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Abstract 25 

 26 

The spread of antimicrobial resistance continues to be a priority health concern worldwide, 27 

necessitating exploration of alternative therapies. Cannabis sativa has long been known to contain 28 

antibacterial cannabinoids, but their potential to address antibiotic resistance has only been 29 

superficially investigated. Here, we show that cannabinoids exhibit antibacterial activity against 30 

MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells 31 

persistent to antibiotics. We show that the mechanism of action of cannabigerol is through targeting the 32 

cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a 33 

murine systemic infection model caused by MRSA. We also show that cannabinoids are effective 34 

against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on 35 

the inner membrane. Finally, we demonstrate that cannabinoids work in combination with polymyxin B 36 

against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic 37 

potential for cannabinoids.   38 

 39 
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Public Health agencies around the globe have identified antimicrobial resistance as one of the 62 

most critical challenges of our time. The rapid and global spread of antimicrobial-resistant organisms in 63 

recent years has been unprecedented. So much so that the world health organization (WHO) published 64 

its first ever list of antibiotic-resistant "priority pathogens", made up of 12 families of bacteria that pose 65 

the greatest threat to human health
1
. Among them, Staphylococcus aureus is the leading cause of both 66 

healthcare and community-associated infections worldwide and a major cause for morbidity and 67 

mortality
2
, especially with the emergence and rapid spread of methicillin-resistant S. aureus (MRSA), 68 

which is resistant to all known β-lactam antibiotics
3
. Worse yet, resistance to vancomycin, linezolid 69 

and daptomycin has already been reported in MRSA clinical strains, compromising the therapeutic 70 

alternatives for life-threatening MRSA infections
4
.  Further, antibiotic-resistant Gram-negative 71 

infections have increasingly become a pressing issue in the clinic. Indeed, of the bacteria highlighted 72 

by the WHO, 75% are Gram-negative organisms. Among the currently approved antibiotics in clinical 73 

use, the latest discovery of a new drug class dates back to more than 30 years ago. The rapid loss of 74 

antibiotic effectiveness and diminishing pipeline beg for the exploration of alternative therapies. 75 

Cannabis plants are important herbaceous species that have been used in folk medicine for 76 

centuries. Increasing scientific evidence is accumulating for the efficacy of its metabolites in the 77 

treatment, for example, of epilepsy, Parkinson disease, analgesia, multiple sclerosis, Tourette’s 78 

syndrome and other neurological diseases
5
. At a very nascent stage are investigations into the potential 79 

of cannabis metabolites as antibacterial therapies. To date, assessments of their antibacterial activity 80 

have been few and superficial. In vitro studies have shown that cannabinoids inhibit the growth of 81 

Gram-positive bacteria, mostly S. aureus, with no detectable activity against Gram-negative 82 

organisms
6-9

, where the clinical need is highest. Further, the mechanism of action has remained elusive 83 

and there has been little validation of antibacterial activity in vivo. 84 

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability 85 

to form biofilms, eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics. We 86 

reveal that the mechanism of action of cannabigerol (CBG) is through targeting the cytoplasmic 87 

membrane of Gram-positive bacteria and demonstrate in vivo efficacy of CBG in a murine systemic 88 

infection model caused by MRSA. We also show that cannabinoids are effective against Gram-negative 89 

organisms whose outer membrane is permeabilized, where CBG acts on the inner membrane. Finally, 90 

we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant 91 

Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.  In all, 92 
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our findings position cannabinoids as promising leads for antibacterial development that warrant 93 

further study and optimization. 94 

 95 

Results and Discussion 96 

 97 

 We began our study investigating the antibacterial, anti-biofilm and anti-persister activity of a 98 

variety of commercially available cannabinoids, including the five major cannabinoids, 99 

cannabichromene (CBC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), and ∆
9
-100 

tetrahydrocannabinol (THC), as well as a selection of their carboxylic precursors (pre-cannabinoids) 101 

and other synthetic isomers (18 unique molecules total, Fig. 1) against methicillin-resistant S. aureus 102 

(MRSA) (Supplementary Table 1). Susceptibility tests were conducted according to the Clinical and 103 

Laboratory Standards Institute (CLSI) protocol against MRSA USA300, a highly virulent and prevalent 104 

community-associated MRSA.  Overall, antibacterial activities for the five major cannabinoids (and 105 

some of their synthetic derivatives) were in line with previously published work
6-8

. Seven molecules 106 

were potent antibiotics with minimum inhibitory concentration (MIC) values of 2 µg/mL, including 107 

CBG, CBD, CBN, cannabichromenic acid (CBCA) and THC along with its Δ
8
- and exo-olefin 108 

regioisomers.  We observed moderate loss of potency associated with the benzoic acid moiety (CBG, 109 

CBD, and THC were more potent than CBGA, CBDA, THCA) and when n-pentyl substituent was 110 

replaced with n-propyl (CBD and THC were superior to CBDV and THCV) (Supplementary Table 1).  111 

These two modifications appeared to have an additive detrimental effect on antibacterial activity 112 

(THCVA, CBDVA).  The two most common human metabolites of THC, (±) 11-nor-9-carboxy-Δ
9
-113 

THC, and (±) 11-hydroxy-Δ
9
-THC, as well as cannabicylol were inactive at the highest concentrations 114 

screened (MIC > 32 µg/mL) (Supplementary Table 1). 115 

Biofilm formation by MRSA, typically on necrotic tissues and medical devices, is considered 116 

an important virulence factor influencing its persistence in both the environment and the host 117 

organism
10

. These highly structured surface-associated communities of MRSA are typically associated 118 

with increased resistance to antimicrobial compounds and are generally less susceptible to host immune 119 

factors. We assessed the ability of the various cannabinoids to inhibit the formation of biofilms by 120 

MRSA, using static abiotic solid-surface assays in which MRSA was treated with increasing 121 

concentrations of cannabinoids under conditions favouring biofilm formation (Supplementary Fig. 1). 122 

In all, the degree of inhibition of biofilm formation correlated with antibacterial activity; those 123 

cannabinoids with potent activity against MRSA strongly suppressed biofilm formation and vice versa 124 

(Supplementary Fig. 1, Supplementary Table 1). The five major cannabinoids clearly repressed MRSA 125 

biofilm formation, with CBG (Fig. 2a) exhibiting the most potent anti-biofilm activity. Indeed, as little 126 
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as 0.5 µg/mL (1/4 MIC) of CBG inhibited biofilm formation by �50% (Fig. 2b). Thus, this experiment 127 

underlined the strong inhibitory effect of cannabinoids on biofilm formation; this sub-MIC level of 128 

CBG did not affect planktonic growth (Supplementary Fig. 2).  Interestingly, we also evaluated the 129 

effect of CBG on pre-formed biofilms by determining its minimal biofilm eradication concentration 130 

(MBEC); CBG could eradicate pre-formed biofilms of MRSA USA300 at 4 µg/mL (Fig. 2c).   131 

 132 

Another challenge in the treatment of MRSA infections is the formation of non-growing, 133 

dormant ‘persister’ subpopulations that exhibit high levels of tolerance to antibiotics
11-13

. Persister cells 134 

have a role in chronic and relapsing S. aureus infections
14

 such as osteomyelitis
15

, and endocarditis
16

. 135 

Here, we evaluated the killing activity of a series of cannabinoids against persisters derived from 136 

stationary phase cells of MRSA USA300 (Supplementary Fig. 3). These have been previously shown to 137 

be tolerant to conventional antibiotics such as gentamicin, ciprofloxacin and vancomycin
11, 17-18

. In 138 

general, the anti-persister activity correlated with potency against actively dividing cells as determined 139 

by MIC assays (Supplementary Table 1). Again, CBG was the most potent cannabinoid against 140 

persisters, whereas oxacillin and vancomycin were ineffective at concentrations that otherwise kill 141 

actively dividing cells (Supplementary Fig. 3, Fig. 2d). More specifically, CBG killed persisters in a 142 

concentration-dependent manner starting at 5 µg/ml. Notably, CBG rapidly eradicated a population of 143 

~10
8
 CFU/ml MRSA persisters to below the detection threshold within 30 minutes of treatment (Fig. 144 

2d).  145 

We selected CBG (Fig.2a) for further studies of mechanism and in vivo efficacy. Not only did 146 

CBG potently inhibit MRSA (MIC 2 µg/mL), repress biofilm formation (Fig. 2b), eradicate pre-formed 147 

biofilms (Fig. 2c) and effectively eradicate persister cells (Fig. 2d), but it is non-psychotropic, non-148 

sedative and constitutes a component of Cannabis for which there is high therapeutic interest
19

. While 149 

it has many desirable pharmacological properties, CBG also possesses several desirable physico-150 

chemical properties as a medicinal chemistry lead in terms of molecular weight, number of hydrogen 151 

donors and acceptors, number of rings and rotatable bonds (Table 1). Nevertheless, CBG suffers from 152 

high lipophilicity (high log P) and low aqueous solubility (Table 1). These values were not a bottleneck 153 

to our studies, but in moving CBG as a lead, such properties could be addressed in medicinal chemistry 154 

campaigns. To our advantage, we were able to synthesize CBG efficiently from olivetol and geraniol, 155 

two inexpensive precursors, in one synthetic operation. We were cognisant that such facile synthetic 156 

access would enhance the potential for subsequent medicinal chemistry-based development efforts. 157 

We determined the MIC90 of CBG against 96 clinical isolates of MRSA using the CLSI protocol. The 158 

corresponding frequency distribution of MICs is presented in Fig. 2e. The MICs ranged from 2 – 8 159 
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µg/mL with a resulting MIC90 of 4 µg/mL.  The range of MIC values was tight with only one outlier 160 

strain detected to have a very low MIC of 0.0625. Overall, this activity compares favourably with 161 

conventional antibiotics for these multi-drug resistant strains. 162 

Given its growth inhibitory action on Gram-positive bacteria, we reasoned isolating resistant 163 

mutants to CBG would be a straightforward approach to gather insights into its bacterial target. Indeed, 164 

resistance mutations can often be mapped to a drug's molecular target
20

.  To this end, MRSA was 165 

repeatedly challenged with various lethal concentrations of CBG, ranging from 2-16x MIC, to select 166 

for spontaneous resistance in MRSA (Fig. 3). No spontaneously resistant mutants were obtained, 167 

indicating a frequency of resistance less than 10
−10

 for MRSA. We also attempted to allow MRSA 168 

bacteria to develop resistance to CBG by sequential subcultures via 15-day serial passage in liquid 169 

culture containing sub-MIC concentrations of CBG and, again, no change in the MIC of CBG was 170 

detected (Fig. 3). While these experiments were unsuccessful probes of mechanism, they suggested 171 

very low rates of resistance for CBG, a highly desirable property for an antibiotic.   172 

We turned to chemical genomic analysis to generate hypotheses for the target of CBG. Such 173 

studies can reveal patterns of sensitivity among genetic loci that are characteristic of the mechanism of 174 

action of an antibacterial compound
21

. We confirmed that the model Gram-positive bacterium B. 175 

subtilis was susceptible to CBG (MIC 2 µg/mL), and screened a CRISPR interference knockdown 176 

library of all essential genes in B. subtilis
22

 for further sensitization to CBG. In the absence of 177 

induction, relying on basal repression (which leads to a ~3-fold repression of the knockdown library
22

), 178 

we were unable to detect any knockdowns sensitized to sub-lethal concentrations of CBG (Fig. 3). 179 

Low-level induction identified some sensitive and some suppressing clones, however follow-on work 180 

with the individual knockdowns in liquid culture via full checkerboard analysis (combining xylose, the 181 

inducer, with CBG) failed to confirm sensitivity or suppression. In all, we were unable to identify bona 182 

fide chemical genetic interactions among essential genes of B. subtilis and CBG. We next aimed to 183 

query the non-essential gene subset, this time using the Nebraska Transposon Mutant Library, a 184 

sequence-defined transposon mutant library consisting of 1,920 strains, each containing a single 185 

mutation within a nonessential gene of CA-MRSA USA300
23

, again looking for genetic enhancers or 186 

suppressors to generate target hypotheses (Fig. 3, Supplementary Fig. 4a). While we were unable to 187 

uncover genetic suppressors at supra-lethal concentrations of CBG, we identified 41 transposons as 188 

sensitive across 3 different sub-lethal concentrations of CBG (Supplementary Table 2). Analysis of 189 

these transposons revealed a significant enrichment for genes encoding proteins that are localized at the 190 

cytoplasmic membrane (Supplementary Fig. 4b) and enrichment for genes encoding functions in 191 

processes that take place at the cytoplasmic membrane, such as cellular respiration and electron 192 
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transport chain (Supplementary Fig. 4c). In all, chemical genomic profiling with CBG generally linked 193 

its activity to cytoplasmic membrane function. 194 

The lack of clear targets among the essential gene products, the predominance of chemical 195 

genetic interactions linked to membrane function, and the difficulty generating resistant mutants, 196 

suggested that CBG might act on the cytoplasmic membrane of MRSA. Indeed, the propensity of 197 

membrane-active compounds to generate resistance is frequently low
24

. Further, the bacterial 198 

membrane is critical for cell function and survival, and is essential irrespective of the metabolic status 199 

of the cell, including non-growing and persisting cells
24

. The strong action of CBG on persister cells 200 

would be consistent with such a mode of action. Thus, we assessed the ability of CBG to disrupt 201 

membrane function using the membrane potential-sensitive probe, 3,3'-dipropylthiadicarbocyanine 202 

iodide (DiSC3(5)). In DiSC3-loaded MRSA cells, CBG caused a dose-dependent increase in 203 

fluorescence that occurred at a concentration consistent with the MIC of CBG (Fig. 3). To probe the 204 

possibility that CBG selectively dissipated membrane potential (Δψ) component of proton motive 205 

force, we tested for synergy with sodium bicarbonate, a known perturbant of ΔpH, that has been shown 206 

to synergize with molecules that reduce Δψ
25

. A lack of synergy between these compounds suggested 207 

CBG disrupts the integrity of the cytoplasmic membrane (Supplementary Fig. 5).  In order to evaluate 208 

the potential membrane activity of CBG on mammalian cells, we evaluated its hemolytic toxicity 209 

across varying concentrations (Supplementary Fig. 6). CBG was hemolytic only at 32 µg/mL, above its 210 

MIC of 2 µg/mL, suggesting some specificity for prokaryotic cells.  211 

Having established strong in vitro potency for CBG against MRSA, we next sought to evaluate 212 

the in vivo efficacy in a murine systemic infection model of MRSA. The effect of CBG on a systemic 213 

infection mediated by the CA-MRSA USA300 strain is shown in Fig. 4. A dose-dependence study 214 

(Supplementary Fig. 7) informed that a dose of 100 mg/kg is most effective while remaining tolerable. 215 

To evaluate tolerability, we treated mice with 100 mg/kg CBG and assessed their change in body 216 

weight over various time points and found no significant changes (Supplementary Fig. 8). Additionally, 217 

no signs of acute toxicity have been reported in a pharmacokinetic study of 120-mg/kg doses of 218 

CBG
26

.. Overall, CBG displayed a significant reduction in bacterial burden in the spleen by a factor of 219 

2.8-log10 in CFU compared to the bacterial titer seen with the vehicle (p�<�0.001, Mann–Whitney U-220 

test). Further, the in vivo efficacy of CBG was comparable to that of the antibiotic control, vancomycin 221 

administered at a similar dose. In all, CBG displayed promising levels of efficacy in the systemic 222 

infection model. 223 

To date, antibacterial activity of cannabinoids against Gram-negative organisms has largely 224 

been ruled out, since reported MICs values fall in the 100-200 µg/mL range
7-8

. We confirmed this, 225 
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obtaining MICs >128 µg/mL for all of the tested cannabinoids against the model Gram-negative 226 

organism Escherichia coli. Given the observed action of CBG on the cytoplasmic membrane of MRSA, 227 

we reasoned that CBG (and other cannabinoids) might be equally effective on the Gram-negative 228 

counterpart, the inner membrane. Further, just as many antibacterial compounds fail to work against 229 

Gram-negative pathogens due to a permeability barrier
27

, we reasoned that low permeability across the 230 

outer membrane (OM) may be the reason for the poor efficacy of cannabinoids. Thus, we investigated 231 

the antibacterial profile of the five major cannabinoids against E. coli, where their permeation was 232 

facilitated through the OM by means of chemical perturbation. To this end, we set up checkerboard 233 

assays to assess the interaction of CBG (Fig. 5a) and the four other main cannabinoids (Supplementary 234 

Fig. 9) with the membrane perturbant, polymyxin B against E. coli. Remarkably, all five major 235 

cannabinoids gained potent activity in the presence of sub-lethal concentrations of polymyxin B. 236 

Indeed, all interactions were deemed synergistic (Fig. 5, Supplementary Fig. 9). For example, CBG, 237 

which was inactive against E. coli (>128 µg/mL), was strongly potentiated when combined with a sub-238 

lethal concentration of polymyxin B (1 µg/mL in the presence of 0.062 µg/mL polymyxin B). A similar 239 

synergistic interaction was observed with polymyxin B nonapeptide, a less toxic derivative of 240 

polymyxin B that strictly perturbs the outer membrane in Gram-negative bacteria (Supplementary Fig. 241 

10), suggesting that induction of outer membrane permeability is sufficient to allow entry and activity 242 

of CBG. We further assessed whether OM perturbation by genetic means would lead to similar results 243 

by evaluating the activity of CBG against a number of strains where the OM was compromised (Fig. 244 

5b). In an E. coli ΔbamBΔtolC deletion strain, which renders E. coli hyperpermeable to many small 245 

molecules, due to loss of BamB, a component of the β-barrel assembly machinery for OM proteins and 246 

TolC, the efflux channel in the outer membrane, CBG had a MIC of 4 µg/mL, on par with its Gram-247 

positive activity. Similarly, in a hyperporinated, Δ9 strain of E. coli, where a recombinant pore was 248 

introduced in the OM and all nine known TolC-dependent transporters deleted
28

, CBG activity became 249 

evident with a MIC of 8 µg/mL. Finally, in an Acinetobacter baumannii deficient in 250 

lipooligosaccharide (LOS-), which effectively alters the permeability of the OM
29

, CBG activity was 251 

enhanced greater than 128-fold, resulting in a MIC value of 0.5 µg/mL. Overall, these results suggest 252 

that cannabinoids face a permeability barrier in Gram-negative bacteria and further imply that 253 

cannabinoids inhibit a bacterial process present in Gram-negative pathogens, and likely common to that 254 

in Gram-positive pathogens.  255 

To this end, we investigated whether CBG acted on the inner membrane (IM) of E. coli as well 256 

as the OM. IM and OM permeability were determined, respectively, from ortho-Nitrophenyl-β-257 

galactoside (ONPG) and nitrocefin hydrolysis in an E. coli strain constitutively expressing a 258 
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cytoplasmic β-galactosidase and a periplasmic β-lactamase while lacking the lactose permease, as 259 

described in the literature
30

. As shown in Fig. 5c, CBG specifically acted on the IM, and only in the 260 

presence of polymyxin B at a sub-lethal concentration that had minimal effects on the IM alone.  We 261 

observed that CBG (+polymyxin B) induced major permeability changes in the inner membrane, 262 

indicated by a time-dependent marked increase in optical density values due to ONPG hydrolysis as a 263 

result of unmasking the cytoplasmic β-galactosidase, which can only occur with destabilization of IM 264 

(Fig. 5c). CBG exhibited no action on the OM (Supplementary Fig. 11). Overall, the mechanism of 265 

bacterial killing by CBG in E. coli is likely loss of IM integrity and requires antecedent OM 266 

permeabilization. 267 

Combination antibiotic therapy is becoming an increasingly attractive approach to combat 268 

resistance
31

. So too is the strategy of using an OM perturbing molecule to facilitate the permeation of 269 

compounds that are otherwise active only on Gram-positive bacteria
32

. We assessed the therapeutic 270 

potential of the adjuvant polymyxin B in combination with CBG to inhibit the growth of priority Gram-271 

negative pathogens such as A. baumannii, E. coli, Klebsiella pneumoniae, and Pseudomonas 272 

aeruginosa (Fig. 5d). We employed conventional checkerboard assays to determine the interaction and 273 

potency of CBG and polymyxin B when used concurrently against various multi-drug resistant clinical 274 

isolates. In all cases, synergy was evident, suggesting the potential for combination therapy of the 275 

cannabinoids with polymyxin B against Gram-negative bacteria.  276 

In summary, we have investigated the therapeutic potential of cannabinoids, specifically CBG, 277 

through a comprehensive study of in vitro potency on biofilms and persisters, as well as mechanism of 278 

action studies and in vivo efficacy experiments. Most notably, we have uncovered the hidden broad-279 

spectrum antibacterial activity of cannabinoids and demonstrated the potential of CBG against Gram-280 

negative priority pathogens. Taken together, our findings lend credence to the idea that cannabinoids 281 

may be produced by Cannabis sativa as a natural defense against plant pathogens. Notwithstanding, 282 

cannabinoids are well-established as drug compounds that have favourable pharmacological properties 283 

in humans. The work presented here suggests that the cannabinoid chemotype represents an attractive 284 

lead for new antibiotic drugs. 285 

 286 
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METHODS 300 

Strains and reagents. Supplemental Table 3 lists bacteria and plasmids used in this work. Supporting 301 

Information S. aureus Table lists the 96 clinical isolates, along with body site location and year of 302 

isolation.  Bacteria were grown in cation-adjusted Mueller Hinton broth (CAMHB) at 37°C, unless 303 

otherwise stated. Antibiotics were obtained from Sigma, Oakville, ON, Canada. Pure cannabinoid 304 

solutions purchased from Sigma, Oakville, ON, Canada were used for all experiments. Only CBG was 305 

synthesized in larger quantity as described below.  306 

Antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) determination and 307 

checkerboard assays were conducted following the guidelines of CLSI for MIC testing by broth 308 

microdilution
33

. Persister killing activity of cannabinoids was evaluated against stationary-phase cells 309 

of S. aureus as previously described
35

. 310 

B. subtilis CRISPRi essential gene knockdown strain collection screen. Overnight cultures of the 311 

collection
22

 (at a 96-well density, n = 289) were performed using the Singer rotor HDA (Singer 312 

Instruments, United Kingdom) in CAMHB. Subsequently, CAMHB with or without CBG were 313 

inoculated using the singer rotor at 96-well density. These experiments were performed either in the 314 

presence of 0.05% xylose (allowing low level of dcas9 expression) or with no xylose induction 315 

(basal dcas9 expression). The plates were incubated at 37
o
C and OD600 was read after 24 h. 316 

S. aureus Nebraska Transposon Mutant Library (NTML) screen. Overnight cultures of the 317 

NTML
23

 (at a 384-well density) were performed using the Singer rotor HDA (Singer Instruments, 318 

United Kingdom) in CAMHB containing erythromycin (5 µg/mL). Subsequently, CAMHB with or 319 

without CBG were inoculated using the singer rotor at 384-well density. The plates were incubated at 320 

37
o
C and OD600 was read after 24 h. Cellular localization and functional (gene ontology, GO-term) 321 

enrichment analyses were performed using Pathway Tools software and MetaCyc database
36

. 322 

Selection of suppressor mutants of CBG activity in S. aureus. Spontaneous suppressor mutants were 323 

selected for in liquid culture. Briefly, isolated colonies were resuspended in PBS and diluted to a final 324 

OD600 of 0.05 into 200 μL of CAMHB containing CBG (at 4x and 8x MIC) set up in 96-well microtiter 325 

plates, 36 wells/concentration. Plates were incubated at 37
o
C for 4 days. Alternatively, bacteria were 326 

treated with a 2-fold series of CBG concentrations spanning the MIC. Bacteria growing at the 327 

maximum sub-MIC concentration were repeatedly passaged in a similar series of CBG concentrations 328 

by 1000-fold dilution every 24 hours. Five CBG dilution series were performed simultaneously and the 329 

cells were passaged for 15 days.  330 

General molecular techniques. DNA manipulations were performed as previously described 
37

. CaCl2 331 

chemically-competent ML35 cells were transformed with pBR322 encoding a periplasmic β-lactamase.  332 

Biofilm formation assays. Biofilm formation was performed in polystyrene 96-well plates in Tryptic 333 

Soy Broth (TSB) with 1% glucose and detected by the crystal violet method as previously described
38

. 334 

For MBEC determination, biofilms were allowed to form for 24 hours prior to washing off planktonic 335 

cultures with sterile de-ionized water then treatment with CBG at varying concentrations. 336 

Quantification of biofilm was performed as noted above. 337 

Membrane integrity assays. DiSC3(5) assay was performed in S. aureus as previously described
39

. To 338 

determine outer membrane and inner membrane activity of CBG against Gram-negative bacteria, we 339 
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performed β-lactamase and β-galactosidase assays, respectively. Overnight cultures of ML35 pBR322 340 

in TSB with 50 μg/mL ampicillin were 100-fold diluted in fresh pre-warmed TSB and incubated at 341 

37
o
C at 220 rpm. Logarithmic phase cells were collected, washed twice in PBS and then resuspended in 342 

PBS at a final OD600 of 0.01. Nitrocefin (30 μM) or ONPG (1.5 mM) - probes for β-lactamase and β-343 

galactosidase, respectively (final concentration) - were added to the bacterial suspension and 344 

immediately aliquoted to dilution series of CBG and/or PMB at 100 μL final volume. Plates were 345 

incubated at 37
o
C and monitored kinetically for color change at 492 and 405 nm (for nitrocefin and 346 

ONPG hydrolysis, respectively). Adequate no drug, no probe and/or cell-free controls were included. 347 

Hemolysis assay. Hemolysis assay using red blood cells (defibrinated sheep blood, Thermo Fisher 348 

Scientific) was performed as previously described
40

. 349 

Statistical analyses. Statistical analyses were conducted with GraphPad Prism 5.0 and is indicated for 350 

each assay in the figure caption. All results are shown as mean ±SEM unless otherwise stated. In the 351 

case of MIC and checkerboard assays, the experiments were repeated at least three independent times 352 

and the experiment showing the most conservative effects (if applicable) was shown.  353 

Synthesis of Cannabigerol.  354 

 355 

 356 

CBG was synthesized using a reported procedure
41

. To a 25 mL round-bottomed flask containing a 357 

magnetic stir were added olivetol (108 mg, 0.6 mmol), chloroform (5 mL), geraniol (174 µL, 1.0 358 

mmo), p-toluene sulfonic acid monohydrate (19 mg, 0.1 mmol).  The flask was covered with aluminum 359 

foil and the reaction was stirred at room temperature in the dark for 12 hours at which point TLC 360 

analysis indicated complete consumption of the olivetol substrate.  To the reaction was added aqueous 361 

saturated NaHCO3 (5 mL).  The organic phase was removed and washed with water (5 mL).  The 362 

aqueous layer was extracted with additional chloroform (5 mL) and the combined organic extracts were 363 

dried over MgSO4 and concentrated en vacuo.  The crude residue was purified via flash column 364 

chromatography on silica gel using gradient elution with hexanes and ethyl acetate.  CBG was isolated 365 

as an off white powder in 28 % yield (54 mg, 0.17 mmol). Spectral data can be found in Supplementary 366 

Figs. 12-14. 367 
1
H NMR (700 MHz, CDCl3) δ 6.25 (s, 2H), 5.28 (tq, J = 7.1, 1.3 Hz, 1H), 5.09 – 5.04 (m, 3H), 3.40 (d, 368 

J = 7.1 Hz, 2H), 2.49 – 2.43 (m, 2H), 2.14 – 2.04 (m, 4H), 1.82 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H), 1.58 369 

– 1.54 (m, 2H), 1.36 – 1.28 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H). 
13

C NMR (176 MHz, CDCl3) δ 154.92, 370 

142.89, 139.13, 132.19, 123.89, 121.84, 110.73, 108.52, 39.83, 35.65, 31.63, 30.93, 26.52, 25.81, 371 

22.68, 22.40, 17.83, 16.32, 14.16. HRMS (ESI) m/z: 315.2329 calcd for C21H31O2 [M-H]; 315.24490 372 

obsd. 373 

Mouse infection models. Animal experiments were conducted according to guidelines set by the 374 

Canadian Council on Animal Care using protocols approved by the Animal Review Ethics Board at 375 

McMaster University under Animal Use Protocol #17-03-10. Before infection, mice were relocated at 376 

random from a housing cage to treatment or control cages. No animals were excluded from analyses, 377 

and blinding was considered unnecessary. Seven- to nine-week old female CD-1 mice (Envigo) were 378 

infected intraperitoneally with 7.5 x 10
7
 CFU of log-phase MRSA strain USA 300 JE2 with 5% porcine 379 

mucin. Treatment of 100 mg/kg CBG or a vehicle solution (60% PEG300 and 5% DMSO) were 380 

administered intraperitoneally immediately post-infection. Mice were euthanized and tissues collected 381 

into phosphate buffered saline (PBS) at necropsy. Organs were homogenized using a high-throughput 382 
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tissue homogenizer, serially diluted in PBS, and plated onto solid LB. Plates were incubated overnight 383 

at 37°C and colonies were quantified to determine organ load.  384 

 385 
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Table 1. Physiochemical properties of CBG as calculated by ACD/Percepta software. 519 
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 544 

Fig. 1. Structures of the cannabinoids surveyed in this study. 545 
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 577 

 578 

Fig. 2. Cannabigerol (CBG) is a potent antibacterial, anti-biofilm and anti-persister cannabinoid. a, Chemical 579 

structure of CBG b, Concentration dependence for inhibition of MRSA biofilm formation by CBG. Shown is the 580 

average A600nm measurements of crystal violet stained biofilms and normalized by the OD600 of planktonic cells 581 

with error bars representing one standard error of the mean, S.E.M. (n�=�4). c, Minimum biofilm eradication 582 

concentration of CBG. CBG is capable of eradicating pre-formed biofilms at a concentration of 4µg/mL (n=8).d, 583 

Time-kill curve of S. aureus USA300 persisters by CBG compared to oxacillin shown as mean ±S.E.M (n=4). 584 

CBG rapidly eradicated a population of ~10
8
 CFU/ml MRSA persisters to below the detection threshold within 585 

30 minutes of treatment. On the other hand, the β-lactam oxacillin at 160 µg/mL (5x MIC) did not show any 586 

activity against the same population of persisters. e, MIC90 distribution of CBG against clinical isolates of 587 

MRSA (n=96). The MIC90 is 4 µg/mL. 588 
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 615 

 616 

Fig. 3. CBG is active on the cytoplasmic membrane of MRSA. Overview of strategies for mechanism of action 617 

determination, culminating in the finding that CBG is active on the cytoplasmic membrane, as determined by 618 

dose-dependent increases in DiSC3(5) fluorescence.  619 
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 638 

Fig. 4. CBG is efficacious in a systemic mouse model of S. aureus infection. A single-dose treatment is 639 

administered immediately post-infection: vehicle control (n=7, i.p.), CBG (n=7, 100 mg�kg
−1

, i.p.) or 640 

vancomycin control (n=5, 100 mg�kg
−1

, i.p.). Colony-forming units (CFU) within spleen tissue were 641 

enumerated at 7 h post-infection. CFUs within spleen tissue were also enumerated at an early time point of 30642 

minutes post-infection following vehicle control treatment (n=5, i.p.). Horizontal lines represent the geometric643 

mean of the bacterial load for each treatment group. Administration of CBG resulted in a 2.8-log10 reduction 644 

(p�<�0.001, Mann–Whitney U-test) in CFU when compared to the vehicle control. 645 
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 670 

Fig. 5. CBG is active against Gram-negative bacteria whose outer membrane is permeabilized, where it acts on 671 

the inner membrane. a, Checkerboard analysis of CBG in combination with polymyxin B against E. coli. The 672 

extent of inhibition is shown as a heat plot, such that the darkest blue color represents full bacterial growth. b, 673 

CBG becomes active against Gram-negative bacteria in various genetic backgrounds where the outer membrane 674 

is compromised. c, CBG acts on the IM of E. coli but only in the presence of sub-lethal concentration of 675 

polymyxin B (PmB), unmasking cytoplasmic β-galactosidase leading to hydrolysis of ONPG as detected via 676 

absorbance reads at 405 nm over time.  Conditions were as follows: control (circles), CBG 2 µg/mL (squares), 677 

PmB 0.125 µg/mL (triangles) and PmB 0.125 µg/mL + CBG 2 µg/mL (inverted triangles). d, CBG in 678 

combination with polymyxin B against multi-drug resistant clinical isolates of i, A. baumannii, ii, E. coli, iii, K. 679 

pneumoniae, iv, P. aeruginosa. The extent of inhibition is shown as a heat plot, such that the darkest blue color 680 

represents full bacterial growth. 681 
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