-throughput experimen-

tal methods that have been used to discover and profile miRNAs,

our computational framework could complement them and

facilitate the discovery of critical miRNAs in the pathology of

disorders. As much more regulatory data is expected to be released

in the near future, such as ChIP-Seq (chromatin immunoprecip-

itation sequencing), RNA-Seq (transcriptome sequencing) and

GRO-Seq (global run-on sequencing), this framework could be

improved with the integration of high-throughput data by filtering

out interactions in low confidence.

One important output of this comprehensive study is the GBM-

specific miRNA-TF combinatory regulatory network. The regu-

latory network was massive and complex, presenting us with

another challenging task: finding the tactic to decipher this huge

network to mine the important regulatory components. Recently,

pathway analysis has been reported as a useful approach to

investigate the pathology of complex diseases [6,58]. Specifically in

our work, our strategy was to apportion the large regulatory

network and extract relatively small but functionally critical

subnetworks for pathways that have been previously implicated in

the corresponding disease. We then performed network topology

analyses and investigated modularity to identify critical miRNAs in

these small subnetworks.

To demonstrate this strategy, we used the Notch signaling

pathway as an example and found six critical miRNAs in the

pathway in GBM (Figure 4). Among them, miR-34a has already

been shown in an independent study led by one of the authors in

2009 (B.P.) to be down-regulated in GBM, target Notch family

members, and cause differentiation in GBM stem-like cells

[59,60]. Additional studies have shown that this miRNA has been

involved in the Notch pathway in other cancers such as

medulloblastoma [61], pancreatic cancer [62] and carcinoma

[63]. Moreover, miR-124 and miR-137 have functioned in a

tumor-suppressive fashion in GBM and caused differentiation

when re-expressed in GBM cells [24]. miR-9 has also been

strongly linked to GBM subtypes in a recent analysis [25].

Interestingly, miR-124 has been reported to be involved in the

Notch signaling pathway during Ciona intestinalis neuronal devel-

opment [64]. The evidence from these studies suggests the

effectiveness of our approach. Further experimental validation of

these miRNAs is warranted.

Among the six miRNAs, the most noteworthy one is miR-34a.

It regulates a number of target proteins that are involved in cell

cycle, apoptosis, differentiation and cellular development [65]. In

the independent study mentioned above, led by one of the authors

(B.P.), the effects of miR-34a on MET, NOTCH1, NOTCH2,

CDK6, and PDGFRA expression in brain tumor cells and stem cells

were tested. The results showed that miR-34a suppressed brain

tumor growth by targeting MET and Notch [66]. To check if these

results exist in our predicted regulatory network, we further

extracted miR-34a FFLs and merged them to form a miR-34a-

specific regulatory network (Figure S9). Among 15 miR-34a

Table 3. Canonical pathways overrepresented in genes
involved in the composite glioblastoma-specific regulatory
network.

Ingenuity canonical pathways

Adjusted P-

valuea

Hepatic fibrosis/hepatic stellate cell activation 3.16610211

Molecular mechanisms of cancer 1.5161025

Pancreatic adenocarcinoma signaling 1.7461025

PTEN signaling 1.7461025

Melanocyte development and pigmentation signaling 0.0005

CNTF signaling 0.0006

Chronic myeloid leukemia signaling 0.0007

Glioma signaling 0.0007

Glioblastoma multiforme signaling 0.0007

Glucocorticoid receptor signaling 0.0007

Renal cell carcinoma signaling 0.0014

NF-kB signaling 0.0014

PI3K/AKT signaling 0.0015

HER-2 signaling in breast cancer 0.0017

Prostate cancer signaling 0.0019

Insulin receptor signaling 0.0019

Human embryonic stem cell pluripotency 0.0021

Neuregulin signaling 0.0025

IL-6 signaling 0.0032

PPAR signaling 0.0032

IGF-1 signaling 0.0037

Antiproliferative role of TOB in T cell signaling 0.0050

Acute phase response signaling 0.0050

IL-15 signaling 0.0050

ERK5 signaling 0.0050

Role of JAK1 and JAK3 in cc cytokine signaling 0.0054

Axonal guidance signaling 0.0054

Non-small cell lung cancer signaling 0.0054

Growth hormone signaling 0.0059

Macropinocytosis signaling 0.0059

Intrinsic prothrombin activation pathway 0.0059

Neurotrophin/TRK signaling 0.0059

Small cell lung cancer signaling 0.0062

PDGF signaling 0.0062

FLT3 signaling in hematopoietic progenitor cells 0.0063

Prolactin signaling 0.0065

Ceramide signaling 0.0081

Notch signaling 0.0095

TGF-b signaling 0.0098

aAdjusted P-value was calculated by Fisher’s exact test following by Benjamini-
Hochberg multiple testing correction.
doi:10.1371/journal.pcbi.1002488.t003
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targets, 8 (NOTCH2, MET, PDGFRA, JAG1, MYCN, BCL2, DCX,

and CACNA1E) belonged to GMB-related genes and 7 (FOSB,

FOSL1, NFE2L1, NR4A2, SMAD4, TCF12, and YY1) belonged to

human TFs. Among the 8 GBM-related genes, NOTCH2 and

MET have been reported in our previous study to be targeted by

miR-34a, while PDGFRA was not [66]. JAG1 has been reported to

be targeted by the miRNA in the regulation of human monocyte-

derived dendritic cell differentiation [67]. MYCN has been

reported to be targeted by miR-34a in neuroblastoma cells

[68,69] and somatic cell reprogramming [70]. BCL2 has been

reported to be targeted by the same miRNA in neuroblastoma

cells [69]. All 7 targeted TFs were significantly involved in the

transcription of DNA according to Biology Function Analysis in

IPA (Ingenuity Pathway Analysis) (Fisher’s exact test, P-val-

ue = 8.7561029) as expected. Among them, YY1 has been

reported to be directly targeted by miR-34a in neuroblastoma

cells [71]. Taken together, miR-34a is likely not only regulates

GBM-related genes directly but also regulates the TFs for gene

expression through transcriptional mechanism. This assertion

needs further experimental confirmation. While our analyses,

especially of miR-34a and its targets, support the utility of our

regulatory network framework, it still needs to be improved. Most

GBM-related genes have not been confirmed to be causal, the

human TF and miRNA binding profiles are neither complete nor

error- or bias-free, and reverse engineering software has its own

weaknesses.

This work represents the first application of a 4-node FFL as a

regulatory motif in complex disease. Although there have been

several genome-wide studies applying integrative regulation of TFs

and miRNAs [30,72,73], none have considered gene coexpression

profiles in an FFL model. The 4-node FFL model contains four

components: one miRNA, one TF, and two co-expressed genes

related to GBM (Figure 2). There are four types of possible

regulations between the co-expressed genes and the TF and

miRNA, making the regulatory network more informative and

tolerant (Figure S10). Compared with 3-node FFLs, the main

impact of 4-node FFLs is the recruitment of more GBM-related

genes and regulatory relationships into the regulatory network

(Table 2, Figure S3, and Figure S4). We found that 4-node FFLs

tended to regulate the genes that might belong to the same

biological processes, the same protein family, or be located in the

same cellular components (Figure S2). Additionally, among the 20

GBM-related genes involved in the miR-34a-specific regulatory

network, 3 were in the 3-node FFLs and 4-node FFLs, 11 from 4-

node FFLs, and 6 from 3-node FFLs. This observation indicated

that the recruitment of GBM-related genes in miR-34a network

was greatly improved by applying the 4-node FFLs. In summary,

our comparison of the 4-node and 3-node FFLs and the

performance in the recruitment of GBM-related genes by the 3-

node FFLs and 4-node FFLs to the miR-34a-specific regulatory

network indicate that both are useful models, and they may

complement each other in a regulatory network analysis.

Another interesting observation in this study is composite-FFLs,

in which TF and miRNA regulate each other. The regulation

between a TF and a miRNA has been defined as a TF«miRNA

feedback loop [38]. In our study, we observed 40 TF«miRNA

feedback loops in 3-node FFLs and 24 TF«miRNA feedback

loops in 4-node FFLs. Among the two sets of feedback loops, there

were 19 loops in common between two sets, resulting in 45 unique

feedback loops in the whole regulatory network for GBM.

Compared to the 759 unique TF-miRNA regulatory relationships

and the 505 miRNA-TF regulatory relationships in the regulatory

network, the TF«miRNA regulatory relationships were rarely

observed. This low frequency is consistent with previous reports

involving a pure transcriptional regulatory network [42]. Howev-

er, interestingly, these TF«miRNA feedback loops regulate 101

Figure 4. Notch-specific miRNA-TF regulatory network and its subnetworks related to GBM. A) Notch-specific miRNA-TF regulatory
network related to GBM. B) GBM gene-centered subnetwork. The subnetwork includes most of the GBM-related genes involved in the Notch-specific
miRNA-TF regulatory network. C) Centered subnetwork. The subnetwork links the GBM gene-centered subnetwork and the GBM regulator-centered
subnetwork. D) GBM regulator-centered subnetwork. Except for two nodes, 33 nodes are GBM-related miRNAs and human TFs. Definition of colors
and shapes for nodes and edges is the same as in Figure 3.
doi:10.1371/journal.pcbi.1002488.g004
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GBM-related genes, accounting for 57.38% of the GBM-related

genes (176) in the GBM miRNA-TF mediated regulatory network.

This observation indicated that composite-FFLs are more effective

in unveiling the regulatory systems underlying the complex

disease.

Materials and Methods

Genes and miRNAs related to GBM
To collect genes involved in the pathology of GBM, we

compiled GBM-related genes from six sources, which included

multiple types of variations with experimental evidence, such as

point mutation, gene fusion, structure rearrangement, and copy

number variation. These sources included the Catalogue Of

Somatic Mutations In Cancer (COSMIC, version 51) [74], the

Online Mendelian Inheritance in Man (OMIM) [75], The Cancer

Genome Atlas (TCGA) [6], and the Genetic Association Database

(GAD) [76], as well as one recently published integrative genomic

analysis of GBM [39] and two genome-wide association studies

[4,5] (Text S1). We mapped these genes to Entrez gene symbols

and ultimately obtained 415 unique genes.

To collect a set of dysregulated miRNAs in GBM, we conducted

a comprehensive literature search to identify studies that directly

assess miRNA dysregulation in GBM patients’ cell lines or tissues.

We first searched the miR2Disease [77], PhenomiR [78] and

HMDD [79] databases for relevant articles using the keyword

‘‘glioblastoma’’ and PubMed using the keywords ‘‘glioblastoma

AND microRNA.’’ Then, we manually checked each title and

abstract for relevance and reviewed the full text if the abstract

indicated that the article reported associations between miRNA

expression and GBM. As a result, we included 24 papers that

directly assessed miRNA expression in GBM samples or cell lines.

From these papers, we retrieved 134 miRNAs with up/down-

regulated information, which were mapped to 124 unique mature

miRNAs based on human miRNAs from miRBase [80].

Prediction of posttranscriptional repression of miRNA to
gene/TF (miRNA- gene/TF)
Currently, several online databases that predict binding sites

and target genes of individual miRNAs are available, such as

PicTar [81], TargetScan [35,82], and miRanda [83]. Among

them, TargetScan has demonstrated the best performance

compared to other miRNA target prediction software [84,85].

Therefore, we extracted the miRNA-gene pairs between GBM-

related miRNAs and GBM-related genes from the TargetScan

server (version 5.2, February 2011) [35]. We required that

miRNA-target interactions be evolutionarily conserved in four

species (human, mouse, rat and dog) and have a total context score

higher than 20.30 [86]. The score quantitatively measures the

overall target efficacy [84,85]. To obtain the posttranscriptional

repression of miRNAs on TFs, we first retrieved 428 TFs that have

human genes as targets from the TRANSFAC Professional

database (release 2011.4) [34] and used the same procedure to

obtain the relationships between miRNAs and TFs.

Prediction of regulatory relationship between TF and
gene/miRNA (TF-gene/miRNA)
To predict the regulatory relationship between TF and gene/

miRNA, we first downloaded the defined promoter region

(21500/+500 around TSS) of 415 GBM-related genes or 134

GBM-related miRNAs from the UCSC Table Browser [87].

Then, we performed a binding sites search using the MatchTM

software that is integrated in TRANSFAC Professional (release

2011.4) [36]. For the purpose of this study, we used pre-calculated

cut-offs to minimize false positive matches (minFP) and create a

high-quality matrix. To restrict the search, we required a core

score of 1.00, a matrix score of 0.95, and TFs that only belong to

the human genome. To further reduce false positive prediction, we

required the predicted pairs to be conserved among humans, mice

and rats [73].

Calculation of co-regulated genes (gene-gene)
Recently, Verhaak et al. [39] integrated the gene expression

data from 200 GBM and two normal brain samples examined by

three gene expression microarray platforms (Affymetrix HuEx

array, Affymetrix U133A array, and Agilent 244 K array) into a

single, unified data set of 11,861 genes using a factor analysis

model. Then, they filtered the unified genes down to 1,740 genes

with consistent but highly variable expression across the platforms

using several filters to eliminate unreliably measured genes. We

directly applied the resulting data to identify co-regulated genes.

Among the 415 GBM-related genes we collected, 120 were

included in the 1,740 genes. We estimated co-regulated relation-

ships among these genes via the ARACNE software, which

implemented the mutual information (MI) theory to identify

transcriptional interactions between genes [40]. We used a high

significance threshold for MI values with a P-value of 1.061027 to

sort out possible false positive and true negative data. To remove

indirect regulatory relationship, we employed a data process

inequality (DPI) tolerance of 0.15 according to the recommenda-

tion by Margolin et al. [88].

Significant miRNA-TF co-occurring pairs
To identify TF and miRNA pairs that cooperatively regulate the

same target genes, we calculated a P-value using a cumulative

hypergeometric test [43] based on the common targets of any pair

of miRNAs and TFs as in the following function:

P~
Xmin (jN(miR)j,jN(tf )j)

i~jN(miR) j\jN(tf ) j

jN(miR)j

i

 !(

Total{jN(miR)j

jN(tf )j{i

 !),

Total

jN(tf )j

 !

,

where N(miR) is the number of genes targeted by a given miRNA,

N(tf ) is the number of genes regulated by a given TF, and Total is

the number of common genes between all human genes targeted

by human miRNAs and all human genes regulated by all human

TFs. We further used the false discovery rate (FDR) to adjust for

multiple testing [89], and only those pairs with a corrected P-value

less than 0.05 were chosen as significant pairs of regulators.

Calculation of Gene Ontology semantic similarity
To quantify functional similarity, we calculated GO semantic

similarity scores for the GO terms for each pair of the co-regulated

genes using the R GOSemSim package [44]. For each of the three

GO categories (BP: biological process, MF: molecular function,

and CC: cellular component), the semantic similarity scores were

computed for all gene pairs in the 3-node and 4-node FFLs. A

gene pair was compiled from any two genes targeted by the same

miRNA-TF pairs. To evaluate the statistical significance of the

functional similarity of co-targeted genes in FFLs, we randomly

selected the same number of genes in 3-node or 4-node FFLs from

the 20,441 Entrez protein-coding genes with GO annotations, and

calculated their GO similarities. We repeated this process 1,000

times. We performed a Kolmogorov-Smirnov test (KS-test) to
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examine whether the GO similarity of all the gene pairs from the

FFLs is significantly greater than that of randomly selected pairs.

Network and subnetwork generation, analyses, and
functional evaluation
In this work, we constructed three major networks. The first

network was the GBM-specific miRNA-TF mediated gene

regulatory network, which was generated by converging all

significant 3-node and 4-node FFLs. The second one was the

GBM composite regulatory network generated by merging only

those significant 3-node and 4-node composite-FFLs. The third

one was the subnetwork for the Notch signaling pathway. We first

collected the genes belonging to the Notch pathway from the

KEGG and Ingenuity systems and merged those FFLs that

included at least one Notch pathway gene to generate a Notch-

specific regulatory network in GBM.

Considering the complexity of regulatory networks and our goal

of distilling critical elements, we simplified the network analysis by

disregarding the direction of the edges. We computed nodes’

degrees and their distributions in order to assess network

characteristics. The degree of a node, the network’s most

elementary characteristic, is measured by the number of links of

the node in the network. If the degree distribution of one network

follows a power law, the network would have only a small portion

of nodes with a large number of links (i.e., hubs) [47]. To

determine the hubs in our network, we applied the method

proposed by Yu et al. [50] to draw a degree distribution for each

node in the network. For local network analysis, we used the

software CFinder (version 2.0.5) [57] to generate tightly connected

sub-networks from the pathway network, and we then visualized

them using Cytoscape (version 2.8) [90].

To identify pathways overrepresented in GBM-related genes

from the GBM composite regulatory network, we performed a

pathway enrichment analysis using the Core Analysis Tool in

Ingenuity Pathway Analyses (IPA) from Ingenuity Systems [68].

Given a list of genes, a right-tailed Fisher’s exact test was performed

for the enrichment of these genes based on its hand-curated

canonical pathway database. To control the error rate in the

analysis results, IPA also provided a corrected P-value based on the

Benjamini-Hochberg method [89]. GO and KEGG enrichment of

the subnetworks was analyzed using WebGestalt [46].

Supporting Information

Figure S1 A catalogue of merged feed-forward regula-
tory loops (FFLs). Each composed of a known transcription

factor (TF), a mature microRNA (miRNA) and a list of GBM-

related genes or a list of GBM-related co-regulated gene pairs.

According to the relationship between the transcription factor (TF)

and microRNA (miRNA), the mixed FFLs were classified as the

TF-FFL model (the TF directly regulates the miRNA), miRNA-

FFL model (the miRNA only directly regulates the TF) or

composite-FFL model (the TF and the miRNA regulate each

other). The relationships represented by solid lines are required

while the relationships represented by dot lines are not required.

(TIF)

Figure S2 Cumulative distributions of functional se-
mantic scores for biological process (BP), molecular
function (MF), and cellular component (CC) of gene
pairs for randomly selected genes (black), co-regulated
genes in 3-node FFLs (blue) and co-regulated genes in 4-
node FFLs (red). The inserted P-values were calculated by the

Kolmogorov-Smirnov test.

(TIF)

Figure S3 Intersects of GBM-related genes, GBM-relat-
ed miRNAs and TFs from TF-FFLs, miRNA-FFLs and
composite-FFLs in 3-node model (A) and 4-node model
(B), respectively.

(TIF)

Figure S4 Intersects of nodes (A) and links (B) in 3-node
FFLs and those in 4-node FFLs.

(TIF)

Figure S5 Degree distributions of all nodes in GBM-
specific miRNA-TF mediated regulatory network. The

red for GBM-related microRNAs, green dots are for GBM-related

genes, and blue for TFs. The Y-axis represents the proportion of

nodes having a specific degree.

(TIF)

Figure S6 Notch-specific miRNA-TF mediated regulato-
ry subnetworks specific for GBM identified by software
CFinder. Different subnetworks are shown by IDs from ‘A’ to

‘D’. Nodes in red (round rectangle) correspond to GBM-related

miRNAs, green ones (ellipse) correspond to GBM-related genes,

and blue ones (triangle) correspond to transcription factors (TFs).

The edge colors represent the different relation: red represents the

repression of miRNAs to genes or TFs, and blue represents the

regulation of TFs to genes or miRNAs.

(TIF)

Figure S7 Comparison between the GBM Notch-specific
regulatory network (A) and the relative network after
removing the centered subnetwork (B). Nodes in red (round

rectangle) correspond to GBM-related miRNAs, green ones

(ellipse) correspond to GBM-related genes, and blue ones (triangle)

correspond to transcription factors (TFs). Among them, nodes in

yellow are centred nodes in the network. The edge colors represent

the different relation: red represents the repression of miRNAs to

genes or TFs, and blue represents the regulation of TFs to genes or

miRNAs.

(TIF)

Figure S8 Comparison between the GBM Notch-specific
miRNA-TF regulatory network (A) and the relative
network after removing the centred subnetwork and
its directly linked nodes (B). Nodes in red (round rectangle)

correspond to GBM-related miRNAs, green ones (ellipse)

correspond to GBM-related genes, and blue ones (triangle)

correspond to transcription factors (TFs). Among them, nodes in

yellow are centered nodes and their directly interacting nodes in

the network. The edge colors represent the different relation: red

represents the repression of miRNAs to genes or TFs, and blue

represents the regulation of TFs to genes or miRNAs.

(TIF)

Figure S9 miR-34a Specific regulatory network extract-
ed from GBM-specific miRNA-TF mediated regulatory
network. One node in red (round rectangle) corresponds to one

GBM-related miRNA (has-miR-34a), green nodes (ellipse) corre-

spond to GBM-related genes, and blue ones (triangle) correspond

to transcription factors (TFs). The edge colors represent the

different relation: red represents the repression of miRNAs to

genes or TFs, and blue represents the regulation of TFs to genes or

miRNAs.

(TIF)

Figure S10 Four types of regulation between coex-
pressed genes and two regulatory elements: TF and
miRNA. The relationships represented by solid lines are required.

Among the two relationships by dash dot lines, at least one is
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required. Nodes in orange (round rectangle) correspond to GBM-

related miRNAs, red ones (ellipse) correspond to GBM-related

genes, and blue ones (triangle) correspond to transcription factors

(TFs).

(TIF)

Table S1 Six sources for collection of glioblastoma
(GBM)-related genes.
(DOC)

Table S2 Merged 3-node FFLs including TF-FFLs,
miRNA-FFLs and composite-FFLs.
(XLS)

Table S3 Comparison of number of targets with same
protein family annotation in FFLs with randomly
selected genes.
(DOC)

Table S4 Pathways significantly enriched for 153 GBM-
related genes in 3-node FFLs.
(DOC)

Table S5 Merged 4-node FFLs including TF-FFLs,
miRNA-FFLs and composite-FFLs.
(XLS)

Table S6 Significantly enriched KEGG pathways in the
176 genes.
(DOC)

Table S7 GBM-specific miRNA-TF mediated regulatory
network.
(XLS)

Table S8 miRNAs potentially involved in GBM-specific
Notch signaling pathway.
(DOC)

Text S1 Compiling glioblastoma-related genes (GBM-
related genes) from multiple datasets.

(DOC)

Text S2 Pfam annotation used to test whether the target
protein in each merged FFL tend to belong to same
protein family.
(DOC)
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