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Uncovering the structure of self-regulation through
data-driven ontology discovery
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Psychological sciences have identified a wealth of cognitive processes and behavioral phe-

nomena, yet struggle to produce cumulative knowledge. Progress is hamstrung by siloed

scientific traditions and a focus on explanation over prediction, two issues that are particu-

larly damaging for the study of multifaceted constructs like self-regulation. Here, we derive a

psychological ontology from a study of individual differences across a broad range of

behavioral tasks, self-report surveys, and self-reported real-world outcomes associated with

self-regulation. Though both tasks and surveys putatively measure self-regulation, they show

little empirical relationship. Within tasks and surveys, however, the ontology identifies reli-

able individual traits and reveals opportunities for theoretic synthesis. We then evaluate

predictive power of the psychological measurements and find that while surveys modestly

and heterogeneously predict real-world outcomes, tasks largely do not. We conclude that

self-regulation lacks coherence as a construct, and that data-driven ontologies lay the

groundwork for a cumulative psychological science.
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S
cience is meant to be cumulative, but both methodological
and conceptual problems have impeded cumulative pro-
gress in psychology. While a flurry of recent work has

focused on the poor reproducibility of psychological findings1, a
more fundamental conceptual challenge arises from the lack of
integrative theory development and testing. As pointed out by
Newell2 and Meehl3 decades ago, psychological findings are rarely
situated within the broader literature and the resulting theories
are siloed and overspecialized. Thus it seems essential to develop
an integrative framework, one that capitalizes on the wealth of
psychological phenomena already described, to create a founda-
tion for future inquiry4,5. We propose that the data-driven
development of ontologies—formal descriptions of concepts in a
domain and their relationships6—can serve as such a framework.
By specifying psychological constructs and their relationship to
observable measures, ontologies can serve as a lingua franca
across disciplines, identify theoretical gaps, and clarify research
programs7. In this paper, we integrate a large array of psycho-
logical measures into an ontological framework via a large-scale
study of behavioral individual differences.

To begin this enterprise, we focus on the psychological construct
of self-regulation, which refers to the ability to regulate behavior in
service of longer-term goals. This domain is an ideal case study for
ontological revision due to the substantial theoretical and metho-
dological diversity associated with the construct8–10 and its puta-
tive connection to a number of important real-world outcomes11.
While ontological revision has been a central focus of recent work
in self-regulation10,12, it has yet to be tackled through quantitative
modeling of data that span the domain.

Theoretic integration and construct validity13 should be com-
plemented by ecological validity. The constructs studied by psy-
chologists are hypothesized to serve as building blocks for
everyday behavior, and their dysfunction is thought to be central
to many mental health disorders14. This is particularly true of
self-regulation, which is putatively connected to a range of sig-
nificant outcomes, including academic performance, health out-
comes, and economic well-being11,15,16. However, psychological
constructs are often derived to explain behavior in an ad hoc
manner, rather than to generate a priori predictions of real-world
outcomes, leaving ecological relevance largely untested17. Even
when associations between psychological constructs and real-
world outcomes are examined they rarely are evaluated using
modern assessments of predictive accuracy (e.g., employing cross-
validation), generally inflating estimates of predictive power18.
We evaluate the ability of psychological measurements to predict
a range of self-reported real-world outcomes, and unpack the
predictive success in terms of the ontology. Linking disparate
real-world outcomes based on ontological similarity is a critical
step towards creating a generalizable science of human behavior.

We formalize psychological ontologies in terms of a quantita-
tive psychological space in which psychological measurements are
embedded, and a set of clusters that organize those measurements
within the space. The space defines parametric features of mental
processes while the clusters label a set of measurements that are
close in the quantitative space, thus having a similar ontological
fingerprint.

The first step of ontology discovery—defining a quantitative
space—connects to a classic approach in psychology, factor
analysis, which has been used to infer the dimensional structure
of broad constructs such as personality19,20 and emotion21,
inform measurement design22, and drive hypothesis develop-
ment23. Although many prior studies were limited by a small
number of measures, recent work has expanded the size of the
measurement batteries employed24–26. However, while the mea-
surement number has increased, the diversity of measurements is
often heavily circumscribed by a precommitment to the scope of a

construct. Though dense measurement of a construct may be
useful, this approach tacitly reifies the theoretic framing without
testing it. For example, if one unpacks the multidimensional
structure of impulsivity by only assessing putatively related
measures, there is little chance the concept of impulsivity itself
will be questioned. Occasionally, constructs are challenged on the
basis of failing a test of convergent validity, but without a direct
comparison between within-construct and across-construct cor-
relations, the same magnitude of correlation can be used to both
defend9 and reject27 the convergent validity of a construct. To
create a holistic, quantitative space, it is thus necessary to widen
the scope of the behavioral measurements analyzed.

We selected a set of 22 self-report surveys and 37 behavioral
tasks (see Supplementary Methods; Supplementary Tables 1, 2) in
order to capture constructs associated with self-regulation (e.g.,
impulsivity) while also including a set of measures reflecting
diverse psychological functions that extends beyond those nor-
mally studied in the context of self-regulation (e.g., personality).
This choice affords the possibility of identifying the borders of
self-regulation as a construct or rejecting the discriminant validity
of self-regulation itself. Once selected, behavior on each of these
59 measures was decomposed into multiple dependent variables
(DVs; n= 193; 129 task DVs) which reflect means of specific item
sets, comparisons between task conditions, or model parameters
thought to capture psychological constructs (Fig. 1a, b). 522
participants completed this measurement battery using Amazon
Mechanical Turk. A subgroup of 150 participants completed a
retest on the entire battery, allowing estimation of retest
reliability28.

Using these DVs, we find that behavioral task and survey
measures are largely unrelated. Informed by this divergence, we
construct a psychological ontology composed of two low-
dimensional spaces separately capturing task and survey DVs.
The dimensions of these spaces highlight relational structure
amongst the constituent DVs, and define reliable individual dif-
ferences. Using individual differences scores derived from the
ontology, we show that behavioral tasks fail to predict substantial
variance in real-world outcomes thought to relate to self-regula-
tion, while surveys perform moderately well. However, the pre-
dictive success of surveys is found to result from a heterogeneity
of psychological constructs for different outcomes. Combined
with the lack of relationship between tasks and surveys, these
results argue against a coherent and general self-regulatory
construct.

Results
Creating a psychological space. Our first goal was to create a
psychological space: a structure that quantifies distance between
DVs, and provides a vocabulary to describe disparate behavioral
measurements. A foundational question is whether surveys and
task DVs should be captured within a single space. Because the
battery included both surveys and tasks putatively related to the
same psychological constructs (e.g., impulsivity), one would
predict significant relationships between the two sets of DVs,
supporting a joint psychological space (though weak relationships
between tasks and surveys have been reported before, see
refs. 9,26,29,30).

To address this goal, we evaluated the association between task
and survey DVs. Neither measurement category could predict
DVs from the other category, and correlations between measure-
ment categories were weak (Supplementary Fig. 1). Visualizing
the relationships between DVs using a graph demonstrates the
independent clustering of the two measurement categories
(Fig. 2). The low correlations between these two groups of
measures suggest a top-level ontological distinction between the
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constructs underlying task and survey DVs. We thus proceeded
by constructing two psychological spaces. Future reconciliation of
these two spaces may be possible, but would require the addition
of spanning DVs that correlate with both task and survey DVs.

We defined task and the survey psychological spaces using
exploratory factor analysis (EFA; Fig. 1c; Methods). An important
step in factor analysis is dimensionality estimation. Using model
selection based on the Bayesian information criterion (BIC), we
found that 12 and 5 factors were the optimal dimensionalities
(Supplementary Fig. 2) for the decomposition of surveys (Fig. 3)
and tasks (Fig. 4), respectively. The robustness of the factor
models was assessed using two methods: confidence intervals for
factor loadings were created by bootstrapping, and EFA was rerun
dropping out each individual measure (and all constituent DVs)
to assess convergence of the factor solutions. Factor loadings were
robust across bootstraps. Individual measures did affect the
overall structure of the EFA models, particularly for the survey
model, likely due to sparse measurement of highly discriminant
psychological constructs (e.g., the survey factor Agreeableness
was dependent on the inclusion of a Big-5 personality survey).
See Supplementary Discussion and the online Jupyter Notebook
(described in Methods) for a full description of the robustness
analyses.

The survey EFA model fit the raw DVs better than the task
EFA model (Survey R2= 0.58, Task R2= 0.23), but this difference
is reduced once test-retest reliability of individual DVs is
accounted for using attenuation correction31 (Supplementary
Fig. 3; adjusted survey R2= 0.86, adjusted task R2= 0.68).
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Interestingly, the factor scores for both tasks and surveys
demonstrated high reliability (Fig. 5a, c) when evaluated in the
retest sample, which equaled (for surveys) and exceeded (for
tasks) the reliability of the constituent DVs (Supplementary
Fig. 4). Additionally, it is evident that the variability within-
participants across time was less than across-participant varia-
bility (Fig. 5b, d). Stability over time, and sensitivity to individual
variability are central features of useful trait measures32, and
support the use of factor scores as individual difference metrics.

To understand the nature of the factors we evaluated the DVs
that strongly loaded on each factor (these loadings are displayed
in the online Jupyter Notebook). Most survey factors reflected
separate measurement scales (e.g., Social Risk Taking and
Financial Risk Taking derived from the DOSPERT) or a
combination of several closely related DVs (e.g., sensation
seeking, which related to DVs derived from the Sensation
Seeking Scale, UPPS-P, I7, and DOSPERT). Thus the survey
model recapitulates theoretical constructs in the field, albeit with
a reduced dimensionality relative to the initial 64 measures,
suggesting that survey measures are partially overlapping in the
psychological constructs they represent. Notable exceptions to

this general recapitulation was the Goal-Directedness factor,
which integrates a heterogeneous set of DVs related to goal-
setting, self-control, future time-perspective, and grit, the
Emotional Control factor, which relates to neuroticism, emotional
control, behavioral inhibition, and mindfulness, and the Eating
Control factor, whose selective association with emotional and
uncontrolled eating supports its discriminant validity, which
heretofore had not been assessed.

The task EFA solution resulted in 5 factors. The simplest factor
was selective for temporal discounting DVs, which in turn only
loaded on this factor. This result implies that temporal
discounting tasks are largely divorced from all other task DVs,
and uniquely probe a separable psychological function.

Three other task factors reflected components of the drift-
diffusion modeling framework (DDM; see Supplementary Meth-
ods); Speeded Information Processing, Caution, and Perception/
Response were strongly and differentially related to drift rate,
threshold, and non-decision time estimates, respectively. This
supports prior findings33 that individual differences in DDM
parameters are correlated across a range of speeded RT tasks. While
consistent with the DDM parameterization of decision-making
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processes, DDM measures were not exclusively associated with
these factors, as other related DVs loaded sensibly (e.g., Go-NoGo d'
loaded on the Speeded Information Processing factor).

Finally, the Strategic Information Processing factor loaded on
diverse DVs that were putatively related to working-memory,
general intelligence, risk-taking, introspection, and informa-
tion processing: generally tasks that were amenable to higher-
order strategies, and unfolded on a time-scale greater than the
speeded decision-making tasks modeled with the DDM.

It is worth noting that factors in both models (e.g., the Speeded
Information Processing and Strategic Information Processing task
factors) were moderately correlated (Fig. 5), implying a
hierarchical organization.

Clusters within the psychological space. As a whole, both task
and survey factors outlined sensible psychological dimensions
that relate to many concepts discussed in the field. Given this, one
might ask why other plausible constructs like self-control or
working memory did not result in their own factors. However,
because factors should be viewed as basis vectors for a psycho-
logical space, the principal concern is the subspace spanned by
those factors, which determines the fidelity and generalizability of
the DV embedding, rather than the specific direction of each

factor. The particular factors are ultimately a result of rotation
schemes whose goal is interpretability—a useful objective to be
sure, but one potentially divorced from the span of the psycho-
logical space. A consequence is that certain psychological con-
structs may emerge as clusters of DVs, rather than axes, in
this space.

To identify clusters, we performed hierarchical clustering on
the factor loadings of the DVs. Using this analysis, DVs that
partially load on similar factors are clustered together. Hierarch-
ical clustering creates a relational tree that affords clustering at
multiple resolutions, depending on how the tree is cut. To identify
theory-agnostic clusters we used the Dynamic Tree Cut
algorithm34, which accommodates different tree structures better
than simpler methods that cut the tree at a fixed height. Doing so
identifies 12 clusters for the survey DVs (Fig. 3) and 15 clusters
for the task DVs (Fig. 4). Due to the nature of the trees’ structure,
clusters are hierarchically organized based on their relative
distances in the psychological space. Alternative clusterings were
compared using silhouette analysis (Supplementary Fig. 5), and
clustering robustness were assessed using simulation and
consensus clustering (see Methods). This latter analysis shows
that clustering was moderately sensitive to small changes in factor
structure, with some DVs more robustly clustered than others. As
such, the clusters reported here should be taken with caution.
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The relational trees and clusters are depicted as dendrograms
in Figs. 4 and 5 for surveys and tasks, respectively. Details on all
extracted clusters, including their constituent DVs and ontolo-
gical fingerprint can be found in the online Jupyter Notebook.
Here, we summarize the psychological content of the clusters.

The survey clusters largely mirror the dimensions of the
psychological space. This implies that survey DVs generally
interrogate a single psychological dimension, likely a consequence
of research traditions that emphasize discriminant validity. A
notable exception is the emergence of a self-control branch
composed of two separate clusters: one primarily related to
impulsivity (but also reflecting goal-directedness, mindfulness,
and reward sensitivity), and one reflecting long-term goal
attitudes, incorporating time-perspective, grit, and implicit
theories of willpower. The compact, sensible nature of this
branch suggests that self-control is a reasonable higher-order
construct, at least in its ability to account for a set of
psychological measurements.

In contrast to the simple relationship between survey
dimensions and clusters, the task clusters capitalize on the full
fingerprint of each DV to provide a complementary perspective
of task structure. While a discounting cluster had a one-to-one
correspondence with its corresponding dimension, the majority
subdivide DVs that principally load on one dimension based on
their secondary components. For example, the DDM threshold
parameter governing choice on go-trials in stop-signal tasks
clustered together (Inhibition-related Threshold), and separate
from the threshold parameter in other speeded RT tasks
(Caution). Given that the go trials on stop-signal tasks are
analogous to other choice tasks, excepting the task context, this
division indicates that people develop separate response
strategies (e.g., preferring accuracy over speed) in inhibitory
and non-inhibitory contexts. A similar finding can be seen
within the DVs that load on Speeded Information Processing.
The DVs that relate to conflict, broadly defined (e.g., the Stroop
effect borne out in drift differences), separate from other
Speeded Information Processing clusters. Non-Decision time
similarly subdivides.

Towards the right of the task dendrogram are two clusters that
most strongly load on Strategic Information Processing. These
clusters reflect decision-making strategies, which have been
previously described by dichotomies like “cold” vs. “hot” (though
these terms are normally related to risk-taking35) or model-based
vs. model-free36. There is also a working-memory (WM)
component running through both clusters, with verbal WM
tasks (digit span, keep track), associated with the model-based
cluster, distinguished from the spatial span.

Four task clusters were less clearly related to existing theories
(unlabeled in Fig. 4), containing sets of variables too ambiguous
to be named. Each of these clusters contained relatively few DVs,
thus requiring future work to disambiguate whether these clusters
largely reflect noise or the beginning of sensible structure.

Prediction of real-world outcomes. Explicitly linking diverse
literature is important for cumulative progress in psychology, but
is not sufficient. Meaningful connection to real-world outcomes is
also necessary to evaluate the generalizability of psychological
theories. Although evaluation of this connection has historically
been an important component of psychological research in the
form of criterion validity, ambiguity regarding outcome measures,
researcher degrees of freedom, publication bias, and inadequate
tests of predictive ability limit our knowledge of how psycholo-
gical measures relate to real-world behaviors17,37.

To evaluate predictive ability, we used a broad set of self-
reported outcome measures, including socioeconomic outcomes,

drug and alcohol use, and physical and mental health. We used
EFA to reduce the dimensionality of the outcomes, creating 8
target factor scores (referred hereafter as “target outcomes”) for
each participant (see Methods and Supplementary Methods).
Out-of-sample prediction was performed using cross-validation
with L2-regularized linear regression to predict targets using
factor scores derived from the task and survey EFA solutions (as
well as other methods, see Supplementary Table 3). We created
three separate predictive feature matrices: the 12 survey factor
scores (Fig. 6), the 5 task factor scores (Fig. 7), and the
combination of all 17 factor scores (Supplementary Fig. 6). We
used factor scores rather than raw DVs due to their higher
reliability, and to contextualize the predictive models within the
psychological ontology. All analyses were repeated using the raw
DVs themselves as predictors, which did not change the overall
interpretation (Supplementary Table 4). We also performed the
same analyses without cross-validation, which estimates the
degree of over-optimism of in-sample associations.

Surveys exhibited moderate predictive performance, signifi-
cantly predicting all target outcomes (randomization test: p <
0.05), with an average predictive R2= 0.1 (min: 0.03, max: 0.29;
see Fig. 6). We visualized the standardized β coefficients of the
predictive models to create an ontological fingerprint represent-
ing the contribution of various psychological constructs to the
final predictive model for a particular target outcome (Figs. 6 and
8). Mental Health has a simple ontological fingerprint: Emotional
Control alone was sufficient for prediction. Other fingerprints are
more complicated, pointing to the contribution of multiple
psychological constructs to these behaviors. For instance, Binge
Drinking related to a combination of Risk Perception, Reward
Sensitivity, Social Risk-Taking, and Ethical Risk-Taking. The
fingerprints can also be inverted, giving a sense of which kinds of
target outcomes are related to a particular psychological construct
(Fig. 8). Doing so illustrates that while some constructs relate to
only a few targets (e.g., the Emotional Control only predicts
Mental Health), others, like Social Risk-Taking, are related to a
range of targets.

In contrast to the surveys, tasks had very weak predictive
ability (average R2= 0.01, max R2= 0.06, Fig. 7). While four
target outcomes were significantly predicted above chance (p <
0.05), the mean R2 for these four relationships was only 0.03
(max= 0.06).

The combined task and survey predictive model did not
qualitatively differ from the survey predictive model, except when
predicting Income/Life Milestones, where it performed better
(Supplementary Fig. 6; Supplementary Table 3). The degree of
overfitting when relying on in-sample prediction was modest
when using the L2-regularized regression with the relatively small
number of factor scores as predictors, but became a significant
issue when the number of predictors increased (i.e., when using
all DVs rather than factors). This analysis was also repeated using
other prediction approaches, see Supplementary Table 4 for the
results.

Discussion
The ontological framework provides insight into mental structure
by synthesizing a multifaceted behavioral dataset. Of particular
note is the lack of alignment of the same putative constructs
across measurement categories and the low predictive ability of
behavioral tasks. The former has precedent in the literature in a
number of domains24,26,30,38,39, which this work expands upon,
suggesting that the inappropriate overloading of psychological
terms (jingle fallacies) is widespread. The latter shows that psy-
chological constructs associated with tasks lack substantial real-
world relevance, and points to a need for greater emphasis of
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predictive validity17. Together, these findings support the present
pursuit of a revised psychological ontology.

This approach to ontology discovery fundamentally rests on
correlations. Relationships amongst behavioral outputs define a
structure connecting observable measurements to psychological
constructs. Combined with explicit connection to real-world
outcomes, the ontology provides a quantified structure reminis-
cent of a nomological network13. Furthermore, as the ontology is
a function of measurement correlations, its structure is

immediately relevant for the many psychological hypotheses that
are fundamentally about relationships amongst behaviors (e.g.,
the existence of overarching psychological traits like a general
factor of intelligence40, or risk preference26). For example, higher-
order claims about the separability of various decision-making
processing stages (in line with the DDM), and the discriminant
validity of concepts like sensation-seeking are recapitulated by
our factors. At the level of clusters, lower-order constructs are
distinguishable (e.g., conflict-related information processing).
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At a finer detail, theory advancement concerning particular
measures is also possible. For instance, previous work has shown
that individuals titrate their reliance on model-free strategies in
task contexts that strain working memory (WM) capacity41. In
the present data, WM is negatively correlated with model-free
decision making, which is borne out in the ontology as opposite
loadings on the Strategic Information Processing factor. This
implies that the tradeoff between WM and model-free decision
making not only depends on task context, but is also modulated
by individual traits—those with a larger WM span are more
prone to model-based over model-free strategies. As a second
example, the angling-risk-task (ART) is often interpreted as a
risk-taking measure. However, some work suggests sequential
risk-taking tasks like the ART instead measure an agent’s ability
to assess environmental statistics and act optimally, rather than a
propensity towards risky action26,42. Our data support this latter
view, as ART DVs cluster with working memory, decision-
making and “hot” cognition DVs, and are unrelated to self-report
measures of risk-taking (e.g., DOSPERT).

The breadth of the dataset underlying data-driven ontology
development is also important. As an example case, stop-signal
reaction-time (SSRT) DVs, putatively related to response inhibi-
tion, load on the same factor as non-decision time estimates,
DDM DVs intended to capture perceptual and response pro-
cesses. This suggests a relationship between these normally
separable constructs. It is also apparent that without including
both non-decision times and SSRT in the same measurement
battery, a robust SSRT factor would likely be found and inter-
preted as response inhibition—thus an opportunity to bridge
literature would have been overlooked. This same reasoning can
inform the observed bifurcation of surveys and tasks. The absence
of a spanning construct (e.g., one that relates to both behavioral
measures and self-report surveys) prevents accurate estimation of
the psychological distance between task and survey constructs.
Serendipitously discovering such a construct will be difficult given
the consistent findings that surveys and tasks are weakly related;
instead, new research programs should make finding linking
constructs their explicit objective.

Besides the particular measures we used, other relationships
between constructs may be missed due to our method’s reliance
on correlation: it is only sensitive to linear bivariate relationships
between DVs. While more complex unsupervised approaches
may reveal non-linear relationships missed using our approach,
they would likely require more data and be less interpretable.
Interactions amongst three or more variables are also possible,
but such analyses were not concordant with our directed
exploration. We hope that the openly available dataset will allow
others with specific hypotheses to test these more complicated
interactive models.

This work is also limited by its convenience sample recruited
via Mechanical Turk. As such, it may underestimate the full
diversity of psychological functioning (e.g., variability associated
with mental illness, or biases related to the Mechanical Turk
population), and may not systematically measure the range of
outcomes we are trying to predict (see below). Future studies
using targeted sampling of specific populations with a similar
battery could help address these issues.

In addition to serving as a bridge between research disciplines,
the ontology also clarifies how psychological measurements relate
to real-world behavior. The ontology defines individual traits
whose retest reliability equals or surpasses the individual DVs.
For tasks in particular, EFA integrates multiple noisy DVs and
creates reliable measures of central psychological constructs. In
doing so, EFA addresses a perennial critique of behavioral tasks:
their poor psychometric properties limit their real-world applic-
ability, particularly when it comes to predicting individual
behavior28,43,44. However, though factor scores proved reliable,
they demonstrated a weak relationship with the target outcomes.

Why did the surveys predict adequately, while the tasks did so
poorly? The bifurcation of the ontology by measurement category
suggests one explanation: tasks do not probe cognitive functions
relevant for the target outcome measures. Such an explanation
challenges current psychological theories of self-regulation, but
allows for the possibility that the tasks would relate more strongly
to other outcomes. An alternative, is that the contrived nature of
behavioral tasks fundamentally compromises their ecological
validity45. While the sensibility and reliability of the task factors
speak to real structure in human behavior, psychology’s reliance
on controlled experiments may lead to theoretical overfitting.
That is, theories that are explanatory and predictive of human
behavior in experimental contexts may lack relevance for natur-
alistic human behavior. Expanding the scope of outcomes eval-
uated would aid in distinguishing these two explanations.

Regardless of the explanation, the task prediction results are in
conflict with a narrative claiming strong relationships between
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behavioral measurement and real-world behavior46. Part of this
conflict stems from a difference in framing: we highlight the low
variance explained, while other work focuses on statistical sig-
nificance47. We believe this latter framing is somewhat mislead-
ing, and does not adequately reflect the poor state of prediction
with behavioral tasks. That said, framing alone cannot fully
explain this discrepancy. The widespread use of in-sample pre-
diction (compared to cross-validation, employed in this work)
undoubtedly also plays a role. Though in-sample prediction did
not greatly inflate R2 estimates here, studies with lower power
would be more adversely affected. Because prediction using
behavioral tasks is relatively weak, and often coupled with small
sample sizes, the use of in-sample prediction plays a role in
exaggerating the estimated predictive power of behavioral tasks.
Coupled with other sources of false-positives (e.g., publication
bias), it is likely that prediction work in psychology suffers from
the same reproducibility issues that have plagued the field more
generally1.

In contrast, surveys predicted the target outcomes moderately
well. This may be partially explained by methodological similar-
ity, as both surveys and the real-world outcomes in this work are
self-report measures that may be susceptible to similar biases48.
More concretely, the relative predictive success says little about
the causal direction. Survey measures may be partially dependent
on a person’s knowledge of their own behavior (e.g., “I drink
heavily, therefore I am impulsive”), in a way that tasks are not.
From this view, survey measures are merely a roundabout way to
measure a person’s real-world behaviors, rather than measure-
ments of psychological constructs relevant for those behaviors.
Fully addressing this criticism is beyond the scope of this paper,
but its possibility, combined with the lack of relationship with
behavioral tasks, challenges the construct validity of surveys
as well.

Putting those criticisms aside, and assuming the general claim
that surveys probe psychological traits, the ontological finger-
prints imply that real-world outcomes rely on an overlapping
mixture of psychological constructs. If these constructs are
amenable to intervention, this framework supports the develop-
ment of ontological interventions (e.g., aimed at reducing
impulsivity) that cross-cut multiple real-world behaviors, similar
in spirit to the taxonomy of self-control interventions proposed
by Kotabe and Hofmann10. Particular behaviors like smoking
could then be targeted with a multi-pronged strategy combining
multiple ontological interventions. The converse is also true - the
ontological fingerprints suggest which intervention targets are
dead ends. Thus the ontology holds promise for a generalizable
and cumulative science of behavior change.

Beyond quantifying individual variability, much of psychology
is concerned with the interplay between individual traits and a
person’s environmental context49,50 or state51, which was not
quantified in this study. One possibility, untested at scale, is that
individual traits will relate more closely to real-world outcomes
when the environmental context is properly accounted for.
Modeling trait-environment interactions requires a compact and
consistent description of environmental context, which would be
enhanced by an ontological approach that articulates how to
measure and integrate aspects of a person’s environment into a
quantitative whole50. Until that is developed, the present psy-
chological ontology provides a concise vocabulary to define traits,
allowing individual studies of trait-environment interactions to
generalize their claims to a broader set of measurements and
constructs.

Finally, this work provides suggestive evidence that psychology
should move beyond the idea of self-regulation as a coherent
construct. At minimum, the lack of convergent validity between
surveys and tasks calls into question theoretical claims built on

assumed survey-task relationships. However, the challenge to self-
regulation is greater than identifying this methodological bifur-
cation. Self-regulation is defined as the trait that putatively
underlies an individual’s capacity to achieve long-term goals. This
implies a strong connection to real-world outcomes, a require-
ment that many of of the measures included in this study fail to
meet. Although it’s possible that environmental context must be
evaluated to properly reveal a well-defined self-regulation con-
struct, as mentioned above, a simpler explanation is that there is
no unified trait, or set of traits, that engenders successful goal-
attainment across contexts. Instead, self-regulation may be an
emergent property—a label we ascribe to a suite of person-
environment interactions that share little in common besides the
general challenge of overcoming a desire-goal conflict10. While
integrative theories of self-control10 emphasize the importance of
this conflict framing to link various self-control failures, the
present work challenges such a view. We do not dispute the
existence of systems that support constituent functions involved
in self-control (such as delay discounting or conflict monitoring),
but we see little evidence that it plays a large role shaping diverse
life outcomes or health behaviors, independent of context.

With that said, the present ontology provides a means to
conceptualize the suite of mental processes that may be relevant
for how people successfully navigate the world. For example, a
long research tradition on the unity and diversity of executive
function (EF) has proposed a 3-factor model of EF composed of
Inhibition, Updating, and Shifting52. While the particulars of the
model are debatable53, it has provided a theoretical framework for
discussing EF, and an avenue towards a quantitative description
of behavioral phenotypes54,55. Our approach, which situates these
small number of EF measures within a larger array of measures
capturing many mental processes, pushes forward the concept of
unity and diversity beyond executive function to human behavior
largely writ.

Methods
Extraction of individual difference measures. Our dataset consisted of 522 adult
participants, each completing a battery composed of 37 behavioral tasks and 22 self-
report surveys. It included measures putatively related to self-regulation including
risk-taking, temporal discounting and impulsivity, but also extended into more
generic cognitive domains like working memory, information processing, learning,
mindfulness, and others. By construction, some putative constructs like impulsivity
were evaluated in both surveys and tasks, affording the opportunity to evaluate cross-
measure consistency. In addition to these surveys and tasks, participants reported a
number of real-world outcomes (e.g., self-reported questions relating to alcohol
consumption, mental health, personal finances, etc.). Data were collected on Amazon
Mechanical Turk using the Experiment Factory platform56, which allows for easy
replication of extension of this dataset. The study was approved by the Stanford
Institutional Review Board (IRB-34926). All participants clicked to confirm their
agreement with an informed consent form before beginning the battery. The data
acquisition plan was pre-registered on the Open Science Framework (http://goo.gl/
3eJuu1; though we deviated in several ways, see below). Additional information
regarding data acquisition, the specific surveys, and tasks used, the selection of
dependent variables, quality control, and data cleaning can be found in Supple-
mentary Methods. We have also created Jupyter Notebooks to display figures and
data that couldn’t be contained within this article, available at this project’s GitHub
page: https://ianeisenberg.github.io/Self_Regulation_Ontology/.

Deviations from pre-registration. Our pre-registration described a graph-
theoretic approach to ontology discovery. After implementing this approach,
we recognized that it was imperfect for our purposes, and instead employed the
combined factor analysis/clustering approach presented here. We decided that
factor analysis would be more suitable for two main reasons: (1) factor analysis is a
popular approach in psychology and thus is familiar to the field, and (2) factor
analysis provides an ontological embedding for DVs, which combined with clus-
tering provides two perspectives on the organization of psychological measures.
Graph theoretic approaches are less common and would be restricted to identifying
clusters without providing an embedding in an interpretable space.

We also deviated from the pre-registration by using a number of predictive
models. Our pre-registration mentions random forests, which we include, but also
make use of regularized linear regression models and SVMs. Initial analyses found

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10301-1 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2319 | https://doi.org/10.1038/s41467-019-10301-1 | www.nature.com/naturecommunications 9

http://goo.gl/3eJuu1
http://goo.gl/3eJuu1
https://ianeisenberg.github.io/Self_Regulation_Ontology/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


that random forests severely overfit the data, leading to our ultimate focus on Ridge
Regression.

Assessment of test-retest reliability. The battery was notably divided by mea-
surement type; self-report surveys and behavioral tasks. These measurement types
potentially differed in their psychometric properties. Surveys are generally devel-
oped with psychometric theory in mind, and are routinely assessed for reliability.
This is in stark contrast with tasks, where psychometric properties are often
unknown, and rarely reevaluated.

We evaluated the reliability of all DVs in the same population by analyzing the
subset of participants that completed the entire battery a second time. The full
description of the subsequent analysis are laid out in Enkavi et al.28; summarizing,
the surveys showed greater test-retest reliability (ICC3k M= 0.80, SD= 0.06)
compared to the tasks (ICC M= 0.45, SD= 0.21), see Supplementary Fig. 4. There
was substantial heterogeneity within tasks with some measures (e.g., discounting
and DDM parameters) performing much more reliable than others. We used
Pearson correlations between the two sessions as a measure of reliability,
establishing a noise-ceiling (maximum predictive power possible given irreducible
noise) to evaluate the fit of the exploratory factor analyses.

Association between tasks and surveys. Task and survey DVs had weak to no
relationship with each other, as is evident by their uncorrected Pearson correlations
(Supplementary Fig. 1a). To more rigorously quantify the relationship between
tasks and surveys we employed two separate methods. First, we assessed how well a
held out DV was predicted by either all task or survey DVs (excluding the to-be-
predicted DV). This resulted in 4 distributions of predictions: two within-
measurement predictions (task-by-tasks and survey-by-surveys) and two across-
measurement predictions (task-by-surveys and survey-by-tasks). Prediction success
was assessed by 10-fold cross-validated ridge regression using the RidgeCV func-
tion from scikit-learn with default parameters57.

We also assessed this relationship by constructing a graph, where nodes are
unique DVs and edges reflect the partial correlation between two DVs after
conditioning on all other DVs. To estimate these correlations, we employed the
Graphical Lasso58 using the EBICglasso function from the QGraph package59.
Visualization of the graph (Fig. 2) was accomplished using a force-directed
algorithm in Gephi60, with edges reflecting the absolute value of the partial
correlations greater than 0.01. Results are described in Supplementary Methods
and depicted in Supplementary Fig. 1.

Exploratory factor analysis. Exploratory factor analysis (EFA) seeks to explain the
covariance of a number of observed variables in terms of a smaller number of latent
(unobserved) variables, called factors. Each observed variable is modeled as a linear
combination of these latent factors and some measurement error:

X � μ ¼ LF þ ε ð1Þ

where X is an m (DV) × n (participant) matrix of observed DVs, μ is a matrix of
variable means, L is the m × f (number of factors) loading matrix, describing the
relationship between each variable and the latent factors, and F is the f × n matrix
of factor scores. ε captures measurement error—the variance left unexplained by
the latent (common) factors. In the current study each DV is represented by 522
participants—the individual participant scores—and EFA is used to estimate the
embedding of these DVs (represented by the loading matrix) in a common psy-
chological space spanned by the latent factors. Once estimated, factor scores are
computed, representing the degree to which an individual represents that latent
factor. For example, we used EFA to reduce the outcome measures to 8 factors,
which are then used to compute 8-factor scores for each participant. These factor
scores became the outcome targets. One outcome target related to variables related
to binge drinking, and did not relate to any other variable—thus its related factor
score represents an individual’s general tendency to binge drink, and was named
accordingly.

EFA was performed using maximum likelihood estimation, followed by oblimin
rotation to rotate the factors without enforcing orthogonality. Factor rotation leads
to easier interpretation by optimizing “very simple structure”61, without changing
the fit of the model. Factor scores were estimated using the tenBerge method, which
is most appropriate given oblique rotation62. All analyses were implemented using
the “fa” function from the psych package in R63.

An important step when performing EFA is deciding on f, the number of factors
to estimate. Though there are many procedures to accomplish this, we chose the
number of factors that minimized the Bayesian Information Criteria (BIC). BIC is a
criterion for model selection that attempts to correct for overfitting by penalizing
more complex models, with lower values represent a better balance between
capturing the data and model complexity. Supplementary Fig. 2 displays BIC values
for EFA solutions with different numbers of factors. Other criteria identified an
overlapping range of optimal dimensionalities, consistent with the notion that there
is no single best dimensionality64.

The optimal solutions for tasks, surveys and outcome variables all had cross-
factor correlations after oblimin rotation. The correlations amongst factors are
displayed in Fig. 5.

Factor score robustness. Confidence intervals on factor loadings were calculated
using the “iter” option from “fa” function from the psych package in R, with the
fraction of samples kept in each sample set to 90%63. This function runs EFA on
1000 bootstrapped samples, and uses the results to calculate the mean and standard
deviation of loadings. The robustness of the factor models was also assessed by
dropping out each individual measure and rerunning the analysis. Some measures
had large effects on the discovered factors, while others were inconsequential. The
results of these robustness analyses are communicated in the online Jupyter
notebook and Supplementary Discussion.

Factor analysis communality and DV test-retest reliability. Communality refers
to the variance accounted for in the DVs by the EFA model. Average communality
(equivalent to overall variance explained by the EFA model) was greater for survey
DVs (M= 0.58, SD= 0.17) than task DVs (M= 0.23, SD= 0.21), and differed
between different DVs. Though this is partially explained by the different number
of factors identified using the BIC criterion (5 factors for tasks, 12 factors for
surveys), a 12-factor task model still only had an average communality of 33.

There are two main explanations for low communality: either the estimated
factors do not span a psychological space that properly represents all DVs (e.g., the
factors are a poor model for the data) or the DVs themselves have poor
measurement characteristics. The latter creates a noise ceiling, and puts an upper
bound on the variance that can be explained by any model.

To investigate this we correlated communality and test-retest reliability (as
measured by Pearson correlation). We only evaluated DVs which had a test-retest
reliability above 0.2. We found a strong correlation between communality and test-
retest reliability in the tasks (r= 0.53), and a smaller correlation between
communality and test-retest reliability in surveys (r= 0.35), suggesting that
measurement characteristics are related to differential communality across DVs.
We adjusted for test-retest reliability by dividing the communality values for
individual DVs by their squared test-retest reliability, which results in an adjusted
measure of variance explained (i.e., attenuation correction31). After adjustment the
task factor model explained 68% of the explainable variance (across DVs SD=
0.39), while the survey factor model explained 86% (across DVs SD= 0.24)
(Supplementary Fig. 3). Thus the discrepancy in explained variance can largely be
understood in terms of the poor measurement properties of task DVs.

Factor score reliability. Though task DVs were less reliable than surveys in
general, it was possible that factor scores derived from the task EFA model were
just as reliable as the survey factor scores. The intuition is that by integrating over
many noisy measurements of a central psychological construct, EFA creates a
reliable individual trait, much as survey summary scores are more reliable than the
specific items that constitute that scale.

To evaluate this we made use of the 150 participants who completed the entire
battery a second time (see "Assessment of test-retest reliability"). Factor scores were
computed at both time points making use of the weight matrix derived from EFA
run on the first completion (i.e., the same linear combination of DVs was used to
create factor scores at both time points). Reliability was quantified by the Pearson
correlation between factor scores at both time points. All 5 task factors (M= 0.82,
min= 0.76, max= 0.85) and 12 survey factors (M= 0.86, min= 0.75, max= 0.95)
proved highly reliable (Fig. 5). We repeated this analysis using intraclass
correlation65, which did not qualitatively change the conclusions (ICC3k, taskM=
0.90, min= 0.86, max= 0.92; survey M= 0.92, min= 0.86, max= 0.98). This
analysis was repeated using weights derived from EFA run on only the 372
participants who were not part of the retest cohort. Applying the independently
derived weight matrix to the 150 retest cohorts at both time points did not change
the reliability estimates (Pearson’s r task M= 0.81, min= 0.77, max= 0.84; survey
M= 0.86, min= 0.77 max= 0.95).

To visualize the multivariate stability of the factor scores we projected the 5
(task) and 12 (survey) dimensional scores from both time points into two
dimensions using principal components analysis. The two dimensions captured
52% of the variance of task factor scores, and 41% of the variance of survey factor
scores.

Hierarchical clustering. Hierarchical clustering is a family of algorithms that
builds a relational tree. We used an agglomerative clustering technique that
iteratively combines DVs (separately for surveys and tasks). This technique relies
on a predefined distance metric, which defines how clusters should be combined.
We used correlation distance (or dissimilarity) as our distance metric. Because of
the arbitrary direction of our measures (e.g., an “impulsivity” DV could easily be
represented by a flipped “self-control” DV) we used absolute correlation distance,
defined as:

distance ¼1� rj j ð2Þ

We did not compute the correlation distance in native (participant) space (forgoing
dimensionality reduction), but rather in the factor analytic embedding space
defined by the loading matrix. We clustered DVs using the factor loadings rather
than participant scores for two reasons: (1) clustering using factor loadings
immediately situates each cluster within the interpretable psychological spaces
defined above, and (2) projection into factor space more clearly separates DVs into
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meaningful and discoverable clusters (Fig. 1d–g, Supplementary Fig. 5), suggesting
that dimensionality reduction via EFA functions as a useful denoising step, and
aids with the curse of dimensionality66. That said, following this initial analysis, we
performed hierarchical clustering in native space for both surveys and tasks. The
silhouette analysis (see "Clustering comparison and robustness", below) in Sup-
plementary Fig. 5 shows that this clustering is worse, which was confirmed visually
using similar dendrogram plots as used in the main text.

The hierarchy created by this technique has no intrinsic cut points, and thus no
objective clusters. To identify clusters which are interpretively useful, we used the
Dynamic Hybrid Cut Algorithm from the DynamicTreeCut package34. In
comparison to naive approaches, which cut the dendrogram at a particular height
to identify clusters, the dynamic tree cut algorithm cuts the tree at different heights
depending on the structure of the underlying branch. We separately evaluated
clustering using a simpler partitioning algorithm—cutting the tree at a single height
in order to maximize the mean silhouette score. At most heights, the silhouette
score is comparable to the dynamicTreeCut clustering solution, except at very low
cut heights, which produce many small, uninterpretable clusters (Supplementary
Fig. 5). Finally, if we compare the clustering solution produced by dynamicTreeCut
to a single height cut that produces the same number of clusters we find good
convergence between the clustering solutions, as quantified by the adjusted mutual
information score (AMI) between the two clustering solutions (task AMI= 0.91;
survey AMI= 0.88).

Clustering comparison and robustness. One metric used to compare the quality
of hierarchical clustering solutions was the average silhouette score for each
solution using scikit-learn57. This score is first calculated for each DV, and is a
function of the DVs mean intra-cluster distance and mean nearest-cluster distance,
and is then averaged across all DVs. The score ranges from the worst value of −1 to
the best value of 1, with values near 0 indicating overlapping clusters. Though we
did not rely on this metric to select our clusters, it was used to corroborate the
Dynamic Tree Cut algorithm, and supported our two-step process of clustering
after dimensionality reduction. Silhouette scores for a range of different clustering
approaches (before and after dimensionality reduction, using a fixed-height cut,
and using Dynamic Tree Cut) are displayed in Supplementary Fig. 5.

The robustness of hierarchical clustering solution to data perturbations was also
assessed. To do so we simulated 5000 separate loading matrices, where every
element of each loading matrix was a sample from a gaussian whose mean and
standard deviation were derived from the bootstrapped factor analysis (see "Factor
score robustness"). We also dropped out 20% of the DVs randomly. Clustering
analysis, identical to the main analysis, was then performed on these simulated
loading matrices. The simulated clusters were compared to the original clustering
using adjusted mutual information (AMI). AMI ranges from 0 to 1, with 1
indicating perfect agreement across clustering solutions and 0 indicating no
overlap.

In addition, to evaluate the robustness of pairs of DVs clustering together we
calculated the percentage of times DV pairs co-occurred within a particular cluster,
for all DV pairs, across the simulations. This results in a co-occurrence matrix,
which can be used as a distance matrix for consensus clustering. We compared the
consensus clustering solution to the original clustering solution using AMI. Finally,
we used the clusters reported in this work (Figs. 3 and 4) to calculate the average
co-occurrence of DVs within-cluster, out-of-cluster, and between each DV and
DVs in the two closest clusters. The results of these analyses are reported in the
Supplemental Discussion and the online Jupyter Notebook.

Visualization using multidimensional-scaling. In Fig. 1, task DVs and a priori
DV clusters (drift rate, threshold, non-decision time and stop-signal reaction time)
were represented using multidimensional-scaling (MDS) for visual convenience.
MDS is a conventional visualization technique that distills higher dimensional
relationships into two dimensions and was performed using scikit-learn’s MDS
function57. This visualization is intended to highlight the utility in clustering after
dimensional reduction, but is not directly relied upon for any subsequent analyses.

Prediction analysis. The primary prediction analysis used the factor scores from
tasks or surveys, as well as both combined, as features to predict outcome targets.
These outcome targets were derived from EFA using identical procedures to the
surveys and tasks on the individual outcome items (e.g., household income,
cigarette habits, see Supplementary Methods). Prior to running EFA, age and sex
were first regressed out of each outcome variables using simple linear regression.
This procedure yielded 8 factors: Binge Drinking, Problem Drinking, Unsafe
Drinking, Drug Use, Lifetime Smoking, Daily Smoking, Obesity, Mental Health,
and Income/Life Milestones (see Supplementary Fig. 7 for the factor score corre-
lations and the online Jupyter notebook for the full factor loading matrix). We used
two different regularized linear regression methods to perform prediction: lasso
and ridge regression, which differ in the form of their regularization. We also used
two nonlinear regression methods: random forest and support vector machines. All
methods used scikit-learn57.

Cross-validation was performed using a balanced 10-fold procedure (custom
code based on ref. 67), thus fitting each model with 469 participants and testing on
53 left out participants. Across all folds, each participant’s outcome factor scores

(the prediction targets) were predicted in a cross-validated manner. These
estimates were correlated with the actual outcome factor scores to compute R2.
Insample R2 were estimated by fitting identical models as above to the whole
dataset and testing on the same dataset. Mean absolute error (MAE) was computed
analogously. Cross-validated and insample R2 and MAE for each model are shown
in Supplementary Table 3. Ridge and lasso regression performed comparably, while
nonlinear methods, particular random forests, overfit the data producing poor fits.
Ridge regression was used to assess feature importance due to its desirable
regularization properties compared to lasso (sparse feature selection was not
necessary for interpretability with so few predictors) and comparable performance.
Feature importance for the ridge regression (as shown in the ontological fingerprint
polar plots in Figs. 6, 8) is defined as the standardized β coefficients.

Prediction results combining task and survey factor scores did not differ
qualitatively from the prediction results using survey factor scores alone, except for
a slight improvement for obesity and income/life-outcomes, which were the two
targets where tasks performed above chance (Supplementary Table 3). This
constitutes weak evidence that, for some targets, tasks can complement surveys to
create a predictive model for real-world behavior.

One potential issue with our prediction analysis is the possibility of data-
bleeding between cross-validation folds as a result of the factor analytic models.
That is, the EFA models for both predictors (e.g., survey factor scores) and targets
(outcome target factor scores) were fit on the entire dataset. This data-bleeding
could inappropriately inflate prediction estimates. To control for this possibility we
created an empirical null distribution of prediction success by shuffling the target
outcomes and repeating the prediction 2500 times. 95% prediction success is
shown in all prediction plots and is used as a significance cut off (p < 0.05) to
display ontological fingerprints.

Complementing our prediction using task and survey factor scores derived from
EFA, we performed the same analyses using the individual DVs (separately for
tasks and surveys) as predictor features. These results are discussed in
the Supplementary Discussion.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The imputed data underlying the analyses in this work, as well as the task and survey

loading matrices, can be found on OSF [https://mfr.osf.io/render?url=https://osf.io/

4j9hd/?action=download%26mode=render]. Raw and processed behavioral data,

including trial-by-trial data for each task, are available at [IanEisenberg/

Self_Regulation_Ontology], [https://github.com/IanEisenberg/

Self_Regulation_Ontology/tree/master/Data/Complete_02-16-2019].

Code availability
The data cleaning procedures, and analysis code for ontology construction and predictive

work are also available at [IanEisenberg/Self_Regulation_Ontology]. The experimental

code and first-level analysis code used to derive measure dependent variables are part of

the Experiment Factory56.
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