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Despite rapid advances in connectome mapping and neuronal genetics, we lack

theoretical and computational tools to unveil, in an experimentally testable fashion,

the genetic mechanisms that govern neuronal wiring. Here we introduce a compu-

tational framework to link the adjacency matrix of a connectome to the expression

patterns of its neurons, helping us uncover a set of genetic rules that govern the

interactions between adjacent neurons. The method incorporates the biological re-

alities of the system, accounting for noise from data collection limitations, as well
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as spatial restrictions. The resulting methodology allows us to infer a network of

19 innexin interactions that govern the formation of gap junctions in C. elegans,

five of which are already supported by experimental data. As advances in single-

cell gene expression profiling increase the accuracy and the coverage of the data,

the developed framework will allow researchers to systematically infer experimen-

tally testable connection rules, offering mechanistic predictions for synapse and gap

junction formation.

Introduction

There is ample experimental evidence that the connectome, capturing the neuron level

wiring of a brain, is genetically encoded. Indeed, while neurons are clustered into broad

classes based on their morphology and function, these observed differences between cells

are known to be rooted in the differential expression patterns of their genes and proteins

[1–9]. Consequently, perturbations that alter the genetic identity of individual neurons can

induce significant changes in wiring [10, 11]. Furthermore, developmental neuroscience has

unveiled multiple genetic factors contributing to the formation of neuronal circuits. For

example, the connectome of C. elegans and higher organisms rely on a combination of body

and wiring localization [12–17], and cell-cell recognition specificity, both for synaptic [18] and

gap junction connections [10, 19, 20]. In the mouse retina, proteins, like connexin-36, play

a known role in coupling rods and cones through gap junctions [21] and in D. melanogaster,

neurons expressing the same olfactory receptor converge onto the same set of projection

neurons [22]. While these studies offer strong experimental support for the genetic roots of

neuronal wiring, we continue to lack a general framework to identify the genetic mechanisms

∗Electronic address: a.barabasi@northeastern.edu

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076315
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

that determine the presence or the absence of specific neuronal connections [11, 20, 23].

These advances have prompted the development of statistical approaches designed to

identify genes involved in synaptic connectivity [24–26]. Notably, Kaufman et al. [24]

demonstrated a correlation between gene expression and neuronal connectivity, and Varadan

et al. [25] identified a genetic rule for chemical synapses through an entropy minimization

approach. However, these frameworks do not incorporate the constraint that synapses can

only exist between physically adjacent neurons, prompting Baruch et al. [26] to estimate

spatial proximity information based on neuron connectivity pattern. Notwithstanding these

promising advances, progress towards unveiling the genetic rules of synapse formation is

remarkably slow compared to the tremendous experimental progress focusing on mapping

the connectome and the gene expression patterns of individual neurons [27–29].

The gap between experimental and computational progress raises a fundamental ques-

tion: is it computationally feasible to infer the genetic rules that govern synapse formation

from the available experimental data? For instance, in C. elegans we wish to describe the

genetic rules that govern the wiring of neurons of a relatively sparse connectome of N ⇠ 300

neurons [27] using as input the combinatorial expression patterns of m ⇠ 20, 000 genes [29].

In general, if in each neuron m genes contribute to synapse formation, together they can de-

scribe a connectome of up to N = 2m neurons. Hence, as we try to infer the gene list whose

expression pattern can explain the observed connectome, we are faced with a heavily under-

determined problem: in C. elegans a randomly generated expression of m = log2(N) < 9

genes can fully describe the observed connectome without revealing any biological informa-

tion. Although humans have N ⇠ 86 billion neurons [30], and only m ⇠ 20, 000 genes, the

number of neurons is dwarfed by the combinatorial gene expression space of size 2m, where

the expression pattern of m genes determines whether two neurons can synapse. Indeed, if
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only three genes contribute to synapse formation in each neuron in the human brain, they

allow for 1/6⇥m3 = 1.3⇥1012 combinations, an order of magnitude larger than the number

of neurons in a human brain, leading again to serious overfitting. We are therefore faced

with an astronomical search space, and the challenge to extract meaningful genetic rules in

a heavily ill conditioned problem of finding them from inherently limited experimental data.

In this paper we show how to overcome these difficulties, relying on network and physical

approaches that are known to provide complex structures from simple processes [31–35].

We begin by developing a theoretical and modeling framework to systematically infer the

genetic rules that contribute to the formation and maintenance of synapses and gap junctions

between adjacent neurons. We then show that these genetic rules can be systematically

extracted from two datasets: (i) a comprehensive map of the connectome and (ii) a protein

expression atlas of the individual neurons. Finally we rely on the roundworm Caenorhabditis

elegans to test our modeling framework. We do so because the C. elegans connectome is

believed to be largely identical across individuals [28, 36, 37], hence fully predetermined

by the genetic markers that label each neuron [19, 38]. Yet, the genetic mechanisms that

determine which neurons can synapse with each other remain largely unknown even in

this simple and well-studied organism [20]. We show that we can overcome overfitting

by restricting our analysis to genes known to be involved in gap junction formation. We

demonstrate the utility of the proposed modeling framework by predicting 19 interactions

between innexin proteins responsible for gap junction formation, finding that 5 of them are

supported by previous experimental data. Finally, we show that the SCM reveals the non-

Euclidean organization of brain wiring, indicating that the C. elegans connectome is not

driven, but is merely constrained by spatial factors.

The Connectome Model We begin with two hypotheses, the first being that each gene
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can be in two possible states, expressed (1) or not (0), whose combination define the genetic

barcode for each neuron. As synapses form between pairs of neurons, the second hypothesis

states that synapse formation is governed by some unknown biological mechanism linked to

the gene expression pattern of each neuron (neuronal barcodes). We describe each such a

mechanism as an operator O, which inspects the barcodes of two neurons and decides to

facilitate (or block) the formation of synapses or gap junctions between them [39].

Consider a hypothetical connectome consisting of seven neurons, A-G, whose connec-

tions are uniquely determined by the expression patterns of three genes (Fig. 1a). The

Connectome Model consists of a set of rules that encode the possibility of synapses between

genetically encoded sets of neurons [39]. In the simplest case, a rule could be an operator

O1 that recognizes the complete genetic profile of neurons C and G, designating C as a

source and G as a destination neuron, and establishing synapses between them (Fig. 1b).

However, a less specific operator (O2 or O3), that detects only a subset of the genes, ignoring

the expression state of the genes marked by X, can generate multiple links between two sets

of neurons, like the complete biclique of eight links in Fig. 1d. Figure 1 summarizes a key

prediction of the Connectome Model: Each biological mechanism that relies on gene expres-

sion to initiate synapse formation will generate an imprint in the connectome in the form

of a unique network motif, known as a non-induced biclique in graph theory [40] (see also

Supporting Figure S1), where all neurons of the source set can be connected to all neurons

of the destination set. Ref. [39] validated this prediction by showing an excess of specific

large biclique motifs in the C. elegans connectome. The challenge, which we address here,

is how to reverse engineer the genetic rules from the observed network patterns, given that

even a modest number of genetic rules can lead to a tremendous number of network motifs.

Furthermore, the genetic rules can be rather complex when expressed in terms of operators
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connecting gene expression patterns (Fig. 1d), rooted in the non-linear representation of

combinatorial expression data. To reduce this complexity, we introduce genetic labels, al-

lowing us to capture multiple genetic operators within a single network description. To be

specific, for an operator Oab, we assign all participating source neurons a label (”a” in Fig

1e) and all destination neurons a different label (”b” in Fig. 1e). A biological rule governing

neural connections between the source and destination neurons can be represented by the

link a � b between the two labels. In this label-based representation, the operators have a

simple form (Fig. 1e-g).

Although some labels can represent complex gene expression patterns (e.g. Fig. 1d)

others can be very simple. For example, electrical synapses or gap junctions (GJs) are inter-

cellular channels formed by two matching hemi-channels consisting of a subset of 25 innexin

proteins [41]. In order to maintain a GJ, the innexins forming the hemi-channels must be

expressed on the surface of adjacent neurons. In our formalism the simplest rule, Oab, is

then a link between two innexins ”a” and ”b” expressed on two neurons forming a GJ. In

other words, we assign label ”a” (or ”b”) to each neuron if it expresses innexin ”a” (or ”b”).

The labelling of each neuron is summarized in the expression matrix (X), where Xia = 1

if neuron i’s expression pattern is consistent with label ”a”, and zero otherwise (Fig. 2a).

The rule matrix O summarizes the individual operators as links connecting the labels (Fig.

2b). If two adjacent neurons express labels that are connected in O, then there is a non-

zero chance of establishing a synapse between these neurons. This representation defines

mathematically the Connectome Model (CM), that links the brain’s connectome (B) to the

expression patterns of the individual neurons X, through the rule matrix O,

B = XOXT . (1)

The brain equation (1) is our first key result, formally linking the connectome (B), the
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expression patterns of the individual neurons (X), and the biological mechanisms (O) that

govern synapse/GJ formation in the brain.

In practice, not all of the genetically allowed connections can be observed, due to ex-

perimental limitations, developmental and spatial constraints as well as neural plasticity.

In our formalism this implies that O is a stochastic operator with Oab < 1 (Fig. 3). For

instance, fruit fly inx-2 homomeric GJs form only between 40% of the neighboring cell pairs

[42], leading to an apparent stochasticity in GJ formation. In the absence of such stochastic

effects, Oaa predicts a complete subgraph of all a label neurons. With stochasticity, instead

of a fully connected subgraph, we expect a community of nodes connected to each other

with density Oaa = 0.4 (Fig. 3e). In other words, O is a weighted matrix, where the weights

are the probabilities that neurons carrying labels ”a” and ”b” will link to each other.

Taken together, as the brain equation (1) establishes a direct connection between the

expression profiles of the individual neurons (X) and the connectome (B) through genetic

rules (O), it allows us to address several key problems in brain science, listed in the order

of increasing technical difficulty:

(I.) Map out the Connectome: Predict the connectome (B) from gene expression (X) and

the genetic rules (O);

(II.) Unveil the Genetic Rules: Predict the genetic rules (O) behind the connectome from

known X and B;

(III.) Predict Expression Patterns: Find the gene expression of neurons (X) from the genetic

rules (O) and the wiring of the connectome (B);

Problem I is readily solved by Eq. (1), assuming that we know (some of) the biological

mechanisms behind the rules in O. As we currently lack these rules, in this paper we focus

on the pressing issue of solving Problem II. This choice is motivated by the fact that in
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C. elegans we have a comprehensive map of its neural system’s adjacency matrix (B) and

extensive (yet somewhat noisy and incomplete) information on the gene expression patterns

of individual neurons (X), potentially allowing us to determine the biological mechanisms

ecnoded in O.

Solving the Connectome Model

Given the connectome B and the labels X, our goal is to identify the operator O that

collects the biological rules that govern link formation (Problem II). To illustrate the pro-

cedure, we use the three rules introduced in Fig. 1 to generate the brain connectome B

(Fig. 2c), according to the label expression X (Fig. 2a). Just by looking at two connected

neurons it appears impossible to reverse the problem and infer the genetic rule responsible

for each connection (Fig. 2a, neurons C and G). Indeed, the rule could connect label ”a”

to label ”b”, but could also connect label ”a” to label ”d”. Even if we had simultaneous

access to the complete list of neural connections (B) and full genetic labels (X), inferring

the rules responsible for link formation (O) is mathematically ill conditioned, with infinitely

many solutions of the form

Õ = X+BX+T +W �X+XWXTX+T , (2)

where W is an arbitrary matrix and X+ stands for the Moore-Penrose pseudo-inverse of

X. We have a unique solution only when X+ = X�1, meaning that the neurons have

linearly independent expression patterns, which is not expected to be the case in the brain.

Otherwise, even if there is no noise in the input data, we do not expect to find exact solutions,

and Õ comes with a least-square residual error r2 = ||B � XÕXT ||2 > 0. In practice,

the situation is even more difficult because B and X have multiple unknown errors (both

false negatives and false positives). To make progress, we invoke the parsimony principle,

searching for the model that accounts for the available data with the fewest rules in O, i.e.
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requires the smallest possible number of distinct biological hypotheses. A convenient way

to mathematically formalize this is to minimize the objective function with a regularization

parameter α � 0,

r2 + α||O||2 , (3)

where ||O||2 ⌘
P

ij O
2
ij is the square of the Frobenius norm. When O consists of only 0s

and 1s, a minimal Frobenius norm corresponds to the fewest rules or the fewest 1’s in the O

matrix. As an alternative implementation of the parsimony principle, we could also select

the sum of the absolute values in O as the norm, related to compressed sensing, also known as

LASSO [43]. Here, we proceed with the Frobenius norm in order to maintain the analytical

tractability of the problem, and to be able to assess the significance of the obtained rules.

With this, we can find the optimal O, relying on the results on ridge regression (Tikhonov

regularization) [44], discussed in Methods.

The Spatial Connectome Model (SCM)

The CM assumes that each neuronal connection allowed by the genetic profile of the

neurons will form. Yet, for a synapse or GJ to form, the neurons must also be spatially

adjacent (Fig. 4a). By ignoring spatial constraints, each missing link between remote

neurons is taken as evidence against the rule, including links allowed by the genetics that

do not have the opportunity to form as the neurons do not come close to each other (Fig.

4b). Therefore, to increase the accuracy of the model’s predictions, we need to restrict our

analysis to pairs of spatially adjacent neurons. This information is encoded by the spatial

adjacency matrix A, telling us which neuron pairs are in physical proximity. In the C. elegans

anterior brain A has been mapped experimentally [45], hence we restrict our analyses to the

anterior 185 neurons. Here, 5, 592 pairs are adjacent, representing ⇡ 33% of all pairs, out of

which only 601 form GJs.
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It is tempting to incorporate spatial constraints into our matrix representation (1) by

ignoring each matrix element in B that is absent in the spatial adjacency matrix A (Fig.

4c). If we do so, the obtained truncated matrix has non-existing entries (Fig. 4c), and we

cannot apply standard matrix operations to it. Alternatively, treating each missing link as a

zero in the connectome matrix leads to incorrect rules, as illustrated in Fig. 4d. To address

this problem, we represent the connectome B as an edge list rather than a matrix. In other

words, we rearrange the connectome matrix B (by any, i.e. lexicographic order) into the

connectome vector b = vec(B) (Fig. 4e). Similarly, we rearrange the rule matrix O into

a rule vector o = vec(O). This allows us to reformulate the bi-linear CM in Eq. (1) as a

higher dimensional linear model

b = Ko , (4)

where K = X ⌦X. In this, so far equivalent, linear representation we can now restrict the

space of neural connections to spatially adjacent neurons by ignoring the entries in b and

K that do not satisfy spatial proximity according to the A matrix (Fig. 4f). We therefore

arrive at the truncated brain equation describing the spatial connectome model (SCM),

representing our second key result,

b0 = K 0o . (5)

This equation can be solved using tools similar to the ones we used to study the CM, as

discussed in Methods. At the end, the obtained rule weights can be rearranged into the

matrix format Õ0. If we perform these calculations on the toy model of Fig. 2a,c with the

indicated spatial constraints, we recover the exact rules in Fig. 2b, even though we are

using only a fraction of the connectome information, i.e. only the links that are between

adjacent neurons. This result suggests that we do not need complete input data on the C.

elegans connectome and gene expression to make progress, as we can use Eqs. (5) (and
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(7) in Methods) to uncover the biological mechanisms O governing brain wiring even from

partial data. Yet, we need to know the genetic labels, i.e. the genetic basis, X, in which the

organizing rules operate. Next we show how (4) helps us unveil the biological mechanism

governing gap junction formation.

Unveiling the Gap Junction Operators

Electrical synapses, or GJs, play an important role in the C. elegans nervous system and

muscle control [46]. There are 25 genes involved in C. elegans GJ formation, all of which

encode innexin proteins (collectively called innexin genes, even though not all of them are

named inx). We can therefore ignore the expression patterns of non-innexin genes, limiting

over-fitting by restricting the genetic space in X used in our analysis. Currently, there is

published expression data for 18 of the 25 innexin genes in C. elegans neurons [45]. Although

every neuron class is known to form GJs, about one third of the neurons have no reported

innexin gene expressed [47, 48]. Besides this obvious data incompleteness, the expression

data is also limited by experimental difficulties of differentiating between individual neurons

within the same neuron class, limiting the resolution of the expression data to neuron classes.

With these data limitations in mind, as a first step, we consider only the genetic labels linked

to the expression patterns of individual innexin genes.

We begin by applying Eq. (5), using as input the innexin gene expression data (X)

[45], the GJ connectome (B) [28] and the spatial adjacency A [29, 45], aiming to calcu-

late O, describing the genetic rules that govern GJ formation (Fig. 5 and Methods). We

set the regularization parameter at its optimal value α = 0.215 (see Methods and Sup-

porting Figure S2.). The elements of the obtained O matrix represent the probability that

neurons expressing those genes form a GJ due to this specific genetic rule. Most of the

obtained rules have a small, but non-zero weight (Supporting Figure S3), partially due to
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the data limitations discussed above, and partially inherent to the chosen Frobenius norm.

We must therefore differentiate small values from meaningful probabilities, a challenging

task because the inferred rules are not independent. To assess significance we must per-

form degree-preserving randomizations of the connectome [49] without violating the spatial

constraints. As we lack methods to perform such randomizations without generating interac-

tions between non-adjacent pairs of neurons, we designed a maximum entropy approach for

network randomization with spatial constraints, using a subgraph randomization protocol,

allowing us to determine the z-score for each predicted rule.

After randomization, we find 19 significant wiring rules above the threshold z > 2, sum-

marized in Fig. 5. Five of the 19 rules have been uncovered previously by the experimental

literature, including (1) inx-3–inx-3 [46], (2) inx-6–inx-6 [46], (3) inx-19–inx-19 [46],

(4) UNC-9–UNC-9 [46], (5) and inx-10–inx-11 [50], where the boldface font indicates

that the interaction is significant for two different C. elegans connectome reconstructions

(Supporting Text, Supporting Figure S4). The inx-19–inx-19 interaction was confirmed by

electrically coupling Xenopus oocytes [51], and inx-6–inx-6 channels have been confirmed by

EM reconstruction [52]. The remaining interaction rules uncovered by the model are novel:

(1) inx-9–inx-9, (2) inx-9–inx-17, (3) inx-17–inx-13, (4) inx-13–inx-13, (5) inx-11–inx-8,

(6) inx-8–inx-12, (7) inx-12–inx-12, (8) inx-2–inx-10, (9) inx-5–inx-10, (10) inx-10–inx-

3, (11) inx-18–inx-6, (12) inx-7–inx-7, and (13) inx-17–che-7, and (14) inx-1–inx-18,

where boldface again indicates that the interaction is confirmed in both reconstructions

(Supporting Text, Supporting Figure S4). Taken together, these fourteen novel interactions

offer ground for direct falsifiable experimental confirmation, through genetic interventions

that, according to our model, are expected to lead to rewiring in the C. elegans system.

The developed framework allows us to predict the nature of this rewiring: for example, if a
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connection between two neurons is due to a single rule, then losing the participating genetic

label on either side leads to a loss of interaction. For instance, our inference predicts that

the AINR-ASGL and AINL-ASGR gap junctions, present in both C. elegans connectome

reconstructions, are coded solely by inx-17–che-7 interactions, an interaction found signif-

icant according to inference on both reconstructions (Supporting Text, Supporting Figure

S4). Therefore, knocking down any of these genes in the neurons, or pharmacologically

preventing the interaction, is expected to result in the loss of these two gap junctions. Note

that these predictions are sensitive to the noise in the input data and the choice of the signif-

icance threshold, particularly since all single-rule gap junctions originate from low-strength

interactions.

Discussion Motivated by the need to infer the genetic rules that govern the wiring dia-

gram of the connectome, here we have introduced a computational framework that relates

the genetic expression profiles of the individual neurons to the connectome through a single

brain equation (1). Although the connectome and especially the neuron gene expression

profiles remain heavily incomplete and prone to noise, our results indicate that their joint

coverage is sufficient to infer some of the conjectured interactions that govern gap junction

formation in the C. elegans nervous system. To achieve this, we established a connection

between the gene expression patterns of single neurons and the connectome, through the

Connectome Model (1). As synapses can only form between neurons that are in physical

contact, we incorporated in our framework spatial constraints, resulting in the Spatial Con-

nectome Model (5). The model allowed us to identify 19 significant innexin rules behind

heterotypic gap junctions. With the increasing availability of high quality input data, the

SCM can be extended to capture heteromeric GJs and chemical synapses, illustrating the

versatility of the developed modeling framework (Supporting Text).
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The SCM, together with the inferred innexin rules, allows us to predict potential changes

in neural wiring if gene expression is altered via knock-out experiments or silencing. Yet, a

knock-out experiment of an innexin is only informative if the mutant is viable. The individual

loss of several innexins (including inx-3, inx-12, inx-13, inx-14, inx-22) is known to be lethal

[46], limiting knock-out experiments to non-essential innexins, unless the experiments can

be limited to specific neurons only. Temperature-sensitive alleles provide an alternative

way to experimentally modulate the expression of essential innexins, keeping the innexins

functional during development, and disabling the corresponding gap-junctions at restrictive

temperatures [53, 54]. Another possibility would be an exercise in edgetics, i.e. disrupting

specific protein-protein interactions using drugs targeting innexins [55], and detecting the

resulting change in the connectome. Our model could also be used to predict how the

brain is rewired in the food-deprived, dormant state of the C. elegans known as the dauer

stage. Functional studies indicate a substantial remodeling of behavior which anticipates

a substantial rewiring of the GJ connectome, with profound impact on synaptic partner

choices. As a prerequisite, dauer stage neuron gene expression data has been made available

recently [47].

Finally, the SCM has a geometric interpretation that establishes a connection between

brain connectivity and non-Euclidean geometry (Supporting Text). The rule matrix (O) of

the SCM can always be diagonalized, leading to a set of diagonal rules in the appropriate

genetic basis, given by the eigenvalues. If all eigenvalues are non-negative, that indicates

that a Euclidean geometry describes the wiring rules, implying that neurons will form links

to other neurons with similar expression profiles. We find, however, at least four negative

eigenvalues, supporting a non-Euclidean organization (Supporting Figure S5). This indicates

a strong presence of heterophily, i.e. GJ formation based on genetic complementarity rather
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than similarity. Such non-Euclidean wiring rules indicate that link formation in the C.

elegans connectome is not driven by spatial proximity, rather spatiality merely constrains a

fundamentally non-Euclidean structure.
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Methods Ridge Regression: Problem (3) can be solved analytically as [44]

Õ = X+(α)BX+T (α), (6)

where X+(α) = (XTX + αI)�1XT . In the α ! 0 limit, the solution is Õ = X+BX+T ,

yielding the best residual error (r2) at the expense of the simplicity of O, prone to overfitting

in the presence of errors. This limit is also sensitive to changes in B, therefore α = 0 is

only appropriate when the input data is exact. In contrast, α ! 1 leads to the estimate

Õ / XTBX, coinciding with the naive assumption discussed in Ref. [25], yielding a poor r2,

being prone to under-fitting. Finding the optimal α usually requires numerical heuristics.

Here we use the suggestion by Wahba [56] proven to be optimal in a generalized cross-

validation scenario, corresponding to α that minimizes r2/τ 2, where τ = Tr (I �KK+(α))

and K = X ⌦ X is calculated using the Kronecker product. Equation (5) can be solved

similarly, leading to

õ = K 0+(α)b0 , (7)

with K 0+(α) = (K 0TK 0 + αI)�1K 0T , at the optimal α corresponding to τ =

Tr (I �K 0K 0+(α)) (see Supporting Figure S2).

Subgraph Randomization: We start with a graph G0 and a subgraph G and we aim

to sample uniformly the space of subgraphs of G0 with (approximately) the same subgraph

degree sequence as given in G. This represents a constrained version of the traditional degree-

preserved randomization, where G0 is a complete graph [57], as all interactions that are not

in G0 are excluded from the randomized networks. Here, G0 represents the list of adjacent

neurons that could in principle establish a GJ and we aim to randomize the network without

violating the known spatial adjacency structure. We use a Maximum Entropy approach,

maximizing the entropy of the random network ensemble defined as S = �
P

P (G) lnP (G),
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where the average degree of each node is then hkii =
P

G P (G)ki(G), which we aim to keep

fixed to their original value, ki. The probability of a given graph instance is P (G) = e−H(G)

Z
,

where H =
P

i βiki(G) and the probability of having a link between nodes i and j can be

expressed as pij =
1

1+αiαj
, where αi = e�βi . The average degree of a node is then given by

hkii =
P

j,(i,j)2G
1

1+αiαj
, and the optimal α can be found iteratively, with the update rule

α0

i =
1

ki

X

j,(i,j)2G

1

αj + 1/αi

, (8)

starting from the initial condition α
(0)
i ⌘ 1 leading to α

(1)
i = Ki

2ki
. We perform at least a

hundred iterations to estimate the optimal α, allowing us to calculate the mean and the

standard deviation of the randomized matrix ensemble. Due to the linearity of the SCM

solution, these yield a z-score for each inferred wiring rule.
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FIG. 1: Gene Expression and the Connectome. a) As neural connections are determined by

neuron identity, we start with the terminal expression profile of seven neurons (blue nodes), whose

connections to each other is determined by the expression patterns of three genes, expressed (1)

or unexpressed (0). b) The formation of links (chemical synapses, gap junctions) are determined

by the expression profiles of the neurons, driven by biological mechanisms that are abstracted as

operators, Oi. In the simplest case, an operator recognizes the full expression pattern of neurons C

and G and connects them. c) A single rule or operator can generate multiple links if the operator

is more restricted, i.e. detects the expression of some genes and ignores others. Here, X marks the

gene ignored by the operator, whether it is expressed or not. d) More specific operators that have

multiple X’s in them can facilitate a large number of links, see Eq. (2). e) To each operator we

assign two labels, one to the source neurons (left) and another to the destination neurons (right).

The labels allow us to represent operator O1 as a link connecting the neurons with the right labels.

f) Even if the same label is assigned to multiple neurons, the operator O2 remains a simple link

between the two labels. g)While the operator O3 might appear complicated in terms of the original

gene expression data, it has a simple structure in the label representation.
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FIG. 2: The Connectome Model (CM). a) The expression pattern of the neurons A-G are

summarized in the label expression matrix X. b) The operators O1 � O3 connecting the labels

can be summarized in the organizing rule matrix O. c) In the CM, the brain connectome (B)

emerges from O and X through the CM Eq. (1). Each time two labels are connected in O, the

corresponding neurons in X form synapses. Only non-zero elements are shown in the matrices.
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FIG. 3: Mapping Gap Junctions to the Connectome Model. Gap-junctions are formed

by interacting hemi-channels comprised of innexin proteins. In the simplest case, a hemi-channel

is made of a single innexin, meaning that the expressed innexins can directly serve as labels. a)

Two Drosophila innexin proteins, inx-2 and inx-3 have been found to form (heterotypic) gap-

junctions, resulting in multiple potential neural connections [42]. b) There is evidence that inx-2

can form homomeric gap-junctions, establishing connections between the neurons expressing inx-

2, represented by the self-loop in the figure. c) Altogether, the two rules (a) and (b) can be

integrated into a rule network that serves as a template for the entire gap-junction connectome. d)

The formalism behind the CM allows for stochastic rules, i.e. a weight or 0.8 indicates that 80% of

the potential neural connection are present in the brain. This stochasticity can arise from multiple

factors, including noisy or incomplete expression and connectome data, spatial effects, biological

constraints, and the true stochasticity of neuronal wiring. e) According to oocyte experiments [51]

the homomeric innexin rule of Drosophila inx-2 has a weight of 0.4, as only 40% of the possible

links are observed. f) Even in the presence of apparent or true stochasticity, we can capture the

entire GJ connectome using only a few innexin rules.
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FIG. 4: The Spatial Connectome Model. a) Neurons can only synapse if they are located

in each other’s vicinity. We schematically indicate spatial adjacency via touching neuron contours

in the figure, and adjacent neuron pairs are marked by a 1 in the spatial adjacency matrix A.

b) Given the lack of proximity, only a fraction of the genetically allowed synapses are observed.

The dashed links in the network, shown as 1s in gray cells in the adjacency matrix below, indicate

neural connections that are genetically permitted but are not observed because the neurons are not

adjacent. c) When inferring genetic rules, distant neuron pairs must be ignored in the model (gray

cells), as we do not know if the lack of connection has a genetic origin, or is it simply due to spatial

constraints. We therefore arrive to a truncated matrix representation, which do not obey standard

matrix operations, and hence are challenging to work with. d) If we treat all unobserved cells

(gray and blank) as zeros, the matrix representation leads to incorrect rules, as it always assumes

the lack of genetic compatibility where there may be some. e) The edge list representation offers

a linear description that is formally equivalent with the matrix representation. f) Distant pairs of

neurons can be removed from the edge list representation, and as a truncated list is still a list, it

allows us to uncover the correct rules using Eq. (5).
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FIG. 5: Predicted Significant Innexin Rules. Significant innexin rules inferred for C. elegans

GJs, showing only positive rules with a z-score above 2. Each box corresponds to one of the 18

innexin proteins in C. elegans whose expression pattern is known. Dark blue links are found to

be significant in both connectome reconstructions (Supporting Text, Supporting Figure S4), while

light blue links are significant only in the Cook et al. connectome [28]. Link weights estimate the

connection probability. For example the link between inx-2 and inx-10 has weight 0.66, meaning

that the neurons expressing these two innexins establish GJs in 66% of the cases. Note, that the

observed probability of GJs between these neurons might change if multiple rules contribute to

them.
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Available Connectomes

The neural system of C. elegans consists of chemical synapses and gap junctions between
302 neurons. Graph theoretical analyses of C. elegans connectomes typically restrict the
circuit to the connected somatic nervous system of 279 neurons, excluding 20 neurons in
pharyngeal nervous system and 3 somatic neurons (CANL/R and VC06) that, in the Varsh-
ney et al. reconstruction [1], do not synapse with other neurons. We studied two different
reconstructions:

Cook et al. reconstructs a gap junction network with 1,051 undirected links, including
11 self-loops [2].

Varshney et al. provides a more conservative reconstruction, resulting in a gap junction
network has 517 links, of which 3 are self-loops [1].

Given its updated methodology, the Cook et. al. connectome is utilized in the body
of the paper. However, we also performed the SCM analysis on the Varshney connectome
(Supporting Figure S4), which resulted in 11 interactions that were shared with the Cook
et al. analysis: (1) inx-3–inx-3, (2) inx-9–inx-17 , (3) inx-19–inx-19, (4) UNC-9–UNC-9, (5)
inx-10–inx-11, (6) inx-13–inx-13, (7) inx-12–inx-12, (8) inx-2–inx-10, (9) inx-18–inx-6, (10)
inx-7–inx-7, and (11) inx-17–che-7.

Heteromeric Gap Junctions

As documented in vertebrate connexins, two or more innexins might form mixed, het-
eromeric hemi-channels, playing an important role in building the connectome. Therefore,
innexins are also expected to form heteromeric GJs [3], meaning that in a given neuron
the expression of two (or more) innexins are required to establish a GJ with another
neuron [4]. Heteromeric hemi-channels formed by two kinds of innexin proteins can be
incorporated in our model by adding the joint (logical AND) expression of innexin pairs
to X as additional labels. However, even at the pairwise level, such a step increases the
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dimensionality of the problem by an order of magnitude (from 18 to 171 labels) for X

and from 171 potential rules to 14, 706 rules in O. This implies that we have far more
rules to extract than the number of mapped GJ connections, rendering the problem
seriously underdetermined. To avoid overfitting, a potential strategy is to add each
innexin pair individually to the innexin labels to see which pair improves the most on the
model’s residual error. To avoid false positives, the inference of heteromeric rules is left as
future work, gaining relevance once the homomeric rules have been experimentally validated.

Chemical Synapses

Given that the formation of GJs is governed by innexin expression, we know the precise
genetic basis in which the rules operate. To perform the same analyses for chemical synapses,
we must extend the search basis to the entire list of genes, as any gene could contribute to
the identity of the neurons. In other words, unless the correct biological basis can be further
restricted, we lack the labels corresponding to the combination of proteins contributing to
synapse formation. One way to reduce the dimensionality of the problem is to focus on
transcription factor (TF) expression only. However, as opposed to innexin expression, adult
TF expression might not be strongly related to the expression history during development,
shaping the chemical synapses. Ideally, we would need to restrict the number of labels to at
least the number of neurons, to infer the chemical rules using the procedure we followed for
innexins. However, even then, given that synapses are directed, we need two sets of labels,
one for identifying the input neurons (X) and one for the output neurons (Y ), extending
the Connectome Model into a Directed Connectome Model (DCM)

B = XOY . (1)

The DCM can be solved similarly to the CM as Õ = X+BY + .

Geometric Interpretation of the Wiring Rules

Predicting the wiring rules (O) from B and X (Problem II) represents an inverse geomet-
ric embedding problem. Indeed, we have N input vectors Xi, one for each neuron, where
each vector represents the expression profile of M genes within that neuron. Hence, the ex-
pression pattern of each neuron can be interpreted as a position in an M -dimensional space.
In a three dimensional Euclidean space, the scalar product hx, yi = x1y1 + x2y2 + x3y3
measures the overlap of the two vectors x and y. Hence hx, yi = 0 for vectors that are
orthogonal to each other, and hx, xi gives the squared length of the vector x. We can
formally generalize the scalar product as an abstract pseudo-metric, defining the overlap
between two vectors as hx, yi = 1

2
[q(x+ y)� q(x)� q(y)], reducing to the Euclidean metric

for q(x) = ||x||2 = hx, xi = x2
1 + x2

2 + x2
3. In the light of this geometric interpretation,

the r.h.s of Eq. (1) defines a scalar product hx, yi =
P

ij xiOijyj, where the choice of O
guarantees that there is a non-zero overlap between neurons pairs, x and y, that satisfy the
genetic condition for synapse formation. In this picture, non-interacting neurons correspond
to orthogonal vectors, with hx, yi = 0, according to the pseudo-metric defined by the wiring
rules in O. The Euclidean metric would imply that neurons form synapses whenever they
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share at least one expressed gene (or share a genetic label). In this case O would be a
diagonal matrix, and it would be unable to describe the combinatorial rules described in
Figs 1 and 2 required for synapse formation. Hence, instead of a diagonal matrix, we need
to use an O capable of capturing the combinations of genes needed for synapse formation,
like the one shown in Fig. 2b. For an Euclidean metric, all eigenvalues are positive (or zero).
The existence of at least one negative eigenvalue indicates that the system is embedded in
a Minkowski-like space, encountered in special relativity, where q(x) = x2

1 + x2
2 + x2

3 � x2
4,

with eigenvalues (1, 1, 1,�1), the fourth coordinate representing time x4 = ct.
As (5) allows us to infer the genetic rules governing GJ formation through the expression

of 18 innexin proteins, we are able to unveil the 18 dimensional geometry behind GJs. We
find that in C. elegans, the genetic rule matrix, O, has as at least four negative eigenval-
ues (Supporting Figure S4), indicating a Minkowski-like space with at least four time-like
dimensions. In Euclidean space the triangle inequality is fulfilled (||x + y||  ||x|| + ||y||),
while in Minkowski-like spaces it is violated in some directions, leading amongst others to
the twin paradox. The triangle inequality appears as the popular triadic closure principle

(TCP) of social networks, where two friends of a node are also friends with each other, with
high probability. In a non-Euclidian space, the friend of my friend is not necessarily my
friend anymore. The negative eigenvalues of O indicate that the triangle closure principle is
violated, hence similarity and complementarity together drive GJ formation. Let’s illustrate
this for a single genetic rule. The inx-2–inx-2 self-interaction would be consistent with a Eu-
clidean structure, where GJs are formed when two neurons both express inx-2, representing
expression profile similarity. In contrast, the wiring rule inx-2–inx-3 can be only interpreted
in a Minkowski space, where similar neurons do not necessarily interact, but we need com-
plementary expression, i.e. the expression of inx-2 in one neuron and inx-3 in the other, for
GJ formation. In general, both similarity and complementarity is expected to play a role in
neuronal wiring. Note, that we could not have arrived to this conclusion by inspecting the
spectrum of the connectome B, given that B is truncated by spatial constraints.

To conclude, we find that the genetic rules of the connectome span a high dimensional
pseudo-Euclidean space, despite the embedding of the physical connectome in a three-
dimensional Euclidean space.
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FIG. S1: Topologies resulting from a single, deterministic rule. A genetic rule, con-

necting two labels, can appear very differently in the connectome depending on the distribu-

tion of the labels in the network. Each rule Oab linking two labels (a and b) encodes Eab =

Oab (NaNb �Nab(Nab � 1)/2) neural connections, where Na and Nb are the number of neurons

with labels a and b, and Nab is the number of neurons expressing both labels. a) A rule can

correspond to a single neural connection if the labels identify individual neurons. b) If the labels

extend over multiple neurons but share no common neurons, we have a biclique in the graph. c)

If the labels overlap for some neurons, we observe a generalized, non-induced biclique, reminiscent

of core-periphery structure. d) If the labels overlap completely, a clique is formed.
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FIG. S3: Solution of the SCM for Cook et al. data. Positive rules are indicated in red while

negative rules in blue.
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FIG. S4: Solution of the SCM for Varshney et al. data. Positive rules are indicated in red

while negative rules in blue at the optimal α = 0.12 regularization parameter value.
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FIG. S5: Eigenvalues of O. The obtained genetic rules have an indefinite spectrum as shown for

the obtained O matrix, keeping all entries (full), only the significant ones with |z| > 2 (sig.) or

only the significant positive entries (sig. pos.).
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