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ABSTRACT
G protein-coupled, seven-transmembrane segment receptors

(GPCRs or 7TM receptors), with more than 1000 different members,
comprise the largest superfamily of proteins in the body. Since the
cloning of the first receptors more than a decade ago, extensive ex-
perimental work has uncovered multiple aspects of their function and
challenged many traditional paradigms. However, it is only recently
that we are beginning to gain insight into some of the most funda-
mental questions in the molecular function of this class of receptors.
How can, for example, so many chemically diverse hormones, neu-

rotransmitters, and other signaling molecules activate receptors be-
lieved to share a similar overall tertiary structure? What is the nature
of the physical changes linking agonist binding to receptor activation
and subsequent transduction of the signal to the associated G protein
on the cytoplasmic side of the membrane and to other putative sig-
naling pathways? The goal of the present review is to specifically
address these questions as well as to depict the current awareness
about GPCR structure-function relationships in general. (Endocrine
Reviews 21: 90–113, 2000)
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I. Introduction

G PROTEIN-coupled, seven-transmembrane segment re-
ceptors (GPCRs or 7TM receptors) comprise the larg-

est superfamily of proteins in the body. More than 1000
different GPCRs have been identified since the first receptors
were cloned more than a decade ago (1). The chemical di-
versity among the endogenous ligands is exceptional. They
include biogenic amines, peptides, glycoproteins, lipids, nu-
cleotides, ions, and proteases. Moreover, the sensation of
exogenous stimuli, such as light, odors, and taste, is mediated
via this class of receptors (1, 2). GPCRs have been named
based on their ability to recruit and regulate the activity of
intracellular heterotrimeric G proteins. GPCRs act at the het-
erotrimeric G proteins as guanine-nucleotide exchange fac-
tors; thus, the activated receptor induces a conformational
change in the associated G protein a-subunit leading to re-
lease of GDP followed by binding of GTP (3). Subsequently,
the GTP-bound form of the a-subunit dissociates from the
receptor as well as from the stable bg-dimer. Both the GTP-
bound a-subunit and the released bg-dimer can modulate
several cellular signaling pathways. These include, among
others, stimulation or inhibition of adenylate cyclases and
activation of phospholipases, as well as regulation of potas-
sium and calcium channel activity (4). The complexity of
GPCR signaling has recently been further underlined by data
indicating that GPCRs may not solely act via heterotrimeric
G proteins (5–10). Most intriguingly, it has been suggested
that agonist-promoted phosphorylation of the receptors by
GRKs (G protein-coupled receptor kinases) (11) and subse-
quent sequestration of the receptors from the cell surface (11)
are not only important for turning off signaling, but also play
a key role in switching the receptor from G protein-depen-
dent pathways to signaling cascades normally used by
growth factor receptors (5–7, 10). Yet another example illus-
trating the impressive variability of GPCR function is the
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observation that human immune deficiency virus (HIV) uti-
lizes G protein-coupled chemokine receptors as cofactors for
their cellular entry (12–15).

It is thus clear that extensive experimental work per-
formed over the last decade has uncovered multiple aspects
of GPCR function and challenged many traditional para-
digms (reviewed in Refs. 7 and 16–22). However, it is only
recently that we are beginning to gain insight into some of
the most fundamental questions in GPCR function. How can,
for example, so many chemically diverse hormones, neuro-
transmitters, and other signaling molecules activate recep-
tors believed to share a similar overall tertiary structure?
What is the nature of the physical changes linking agonist
binding to receptor activation and subsequent transduction
of the signal to the associated G protein on the cytoplasmic
side of the membrane and to other putative signaling path-
ways? The goal of the present review is to specifically ad-
dress these questions as well as to depict the current aware-
ness about GPCR structure-function relationships in general.

II. Structural Classification of G Protein-Coupled

Receptors

GPCRs do not share any overall sequence homology (1,
23). The only structural feature common to all GPCRs is the
presence of seven transmembrane-spanning a-helical seg-
ments connected by alternating intracellular and extracellu-
lar loops, with the amino terminus located on the extracel-
lular side and the carboxy terminus on the intracellular side
(Fig. 1). Significant sequence homology is found, however,
within several subfamilies. The three major subfamilies in-
clude the receptors related to the “light receptor” rhodopsin
and the b2-adrenergic receptor (family A), the receptors re-
lated to the glucagon receptor (family B), and the receptors
related to the metabotropic neurotransmitter receptors (fam-
ily C) (Fig. 1). Yeast pheromone receptors make up two minor
unrelated subfamilies, family D (STE2 receptors) and family
E (STE3 receptors). In Dictyostelium Discoideum four different
cAMP receptors constitute yet another minor, but unique,
subfamily of GPCRs (family F) (1).

The subfamily of rhodopsin/b2 adrenergic receptor-like
receptors (family A) is by far the largest and the most studied.
Phylogenetically, family A receptors can be subdivided fur-
ther into six major subgroups as indicated in Fig. 1 (1). The
overall homology among all type A receptors is low and
restricted to a number of highly conserved key residues
(indicated in Fig. 1). The high degree of conservation among
these key residues suggests that they have an essential role
for either the structural or functional integrity of the recep-
tors. (Fig. 1). The only residue that is conserved among all
family A receptors is the arginine in the Asp-Arg-Tyr (DRY)
motif at the cytoplasmic side of transmembrane segment
(TM) 3 (Fig. 1) (1, 23).

To facilitate comparison of residues between the large
number of different receptors belonging to family A there is
an obvious need to formulate and use a common numbering
scheme. Currently, three different numbering schemes have
been suggested but none of them have gained any wide
acceptance. The Schwartz and Baldwin numbering schemes

are, in principle, identical (24, 25). According to both
schemes, the most conserved residue in each helix (yellow
residues in Fig. 2B and Fig. 3) has been given a generic number
describing their predicted relative position in a standard
helix of 26 residues (24, 25). A given residue is then described
by the helix in which it is located (I–VII) followed by a
number indicating its position in the helix. For example, V.16
indicates residue number 16 in TM (transmembrane seg-
ment) 5. However, the two numbering schemes are unfor-
tunately incompatible with one another since they do not,
except in helix 1, agree on the relative positioning of the
conserved residues in the helices (24, 25). This problem is not
apparent in the Ballesteros-Weinstein numbering scheme
(26). In this scheme, the most conserved residue in each helix
has been given the number 50, and each residue is numbered
according to its position relative to this conserved residue.
For example, 6.55 indicates a residue located in TM 6, five
residues carboxy terminal to Pro6.50, the most conserved
residue in helix 6 (Fig. 2B and Fig. 3) (26). Since there is no
general agreement at this stage in the field on which scheme
to use, all residues in this review will be indicated according
to the Schwartz scheme followed by the Ballesteros-Wein-
stein number in superscript.

Family B receptors include approximately 20 different re-
ceptors for a variety of peptide hormones and neuropeptides,
such as vasoactive intestinal peptide (VIP), calcitonin, PTH,
and glucagon (Fig. 1). Except for the disulfide bridge con-
necting the second (ECL 2) and third extracellular loops (ECL
3), family B receptors do not contain any of the structural
features characterizing family A receptors (1) (Fig. 1). No-
tably, the important DRY motif is absent in family B recep-
tors, and the prolines conserved among the family B recep-
tors are distinct from the ones conserved among the family
A receptors (Fig. 1). The most prominent characteristic of
family B receptors is a large (; 100 residues) extracellular
amino terminus containing several cysteines, presumably
forming a network of disulfide bridges (27).

Family C receptors are characterized by an exceptionally
long amino terminus (500–600 amino acids) (Fig. 1). The
receptors include the metabotropic glutamate and g-amino-
butyric acid (GABA) receptors, the calcium receptors, the
vomeronasal, mammalian pheromone receptors, and the re-
cently identified putative taste receptors (1, 2). Family C
receptors have, like family A and B receptors, two putative
disulfide-forming cysteines in ECL 2 and ECL 3, respectively,
but otherwise they do not share any conserved residues with
family A and B receptors (Fig. 1). The amino terminus of the
metabotropic glutamate receptors displays remote sequence
homology with bacterial periplasmic binding proteins
(PBPs), especially with the leucine/isoleucine/valine bind-
ing protein (28). The glutamate binding site has been pro-
posed to be equivalent to the known amino acid binding site
of PBPs; therefore, it is believed that the amino terminus of
family C receptors contains the ligand-binding site (28, 29).

III. Structural Probing of GPCRs

Due to the inherent difficulties in crystallizing complex
membrane proteins, high-resolution structural information
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FIG. 1. GPCRs can be divided into three major subfamilies (1). A snake diagram for a prototypical member of each subfamily is shown. Family
A receptors (upper panel) can phylogenetically be subdivided into six subgroups as indicated. Family A receptors are characterized by a series
of highly conserved key residues (black letter in white circles). In most family A receptors, a disulfide bridge is connecting the second (ECL2)
and third extracellular loop (ECL3) (white letters in black circles). In addition, a majority of the receptors have a palmitoylated cysteine in the
carboxy-terminal tail causing formation of a putative fourth intracellular loop. Family B receptors (middle panel) are characterized by a long
amino terminus containing several cysteines presumably forming a network of disulfide bridges. The B receptors contain, similar to the A
receptors, a disulfide bridge connecting ECL2 and 3. However, the palmitoylation site is missing. Moreover, the conserved prolines are different
from the conserved prolines in the A receptors and the DRY motif at the bottom of TM 3 is absent. Family C receptors (lower panel) are
characterized by a very long amino terminus (;600 amino acids). The amino-terminal domain is thought to contain the ligand-binding site (see
Section IV.F). Except for two cysteines forming a putative disulfide bridge, the C receptors do not have any of the key features characterizing
A and B receptors. Some highly conserved residues are indicated (black letter in white circles). A unique characteristic of the C receptors is a
very short and highly conserved third intracellular loop.
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is not yet available for GPCRs. A high-resolution structure of
the light-driven proton pump from Halobacterium halobium,
bacteriorhodopsin, has been available for several years (30).
Since bacteriorhodopsin, similar to the GPCRs, possesses
seven-transmembrane a-helices and uses retinal as its chro-
mophore, it has been considered a bacterial homolog of ver-
tebrate rhodopsin. The bacteriorhodopsin structure has ac-
cordingly been widely used as a template for tertiary
structure models of GPCRs (31–35). However, bacteriorho-
dopsin is a proton pump, is not linked to a G protein, and
does not even display remote sequence homology with any
GPCR. Moreover, the structural information that recently has
become available for rhodopsin indicated clear differences
between bacteriorhodopsin and rhodopsin (30, 36–39). Over-
all, the use of bacteriorhodopsin as a template for molecular
models should now be considered obsolete.

Using electron cryomicroscopy of two-dimensional crys-
tals, Schertler and co-workers (36–39) have succeeded in
obtaining low-resolution structures of both bovine and frog
rhodopsin. In addition, a low-resolution structure of squid
rhodopsin has become available (40). The first projection
map of bovine rhodopsin at 9 Å resolution provided the first
direct insight into how the predicted seven helices are or-
ganized relative to one another in the tertiary structure of the
receptor (36). Importantly, a very similar arrangement of the
transmembrane helices was found in the projection maps of
frog and squid rhodopsin at 7 Å and 8 Å resolutions, re-
spectively (38, 40). The projection maps are characterized by
an arc-shaped feature, which has been interpreted as reflect-
ing the presence of three tilted helices (36, 38, 40). Four
additional peaks were interpreted as the remaining four
transmembrane helices (36, 38, 40). The structural informa-
tion achieved from aligning multiple receptor sequences per-
mitted assignment of the individual peaks in the projection
maps to the individual helices in the receptor (25, 41). As
shown in Fig. 2, it is believed that the helices are organized
sequentially in a counterclockwise fashion as seen from the
extracellular side, with helix 3 being almost in the center of
the molecule. Further insight into the packing of the seven-
helix bundle and calculation of the tilting angles of the helices
have been achieved by detailed analysis of tilted two-di-
mensional crystals of bovine and frog rhodopsin, allowing
generation of the first three-dimensional maps (37, 38). The
resolution of the map based on the frog rhodopsin crystals
was 7.5 Å in the plane of the membrane and 16.5 Å perpen-
dicular to it (38). According to the map, helices 1, 2, and 3 are
tilted 27–30 degrees, helix 5 is tilted 23 degrees, whereas
helices 4 and 7 are almost perpendicular to the plane of the
membrane (38). Helix 6 appears almost perpendicular to the
plane of the membrane in the cytoplasmic half but is bent
toward helix 5 on the extracellular side (38). The structure
also shows that the helices are tightly packed on the intra-
cellular side with helices 2 and 3 packed between helix 4, 6,

FIG. 2. The predicted structure of rhodopsin-like GPCRs. A, Dia-
gram of a rhodopsin-like GPCR as seen from the extracellular side
with each helix represented by a cylinder. The helices are posi-
tioned according to the projection maps of frog rhodopsin (37, 38).
The helices are organized sequentially in a counterclockwise fash-
ion with helix 3 being almost in the center of the molecule (37, 38).
B, “Helical wheel” diagram of a rhodopsin-like GPCR as seen from
the extracellular side. The helices are positioned according to the
projection maps of frog rhodopsin (37, 38). The conserved finger-
print residues are shown in yellow. These residues have been given
a general number to facilitate comparison of residues between the
receptors. According to the Schwartz numbering scheme, the num-
ber is given according to its predicted relative position in the helix
(24). For example, ProV.16 indicates residue number 16 in TM 5.
In the Ballesteros-Weinstein numbering scheme the most con-
served residue in each helix has been given the number 50 (26). The
residues are indicated according to the Schwartz scheme followed
by the Ballesteros-Weinstein number in superscript. C, Molecular
model of the b2-adrenergic receptor, as seen from the extracellular
side, based on the projection map of rhodopsin (26) and structural

analysis of multiple GPCR sequences (26). The full agonist epineph-
rine is shown in the binding crevice with key interactions highlighted
(see Section IV.A.2 for further details). Dr. Juan Ballesteros is
thanked for preparing the figure. Susan L. Glick and Julie Bryant
from Molecular Simulations, Inc., are thanked for technical assis-
tance.
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and 7 (38). On the extracellular side the helical arrangement
opens up and forms a cavity that serves as a binding pocket
for retinal. The cavity is lined by helices 3, 4, 5, 6, and 7 and
is closed toward the intracellular side by the tilted helix 3 (38).
A recent projection map of bovine rhodopsin with an im-
proved resolution (5 Å) suggests that the two-dimensional
crystallography technique may lead to even more detailed
understanding of the tertiary structure of GPCRs (39).

Guided by the rhodopsin projection maps and the struc-
tural information that has been acquired from extensive anal-
ysis of multiple GPCR sequences, several tertiary structure
models of receptors belonging to family A have been devel-
oped over the last few years (25, 26, 41, 42) (Fig. 2C). The
models are, of course, still somewhat uncertain but they do
provide a believable general picture of the receptor structure
and thus a reliable framework within which the structure
and molecular function of GPCRs can be further debated and
experimentally explored. Importantly, a large number of ex-
perimental studies, aimed at probing tertiary structure re-
lations in GPCRs, have been highly critical for refining and
validating the molecular models. First of all, this includes
identification of several distance constraints in the receptor
structure. The close proximity between TM 1 and 7 has, for
example, been established based on rescue of nonfunctional
adrenergic a2/b2 receptor chimeras and muscarinic M2/M5
chimeras (43–46). An important series of helix-helix inter-
actions have also been identified by engineering of histidine
zinc(II) binding sites in the neurokinin 1 (NK-1) (substance
P) receptor and the k-opioid receptor (47–49). In the NK-1
receptor bis-zinc(II) binding sites were constructed by intro-
ducing pairs of histidines in positions predicted to be in close
proximity, and in this way it was possible to define the
proximity and orientation of TM 3 relative to TM 2 and 5 (47).
The distance constraints inferred from the engineered zinc(II)
binding sites, as well as from the rescue of nonfunctional
chimeras, strongly supported a counterclockwise organiza-
tion of the seven helices as seen from the extracellular side
(45–47). Additional distance constraints in the tertiary struc-
ture of the receptors have been identified by formation of
intramolecular disulfide bridges between engineered pairs of
cysteines in rhodopsin (50, 51) and lately in the M3 musca-
rinic receptor (52). Notably, the use of biophysical techniques
has also allowed insight into tertiary structure relationships.
Turcatti et al. established a system, based on suppression of
UAG nonsense codons and the use of modified tRNAs, al-
lowing biosynthetic introduction of a fluorescent, unnatural
amino acid at known sites in the tachykinin NK-2 receptor
during heterologous expression in Xenopus oocytes. In this
way, they were able to define a set of distances in the tertiary
structure by measurement of fluorescence resonance energy
transfer between a fluorescent peptide antagonist and dif-
ferent sites containing the fluorescent amino acid (53).

In the GnRH receptor, the proximity between TM 2 and 7
was suggested based on identification of an evolutionary
reciprocal mutation (54). In nearly all family A receptors
there is a conserved aspartic acid in TM 2, AspII.102.50 (II.10
according to the Schwartz numbering scheme, 2.50 according
to the Ballesteros-Weinstein scheme), and a conserved as-
paragine in TM 7 (VII.167.49) (Fig. 3), but in the GnRH re-
ceptor an asparagine is found in the corresponding position

in TM 2 and an aspartic acid in TM 7. Since replacement of
the asparagine in TM 2 with aspartic acid eliminated detect-
able ligand binding, but high-affinity agonist binding was
restored by additional mutation of the aspartic acid in TM 2
to asparagine, it was proposed that the two residues are in
close spatial proximity (54). The observation is not readily
compatible with the receptor model proposed by Baldwin et
al. (25). In this model the distance between the a-carbons of
the two residues is 10.4 Å, which is too large for their side
chains to form a direct hydrogen-bonding interaction (25).
However, if the proposed kink at ProVII.177.50 also causes a
twisting of the helix, the two residues can be in sufficiently
close proximity to form a direct interaction (26, 55). Remark-
ably, the presence of both a kink and twist in helix 7 is
experimentally supported by the observed cysteine accessi-
bility pattern in TM 7 (55).

Applying the substituted cysteine accessibility method to
the dopamine D2 receptor has provided further highly useful
structural information about GPCRs (55–59). Javitch and co-
workers (55–58) have systematically substituted residues in
TM 2, 3, 5, 6, and 7 with cysteine and determined their
accessibility in the predicted binding crevice by reacting with
charged sulfhydryl-specific methanethiosulfonate (MTS) de-
rivatives. Their data have allowed mapping of residues fac-
ing the binding crevice and estimation of the relative orien-
tation of individual helices (55–58). The accessibility patterns
were consistent with TM 2, 3, 6, and 7 forming regular
a-helices in agreement with the predictions from the rho-
dopsin projection maps (55, 56, 58). In TM 6 and 7, the data
also supported the presence of kinks corresponding to the
conserved prolines, ProVI.156.50 and ProVII.177.50, respec-
tively (Figs. 2 and 3) (55, 58). The accessibility pattern in TM
5 differed from that observed in the other helices (57). A
stretch of 10 consecutive residues in the outer portion of TM
5 were found exposed in the binding crevice, which is in-
consistent with the prediction that TM 5, like the other he-
lices, should form a regular helix with one side exposed and
one side hidden form the crevice (57). There is no obvious
explanation for this observation. One explanation could be
that the exposed stretch of residues is nonhelical and loop out
into the lumen of the binding crevice, making all the residues
accessible to the MTS reagents. Alternatively, the outer por-
tion of TM 5 may be structurally flexible and rapidly shift
between different conformations, exposing different sets of
residues to the binding crevice (57). In both cases, it is of
notable interest that the exposed region contains residues
believed to form key contacts with the small-molecule
agonists (60).

In rhodopsin, the application of EPR (electron paramag-
netic resonance) spectroscopy has provided information
about structural features, particularly in the cytoplasmic loop
regions. Consecutive residues in the cytoplasmic loops and
the carboxy-terminal tail have been substituted with cysteine
and each of the cysteine mutants was labeled with sulfhy-
dryl-specific nitroxide spin labels (61–65). By determining
the accessibility of the attached nitroxide labels to collisions
with paramagnetic probes in solution, information about
aqueous/hydrophobic boundary zones and secondary struc-
ture relations was obtained. The accessibility pattern in the
third intracellular loop connecting TM 5 and 6 provided
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important evidence that these two a-helices extend two to
three turns beyond the cytoplasmic surface of the membrane
(62). In the second intracellular loop connecting TM 3 and 4,
the analysis indicated that the TM 3 a-helix extends at least
1.5 turns past the important D/ERY motif (Figs. 1 and 3) and
that much of the helix surface at the cytoplasmic side forms
contacts with protein rather than with the lipids (61). Anal-
ysis of the “fourth intracellular loop” between the cytoplas-
mic end of TM 7 and the palmitoylation site indicated that
helix 7 extends around 1.5 turns beyond the membrane sur-
face and that the remaining part of the loop forms very strong
tertiary contacts with the protein (64). It was therefore sug-
gested that the loop beyond the helix may be folded over the
body of rhodopsin, allowing interactions with residues in the
first loop between TM 1 and 2 (64).

IV. Ligand-Binding Domains

Numerous studies have been carried out to identify do-
mains involved in ligand binding to various subclasses of
GPCRs. The binding sites for endogenous “small-molecule”
ligands in family A receptors, such as the binding site for the
retinal photochromophore in rhodopsin and the binding site
for catecholamines in the adrenergic receptors, are perhaps
the most well characterized. They have been described in
detail several times (16, 17, 19, 21) and will therefore be
reviewed here only briefly. It is, however, only recently that we
have gained insight into binding domains for other classes of
ligands. In particular, the ligand-binding domains in peptide
receptors are of interest due to the discovery of many small-
molecule nonpeptide ligands that can act with high potency at
peptide receptors as antagonists and agonists. Intriguingly, it
has appeared that the small-molecule agonists and antagonists
of peptide receptors may not necessarily share an overlapping
binding site with the endogenous peptide agonist. Since these
findings have wide implications for receptor activation models,
the current knowledge about ligand-binding domains in pep-
tide receptors will be described in more detail. Specifically, the
focus will be on the tachykinin system, which has been exten-
sively investigated and served as an important model system
for peptide GPCRs.

A. Rhodopsin and the biogenic amines

1. Rhodopsin. The photochromophore of rhodopsin and the
opsins, 11-cis-retinal, is unique among the endogenous li-
gands for GPCRs in that it is covalently attached to the re-
ceptor within a binding crevice formed by the transmem-
brane helices (reviewed in Ref. 66). Through formation of a
Schiff base, 11-cis-retinal is coupled to a lysine in TM 7
(Lys296, VII.107.43). The protonated Schiff base is paired with
a glutamic acid (Glu113, III.043.28) in the outer portion of TM
3 (67). Additional interactions are found in TM 3 between the
C9 group of retinal and Gly121 (III.123.36) (68), and between
retinal and aromatic residues in the outer portion of TM 6
(69). Upon exposure to light, 11-cis-retinal undergoes an
isomerization to all-trans-retinal, which leads to formation of
the metarhodopsin II state and thus receptor activation (66).
While all-trans-retinal behaves like the rhodopsin agonist,
11-cis-retinal behaves as an inverse agonist (i.e., an antagonist

with negative intrinsic activity), keeping the receptor quies-
cent in the absence of light (70).

2. Classical small-molecule transmitter family A receptors. The
binding sites for the classical “small-molecule” transmitters
(epinephrine, norepinephrine, dopamine, serotonin, hista-
mine, and acetylcholine) are contained in a binding crevice
formed by the transmembrane helices. The residues involved
in binding of agonists and antagonists to the b2- adrenergic
receptor are found in TM 3, 5, 6, and 7 (Figs. 2C and 3). The
binding crevice is deeply buried in the receptor molecule as
evidenced by spectroscopic analysis of the fluorescent an-
tagonist carazolol bound to the b2 -adrenergic receptor (71).
The energetically most important interaction is most likely a
salt bridge between the charged amine of adrenergic ligands
and the carboxylated side chain of Asp113 (AspIII.083.32) in
TM 3 (72) (Figs. 2C and 3). This aspartic acid is conserved
among the biogenic amine receptors and is thought to in-
teract also with the positively charged head group of dopa-
mine (73), serotonin (74, 75), histamine (76), and acetylcho-
line (77). Additional key interactions of the agonists in the
b2-adrenergic receptor include hydrogen bonding between
the hydroxyls of the catechol ring in epinephrine and two
serines one a-helical turn apart in TM 5, Ser204 (V.095.43) and
Ser207 (V.125.46) (60) (Figs. 2C and 3). In TM 6, Phe290
(VI.176.52) may stabilize the catechol ring (78) while recent
evidence suggests that Asn293 (VI.206.55) forms a hydrogen
bind with the b-hydroxyl of epinephrine (79) (Figs 2C and 3).
In the case of the b2-adrenergic antagonists, which are struc-
turally related to the endogenous agonists, evidence suggests
that they share the Asp113 (III.083.32) ionic interaction with
the agonists, but that other key interactions differ. For aryl-
oxyalkylamine antagonists, such as alprenolol and propran-
olol, an asparagine in TM 7 (Asn312, VII.067.39) has been
identified as a critical interaction point (80) (Fig. 3). Even
though the majority of ligands for small-molecule transmit-
ter receptors seems to bind deep within the binding crevice,
there are indications that some antagonists, which show no
structural relationship with their corresponding agonist,
may partly interact with residues closer to the surface of the
membrane. For example, a1B-antagonists, such as phentol-
amine and WB4101, may interact with three residues in ECL
2 immediately adjacent to the top of TM 5 (81).

B. The binding domains for peptide ligands in peptide

receptors belonging to family A

More than 50 different neuropeptides and peptide hor-
mones have been identified. With only a few exceptions,
these peptide messengers all act through receptors belonging
to the GPCR superfamily and, at present, more than 100
different peptide GPCRs, including subtypes, have been
identified (1). In contrast to the general picture obtained for
the small-molecule ligands, mutational mapping of ligand-
binding sites in many of the peptide receptors has demon-
strated the critical involvement of the extracellular domains
for binding of the larger peptide ligands.

1. The tachykinin system. The mammalian tachykinins include
substance P, neurokinin A, and neurokinin B, which act at the
NK-1 receptor, the neurokinin-2 (NK-2) receptor, and the
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neurokinin-3 (NK-3) receptor, respectively (82). In addition,
a variant of the NK-3 receptor, NK-3B, has recently been
identified (83). These receptors are homologous but display
significant differences in their pharmacological profile (82,
84, 85). The initial analyses of chimeric NK-1/NK-2 receptors
and NK-1/NK-3 receptors suggested that multiple epitopes
scattered throughout the receptor structures contribute to the
subtype selectivity of the tachykinin peptides and that dif-
ferent receptor domains contribute in varying degrees to the
receptor specificity (84, 85). This suggests that the binding
sites for the tachykinin peptides are not fully identical (85).
Exchange of extracellular loop segments between the NK-1
and NK-3 receptors revealed the involvement of the extra-
cellular domains in binding of the tachykinins (86, 87). Sub-
sequent point-mutational analysis of the NK-1 receptor iden-
tified three residues in the amino terminus (Asn23, Glu24,
and Phe25), a residue at the top of TM 3 (His108), and a
residue at the top of TM 7 (Tyr287) as putative points of
interaction for substance P (Fig. 3) (86–88). The importance
of the loop regions in substance P binding has been directly
supported by affinity cross-linking of a photolabile and ra-
dioactively labeled substance P analog to Met181 in the third
extracellular loop (89, 90) (Fig. 3). At present, there is no clear
evidence that substance P, like the small-molecule ligands,
enters deeply into a binding crevice formed by the trans-
membrane helices. Despite extensive mutational analysis of
residues facing the putative binding crevice, no residues
have convincingly been identified as potential sites of inter-
actions for substance P (24, 91).

Mutational analysis of neurokinin A binding to the NK-2
receptor also demonstrated evidence for interactions with
residues in the extracellular domains (92, 93). However, the
residues affecting neurokinin A binding in the NK-2 receptor
differed partly from the residues affecting substance P bind-
ing in the NK-1 receptor (92, 93). Moreover, mutation of
residues in the transmembrane regions, e.g., Leu202 (V.095.43)
in the middle of TM 5, was found to affect neurokinin A
binding (92, 93). Thus, neurokinin A may partially enter the
transmembrane binding crevice. In agreement with the ini-
tial chimeric studies (85), these findings indicate that there
may be clear differences in the binding modes even among
homologous peptides acting at homologous receptors.

Mutation of four residues situated on the same face of helix
2 in the NK-1 receptor has been reported to substantially
impair the ability of substance P to compete for binding of
radiolabeled nonpeptide antagonists (88). It was therefore
initially concluded that these residues are involved in sub-
stance P binding. However, it has later been shown that
radiolabeled substance P itself could bind with essentially
unaffected affinity to the mutated receptors (94). The most
likely explanation is that these mutations, rather than affect-
ing the peptide-binding site, affect the ability of the receptor
to freely interchange between distinct receptor conforma-
tions, which bind the nonpeptide antagonist and peptide
agonist with high affinity, respectively (94). Notably, similar
observations have been done in the k-opioid receptor (95),
and recently mutation of yet another residue in the NK-1
receptor (Gly166, IV.214.65) has been shown to affect inter-
conversion between different receptor states that display
distinct selectivity for the tachykinin peptides (96). These

observations underline the importance of direct determina-
tion of binding affinity or testing second messenger coupling
ability for an agonist before it is reasonable to consider
whether the effect of a mutation reflects a real interaction
between the ligand and the receptor or is due to an indirect
effect.

2. Other family A peptide receptors. For the majority of receptors
studied, there is evidence for major interactions in the amino
terminus and predicted extracellular loop regions. This in-
cludes the receptors for angiotensin (97–99), neuropeptide Y
(100), chemokines (interleukin-8) (101), vasopressin/oxyto-
cin (102), GnRH (103), TRH (104–106), complement factor
C5A (107, 108), formyl-Leu-Met-Phe (109), somatostatin
(110), opioids (111–115), bradykinins (116), cholecystokinin/
gastrin (117–121), and neurotensin (122). Importantly, the
significance of the extracellular domains for binding of pep-
tide ligands has been directly documented using affinity
cross-linking techniques in the GnRH receptor (103), the
bradykinin B2 receptor (116), and the cholecystokinin
CCK-A receptor (118, 121).

Evidence indicates that some of the peptides have addi-
tional points of interactions in the transmembrane domains
and therefore, to different degrees, may enter the transmem-
brane binding crevice. These include both the small tripep-
tides TRH (123, 124) and fMLP (125) and larger peptides such
as angiotensin (126, 127), endothelin (128–130), somatostatin
(131–133), opioids (134), and bradykinin (135). The residues
identified are found in the outer portions of TM 2, 3, 5, 6, and
7. They differ considerably among the receptors and are,
except in a very few cases (128, 131), different from the key
positions believed to interact with the biogenic amines. How-
ever, it is remarkable to note that almost all of the residues
identified appear to be on the surface of the predicted bind-
ing crevice as assessed by the cysteine accessibility method
(55–59). This supports a high degree of structural similarity
between the receptors, even though they bind chemically
very different ligands.

C. The binding domains for nonpeptide ligands in peptide

receptors belonging to family A

The large group of peptide receptors represents an im-
pressive pool of potential drug targets; however, until re-
cently this has been an almost unexplored area due to the low
bioavailability and metabolic instability of the peptide li-
gands. It has been a long sought goal to develop small-
molecule nonpeptide compounds that are orally active and
can act at peptide receptors with high potency. The first and
most significant discovery, indicating that this would be
feasible, was the identification in the 1970s of a family of
peptides, the enkephalins and endorphins, as the endoge-
nous ligands of the opioid receptors (136). Until then, the
only known ligands for the opioid receptors were nonpep-
tide exogenous compounds, such as morphine and naloxone.
The finding directly showed that small nonpeptide com-
pounds can act with high affinity at peptide receptors both
as agonists and antagonists. It is only within recent years,
however, that high-affinity nonpeptide compounds have
been discovered for an increasing number of peptide recep-
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tors and changed the peptide receptor field into a rapidly
expanding area for drug development (24). The majority of
the nonpeptide compounds [mostly antagonists but recently,
in some cases, also agonists (137)] are developed into high-
affinity compounds from “leads” identified by screening of
large chemical files (24). In almost all cases, the resulting
compounds exhibit no obvious structural similarity to the
endogenous peptide ligands, despite an apparent classical
competitive mode of action and despite the ability of both the
peptide agonist and nonpeptide antagonists to bind with
often subnanomolar affinity to the same receptor (24). In-
terestingly, these nonpeptide compounds have turned out to

be valuable for understanding the molecular function of
GPCRs.

1. Tachykinin nonpeptide antagonists. An initial series of chi-
meric NK-1/NK-3 receptors provided the first evidence that
the binding mode for the prototype nonpeptide NK-1 recep-
tor antagonist, CP 96,345, was distinct from the binding
mode of the endogenous agonist substance P (138). Several
chimeric exchanges that dramatically affected CP 96,345 af-
finity did not affect binding of substance P (138). Overall, the
chimeric analyses indicated that CP 96,345 and several other
structurally distinct nonpeptide NK-1 receptor antagonists,

FIG. 3. Comparison of ligand-binding domains in a prototype small-molecule family A receptor (the b2-adrenergic receptor, b2AR) with a
prototype family A peptide receptor (the NK-1 receptor). Upper panels, Snake diagrams of the human b2AR and the human NK-1 receptor.
Lower panels, Helical wheel diagrams of the receptors as seen from the extracellular side. The helices are positioned in a counterclockwise fashion
according to the projection map of rhodopsin (25, 36, 38, 41). In the upper panels the most highly conserved residue in each helix is indicated
in yellow. These so-called “finger print” residues have been given a general number to facilitate comparison of residues between the receptors.
According to the Schwartz numbering scheme, the number is given according to its predicted relative position in the helix (24). For example,
ProV.16 indicates residue number 16 in TM 5. In the Ballesteros-Weinstein numbering scheme, the most conserved residue in each helix has
been given the number 50 (26). The numbers for each key residue, according to both numbering schemes, are indicated on this figure below
the receptors. Otherwise, the residues shown in the figure are indicated by their “real” number in the receptor followed by the number according
to the Schwartz numbering scheme. The amino acids predicted to form the contact points for the agonists are shown in green while residues
involved in small-molecule antagonist binding are shown in red (see text for details). The residues in the b2AR (left panels) that form the agonist
binding site for the epinephrine are found in a binding crevice between TM 3, 5, and 6 (72, 78, 79). In contrast, the presumed major contact
points for the peptide agonist, substance P, in the NK-1 receptor (right panels) are found in the extracellular domains or at the top of the helices
(86–88). In the b2AR, an asparagine in TM 7 (AsnVII.06) has been shown to interact specifically with aryloxyalkylamine antagonists (80).
Notably, the aspartic acid in TM 3 (AspIII.08) (shown in green) is a common interaction point for both adrenergic agonists and antagonists (72).
The residues shown in red in the NK-1 receptor are positions of point mutations shown to affect binding of the prototype nonpeptide antagonist
CP 96345 (91, 142–146). Mutation of these residues, clustering in a crevice formed by TM 3, 4, 5, and 6, does not affect peptide agonist binding
(91, 142–146).
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but not substance P itself, interact in different ways with a
domain located around TM 5 and 6 (138, 139). Moreover, data
from a series of NK-1/NK-2 receptor chimeras indicated that
SR 48,968, an NK-2 receptor-selective nonpeptide antagonist,
has critical interactions in the same region of the NK-2 re-
ceptor (140). The different binding modes of the nonpeptide
antagonists and the peptide agonists have also been sup-
ported by comparing fluorescent analogs of substance P and
CP 96,345 bound to the NK-1 receptor. Most significantly, it
was found that while the environment surrounding the non-
peptide antagonist was highly hydrophobic and inaccessible
to hydrophilic quenchers, the peptide was directly exposed
to the solvent (141).

Comprehensive point-mutational analysis has further de-
fined the nonpeptide antagonist binding site in the NK-1
receptor (Fig. 3). The residues predicted to be involved in
nonpeptide antagonist binding are located in a transmem-
brane crevice lined by TM 3, 5, and 6 (91, 142–146), although
interactions for some compounds also may occur in TM 4
(147) and 7 (88). The most well documented putative direct
interactions of the prototype compound CP 96,345 are
Gln165 (IV.204.64) (147), His197 (V.055.39) (142), His265
(VI.176.52) (143, 144), Phe268 (VI.206.55) (91, 146), and Tyr272
(VI.246.59) (145). It should be emphasized here that it is highly
difficult with mutational analysis techniques to distinguish
direct interactions between the ligand and the receptor from
indirect structural effects caused by the mutation. For ex-
ample, mutation or deletion of Lys193 (V.015.35) and Glu194
(V.025.36) substantially affect CP 96,345 binding affinity (145)
(Fig. 3). It is nevertheless unlikely that they participate in a
direct interaction since they can be interchanged without
affecting CP 96,345 affinity (145). Conceivably, these two
residues form a salt bridge that stabilizes the CP 96,345
binding pocket (145). Two other residues, Val116 (III.123.36)
and Ile290 (VII.057.38), which are nonconserved between the
human and rat receptor, have been shown to be responsible
for the species selectivity of CP 96,345 and three other struc-
turally distinct nonpeptide antagonists (148–150) (Fig. 3). It
was concluded that these two residues indirectly affected the
geometry of a common binding crevice for nonpeptide li-
gands (148–150). However, Val116 would be predicted to
face the binding pocket and could, in fact, be involved in a
direct interaction with CP 96,345 (Fig. 3).

Summarized, the studies on the tachykinin receptors sug-
gest the presence of a small-molecule binding pocket, similar
to the binding pocket found in the biogenic amine receptors,
where structurally distinct nonpeptide compounds can be
accommodated through distinct sets of interactions. Surpris-
ingly, this binding pocket is most likely not occupied by
substance P, and thus an actual overlap in the binding sites
is not required for a competitive mode of action of the non-
peptide antagonists.

2. Nonpeptide ligands for other family A peptide receptors. Con-
siderable differences in binding modes between nonpeptide
antagonists and endogenous peptide agonists have been
demonstrated in other peptide receptor systems as well.
These include the angiotensin (97, 151, 152), opioid (153, 154),
CCK/gastrin (155–157), neurotensin (122, 158), and endo-
thelin systems (159). The general conclusions emerging are

similar to the ones from the studies of the tachykinin system;
hence, the small-molecule nonpeptide compounds interact
with residues in the transmembrane binding crevice and, in
most cases, there is no evidence that these residues are over-
lapping with peptide agonist binding. In the neuropeptide Y
system, however, there is evidence for several overlapping
contact points in the binding site for the peptide agonist and
the first available nonpeptide antagonist of the Y1 receptor,
BIBP 3226 (160). Similarly, nonpeptide antagonists of the
endothelin ET-A and ET-B receptors may share interactions
with the endothelin peptides in TM 2 and TM 3 (128, 130). On
the other hand, thorough mutagenesis of 18 amino acids in
the predicted transmembrane binding crevice of the ET-A
receptor revealed no indication of other overlapping contact
points between the nonpeptide antagonist bosentan and en-
dothelin-1 (159).

Nonpeptide agonists have recently been discovered for the
angiotensin receptors. The nonpeptide agonists of the AT-1
angiotensin receptor were found among a series of biphe-
nylimidazole antagonists, of which some turned out to pos-
sess agonistic properties (161). Surprisingly, it appeared that
the binding mode of the biphenylimidazole agonist differed
both from the binding mode of the peptide agonist angioten-
sin, as well as that of the structurally related biphenylimi-
dazole antagonists (161). Mutations in TM 3 and 7, known to
severely affect binding of biphenylimidazole antagonists,
did not affect binding of the biphenylimidazole agonist.
Moreover, binding of the biphenylimidazole agonist was
also unaffected by mutation of residues in the extracellular
domains known to affect binding of the peptide agonist
angiotensin (161).

D. Ligand-binding sites in other family A receptors

While the binding sites for eicosanoids (leukotrienes and
prostanoids) and purines mainly are contained within the
transmembrane binding crevice (reviewed in Ref. 21), high-
affinity binding of glycoprotein hormones such as LH/CG,
FSH, and TSH to their receptors occurs in the large extra-
cellular amino terminus that characterizes this receptor sub-
group (21, 162–167). It is believed that after the initial binding
to the extracellular domain, the amino-terminal part of the
hormone undergoes a conformational change leading to sec-
ondary contacts with the extracellular loop regions of the
membrane-associated part of the receptor and to subsequent
receptor activation (21).

The protease-activated thrombin receptors also belong to
family A (168, 169). The unique activation mechanism of the
thrombin receptor involves cleavage of the amino-terminal
segment by thrombin (168). The resulting 33-amino acid
amino terminus subsequently acts as tethered peptide li-
gand, which, through interactions with the extracellular loop
regions of the receptor, is able to activate the receptor
(170, 171).

E. Ligand-binding domains in family B receptors

Similar to peptide receptors belonging to family A, the
binding sites for peptide ligands in family B receptors in-
volve the extracellular domains. The large amino terminus
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that characterizes family B receptors seems to play a key role
for most ligands, including secretin, VIP, pituitary adenylate
cyclase-activating polypeptide (PACAP), glucagon, gluca-
gon-like peptide-1, PTH, and CRF (172–182). The amino ter-
minus is not sufficient for binding of these ligands, and
additional interactions are found in the extracellular loops
(173, 175, 178, 180, 183–187). However, there is at present no
evidence that any of the peptides have interactions deep in
a transmembrane binding pocket. Generally, nonpeptide an-
tagonists are still not available for type B receptors. One
exception is the CRF receptor for which a few nonpeptide
compounds have been recently developed (185, 188). Clear
evidence has already been obtained that these may bind very
distinctly from the peptide and penetrate into a transmem-
brane-binding crevice (185).

F. Ligand-binding domains in family C receptors

In the metabotropic glutamate and GABA receptors, the
ligand-binding sites are contained within the large extracel-
lular domain characterizing family C receptors, thereby
clearly distinguishing this subclass from the biogenic amine
family A receptors (28, 189, 190). The calcium-binding site in
the calcium-sensing receptors is also found in the large
amino terminus (reviewed in Ref. 191). The extracellular
amino terminus of the metabotropic glutamate receptors
shares remote structural similarity with bacterial periplasmic
amino acid-binding proteins (28, 29). A high-resolution x-ray
structure of the extracellular glutamate-binding domain of
an ionotropic glutamate receptor has recently been published
(192). This structure represents the first x-ray structure of a
neurotransmitter receptor-binding domain. Based on the x-
ray structure, a mechanism was proposed for the propaga-
tion of the activation signal in the ionotropic receptors after
agonist binding (192). Whether a similar mechanism also
accounts for how the signal in metabotropic receptors is
transmitted from the extracellular domain to the receptor
core region remains elusive.

V. Molecular Mechanisms Involved in Activation

of GPCRs

As described in detail in the previous section, the binding
modes for agonists acting at GPCRs are almost as diverse as
the chemical nature of the ligands. Even agonists acting at the
same receptor may not necessarily share an overlapping
binding site. Therefore, it seems clear that there are multiple
ways of propagating activation of GPCRs or, in other words,
there is no common “lock” for all agonists’ “keys” (193).
Further support for this has been obtained by the identifi-
cation of receptor-activating antibodies, directed against the
extracellular loop regions of the a1- and b1-adrenergic re-
ceptors, in serum from patients with malignant hypertension
and idiopathic dilated cardiomyopathy, respectively (194,
195). The apparent ability of these antibodies to induce re-
ceptor activation represents an intriguing example that even
in the small-molecule biogenic amine receptors, docking of
an activating ligand in the transmembrane-binding crevice is
not a prerequisite for ligand-induced receptor activation.
Additional examples of activating antibodies, such as mono-

clonal antibodies against the muscarinic receptors (196) and
the bradykinin B2 receptor (197), as well as autoantibodies
directed against the extracellular domains of the TSH recep-
tor in Grave’s disease (198), also provide strong evidence that
there are multiple ways of activating GPCRs. It is still most
likely, nevertheless, that the underlying fundamental mech-
anisms of activation for GPCRs have been conserved during
evolution given the ability of the receptors to activate the
same intracellular signaling pathways through the same
classes of G proteins. In the following section, our current
insight into these mechanisms will be discussed.

A. GPCRs are kept silent by constraining intramolecular

interactions

An important discovery has been the observation that
many GPCRs have a certain basal activity and thus can
activate the G protein in the absence of agonists (199–201).
Interestingly, it has also been encountered that discrete mu-
tations are able to dramatically increase this constitutive
agonist-independent receptor activity (42, 202–205). The ma-
jority of the constitutively activating mutations were initially
identified after mutational substitutions in the C-terminal
part of the third intracellular loop of adrenergic receptors
(202–205), but currently activating mutations have been iden-
tified in almost any receptor domain in an increasing number
of receptors (representative examples in Refs. 42 and 206–
218). In a few cases, activating mutations have been found
even in the exterior part of the receptors, such as the second
extracellular loop of the TSH receptor (214) and the third
extracellular loop of the thrombin receptor (213). In the b2-
adrenergic receptor constitutive activation has been ob-
served in a chimeric construct where ECL2 was substituted
with the corresponding loop of the a1B-receptor (219). Of
interest, some constitutively active mutations have arisen
naturally and have been linked to genetic diseases. This
includes mutations in the TSH receptor associated with he-
reditary thyroid adenomas (208, 211, 214); mutations in the
LH receptor leading to male precocious puberty (209); and
mutations in rhodopsin associated with development of ret-
initis pigmentosa (210).

A crucial clue about the molecular mechanisms underly-
ing constitutive receptor activation came from a study car-
ried out by Lefkowitz and co-workers in which the naturally
occurring Ala293 (VI.06.34) residue in the C-terminal part of
third intracellular loop of the a1b-adrenergic receptor was
substituted with all other possible residues. They found that
substitution of the alanine with any other residue resulted in
higher agonist-independent receptor activity (203). This led
to the suggestion that constraining intramolecular interac-
tions have been conserved during evolution to maintain the
receptor preferentially in an inactive conformation in the
absence of agonist. Conceivably, these inactivating con-
straints could be released as a part of the receptor activation
mechanism, either after agonist binding or due to specific
mutations, causing key sequences to be exposed to G protein.
The hypothesis has been indirectly supported by the recent
observation that constitutively activated b2-adrenergic re-
ceptor mutants are characterized by a marked structural
instability and enhanced conformational flexibility of the
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purified receptor proteins (218, 220). The data imply that the
mutational changes have disrupted important stabilizing in-
tramolecular interactions in the tertiary structure, allowing
the receptor to undergo conversion more readily between its
inactive and active state (218, 220).

Experiments performed in other receptors have also
indicated that constraining intramolecular interactions
have been conserved during evolution to keep the recep-
tors preferentially silent in the absence of agonists. Hsueh
and colleagues (221) obtained evidence using a series of
chimeric LH/FSH receptors that stabilizing interactions
between TM 5 and 6 are critical for the resistance of the
FSH receptor to constitutively activating mutations. A sta-
bilizing role of TM 6 has also been suggested from a
random mutagenesis study in the muscarinic M5 receptor
where substitutions on one face of the helix conveyed
constitutive activity to the receptor (222). Similarly, mu-
tation of polar residues in TM 6 of the a-factor pheromone
receptor (STE2p) conveyed constitutive activation to this
receptor (223). Molecular modeling and analysis of natu-
rally occurring activating mutations in the LH receptor
also strongly point to the importance of the helical packing
of TM 6 for maintaining the receptor in an inactive con-
figuration (224). In rhodopsin there is evidence suggesting
that opsin, the apoprotein form of rhodopsin, is main-
tained in an inactive configuration by interactions between
a methionine in TM 6 (Met257, VI.056.40) and the conserved
NPXXY motif in TM 7 (225), as well as by a salt bridge
between Lys296 (VII.107.43) (the retinal attachment site in
TM 7) and Glu113 (GluIII.043.28) (the Schiff base counterion
in TM 3) (206). Stabilizing interactions between TM 3 and
7 have also been suggested in the angiotensin AT-1 re-
ceptor between Asn111 (III.113.35) and Tyr292 (VII.107.43)
(226), and in the a1b-adrenergic receptor between the con-
served aspartic acid (Asp125, III.083.32) and Lys331
(VII.037.36) (212).

B. Protonation is a key element in GPCR activation

If receptor activation involves disruption of stabilizing
intramolecular interaction, an obvious question is how this
may be initiated after agonist binding. At present, this ques-
tion cannot be fully answered; however, substantial evidence
suggests that at least one of the key events in the activation
process among family A GPCRs involves protonation of the
aspartic acid in the highly conserved D/E RY (Glu/Asp-
Arg-Tyr) motif at the cytoplasmic side of TM 3 (Fig. 3). The
most direct evidence has been obtained by Sakmar and
co-workers (227) who compared wild-type rhodopsin and
rhodopsin mutated in position Glu134 (III.253.49) by flash
photolysis, allowing simultaneous measurement of photo-
product formation and rates of pH changes. Their data
strongly suggested that proton uptake of Glu134 (III.253.49)
accompanies formation of the metarhodopsin II state (227).
The “protonation hypothesis” has been further supported by
the observation that charge-neutralizing mutations, which
mimics the unprotonated state of the aspartic acid/glutamic
acid, cause dramatic constitutive activation of both the ad-
renergic a1b-receptor and the b2-adrenergic receptor (42, 218,
228). Similarly, improved coupling has been observed by

mutation of the aspartic acid in the GnRH receptor (229).
Mutation of the aspartic residue in the M1 muscarinic re-
ceptor resulted in phosphoinositide turnover responses of
the mutant that were quantitatively similar to the wild-type
despite markedly lowered levels of expression (230). In par-
allel, constitutive activation was observed in rhodopsin after
mutation of the glutamic acid found in the corresponding
position of this receptor (231). Finally, it was found that
charge-neutralizing mutations of the aspartic acid (Asp130;
III.253.49) in the b2-adrenergic receptor are linked to the over-
all conformation of the receptor (218). Thus, mutation of
Asp130 to asparagine did not only activate the receptor but
also caused a cysteine in TM 6 (Cys285, VI.126.47), which is
not accessible in the wild-type receptor, to become accessible
to methanethiosulfonate ethylammonium (MTSEA), a
charged, sulfhydryl-reactive reagent (218). This observation
is consistent with a counterclockwise rotation (as seen from
the extracellular side) or tilting of TM 6 in the mutant re-
ceptor. Importantly, this conformational rearrangement is
identical to the movement of TM 6, which biophysical studies
have indicated to be essential for agonist-induced receptor
activation (see next section).

The experimental data have been supported by molecular
modeling and computational simulations. Two distinct hy-
potheses have been proposed to define the specific role of
Asp/GluIII.253.49 protonation in receptor function, the “po-
lar pocket” hypothesis proposed by Scheer et al. (42) and the
“arginine cage” hypothesis proposed by Ballesteros et al.
(229). According to the polar pocket hypothesis, the invari-
ably conserved ArgIII.263.50 is in the inactive state of the
receptor constrained in a pocket formed by conserved polar
residues in TM 1, 2, and 7, including AsnI.181.50, AspII.102.50,
AsnVII.167.49, and TyrVII.197.52 (Fig. 3). Upon protonation (or
mutation to alanine) of the adjacent AspIII.253.49, the simu-
lation indicated that the arginine shifts out of the polar
pocket leading to long-range conformational changes in the
receptor molecule (228). In their model, they highlighted that
the ionic counterpart of the arginine in the inactive receptor
state was the conserved aspartic acid in TM 2 (AspII.102.50,
Fig. 3), and that this interaction is broken after receptor
activation (228). Alternatively, based on computational sim-
ulations in the GnRH receptor, the arginine-cage hypothesis
suggests that the ionic counterpart of ArgIII.263.50 in the
inactive state of the receptor could be the adjacent As-
pIII.253.49 and not AspII.102.50 (229). It was hypothesized that
during receptor activation, AspIII.253.49 becomes protonated
and that AspII.102.50 substitutes for AspIII.253.49 in forming
an ionic interaction with ArgIII.263.50 (229). Thus, an ionic
interaction between ArgIII.263.50 and AspII.102.50 was asso-
ciated with the active receptor state instead of with the in-
active state as proposed by Scheer et al. (42). An indirect
support for this alternative hypothesis is the observation in
several GPCRs that mutations, which eliminate the charged
character of AspII.102.50 and in this way conceivably desta-
bilize the Asp-Arg interaction, also disturb functional cou-
pling of the receptor (232–236). Spectroscopic experiments in
rhodopsin have also indicated that AspII.102.50 is more
strongly hydrogen bonded upon activation, consistent with
its potential interaction with another residue in the active
state of the receptor (237).
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C. Conformational changes involved in receptor activation

An ultimate understanding of the receptor activation
mechanism requires development of techniques that can pro-
vide insight into the character of the physical changes ac-
companying transition of the receptor from the inactive to the
active state. Sheikh et al. (238) have undertaken an approach
where bis-histidine metal ion-binding sites were generated
between the cytoplasmic extensions of TM 3 and 6 in rho-
dopsin. In this way, they were able to show that cross-linking
pairs of histidines with Zn21 prevented transducin activa-
tion, providing indirect evidence that movements of these
two domains are important for activation. Recently, they
have obtained similar results in the b2-adrenergic receptor
and in the PTH receptor of which the latter belongs to family
B (Fig. 1) (239). This suggests that the activation mechanism
may be conserved among both family A and family B re-
ceptors (239). Javitch and co-workers (240) have applied the
substituted cysteine accessibility method, in which specific
advantage was taken of a constitutively activated b2 adren-
ergic receptor, CAM. Their main observation in CAM was
that a cysteine in TM 6 became accessible in the binding
crevice to a charged, sulfhydryl-reactive reagent (240). This
indicated a conformational rearrangement of TM 6 with
CAM consistent with a counterclockwise rotation or tilting of
the helix (240). Assuming that the conformation of CAM
mimics the agonist-activated state of the receptor, the data
thus indicated that movements of TM 6 are a critical element
in the receptor activation mechanism.

Recently, biophysical techniques have also been imple-
mented, allowing direct time-resolved analysis of conforma-
tional changes in the receptor molecule. It is not surprising
that a majority of the studies initially have been carried out
in rhodopsin. There are abundant natural sources of rho-
dopsin, and the inherent stability of the rhodopsin molecule
makes it possible to produce and purify relatively large
quantities of recombinant protein. Accordingly, several spec-
troscopic techniques have been applied to rhodopsin, in-
cluding Fourier transform infrared resonance spectroscopy
(FTIR) (241, 242), surface plasmon resonance (SPR) spectros-
copy (243), tryptophan UV-absorbance spectroscopy (244),
and EPR spectroscopy (61, 62, 64, 65). All approaches have
consistently provided evidence for a significant conforma-
tional rearrangement accompanying transition of rhodopsin
to metarhodopsin II. Using tryptophan UV-absorbance spec-
troscopy, Lin and Sakmar (244) were able to obtain the first
direct evidence that photoactivation may involve relative
movements of TM 3 and 6 (244). Thus, mutation of trypto-
phans in TM 3 and 6 eliminated the spectral differences in the
UV absorbance spectra that distinguished rhodopsin from
metarhodopsin II (244).

In a series of very elegant studies, carried out by Khorana,
Hubbell, and co-workers (50, 61–65, 245), the use of EPR
spectroscopy in combination with multiple cysteine substi-
tutions has led to further insight into the character of con-
formational changes accompanying photoactivation of rho-
dopsin. Site-directed labeling of single cysteines inserted at
the cytoplasmic side of the transmembrane helices with sulf-
hydryl-specific nitroxide spin labels provided evidence for
movements particularly of the cytoplasmic termination of

TM 6 upon light-induced activation of rhodopsin (50, 61–65).
The spectroscopic analyses also showed evidence for smaller
movements in the loop connecting TM 1 and 2 as well as at
the cytoplasmic ends of TM 3 and TM 7 (61, 64, 246). Only
minor or no structural changes appeared to occur at the
cytoplasmic end of TM 4 and 5 (61, 62). To investigate the
character of the conformational changes, Khorana, Hubbell,
and co-workers have taken advantage of the magnetic dipole
interaction between two nitroxide spin labels causing spec-
tral line broadening if the two probes are less than 25 Å apart
(50). Pairs of sulfhydryl-reactive spin labels were incorpo-
rated into a series of double-cysteine mutants enabling mea-
surement of changes in relative distance between TM 3 and
TM 6 (50). While the movement of TM 3 was interpreted as
relatively small, the data pointed to a significant rigid-body
movement of TM 6 in a counterclockwise direction (as
viewed from the extracellular side) and a movement of the
cytoplasmic end of TM 6 away from TM 3 (Fig. 4) (50).
Importantly, movements of TM 6 in rhodopsin upon pho-
toactivation have recently been additionally documented by
site-selective fluorescent labeling of cysteines inserted at the
cytoplasmic termination of the helix (247).

The first direct structural analysis of conformational
changes in a GPCR activated by a diffusable ligand was
recently carried out in the b2-adrenergic receptor using flu-
orescence spectroscopic techniques (220, 248, 249). The spec-
troscopic technique that initially was applied used the sen-
sitivity of many fluorescent molecules to the polarity of their
local molecular environment (248). The sulfhydryl reactive
fluorophore IANBD (N,N9-dimethyl-N (iodoacetyl)-N9-
(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) ethylene-diamine) was
used to label free cysteine residues in purified detergent-
solubilized b2-adrenergic receptor (248). Both the quantum
yield of the emission spectrum and the decreased accessi-
bility to hydrophilic quenchers strongly suggested that one
or more of the naturally transmembrane cysteines were la-
beled. Exposure of IANBD-labeled receptor to agonist led to
a reversible and dose-dependent decrease in emission con-
sistent with movements of the fluorophore to a more hy-
drophilic environment after binding of the full agonist iso-
proterenol (248). Interestingly, exposure of the IANBD-
labeled receptor to inverse agonists (i.e., antagonists with
negative intrinsic activity) led to an apparent increase in
fluorescence, suggesting that not only agonists but also in-
verse agonists can promote structural changes in a GPCR
(248).

To identify the cysteines labeled with IANBD that gave
rise to the spectral changes, a series of mutant b2 receptors
with one, two, or three of the natural cysteines available for
fluorescent labeling was generated (249). The fluorescence
spectroscopy analysis of the purified and site-selectively la-
beled mutants showed that IANBD bound to Cys125
(III.203.44) in TM 3 and Cys285 (VI.126.47) in TM 6 were re-
sponsible for the observed changes in fluorescence (249). This
suggests that movements of TM 3 and 6 may occur during
receptor activation (249) (Fig. 4). The possible spatial orien-
tation of IANBD bound to Cys125 (III.203.44) and Cys285
(VI.126.47) in TM 6 was explored in a series of computational
simulations to define the character of the putative move-
ments of TM 3 and 6. In a rhodopsin-based model of the
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b2–receptor, the preferred conformation of IANBD attached
to Cys125 (III.203.44), as defined by the computational sim-
ulations, is bounded by the lipid bilayer and the interface of
TM 3 and TM 4, while the IANBD attached to Cys285
(VI.126.47) is predicted to be at the helix 6-7 interface in a
boundary zone between the lipid bilayer and the more polar
interior of the protein (249) (Fig. 4). In the framework of this
model, the change in fluorescence of IANBD-labeled b2-ad-
renergic receptor can best be explained by a counterclock-
wise rotation of both TM 3 and TM 6, which would move the
IANBD molecules from the nonpolar lipid environment to
the more polar interior of the protein (249) (Fig. 4). Of in-
terest, Cys285 (VI.126.47) is situated one a-helical turn below
Pro288 (VI.156.50), which is highly conserved among GPCRs

and provides a flexible hinge in TM 6. It has been speculated,
therefore, that the movement of Cys-NBD to a more polar
environment in the protein interior is directly facilitated by
this flexible hinge connecting residues involved in agonist
binding in the outer part of TM 6 with the putative G protein-
coupling domain in the cytoplasmic extension of the helix
(249). Notably, site-selective incorporation of the NBD flu-
orophore in a new series of single-cysteine mutants of the
b2-adrenergic receptor has recently documented significant
agonist-promoted conformational changes corresponding to
this cytoplasmic extension of TM 6 (A.D. Jensen and U.
Gether, to be published).

In summary, the spectroscopic studies in rhodopsin and in
the b2-adrenergic receptor clearly support a critical role of
TM 3 and 6 for transition of GPCRs to their activated state
(Fig. 3). Importantly, the agreement between the data ob-
tained in rhodopsin and in the b2-adrenergic receptor also
strongly indicates that the activation mechanism in many
aspects is similar at least among type A GPCRs. It should,
however, be emphasized that the established importance of
TM 3 and 6 does not exclude that movements of other do-
mains may contribute to receptor activation. For example,
there is evidence based on EPR spectroscopy in rhodopsin
that movements of TM 7 may also occur in response to
photoactivation (64). The possible importance of TM 7 in
receptor activation is also indirectly supported by the very
recent observation that an activating metal ion-binding site
can be generated between TM 3 and 7 in the b2-adrenergic
receptor (250).

D. How is the activation signal transmitted to the G

protein?

A myriad of studies involving chimeric substitutions, var-
ious other mutational approaches, and the use of synthetic
peptides have in many receptors provided considerable in-
sight into the structural elements important for the interac-
tion with the G protein. The literature describing these stud-
ies have been reviewed several times (16, 17, 20, 251–253) and
will therefore be discussed only briefly here. Summarized,
the studies have established the pivotal roles of the second
(ICL2) and the third intracellular (ICL3) loops plus, at least
in some receptors, the proximal part of the carboxy terminus
in G protein coupling (16, 17, 20, 251–253). Chimeric ap-
proaches, applied in the adrenergic and muscarinic systems,
clearly defined that ICL3 is the key determinant of coupling
specificity among the different G protein a-subunits (16, 17,
20, 251–253). Subsequent point mutational analyses in many
receptors have identified residues crucial for selective G pro-
tein coupling clustering in the amino-terminal part of ICL3
adjacent to TM 5 (252, 254–257) and in the carboxy-terminal
part of ICL3 adjacent to TM 6 (258–260). In contrast to ICL3,
ICL2 is less important for determining G protein specificity
but is important for the efficiency of G protein activation (16,
17, 20, 251–253). The role of ICL2 has recently been convinc-
ingly substantiated by Brann and co-workers, who devel-
oped a random mutagenesis approach for their study of
muscarinic receptor coupling (215). In ICL2 of the M5 mus-
carinic receptor, they found that substitution of residues
clustering on one side of a presumed ICL2 a-helix extending

FIG. 4. Predicted conformational changes accompanying activation
of family A GPCRs. The figure shows a simplified model of the b2-
adrenergic receptor based on the projection map of frog rhodopsin as
seen from the extracellular side (25, 36, 38, 41). The upper panel
illustrates the inactive receptors’ state (R) while the lower panel
indicates the anticipated conformation of the activated state (R*). The
NBD fluorophore (shown in orange) bound to Cys125 (III.203.44) in TM
3 is in the inactive state of the receptor predicted to lie at the helix
3–4 interface, oriented predominantly toward the lipid (249). NBD
bound to Cys285 (VI.126.47) is predicted to be at the helix 6–7 interface
in a boundary zone between the lipid bilayer and the more polar
interior of the protein (249). An agonist-induced rigid-body movement
of TM 6 involving a counterclockwise rotation and a movement of the
cytoplasmic end of the helix away from TM 3, as indicated by the
arrow, would cause Cys285-NBD to be exposed to a more polar en-
vironment in the interior of the protein. Similarly, a counterclockwise
rotation and/or tilting of TM 3 would cause Cys125-NBD to be exposed
to a more polar face of TM 4 and/or the more polar interior of the
receptor as indicated by the arrow. These movements explain the
observed changes in fluorescence (249) and is consistent with the
spin-labeling studies in rhodopsin (50).
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from TM 3 caused constitutive activation, while substitutions
of residues clustering on the opposite side of the helix com-
promised G protein coupling. Taken together, the data sug-
gest that the residues on the constitutively activating side
were critical for maintaining the receptor in an inactive state,
whereas the residues on the opposing side were important
for G protein activation (215). It was therefore inferred that
ICL 2 could act as a switch that enables G protein coupling
(215). Notably, this hypothesis is consistent both with role in
receptor activation of the adjacent DRY motif (42, 218, 229)
and the predicted movements of TM 3 relative to TM 6 from
spectroscopic analyses (50, 249). Interestingly, the aspartic
acid of the DRY motif (AspIII.253.49), which is believed to
undergo protonation during receptor activation (see Section
V.B.), is located on the same side of the helix as the residues
found to cause constitutive activation (Fig. 2).

Despite the abundance of information acquired over the
last decade, the mechanisms by which the signal is trans-
mitted from the activated receptor to the G protein hetero-
trimer remains, nevertheless, surprisingly elusive. Recently,
x-ray crystallography has provided substantial insight into
the tertiary structure of the heterotrimeric G proteins (261,
262), but still little is known about the actual points of in-
teractions between the receptor and the G protein and, thus,
how the two proteins are oriented relative to one another. So
far, only the interaction between the carboxy terminus of the
G protein a-subunit and the carboxy-terminal part of IC3
seems reasonably well substantiated from mutagenesis stud-
ies (259). Based on the currently available data, an orientation
of the G protein relative to the plasma membrane has been
proposed placing the nucleotide-binding domain of the
a-subunit approximately 30 Å away from the membrane
(261–263). According to this, the receptor must induce GDP
release from the a-subunit without directly interacting with
the nucleotide-binding domain. It has been speculated that
the suggested movements of TM 3 and 6 apart from each
other during receptor activation (Fig. 4) could allow insertion
of the a-subunit carboxy terminus into a cavity in the seven-
helix bundle (263). Conceivably, this could trigger structural
changes in the adjacent a5-helix and b6-strand that are trans-
mitted to the nucleotide-binding domain via the a5/b6 loop,
which is in the immediate vicinity of the guanine nucleotide
(263).

E. Receptor dimerization—an artifact or a

functional necessity?

It is well known that receptor dimerization is required for
signal transduction in other classes of receptors, e.g., receptor
tyrosine kinases. An increasing number of studies have
shown that many GPCRs also form dimers. For example,
formation of receptor homodimers has been reported for the
b2-adrenergic receptor (264), the d-opioid receptor (265), the
dopamine D1, D2, and D3 receptors (266–268), the chemokine
receptors CCR2b, CCR4, and CCR5 (269, 270), the extracel-
lular calcium-sensing receptor (271, 272), and the metabo-
tropic glutamate receptor 5 (273). It has been demonstrated
moreover that functional receptor dimers can be formed by
coexpressing two reciprocal nonfunctional chimeras con-
structed between the a2C-adrenergic receptor and the M3

muscarinic receptor (274). However, the molecular mecha-
nisms of dimer formation seem to differ considerably among
the receptors. In the b2-adrenergic receptor, dimerization
most likely involves interactions between transmembrane
segments since a peptide derived from transmembrane seg-
ment 6 has been shown to inhibit dimer formation (264).
Similarly, peptides derived from the transmembrane do-
mains of the dopamine D2 receptor dissociated dimers to
monomers (266), but a peptide derived from TM 6 of the
dopamine D1 receptor did not affect dimerization of this
receptor (268). For the d-opioid receptor, dimerization was
eliminated by deletion of 15 amino acids in the carboxy
terminus, indicating the involvement of this part of the re-
ceptor in dimerization (265). In contrast, dimerization of the
metabotropic glutamate receptors and the extracellular cal-
cium-sensing receptor was found to be dependent on inter-
molecular disulfide bonds between cysteines in their large
amino-terminal domains (271–273).

An intriguing observation has been that agonist can sta-
bilize the dimeric form of several receptors including the
b2-adrenergic receptor (264) and the chemokine receptors
CCR2b, CCR4, and CCR5 (269, 270). This suggests that ho-
modimerization could have a role either directly in the re-
ceptor activation mechanism or, alternatively, in the subse-
quent agonist-dependent densitization and internalization
process. For the CCR2b receptor, evidence suggests that
dimerization does have a direct role in agonist-mediated
receptor activation (270). First, it was found that the CCR2b
receptor can only be activated by the bivalent form of an
agonistic monoclonal antibody directed against the CCR2b
receptor and not by the corresponding monovalent Fab frag-
ment (270). Second, it was demonstrated that coexpression of
wild-type CCR2b with a coupling-deficient mutant (CCR2/
Y139F) eliminated any functional coupling in response to the
endogenous agonist of the CCR2b receptor, monocyte che-
moattractant protein 1 (MCP-1) (270). Hence, the mutant
acted as a dominant negative mutant, indicating that dimer-
ization is a prerequisite for ligand-induced CCR2b signaling
(270). For the calcium-sensing receptor there is also experi-
mental support for a role of dimerization in receptor acti-
vation (275). In a recent study it was shown that elimination
of dimerization, by mutating the two cysteines believed to
form intermolecular disulfide bridges between the extracel-
lular domains, resulted in a receptor with lowered calcium
affinity and much slower kinetics of the responses to calcium.
However, as yet there is no evidence supporting a universal
role of dimerization for GPCR activation. In the case of the
d-opioid receptor, it has been observed, for example, that
agonists decrease the level of dimer formation (265).

Recently, substantial evidence has accumulated demon-
strating the possible importance of heterodimerization be-
tween closely related receptor subtypes (276–279). The
GABAB R1 receptor subtype is mostly retained inside the cell
as an immature glycoprotein when expressed in mammalian
cells and displays low affinity for agonists (276–279). How-
ever, if it is coexpressed with the newly discovered GABAB
R2 receptor, a fully functional and terminally glycosylated
receptor can be detected at the cell surface (276–279). The
data indicate that heterodimerization can be critical for tar-
geting functional receptors to the cells surface and, thus, that
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the in vivo functional GABAB receptor could be a heterodimer
of GABAB R1 and GABAB R2 (276–279). An additional in-
triguing example, which indicates a functional relevance of
heterodimerization between receptor subtypes, is the obser-
vation that formation of heterodimers between two fully
functional opioid receptors, d and k, results in a new receptor
that displays binding and functional properties distinct from
those of either of the receptors (280). It is of interest moreover
to note that heterodimerization between the wild-type CCR5
receptor and the naturally occurring nonfunctional mutant of
the CCR5 receptor, ccr5d32, has been shown to inhibit tar-
geting of the wild-type receptor to the cell surface after co-
expression in HeLa cells (281). Since CCR5 acts as a core-
ceptor for HIV infection, the inhibition of wild-type receptor
surface expression by the mutant was proposed as a molec-
ular explanation for the delayed onset of AIDS in heterozy-
gotic (CCR5/ccr5d32) individuals (281). Finally, it should be
mentioned in this context that a family of accessory single-
transmembrane proteins, RAMPs (receptor-activity-modify-
ing proteins), has been identified and found to complex with
the calcitonin-receptor-like receptor (CRLR). The association
of CRLR with RAMPs was found not only to play a role in
targeting the receptor to the cell surface, but also to modify
the pharmacological properties of the receptor. While
RAMP1 converted CRLR into a calcitonin-gene-related-pep-
tide (CGRP) receptor, RAMP2-associated receptors display
the properties of an adrenomedullin receptor (282). To what
degree such mechanisms also may account for the function
of other GPCRs remains obscure and needs to be clarified in
the future.

VI. Models of Receptor Activation

A. The two-state model of receptor activation vs. multistate

models of receptor activation

The currently most widely accepted model for GPCR ac-
tivation is the extended ternary complex model (often re-
ferred to simply as the two-state model) (205, 283, 284). This
model was proposed in light of the discovery that receptors
in the absence of agonist spontaneously can adopt an active
conformation and couple to the G protein (205, 283, 284).
Importantly, the model both accommodates the phenome-
non of agonist-independent receptor activity and the com-
plex behavior of various classes of ligands (agonists, partial
agonists, neutral antagonists, and inverse agonists). Accord-
ing to the model, the receptor exists in an equilibrium be-
tween an inactive conformation (R) and an active conforma-
tion (R*) (205). In the absence of agonist, the inactive R state
is prevailing; however, the energy barrier between the R and
R* state is sufficiently low, allowing a certain fraction of the
receptors spontaneously to assume the R* state. Agonists are
predicted to bind with highest affinity to the R* conformation
and in this way shift the equilibrium and increase the pro-
portion of receptor in R*. Conversely, inverse agonists (also
called negative antagonists), i.e., compounds possessing the
ability to inhibit agonist-independent receptor activity, are
predicted to stabilize the inactive R state, shifting the equi-
librium away from R*. Neutral antagonists, according to the
model, are defined as compounds that bind with the same

affinity to both R and R* and thus cause no change in the
equilibrium (205).

It is becoming increasingly clear that the two-state model
cannot sufficiently explain the complex behavior of GPCRs.
Several lines of evidence have provided strong support that
GPCRs may exist in possibly multiple conformational states
(42, 146, 201, 285–288). For example, the nonoverlapping
binding sites between peptide agonists and nonpeptide an-
tagonists, proposed for some receptors (see Section IV.C.),
cannot be reconciled with a simple two-state model (24).
Similarly, a two-state model cannot explain how mutation of
certain serines in TM 5 of the dopamine D2 receptor can lead
to loss of functional coupling in response to some agonists,
but not others, with only modest effect on their affinity (287).
Furthermore, different synthetic agonists of the Drosophila
D1-like dopamine receptor have been shown to induce se-
lective coupling to distinct second messenger pathways
(286). It is also difficult to explain within a simple two-state
model how b2 receptor ligands can act as partial agonists or
inverse agonists depending on whether the functional assay
is performed in membranes or intact cells (201). An addi-
tional interesting finding, strongly supporting the existence
of more than one active receptor state, has been the obser-
vation that different constitutively active mutants of the a1B-
receptor are differentially phosphorylated and internalized
although they convey a similar agonist-independent activity
to the receptor (288). Finally, more direct structural evidence
has been obtained by fluorescence spectroscopy analysis of
the purified b2-adrenergic receptor, which indicated that
most ligands promote alterations in receptor structure con-
sistent with the existence of multiple ligand-specific confor-
mational states (146).

Evidently, receptor activation models that incorporate the
existence of several or multiple conformational states have
recently been suggested (24, 42, 285, 289). In the multistate
model proposed by Schwartz et al. (24) the receptor is pro-
posed to alternate spontaneously between multiple active
and inactive conformations. The key element in this model
is that the biological response to a given ligand is determined
by the conformation to which the ligand binds with highest
affinity. If the preferred conformation is recognized by the G
protein as active, the compound would behave like an ag-
onist, and if the preferred conformation is inactive, the ligand
would behave like an inverse agonist. The important impact
of the model is, obviously, that there is no requirement for
a common binding mode for agonist to trigger receptor ac-
tivation. Even two agonists acting at the same receptor do not
have to share (although they probably often would) an over-
lapping binding site; they both must stabilize an active con-
formation (24). For example, a peptide agonist may be able
to stabilize an active state by interacting with the extracel-
lular loop regions while a small molecule agonist of the same
receptor could stabilize the same or another active configu-
ration by penetrating into the transmembrane-binding crev-
ice. Similarly, the model does not require any overlap in
binding site between the agonist and a competitive antago-
nist. The agonist and antagonist can be envisioned simply to
stabilize distinct receptor conformations to which the agonist
and antagonist bind in a mutually exclusive fashion (24).
Kinetically this would be indistinguishable from a classical
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competitive situation with overlapping binding sites be-
tween the agonist and antagonists (24).

B. Implications from biophysical studies on receptor

activation models

The recent biophysical analyses of conformational changes
in rhodopsin and in the b2-adrenergic receptor have pro-
vided novel insight into the critical conformational changes
accompanying receptor activation. However, the data also
raise new interesting questions about molecular modes of
agonist-induced receptor activation. As discussed in Section
V.C, spectroscopic studies of conformational changes in both
rhodopsin and the b2-adrenergic receptor suggest that sim-
ilar movements are important for activation of both recep-
tors. Otherwise, there are substantial differences underlying
activation of rhodopsin compared with the b2-adrenergic
receptor. Rhodopsin is unique in that its ligand, cis-retinal, is
covalently bound to the receptor as an inverse agonist and
upon absorption of a photon isomerizes to an agonist (trans-
retinal) within the binding pocket (reviewed in Ref. 66). In
other words, ligand binding is not part of the activation
process. This specialized mechanism of activation may be
necessary to facilitate the very rapid response of rhodopsin
to light. Thus, formation of the activated metarhodopsin II
state occurs essentially within microseconds even in deter-
gent solution in the absence of transducin (290). Interestingly,
metarhodopsin II subsequently undergoes a slow (t1/2 ; 6
min) transition to the inactive metarhodopsin III (290). Dur-
ing this inactivating transition trans-retinal undergoes hy-
drolysis and release from the binding pocket (291). Remark-
ably, free trans-retinal is not a very effective agonist for opsin,
producing only approximately 14% of the response observed
for light-activated rhodopsin (292). This shows that efficient
activation of rhodopsin by trans-retinal requires that cis-ret-
inal is prebound and that cis-retinal can be rapidly converted
to trans-retinal by photoisomerization. The less efficient ac-
tivation of opsin by free trans-retinal may more closely reflect
the process of activation of other GPCRs.

In contrast to the rapid activation and the slow inactivation
kinetics observed for rhodopsin, spectroscopic analyses of
the purified b2-adrenergic receptor labeled with a confor-
mationally sensitive fluorophore revealed slow agonist-in-
duced conformational changes (t1/2 ; 2–3 min), significantly
slower than the predicted association rate of the agonist (220,
248, 249). However, the reversal of the agonist-induced con-
formational change was relatively fast (t1/2 ; 30 sec) (220,
248, 249). It should be emphasized that the slow activation
kinetics now have been observed in several different read-
outs. Thus, the agonist-induced spectral changes observed
after labeling of cysteines introduced at the cytoplasmic side
of TM 6 occur with similar kinetics as that observed after
labeling of the endogenous cysteines (Cys125 and Cys285)
(A.D. Jensen and U. Gether, to be published). It is possible
that the differences between rhodopsin and the b2-adrener-
gic receptor are caused by differences in the methodological
approach. However, since the measurements were per-
formed under similar conditions (in detergent solution in the
absence of G protein) it is more likely that they reflect in-

herent differences between rhodopsin and a receptor acti-
vated by a diffusable ligand.

The observed slow activation kinetics cannot be readily
accommodated into a simple “two-state model”. According
to this model the affinity of a full agonist for the R state is
negligible; thus, agonist binding occurs selectively to the
activated state R*, thereby pulling the equilibrium toward R*.
This would predict that the association rate for agonist bind-
ing is limited by the rate of transition from R to R*. This is

FIG. 5. Sequential binding and conformational stabilization model
for the molecular mechanisms of ligand action in GPCRs. The hypo-
thetical receptor is illustrated by seven apparent helices seen from
above. The model predicts that the unliganded receptor exists in a
unique state R that can undergo transitions to at least two other
states R0 and R*. R0 is stabilized by inverse agonists and R* is
stabilized by agonists. R may undergo spontaneous transitions to the
R* state, explaining the high basal activity observed for some GPCRs,
and it may undergo spontaneous transition to the R0. As discussed in
the text, binding of the agonist is suggested to occur sequentially,
resulting in a series of conformational states that are intermediates
(R9 and R0) between R and R*. The agonists are known to have several
functionally important sites of interaction with the receptor. Binding
may involve an initial interaction between receptor and one structural
group of the agonist. After the initial binding of one structural group,
binding of the remaining groups occurs in a sequential manner as a
result of random and spontaneous movements of TM domains to
positions that permit interaction with the functional groups. Each
interaction between the receptor and the agonist stabilize one or more
TM domains until the receptor has been stabilized in the active R*
state. A similar mode of binding can be envisioned for inverse agonists
resulting in stabilization of the R0 state. The model would be consis-
tent both with a rapid association rate for agonists (formation of AR9)
and the relatively slow rate of conformational change observed spec-
troscopically (formation of AR*). Importantly, the G protein may
substantially affect the kinetics of the transition from AR9 over AR0

to AR*. Similar to the multistate model described in Ref. 24, the model
also readily accommodates the concept of “allosteric competitive an-
tagonism” (24) i.e., that a competitive antagonist does not have to
share an overlapping binding site with the agonist. Hence, an “allo-
steric competitive” antagonist, according to the model, would simply
act by stabilizing the receptor in R0, which would not be expected to
bind the agonist. Conversely, the agonist could stabilize the receptor
in R*, which would not be expected to bind the antagonist. In this way,
by stabilizing different receptor conformations, the agonist and the
antagonist can mutually exclude the binding of each other to the
receptor.
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not readily compatible with the observation in the b2-adrener-
gic receptor that the conformational change, and not the bind-
ing event, is the rate-limiting step. We have therefore suggested
the “sequential binding and conformational selection” model
shown in Fig. 5 (22). This model predicts, similar to the two-state
model (205) and the multistate model suggested by Schwartz et
al. (24), that the receptor spontaneously alternates between dif-
ferent receptor conformations (active and inactive). However,
a major difference is that binding of agonist does not occur
directly to R* but is suggested to occur sequentially, resulting
in a series of conformational states that are intermediates (R9

and R0) between R and R* (Fig. 5). Agonists are known to have
several functionally important sites of interaction with the re-
ceptor (See Section IV.A). As illustrated in Fig. 5, binding may
involve an initial interaction between receptor and one struc-
tural group of the agonist. After the initial binding of one struc-
tural group, binding of the remaining groups occurs in a se-
quential manner as a result of random and spontaneous
movements of TM domains to positions that permit interaction
with the functional groups. Each interaction between the re-
ceptor and the agonist stabilize one or more transmembrane
domains until the agonist finally stabilizes the receptor in the
active R* state. Such a model would be consistent both with a
rapid association rate for agonists (formation of AR9) and the
relatively slow rate of conformational change observed spec-
troscopically (formation of AR*). Importantly, the G protein
may substantially affect the kinetics of the transition from AR9

over AR0 to AR*. The slow kinetics of the agonist-induced
conformational change in the absence of G protein strongly
suggests the existence of a high activation energy barrier for the
transition from AR9 through AR0 to AR*. The R* state can from
a thermodynamic point of view be considered a high-energy
intermediate that can be stabilized energetically by the G pro-
tein and/or the agonist (220). It is conceivable that the G protein
stabilizes the AR* state and, in addition, substantially lowers the
activation energy barrier, causing the transition from AR9

through AR0 to AR* to occur much faster. The hypothesis awaits
experimental evaluation in a reconstituted system with purified
receptor and G protein. Nevertheless, it provides an intriguing
explanation for the apparent discrepancy between the slow
kinetics of agonist-induced conformational changes observed
for the purified b2-adrenergic receptor with the rapid responses
to agonist stimulation of GPCRs in cells, such as, for example,
activation of ion channels.

VII. Concluding Remarks

The wealth of information gained over the last decade has
substantially improved our understanding of GPCR function
and changed the way we look at receptors. Importantly, it has
been conceptualized that GPCRs are not simple “on/off”
switches but highly dynamic structures that exist in equi-
libriums between active and inactive conformations. In this
framework, an agonist is recognized as a molecule that can
stabilize an active conformation while an inverse agonist (i.e.,
an antagonist with negative intrinsic activity) is a molecule
that can stabilize an inactive conformation. Thus, it has be-
come clear that not only agonist but also antagonists are
capable of actively modulating receptor function. Moreover,

it has become evident that neither agonists nor antagonists
necessarily have to share an overlapping binding site, even
if they act at the same receptor. An important implication of
this in clinical endocrinology is the prospect of developing
small-molecule antagonists and agonists for, in principle,
any GPCR. Recent biophysical studies allowing direct struc-
tural analyses of conformational change in the receptor mol-
ecule represent an important first step toward a more pro-
found understanding of GPCR function at a molecular level.
However, our present knowledge about the physical changes
in the receptor structure, distinguishing inactive from active
states, is still very limited. Furthermore, our insight into the
molecular basis for transmission of the signal to the G protein
remains rather poor. The further clarification of these mech-
anisms represents a daunting task together with efforts
aimed at obtaining high-resolution x-ray crystals.
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