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Abstract

We suggest a method for multi-class learning
with many classes by simultaneously learning
shared characteristics common to the classes, and
predictors for the classes in terms of these char-
acteristics. We cast this as a convex optimization
problem, usingtrace-norm regularization, study
gradient-based optimization both for the linear
case and the kernelized setting, and show how
this approach can yield improved classification
accuracy.

1. Introduction

In this paper we address the question of how to utilize hid-
den structure in order to improve multiclass classification
accuracy. Our goal is to provide a mechanism for learning
the underlying characteristics that are shared between the
target classes, and to demonstrate the benefit of extracting
common characteristics. We build upon the powerful no-
tion of large margin linear classifiers, and specifically focus
on the recent extensions to multiclass settings (Crammer &
Singer, 2001).

The challenge of accurate classification of an instance into
one of a large number of target classes surfaces in many do-
mains, such as object recognition, face identification, tex-
tual topic classification, and phoneme recognition. In many
of these domains it is natural to assume that even though
there are a large number of classes (e.g. different people
in a face recognition task), classes are related and build
on some underlying common characteristics. For exam-
ple, many different mammals share characteristics such as
a striped texture or an elongated snout, and people’s faces
can be identified based on underlying characteristics such
as gender, being Caucasian, or having red hair. Recover-
ing the true underlying characteristics of a domain can sig-
nificantly reduce the effective complexity of the multiclass
problem and by that transfer knowledge between related
classes.

The obvious question that arises is how to select the fea-
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ture mapping appropriate for a given task. One method to
resolve this need is by manually designing a domain spe-
cific kernel (e.g. (Shpigelman et al., 2002)). When the
route of manual kernel design is not feasible one can at-
tempt to learn a data specific feature mapping (Crammer
et al., 2002). In practice, researchers often simply test sev-
eral of the standard kernels in order to assess which attains
better performance on a validation set. These approaches,
however, fail to provide a clear mechanism for utilizing the
existence of structures in selecting the appropriate feature
mapping. We would therefore like to find an efficient way
to learn feature mappings that capture the underlying struc-
ture of a given set of classes.

The observation that learning a hidden representation of
some shared characteristics can facilitate learning has a
long history in multiclass learning (e.g. Dekel et al.
(2004)). This notion is often termed learning-to-learn or
interclass transfer (Thrun, 1996). While some approaches
assume some information on the shared characteristics is
provided to the learner in advance (Fink & Levi, 2004; Fink
et al., 2006), others rely on various learning heuristics in
order to extract the shared features (Torralba et al., 2004).

Simultaneously learning the underlying structure between
the classes and the class models is a challenging optimiza-
tion task. Many of the heuristic approaches stated above
aim at extracting powerful non-linear hidden characteris-
tics. However, this goal often entails non-convex optimiza-
tion tasks, prone to local minima problems. In contrast, we
will focus on modeling the shared characteristics, as linear
transformations of the input space. Thus, our model will
postulate a linear mapping of shared features, followed by a
multiclass linear classifier. We will show that such models
can be efficiently learned in a convex optimization scheme
and that they can significantly improve the accuracy of mul-
ticlass linear classifiers, despite the fact that they are re-
stricted to simple linear mappings of the instance space.

The rest of this paper is organized as follows. We begin by
introducing our learning setting, motivating our approach
and formulating the suggested learning rule (Sec. 2). By
studying the dual of the resulting optimization problem, we
show, in Section 3, how to “kernalize” our learning rule.
Then, in Section 4, we discuss the learning rule in the con-
text of learning a latent feature representation. In Section 5
we derive an optimization scheme and in Section 7 demon-
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strate our approach on picture classification and handwrit-
ten letter recognition tasks.

2. Formulation

The goal of multiclass classification is to learn a mapping
H : X → Y from instances inX to labels inY =
{1, ..., k}. We consider linear classifiers overX = R

n,
parametrized by a weight vectorWy ∈ R

n for each class
y ∈ Y, and which take the form:

HW (x) = argmax
y∈Y

W t
y · x . (1)

We wish to learn the weights from a set ofm labeled train-
ing examples(xi, yi) ∈ X × Y, which we summarize in
a matrix X ∈ R

n×m whose columns are given byxi.
Inspired by the large margin approach for classification,
Crammer and Singer (2001) suggest learning the weights
by minimizing a trade-off between an average empirical
loss (to be discussed shortly) and a regularizer of the form:

∑

y

‖Wy‖2 = ‖W‖2
F (2)

where‖W‖F is the Frobenius norm of the matrixW whose
columns are the vectorsWy. The loss function suggested
by Crammeret alis the maximal hinge loss over all com-
parisons between the correct class and an incorrect class:

ℓ (W ; (x, y)) = max
y′ 6=y

[

1 + W t
y′ · x − W t

y · x
]

+
(3)

where[z]+ = max(0, z). For a trade-off parameterC, the
weights are then given by the following learning rule:

min
W

1

2
‖W‖2

F + C

m
∑

i=1

ℓ (W ; (xi, yi)) . (4)

For a binary classification problem,Y = {1, 2}, this for-
mulation reduces to the familiar Support Vector Machine
(SVM) formulation (withW1 = −W2 = 1

2wsvm at the op-
timum, andC appropriately scaled). For larger number of
classes, the formulation generalizes SVMs by requiring a
margin between every pair of classes, and penalizing, for
each training example, the amount by which the margin
constraing it violated. Similarly to SVMs the optimiza-
tion problem Eq. (4) is convex, and by introducing a “slack
variable” for each example, it can be written as quadratic
programming. Crammeret aldiscuss practical optimization
approaches.

Recall that our goal is to learnW better by modeling char-
acteristics shared among multiple classes. We restrict our-
selves to modelling each common characteristicsr as lin-
ear functionsF t

rx of the input vectorsx. The activation of
each classy is then taken to be a linear functionGt

y(F t
x)

of the vectorF t
x of common characteristics, instead of a

linear function of the input vectors. Formally our model
substitutes the weight matrixW ∈ R

n×k with the product
W = FG of a weight matrixF ∈ R

n×t, whose columns
define thet common characteristics, andG ∈ R

t×k, whose
columns predict the classes based on the common charac-
teristics:

HG,F (x) = argmax
y∈Y

Gt
y · (F tx) = argmax

y∈Y

(FG)t
y · x ,

(5)

It should be emphasized that ifF andG are not constrained
in any way, the hypothesis space defined by Eq. (1) and
by Eq. (5) is identical, since any linear transformations in-
duced by applyingF and thenG can always be attained by
a single linear transformationW . We aim to show that nev-
ertheless, regularizing the decompositionFG, as we dis-
cuss shortly, instead of the Frobenius norm of the weight
matrixW , can yield a significant generalization advantage.

When the common characteristicsF are known, we can
replace the input instancesxi with the vectorsF t

xi and
revert back to our original formulation Eq. (4), with the
matrix G taking the role of the weight matrix. Each char-
acteristicr is now a feature (F t

xi)r in this transformed
problem. The challenge we address in this paper is of si-
multaneously learning the common characteristics (or la-
tent features)F and the class weightsG.

In order for the regularizer‖G‖F to be meaningful, we must
also control the magnitude ofF , suggesting regularizing,
in addition to‖G‖F, also

∑

r‖F‖2 = ‖F‖2
F, yielding the

learning rule:

min
F,G

1

2
‖F‖2

F +
1

2
‖G‖2

F + C

m
∑

i=1

ℓ (FG; (xi, yi)) . (6)

The norm of eachFr determines how “easy” it is for class
predictors to use this characteristic: increasing the norm
‖Fr‖ allows smaller values ofGyr to yield the same pre-
diction, making it “cheaper” to use the characteristic. It is
thus beneficial for useful characteristics to have high norm.
But generalization ability is ensured by limiting the overall
norm of characteristics. It is important to note that, as we
are accustomed to in large-margin methods, we do not have
to also limit the number of characteristicst. We are relying
here on thenorm of F andG for regularization, rather than
their dimensionality.

The optimization objective of Eq. (6) is non-convex, and
involves matrices of unbounded dimensionality. However,
instead of explicitly learningF, G, the optimization prob-
lem Eq. (6) can also be written directly as a convex learning
rule forW . Following Srebro et al. (2005), we consider the
trace-norm of a matrixW :

‖W‖Σ = min
FG=W

1

2
(‖F‖2

F + ‖G‖2
F) (7)
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The trace-norm is a convex function ofW , and can be char-
acterized as the sum of its singular values (Boyd & Vanden-
berghe, 2004).

‖W‖Σ =
∑

i

|γi| , (8)

Using Eq. (7), we can rewrite Eq. (6) as:

min
W

‖W‖Σ + C

m
∑

i=1

ℓ (W ; (xi, yi)) . (9)

Furthermore, following Fazel et al. (2001) and Srebro et al.
(2005), the optimization problem Eq. (9) can be formulated
as a semi-definite program (SDP).

To summarize, we saw how learning to classify based on
shared characteristics yields a learning rule in which the
Frobenius-norm regularization is replaced with a trace-
norm regularization.

3. Dualization and Kernelization

So far, we assumed we have direct access to the feature
representationx. However, much of the success of large-
margin methods stems form the fact that one does not need
access to the feature representation itself, but only to the
inner product between feature vectors, specified by akernel
function k(x,x′). In order to obtain a kernelized form of
trace-norm regularized multi-class learning, we first briefly
describe the dual of Eq. (9), and how the optimumW can
be obtained from the dual optimum.

By applying standard Lagrange duality we deduce the dual
of Eq. (9) is given by the following optimization problem,
which may also be written as a semi-definite program:

max
∑

i

(−Qiyi
) s.t.

∀i,j 6=yi
Qij ≥ 0

∀i (−Qiyi
) =

∑

j 6=yi

Qij ≤ c

‖XQ‖2 ≤ 1

where Q ∈ R
n×k denotes the dual Lagrange variable

and ‖XQ‖2 is the spectral norm ofXQ (i.e. the maxi-
mal singular value of this matrix). The spectral norm con-
straint can be equivalently specified as‖(XQ)t(XQ)‖2 =
‖Qt(XtX)Q‖2 ≤ 1. This form is particularly interesting,
since it allows us to write the dual in terms of the Gram
matrix K = XtX instead of the feature representationX

explicitly:

max
∑

i

(−Qiyi
) s.t.

∀i,j 6=yi
Qij ≥ 0

∀i (−Qiyi
) =

∑

j 6=yi

Qij ≤ c

‖QtKQ‖2 ≤ 1
(10)

Although Eq. (10) is not a semi-definite program, it is a
convex problem onQ that involves a semi-definite con-
straint (the spectral-norm constraint) on a matrix whose
size is independent of the size of the training set, and only
depends on the number of classesk.

The following Representer Theorem describes the opti-
mum weight matrixW in terms of the dual optimumQ,
and allows the use of the kernel mechanism for prediction.

Theorem 1 Let Q be the optimum of Eq. (10) and V be the
matrix of eignevectors of Q′KQ, then for some diagonal
D ∈ R

k×k, the matrix W = X (QV tDV ) is an optimum
of Eq. (9), with ‖W‖Σ =

∑

r|Drr|.

Proof Using complementary slackness and following ar-
guments similar to those of Srebro et al. (2005), it can be
shown thatXQ and the optimumW of Eq. (9) share the
same singular vectors. That is, ifXQ = USV is the sin-
gular value decomposition ofXQ, thenW = UDV for
some diagonal matrixD. FurthermoreDrr = 0 whenever
Srr 6= 1, i.e. SD = D. Note also that the right singular
vectorsV of XQ = USV are precisely the eigenvectors of
(XQ)t(XQ) = QtXtXQ = QtKQ. We can now express
W as follows: First note thatW = UDV . SinceD = SD

we may expressW asUSDV . SinceV V t = I we may
further expand this expression toUSV V tDV . Finally, re-
placingUSV with XQ we obtainX (QV tDV ).

Corollary 1 There exists α ∈ R
m×k s.t. W = Xα is an

optimum of Eq. (9)

The situation is perhaps not as pleasing as for standard
SVMs where the weight vector can be explicitly repre-
sented in terms of the dual optimum solution. Here, even
after obtaining the dual optimumQ, we still need to re-
cover the diagonal matrixD. However, substitutingW =
XQV tDV into Eq. (9), the first term becomes

∑

r|Drr|,
while the second is piecewise linear inKQV tDV . We
therefore obtain a linear program (LP) in thek unknown
entries on the diagonal ofD, which can be easily solved to
recoverD, and henceW . It is important to stress that the
number of variables of this LP depends only on the number
of classes, and not on the size of the data set, and that the
entire procedure (solving Eq. (10), extractingV and recov-
eringD) uses only the Gram matrixK and does not require
direct access to the explicit feature vectorsX .

Even if the dual is not directly tackled, the representation
of the optimumW guaranteed by Thm. 1 can be used to
solve the primal Eq. (9) using the Gram matrixK instead
of the feature vectorsX , as we discuss in Section 5.
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4. Learning a Latent Feature Representation

As alluded to above, learningF can be thought of as learn-
ing a latent feature spaceF tX , which is useful for pre-
diction. SinceF is learned jointly over all classes, it ef-
fectively transfers knowledge between the classes. Low-
norm decompositions were previously discussed in these
terms by Srebro et al. (2005). More recently, Argyriou
et al. (2007) studied a formulation equivalent to using the
trace-norm explicitly for transfer learning between multiple
tasks: considerk binary classification tasks, and useWj as
a linear predictor for thejth task. Using an SVM to learn
each class independently corresponds to the learning rule:

min
W

∑

j

(
1

2
‖Wi‖2+Cℓj(Wj)) = min

W

1

2
‖W‖2

F+C
∑

j

ℓj(Wj)

whereℓj(Wj) is the total (hinge) loss ofWj on the training
examples for taskj. Replacing the Frobenius norm with
the trace norm :

min
W

‖W‖Σ + C
∑

j

ℓj(Wj) (11)

corresponds to learning a feature representationφ(x) =
F t

x that allows good, low-norm prediction for allk task,
where the linear predictor for taskj, in this feature space, is
given byVj . After such a feature representation is learned,
a new task can be learned directly using the feature vec-
torsF t

x using standard SVM machinery, taking advantage
of the transfered knowledge from the other, previously-
learned, tasks.

In the multi-class setting, the predictorsWy are never inde-
pendent, as even in the standard Frobenius norm formula-
tion Eq. (4), the loss couples together the predictors for the
different classes. However, the between-class transfer af-
forded by implicitly learning shared characteristics is much
stronger. As will be demonstrated later, such transfer is par-
ticularly important if only a few number of examples are
available from some class of interest.

Although this paper studies multi-class learning, the tech-
nical contributions, including the optimization approach,
study of the dual problem, and kernelization, apply equally
well also to the multi-task formulation Eq. (11).

It is interesting to note that we can learn a feature represen-
tationφ(x) = F t

x even when we are not given the feature
representationX explicitly, but only a kernelk from which
we can obtain the Gram matrixK = XtX . In this sit-
uation we do not have access toX , nor can we obtainF
explicitly. As discussed above, what wecan obtain is a
matrix α such thatW = Xα is an optimum of Eq. (9).
Let W = UDV be the singular value decomposition of
W (which we cannot calculate, since we do not have ac-
cess toX). We have thatF = U

√
D is an optimum of
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Figure 1.Left: The smoothed absolute value functiong. Smaller
values ofr translate to a sharper function and a better estimate
of the absolute values. Right: The binary version of the log-loss
in comparison with the binary hinge-loss. Larger values ofλ in-
crease the accuracy of the log-loss approximation.

Eq. (6). What wecan calculate is the singular value de-
composition ofαtKα = αtXtXα = W tW = V tD2V ,
and thus obtainD and V (but not U ). Now, note that
D−1/2V αtK = D−1/2V (αtXt)X = D−1/2V W tX =
D−1/2V V tDU tX = D1/2U tX = F tX , providing us
with an explicit representation of the learned feature space
that we can calculate fromK andα alone.

In either case, we should note the optimum of Eq. (6) is not
unique, and so also the learned feature space is not unique:
if F, G is an optimum of Eq. (6), then(FR), (RtG) is
also an optimum, for any unitary matrixRRt = I. In-
stead of learning the explicit feature representationφ(x) =
F t

x, we can therefore think of trace-norm regularization
as learning the implied kernelkφ(x′,x) = 〈F t

x
′, F t

x〉.
Even whenF is rotated (and reflected) byR, the learned
kernelkφ is unaffected.

5. Optimization

The optimization problem Eq. (9) can be formulated as a
semi-definite program (SDP) and off-the-shelf SDP solvers
can be used to recover the optimalW . However, such off-
the-shelf solvers based on interior point methods scale very
poorly with the size of the problem and typically cannot
handle problems with more than several hundred dimen-
sions, classes and training points. Moreover, the ability of
interior point methods to obtain very accurate solutions to
Eq. (9) is not particularly important in a machine learning
application as the objective based on the training data is just
a stochastic approximation of our true interest in general-
ization ability, and so obtaining a very precise solution to
this approximation does not typically yield significant im-
provements in classification accuracy. Instead, we choose
to optimize Eq. (9) using simple, but powerful gradient-
based methods.

5.1. Gradient based optimization

The optimization problem Eq. (9) is non-differentiable and
so not immediately amenable to gradient-based optimiza-
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tion. In order to perform the optimization, we consider a
smoothed approximation to Eq. (9).

We begin by replacing the trace-norm with a smooth proxy.
Eq. (8) characterizes the trace-norm as the sum of the sin-
gular values ofW . Although the singular values are non-
negative, the absolute value in Eq. (8) emphasizes the rea-
son the trace-norm is non-differentiable when a singular
value is zero and a singular vector abruptly changes di-
rection. In order to obtain a smooth approximation to the
trace-norm, we replace the non-smooth absolute value with
a smooth functiong defined as

g(γ) =

{

γ2

2r + r
2 γ ≤ r

|γ| otherwise
.

Wherer is a some predefined cutoff point. Fig. 1 illustrates
the functiong and the effect of the parameterr. We can
easily see thatg is continuously differentiable, and that∀x :
∣

∣g(x) − |x|
∣

∣ ≤ r
2 . Our smoothed proxy for the trace norm

is:
‖W‖S =

∑

i

g(γi) (12)

whereγi are the singular values ofW . Its gradient can be
calculated as:

∂‖W‖S

∂W
= Ug′(D)V (13)

whereW = UDV is the SVD ofW and g′(D) is an
element-wise computation of the derivativeg′ of g on the
diagonal ofD.

We now turn our attention on the non-differentiable multi-
class hinge-loss of Eq. (3). Since neither the hinge[]+ nor
themax operators are differentiable we employ an adapta-
tion of the log-loss for the multiclass setting (Dekel et al.,
2003), with a parameterγ controlling its sharpness (in-
spired by Zhang and Oles (2001)):

ℓS (W ; (xiyi)) =
1

λ
log



1 +
∑

r 6=yi

eλ·(1+Wr ·xi−Wyi
·xi)



 .

This is a convex and continuously differentiable function of
W which approaches the multiclass hinge-loss asλ → ∞
(Fig. 1). In summary, instead of Eq. (9) we consider the
following optimization problem:

min
W

‖W‖S + C

m
∑

i=1

ℓS (W ; (xi, yi)) (14)

which is a convex and continuously differentiable function.

Fig. 2 shows how optimization of the smoothed objective
Eq. (14) approximately optimizes Eq. (9). We generated
160 training instances with 16 classes and 16-dimensional

0 20 40 60 80
5

10

15

20

25

30

O
bj

ec
tiv

e

γ

Figure 2.The values of the original (non-smooth) optimization
objective Eq. (9) for minima of the smoothed objective Eq. (14)
as a function of the smoothing parameterγ (solid) compared to
the true optimum of Eq. (9) (dotted).

feature vectors using a weight matrix that is the product
of two random16 × 4 matrices. For each value ofγ, and
a fixedr = 0.01 we compared the weight matrixW re-
covered using conjugate gradient descent on Eq. (14) to
the optimizer of Eq. (9) found using an interior point SDP
solver . The figure plots the value of the original (non-
smooth) objective of both solutions. For large values ofγ,
the smoothed optimization solves the original problem to
within very good accuracy.

5.2. Kernelized gradient optimization

We now turn to devising a gradient-based optimization ap-
proach appropriate when only the Gram matrixK = XtX

is available, but not the feature vectorsX themselves.
Corollary 1 assures us that the optimum of Eq. (9) is of the
form Xα, and so we can substituteW = Xα into Eq. (14)
and minimize overα. To do so using gradient methods, we
need to be able to compute both the smoothed objective and
its derivative fromK andα alone, without reference toX
explicitly.

We first tackle the smoothed trace norm ofXα: Let Xα =
UDV denote the SVD ofXα then the SVD ofαtKα is
given byV tD2V . We can thus recoverD from the SVD of
αtKα, and use Eq. (12) to calculate‖Xα‖S .

In order to compute the gradient of‖Xα‖S with respect to
α, we calculate:

∂‖Xα‖S

∂α
= Xt ∂‖Xα‖S

∂Xα
= XtUg′(D)V

insertingD(V V t)D−1 = DID−1 = I:

= XtU(DV V tD−1)g′(D)V

= Xt(UDV )V tD−1g′(D)V

and sinceXα = UDV :

= Xt(Xα)V tD−1g′(D)V = KαV tD−1g′(D)V (15)
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Recall that bothV andD can be obtained from the SVD of
αtKα, and so Eq. (15) provides a calculation of the gradi-
ent in terms ofK andα.

6. Spectral properties of the trace norm
regularization

One way to appreciate the difference between the Frobe-
nius norm and the trace norm of a matrixW is by observ-
ing that the squared Frobenius norm equals the sum of the
squared singular values,

∑

i γ2
i , while the trace norm is the

sum of the singular values themselves,
∑

i γi. Thus, choos-
ing to minimize||U ||2Fro + ||V ||2Fro rather than‖W‖2

F, im-
poses a regularization preference for anL1 norm on the
spectrum ofW (rather than anL2 norm). When the various
target classes share common characteristics we expect the
spectrum ofW to be non-uniform, since a large portion of
the spectrum must be concentrated on few eigenvalues. In
these cases theL2 spectrum regularization imposed by the
Frobenius norm will tend to attenuate the spectrum. In con-
trast, theL1 spectrum regularization imposed by the trace
norm does not share this tendency, and is thus better suited
to preserve underlying structures of characteristics thatare
shared between the target classes.

In order to illustrate this effect we generated 100 classes
overR120 and randomly sampled 4500 training instances
from a 120-dimensional normal distribution. A120 × 100
matrix W ∗ was then used to label the data, by choosing
for each instancex the labely = argmax

r∈Y

W ∗
r · x. The

matrixW ∗ was selected to have a sigmoidal pattern of sin-
gular values, depicted in the dashed spectrum on Fig. 3.
We then recovered two matricesWFro andWΣ using the
Frobenius norm optimization from Eq. (4) and the trace
norm optimization from Eq. (9). The generalization error
over 500 new test instances, was significantly higher for
WFro (47%) than forWΣ (31%). The spectrum of the two
learned models is depicted in Fig. 3. It could be observed
that Frobenius based regularization leads to the attenuated
spectrum ofWFro.

A question may arise whether it was possible to encour-
age the underlying common structure between the classes
by applying a dimensionality reduction procedure to the
weight matrix. In order to show this is not necessarily the
case, we repeated the experiment described above, butW ∗

was selected to have the singular values form a harmonic
series (11 , 1

2 , . . . , 1
100 ). We similarly recovered two matri-

cesWFro andWΣ using the Frobenius norm optimization
and the trace norm optimization . It was observed that the
generalization error over 500 new test instances, was sig-
nificantly higher forWFro (26%) than forWΣ (17%).

Next, a singular value decomposition was performed on
WΣ and WFro followed by reconstructing these matri-
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Figure 3.Spectra of learned matrices in the synthetic (left) and
real (right) experiments. The weight matrix resulting fromtrace
regularization (solid), and the weight matrix resulting from Frobe-
nius regularization (dotted). The weight matrix that generated the
dataW ∗ (dashed) in the synthetic experiment only.

ces using thep leading singular values and vectors (p =
1, 2, . . . , 100). Performance of the reconstructed weight
matrices was evaluated on the test set. It was observed
that any SVD dimensionality reduction deteriorated the test
performance. Moreover, the generalization error for the re-
ducedWFro was consistently worse than the performance
of the reducedWΣ. It could therefore be concluded that
post-hoc dimensionality reduction could not attenuate the
importance of finding the underlying structure as an inte-
gral part of the learning procedure.

7. Experiments

7.1. Experiment I: Letter recognition

By analyzing over 100 writing systems, Changizi and Shi-
mojo (2005) have demonstrated the fact that each writing
system can be characterized by a set of underlying strokes.
Therefore our first experiment focuses on recognition of the
26 characters made available in the UCIletter dataset. The
data was composed of 2000 instances, roughly distributed
over the 26 classes. The data was partitioned to three sets:
1000 were used as a training set, 500 were held out and
used to select the optimal value ofC and 500 were used
as a test set. Data was represented using a Gaussian kernel
with σ = 0.07.

We then recovered two matricesWFro (Frobenius norm
regularization) from Eq. (4) andWΣ (trace norm regular-
ization) from Eq. (9). The trade-off parameterC was de-
termined exhaustively by searching over15 values between
2−10 and25. The value was later fine tuned by searching
within a smaller window withinC · 2−1.5 andC · 21.5. All
values were tested on the fixed holdout set. Performance
was evaluated over 500 new test instances, and the gener-
alization error was significantly higher forWFro (10.1%)
than forWΣ (8.7%).
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Addax Caribou Deer

African+Wild+Dog
Dingo

Hyena

Cheetah Bobcat
Serval

Black+Rat
Deer+Mouse

Flying+Squirrel

Figure 4.Representative images Deer (Addax, Caribou, Com-
mon Deer), Canines (African Wild Dog, Dingo, Hyena), Felines
(Cheetah, Bobcat, Serval), and Rodents (Black Rat, Deer Mouse,
Flying Squirrel).

7.2. Experiment II: Mammal recognition dataset

Our second experiment focused on the challenging task of
classifying mammal images. We chose the 72 mammals
that have at least 12 profile instances in the mammal bench-
mark made available by (Fink & Ullman, 2007). Of these,
approximately 1,000 images were used for training and a
similar number were used for testing. The test set was fur-
ther partitioned, where half was held out and used to se-
lect C and the rest where used for testing. The number
of instances of each class varied significantly from 6 to 30
training examples. It should be noted that the 72 target
classes are expected to share many common characteristics
due to genetic resemblance and evolutionary convergence.
Four genetically related families (Deer, Canines, Felines
and Rodents), are depicted in Fig. 4.

We build upon the comparison performed in (Zhang et al.,
2006) in selecting an image representation suitable for the
high degree of intraclass variability present in the mammal
dataset. This representation is based on extracting a visual
signature from the images. The visual signatures include
40 clusters of local descriptors, extracted from interest re-
gions of the image. The resulting signatures are comparing
using an Earth Moving Distance (EMD) Kernel. The EMD
distance between signature-A and signature-B is found by
solving the transportation problem, namely, by finding the
minimal Euclidean distance necessary for converting the
descriptors in signature-A to be identical to the descriptors
of signature-B.

Using the above representation we learned the two matri-
cesWFro (Frobenius norm regularization) andWΣ (trace
norm regularization). The trade-off parameterC was de-

termined using the same procedure used in Experiment 7.1
The accuracy of the multiclass SVM based on trace norm
regularization (33%) is observed to be higher than that at-
tained using the Frobenius norm regularization (29%).

In the previous sections it was suggested that learningF

can be thought of as learning a latent feature spaceF tX ,
which is useful for prediction. SinceF is learned jointly
over all classes, it can be thought of as transferring knowl-
edge between the classes. Under these conditions a new
class can be acquired from fairly few training examples.
We therefore predict that classes with few training exam-
ples will, on average gain more from applying trace norm
regularization. This effect is depicted in Fig. 5. Specifi-
cally, it could be observed that of the few classes that gain
from Frobenius regularization, four are of the top six most
frequent mammals.

In order to verify this phenomenon we selected the most
frequent class (Wombat), containing 30 training examples
and repeatedly relearnedWFro and WΣ while gradually
reducing the number of wombat examples to 24, 18, and
12. Under these conditions the accuracy of correct clas-
sification of wombats naturally deteriorated, but the effect
was noticeably less severe for the trace norm regularization.
While the Frobenius norm regularization performed better
when all 30 instances where available during learning (by
2.2%), when 24 instances where available the gap had nar-
rowed to 1.2%. When even fewer examples where available
the leads where reversed and the trace norm outperformed
the Frobenius norm by 1.4% for 18 instances and 3.7% for
12 instances. It should be noted that the false alarm rate
over the remaining classes remained fairly constant. These
results suggest that the learned common characteristics can
indeed facilitate the acquisition of a novel class when only
few examples are available for training.

Finally, the spectrum of the two learned models (Fig. 3),
depicts the fact that Frobenius based regularization leadsto
the attenuated spectrum ofWFro. It might be suggested
that this effect manifests the advantage of trace norm reg-
ularization in preserving underlying structure between the
mammal classes.

8. Discussion

We studied a learning rule for multi-class learning in which
the magnitude of the factorization of the weight matrix is
regularized, rather then the magnitude of the weights them-
selves. This is equivalent to regularizing the trace-norm
of the weight matrix, instead of its Frobenius norm. We
showed how this formulation can be kernelized, and solved
efficiently either with direct access to the feature vectorsor
in a kernelized setting. We demonstrated the effectiveness
of the formulation, particularly for classes with only a few
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Figure 5.The x-axis contains the 72 mammal classes sorted by the
number of instances available for training. The y-axis indicates
the difference in performance entailed by choosing trace norm
regularization over Frobenius norm regularization.

available training examples.

The multi-class formulation we study is a special case of
a more general family of trace-norm regularized learning
rules, where some general loss associated with the activa-
tion matrixW tX replaces our multi-class loss:

min
W

‖W‖Σ + C ·loss(W tX). (16)

Maximum Margin Matrix Factorization (Srebro et al.,
2005) can be seen as a degenerate case of Eq. (16) where
X = I and the loss function decomposes over the entries of
W . More recently, Argyriou et al. (2007) studied a learn-
ing rule which can be shown to be equivalent to Eq. (16),
where the loss function again decomposes over the entries
of W , corresponding to multiple independent tasks, but the
feature vectorsX are informative, and are explicitly avail-
able. Argyriouet alreach a different, but equivalent, formu-
lation of the problem and suggest an optimization approach
which requires iteratively solving multiple SVM problems.
We believe that our formulation Eq. (16) is more direct and
lends itself better to gradient-base optimization, which can
be applied also for the multi-task setting. Additionally, our
results on dualization, kernelization and representationof
the learned latent feature space apply also to the multi-task
setting studied by Argyriouet al, as well as to the general
family of Eq. (16).

Another related learning rule using trace-norm regulariza-
tion was studied by Abernethy et al. (2006). In their work,
feature vectors are available for both “rows” and “columns”
and so the prediction matrix isZW tX , rather thanW tX

in Eq. (16), whereZ is the matrix of “row” feature vectors.
However, the trace-norm regularization is then applied to
the prediction matrixZW tX , rather then to the weight ma-
trix.
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