
Uncovering the Lagrangian Skeleton of Turbulence

Manikandan Mathur,1 George Haller,1,* Thomas Peacock,1 Jori E. Ruppert-Felsot,2 and Harry L. Swinney2

1Department of Mechanical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

(Received 22 September 2006; published 4 April 2007)

We present a technique that uncovers the Lagrangian building blocks of turbulence, and apply this

technique to a quasi-two-dimensional turbulent flow experiment. Our analysis identifies an intricate

network of attracting and repelling material lines. This chaotic tangle, the Lagrangian skeleton of

turbulence, shows a level of complexity found previously only in theoretical and numerical examples

of strange attractors. We quantify the strength (hyperbolicity) of each material line in the skeleton and

demonstrate dramatically different mixing properties in different parts of the tangle.
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Turbulent transport underlies a vast range of environ-

mental and engineering phenomena, yet its detailed under-

standing remains elusive. Coherent structures play a

crucial role in turbulent transport, but an objective extrac-

tion of such structures from experimental or numerical data

has proven to be a challenging task. One difficulty is the

lack of an accepted definition for coherence in the Eulerian

(laboratory) frame: high or low values of vorticity, pres-

sure, strain, and energy have all been suggested as defining

quantities [1,2]. However, different definitions in the

Eulerian frame favor different structures partly because

of a lack of unambiguous threshold values over which a

flow region is to be considered coherent. More alarmingly,

Eulerian indicators of coherence are frame dependent

[1,3], and hence are often unsuccessful in capturing intrin-

sic flow properties in unsteady flows.

In contrast, coherent structures in the Lagrangian

(particle-based) frame can be defined as distinguished

sets of fluid particles. These Lagrangian coherent struc-

tures (LCS) have a decisive impact on fluid mixing by their

special stability properties [4–7]. For time-periodic lami-

nar flow models, LCS are straightforward to determine

using methods developed in studies of chaotic advection

[8]; however, it is quite another matter to identify LCS for

turbulent flow experiments where stability properties of

individual fluid particles are difficult to establish.

Recent experimental work [9] showed that LCS in a

time-periodic laminar fluid flow mimic the complicated

tangles predicted by numerical studies of chaotic advection

in time-periodic flow models. In the time-periodic case,

velocity measurements for a small number of tracer parti-

cles can provide a highly resolved velocity field; the same

particles yield more detail about velocity field as time

progresses [9]. However, the same approach is inapplicable

to turbulent flows for lack of a distinguished period.

Further challenges to locating LCS in turbulence are high

noise levels and increased spatial complexity, both of

which have been absent in LCS studies of time-aperiodic

low-Reynolds-number experimental flows [10]. Here we

extend LCS detection tools to obtain the analogs of laminar

chaotic tangles in a turbulent flow.

Experiment and data processing.—Our experiments are

conducted on water in a tank 50 cm high and 40 cm in

diameter, rotating at 0.4 Hz [11]. Water is pumped through

sources and sinks in the bottom of the tank, thus producing

near the bottom of the tank a turbulent three-dimensional

(3D) flow with Reynolds number (Re) 6� 104 and Rossby

number (Ro) 20. With increasing height in the tank, the 3D

flow evolves into quasi-2D turbulence due to the influence

of rotation and the decay of 3D turbulence. This Letter

concerns the nearly 2D turbulent flow near the top of the

tank, where Re � 1000 and Ro � 0:3.

Velocity measurements are made on fluid seeded with

neutrally buoyant tracer particles illuminated by a horizon-

tal laser light sheet [11]. A camera with resolution 1004�
1004 pixels and speed 30 frames=s captures images of the

particles. The correlation image velocimetry algorithm

[12] is used to determine velocity field snapshots (300

for each run) separated in time by 1=15 s, on a 128�
128 spatial grid with 0.3 cm resolution. An analysis of

errors is presented in [11].

To postprocess the experimental velocity field, we use

cubic interpolation in space and linear interpolation in time

to obtain a refined velocity field on a 1500� 1500 grid

with time step �t � 0:004 s. Using refined velocity does

not improve the detection of Eulerian coherent structures,

but it leads to LCS detection with resolution exceeding that

of the raw Eulerian data. By the mathematical properties of

hyperbolic sets, any LCS whose length scale is well sepa-

rated from the refined grid scale is guaranteed to exist in

the original flow [7].

Observations.—A snapshot of the vertical vorticity field

in a horizontal plane 4 cm below the tank lid is shown in

Fig. 1(a); an enlarged image including both vorticity and

velocity fields is shown in Fig. 1(b). The flow contains

long-lived coherent vortices and jets with a wide range of

sizes. Measurements with a vertical laser light sheet reveal

that the coherent structures are columnar, extending verti-

cally throughout most of the tank. The quasi-2D flow near

the top of the tank is well characterized by the vertical vor-

ticity field [11]. To quantify the two-dimensionality of

the flow, we define the integrated Lagrangian divergence,
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Lt�x0� �
R
t�T
t �r � v�jFs

t �x0�
ds, where Fs

t �x0� is the position

of the fluid particle (whose initial position is x0 at time t) at

time s. The exponential of Lt is the ratio of the deformed

area at t� T to the original area of an infinitesimal area

element around x0 at time t [13]. We find that Lt along

particle paths (zero for a purely 2D flow) is small through-

out most of our flow, taking large values only in small

regions [Fig. 1(c)]. Further, as expected for a 2D flow, the

spatial mean of the exponential of the integrated diver-

gence is close to unity.

Analysis.—To understand the Lagrangian structure of

turbulence, we extend the Lyapunov-exponent-based LCS

detection scheme [5] applied previously to laminar-flow

experiments with periodic [9] and aperiodic [10] time

dependence. Specifically, we solve numerically for particle

trajectories x�t;x0�, starting from points x0 on the refined

velocity grid at a fixed initial time t0. By numerical differ-

entiation, we compute the largest singular-value field

�max�t; t0;x0� of the deformation-gradient tensor field

�@x�t; t0;x0�=@x0	
T�@x�t; t0;x0�=@x0	. We then use the di-

rect Lyapunov exponent (DLE) field �t
t0
�x0� �

�ln�max�t; t0;x0�	=�2�t
 t0�� plotted over initial positions

x0 to visualize the LCS.

For t � t0, repelling LCS at t0 can be located as local

maximizing curves (i.e., ridges) of the �t
t0
�x0� field [4–7].

Similarly, for t � t0, attracting LCS at t0 can be located as

ridges of the �t
t0
�x0�. For large enough integration times T,

sharp evolving ridges of �
t0�T
t0

�x0� and �
t0
T
t0

�x0� turn out

to be close to evolving material lines, i.e., the fluid flux

across them at any time t0 is negligible [14]. The primary

topological features of the LCS extracted from the DLE

field is insensitive to the integration time T [5,15]. Ac-

cordingly, our analysis of the turbulent data reveals essen-

tially the same topology for T ranging from 1 to 16 s; the

ridges are weak at short times and more detailed at long

times. We use T � 8 s for the results presented here.

A direct Lyapunov exponent field snapshot is shown in

Fig. 2. Peaks and valleys on the scale of the grid size are

discernible in Fig. 2(a). This noise comes both from mea-

surement uncertainties and from the sensitive nature of

 

FIG. 2 (color online). (a) A 3D plot of the backward-time DLE field at t0 � 9:89 s (for T � 8 s). Note the large amount of noise

present in the scalar field. (b) 2D plot of the DLE field shown in (a). (c) Ridges (black curves) of the scalar field in the boxed region in

(b), extracted by gradient climbing and filtering.

 

FIG. 1 (color online). (a) A snapshot of the vertical vorticity field in flow in a rapidly rotating tank. The color (gray) scale is saturated

to bring out the weaker features. (b) A close-up of the boxed region in (a) with the velocity field indicated by arrows. The largest

velocity is 6:5 cm=s and the largest (smallest) value of vorticity is 12:3�
5:8� s
1. (c) Absolute value of the integrated divergence Lt,

which is dimensionless, along particle paths for 8 s in forward time. Regions close to the wall are white because the estimates of the

divergence field in those regions are inaccurate.
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fluid trajectories in a turbulent flow; consequently, nearby

particles end up at very different locations due to inevitable

errors in their numerical advection. Corresponding to these

different locations, significantly different DLE values arise

in our computations, and existing techniques encounter

difficulties. We therefore need new computational tools

to extract large-scale DLE ridges reliably from our turbu-

lent flow data.

To this end, we note that for any fixed time t0 and large

enough T, a ridge of the DLE field �
t0�T
t0

�x0� acts as an

attractor for the gradient dynamical system

 dx0=ds � r�
t0�T
t0

�x0�; (1)

where s denotes the arclength along the gradient lines of

�
t0�T
t0

�x0� and r denotes the spatial gradient with respect

to the initial position x0. We exploit this attracting property

in ridge extraction as follows: (i) For any t0 and large

enough T, fix a narrow region D around the ridges where

the magnitude of the gradient r�
t0�T
t0

�x0� exceeds a pre-

defined threshold. This gives a set of points in a close

neighborhood of the ridges. (ii) Use these points as initial

conditions for computing numerically the solutions x0�s�
to the gradient system (1). Following these solutions takes

us from their initial conditions towards the closest ridge

along the local gradient of the DLE field. (iii) For a given

initial condition, stop the computation of the correspond-

ing solution x0�s� if the following two conditions hold:

(a) the Hessian matrix r2�
t0�T
t0

�x0�s�� has at least one neg-

ative eigenvalue (a prerequisite for a point to be on a ridge),

and (b) the angle between the eigenvector e
t0�T
t0

�x0�s�	

corresponding to the smaller-in-norm eigenvalue of the

Hessian matrix r2�
t0�T
t0

�x0�s�� and r�
t0�T
t0

�x0�s�� shows

no appreciable change (a sign of closeness to a nearby

ridge). For large enough T, the eigenvector e
t0�T
t0

�x0�s�	

will be approximately tangent to a ridge, and the converged

solutions x0�s� will approximate ridges accurately. Ridges

of the backward-time DLE field extracted in a small region

by our algorithm are shown in Fig. 2(c). Similar detail and

accuracy have been obtained for the entire spatial domain

for a range of values of t0 and T.

Hyperbolicity criterion.—While hyperbolic material

lines create DLE ridges, the converse is not true: a DLE

ridge may simply indicate a material line of high shear that

does not attract or repel nearby particles at an exponential

rate [7]. For a DLE ridge to be hyperbolic, it must contain a

hyperbolic core that plays a role analogous to that of saddle

points in steady flows. Namely, a truly repelling DLE ridge

will act as a stable manifold for a hyperbolic core, while a

truly attracting DLE ridge will act as an unstable manifold

for a hyperbolic core.

Previous studies of laminar flows did not differentiate

between hyperbolic material lines and lines of high shear.

However, the ubiquitous presence of shear in a turbulent

flow requires such a differentiation, i.e., identification of

hyperbolic cores along DLE ridges. Recent mathematical

results [7] enable detection of hyperbolic cores using the

rate of strain tensor S�x; t�, the symmetric part of the

velocity gradient field rv�x; t�. Specifically, if n�t0;x0� is

a unit normal to a forward-time DLE ridge at the point x0 at

time t0, then x0 is contained in a hyperbolic core of a

repelling material line if the inner product �t0
�x0� �

hn�t0;x0�;S�t0;x0�n�t0;x0�i is positive. Negative values

of the same inner product on a backward-time DLE ridge

reveal hyperbolic cores of attracting material lines [7].

Figure 3(a), first implementation of the hyperbolicity

criterion for a turbulent flow, shows that almost all DLE

ridges in our flow field have hyperbolic cores and hence

represent truly hyperbolic material lines. The location of

hyperbolic cores is verified by advecting a fluid blob start-

ing near a core, e.g., the black blob in Fig. 3, and then

comparing the blob’s deformation to that of other blobs

 

FIG. 3 (color online). (a) Ridges from the backward-time DLE

field (at t0 � 9:89 s) are blue (dark gray). Red (gray) spots

indicate hyperbolic cores. The boxes indicate the initial locations

of three fluid blobs. (b) The three fluid blobs advected with the

backward-time DLE field at t0 � 16:89 s. The identifying center

dots are not physical.
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released away from hyperbolic cores, such as the blob with

a white center dot, which was released on an LCS ridge but

away from hyperbolic cores, or the blob with a pink (light

gray) center dot, which was released away from LCS

ridges; there is little stretching of the latter two blobs.

The results in Fig. 3 justify identification of hyperbolic

material lines with the set of forward-time and backward-

time DLE ridges. Red (gray) ridges in Figs. 4 are stable

manifolds for trajectories in the hyperbolic cores, while

blue (dark gray) ridges are unstable manifolds for the

hyperbolic cores. A fluid particle is subject to attraction

to nearby blue (dark gray) curves and simultaneous repul-

sion by nearby red (gray) curves. The complex tangle

formed by these two sets of curves is the underlying cause

of turbulent particle motion, the Lagrangian skeleton of

turbulence. Its complexity is beyond what has been seen

for laminar flows. Notably, the skeleton appears to fill the

whole flow domain densely with the exception of a single

vortical region whose 3-dimensionality cannot be ignored.

All hyperbolic cores appear to interact with themselves

through homoclinic tangles, as well as with any other core

through a chain of intersecting heteroclinic tangles. Such

behavior has been observed before only in numerical ex-

amples of strange attractors, such as the Lorenz attractor.

Conclusions.—Our analysis reveals an intricate tangle

of highly convoluted material lines, the Lagrangian skel-

eton of turbulence. The complexity of this tangle is unpar-

alleled by material tangles previously reported for laminar

flows. The methods developed here extend to 3D flows and

are expected to reveal structures of similar complexity.

Indeed, recent numerical studies of 3D turbulent channel

flows show highly complex LCS structures near hairpin

vortices [15].
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FIG. 4 (color online). (a) Stable (red or gray) and unstable

(blue or dark gray) manifolds at t0 � 9:89 s extracted from the

experimental flow data as ridges of the forward-time and

backward-time DLE fields, respectively. (b) A close-up of the

boxed region in (a); the integration time for evaluating the DLE

field is 9.8 s.
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