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Abstract

In this work, we introduce Video Question Answering

in temporal domain to infer the past, describe the present

and predict the future. We present an encoder-decoder ap-

proach using Recurrent Neural Networks to learn tempo-

ral structures of videos and introduce a dual-channel rank-

ing loss to answer multiple-choice questions. We explore

approaches for finer understanding of video content using

question form of “fill-in-the-blank”, and managed to col-

lect 109,895 video clips with duration over 1,000 hours

from TACoS, MPII-MD, MEDTest 14 datasets, while the

corresponding 390,744 questions are generated from an-

notations. Extensive experiments demonstrate that our ap-

proach significantly outperforms the compared baselines.

1. Introduction

Current research into image analysis is gradually going

beyond recognition [18] and detection [11]. There are in-

creasing interests in deeper understanding of visual content

by jointly modeling image and natural language. As Con-

volutional Neural Networks (ConvNets) have raised the bar

on image classification and detection tasks [11, 14, 34], Re-

current Neural Networks (RNNs), particularly Long Short-

Term Memory (LSTM) [12], play a key role in visual de-

scription tasks, such as image captioning [7, 41, 44]. As one

step beyond image captioning, Image Question Answering

(Image QA), which requires an extra layer of interaction be-

tween human and computers, have started to attract research

attention very recently [2, 10, 23].

In the area of video analysis, there are a few very re-

cent systems proposed for video captioning [40, 46]. These

methods have demonstrated promising performance in de-

scribing a video by a single short sentence. Similar as image

captioning, video captioning may not be as intelligent as de-

sired, especially when we only care about a particular part

or object in the video [2]. In addition, it lacks the interaction

between computers and the users [10].

In this paper, we focus on Video Question Answering

Task 2: Infer the past 

He took out_ 

A. mango

B. knife -
C. soda

Task 3: Predict the future
'-

-

He _ cucumber on plate. 

A. throws

B. places - --
C. wipes

D. rinses

Task 1: Describe the present 

He slices 

A. cucumber

B. bowl

C. onion

D. bean

Figure 1. Questions and answers about the past, the present and

the future. Our system includes three subtasks, which are inferring

the past, describing the present, and predicting the future, while

only the current frames are observable. Best viewed in color.

(Video QA) in temporal domain, which has been largely

unaddressed. Our Video QA consists of three subtasks. As

shown in Figure 1, if we see a man slicing cucumbers on

a cutting board, we can infer that he took out a knife pre-

viously, and predict that he will put them on a plate after-

wards. The same as image QA, video QA requires finer

understanding of videos and sentences than video caption-

ing. Despite the success of these methods for video cap-

tioning [40, 46], there are a few research challenges remain

unsolved, which makes them not readily applicable to Video

QA.

First, a Video QA system should explore more knowl-

edge beyond just visual information and the coarse sentence

annotations because it requires finer understanding of video

content and questions. For the sake of video captioning, ex-

isting systems [40, 46] train LSTM models merely based

on video content and the associated coarse sentence annota-
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tions. Because the size of description embedding matrix is

very large but many words usually appears only a few (less

than 10) times in all descriptions, the results overfit easily.

Recent study [22] found that visual and textual informa-

tion are mutually beneficial. We paved a new way of video

QA, by appropriately integrating information of all types,

including sentences, words, and visual cues, into a joint

learning framework to maximize the mutual benefits, dur-

ing which external knowledge bases (e.g. BookCorpus [50]

and Google News [24]) can be readily incorporated. Be-

cause the external knowledge bases reflect the underlying

correlations among related entities, our approach is able to

to better parse questions and video frames.

Second, a Video QA system should be capable of rea-

soning across video frames, including inferring the past,

describing present, and predicting the future, which are

strongly correlated. Very recently, Gated Recurrent Unit

(GRU) [4] has demonstrated promising performance on se-

quence modeling tasks, partially because it has simpler

neural structure than LSTM. On top of GRU, we propose

an encoder-decoder approach with a dual-channel ranking

loss to learn three video representations, one for each Video

QA subtasks, i.e., past inference, present description, and

future prediction. One appealing feature of our approach is

that, the encoder-decoder approach is able to model a wider

range of temporal information, and the reduced number of

weight parameters in GRU makes it more robust to over-

fitting in temporal modeling. Further, the approach avoids

the needs of creating a large number of labels to train the

sequence model by embedding visual feature to a semantic

space.

Third, we should have a well-defined quantitative eval-

uation metric and datasets from different domains to track

progress of this important research [2]. Manually providing

groundtruth for a large amount of videos is extremely hu-

man labor intensive. BLEU [26] has been widely used as an

evaluation metric for image captioning but a few research

papers and competition reports have indicated that BLEU

is not a reliable metric, and cannot reflect human judg-

ment [19, 39]. Following [22], we evaluate our question

and answering approach in the form of “fill-in-the-blank”

(FITB) from multiple choices. Under this theme, we man-

aged to collect a new dataset consisting of over 100,000

real-world videos clips, and 400,000 designed questions

with more than 1,000,000 candidate answers. This dataset

will be released to the public, which can be used as bench-

marks for this research. The main advantage is that it is

more convenient for quantitative evaluation than free-style

question answering. Note that the difficulty of the questions

can be controlled in designing candidate answers.

In this paper, we propose a new framework for video

QA by carefully addressing the three aforementioned chal-

lenges. The rest of this paper is organized as follows. After

introducing related works, we detail the large scale dataset

we have collected for video QA tasks. We then present

our approach of video temporal structure modeling and the

dual-channel learning to rank method for question answer-

ing. Extensive experiments are conducted to validate our

approach.

2. Related Works

Neural networks in video analysis. Recently, many Con-

vNets based video feature learning methods have been pro-

posed. Simonyan and Zisserman [31] propose to utilize op-

tical flow images extracted from videos as the inputs to train

ConvNets. Along with the ordinal RGB stream, two-stream

ConvNets can achieve comparable performance with the

state-of-the-art hand-crafted feature improved Dense Tra-

jectories [43]. Tran et al. [36] propose 3D ConvNets which

capture temporal dynamics in video clips without the very

time-consuming optical flow extraction procedure. Xu et

al. [45] adapt the ConvNet frame-level features by VLAD

pooling over the timestamps to generate video representa-

tion, which shows great advantages over the traditional av-

erage pooling. Recently, a general sequence to sequence

framework encoder-decoder was introduced by Sutskever et

al. [33], which utilize a multilayered RNN to encode a se-

quence of input into one hidden state, then another RNN

takes the encoded state as input and decode it into a se-

quence of output. Ng et al. [25] apply the encoder-decoder

framework on large-scale video classification tasks. Srivas-

tava et al. [32] extend this general model to learn features

from consecutive frames and propose a composite model

for unsupervised LSTM autoencoder.

Bridging vision and language: captioning and question

answering. There are increasing interests in the field of

multimodal learning for bridging computer vision and nat-

ural language understanding [7, 15, 40, 41, 46]. Captioning

is one of the most popular tasks among them, and Long

Short-Term Memory (LSTM) is heavily used as a recur-

rent neural network language model to automatically gener-

ate a sequence of words conditioned on the visual features,

which is inspired by the general recurrent encoder-decoder

framework [33]. However, captioning task only generates a

generic description for entire image or video clip and it is

difficult to evaluate the quality of generated sentences, i.e.,

it’s hard to judge one description is better than another one

or not. In addition, it is still an open research problem of de-

signing a proper metric for visual captioning, which can re-

flect human judgment [8, 39]. In this work, we instead focus

on more fine-grained description on video content, and our

method is simple to evaluate in multiple-choice form, i.e.,

correct or wrong answer. Recently, a bunch of QA datasets

and systems have been developed on images [2, 10, 23, 28].

Ren et al. [28] use a fixed-length answer with only one word
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for answering questions about images. Gao et al. [10] use a

more complex dataset with free-style multilingual question-

answer pairs, however it is hard to evaluate the answers,

usually human judges are required. Lin et al. [22] introduce

an interesting multiple-choice fill-in-the-blank question an-

swering task on abstract scene, and Yu et al. [48] apply the

task on natural images with various question templates. Im-

ages are good sources for recognizing objects, however, a

very important task, question answering on video content

has not been explored yet. Different from the still images,

video analysis can utilize the temporal information across

the frames, along with the object and scene information.

The richer structural information in videos introduces po-

tentially better understanding to the visual content while

imposes challenges at the same time.

Video Question Answering and temporal structure rea-

soning. To the best of our knowledge, the only work on

video-based question answering is Tu et al. [37], which

builds a query answering system based on a joint parsing

graph from both text and videos. However, Tu et al. [37]

constrain their model only on surveillance videos of prede-

fined structure, which cannot deal with open-ended ques-

tions. Differently, we cope with unconstrained videos of

any kind, e.g., cooking scenario, DVD movies, web videos

from YouTube, and develop a novel framework for visual

understanding with dynamic temporal structure. In the as-

pect of temporal structure learning, action forecasting has

been initially studied in [42]. To predict the potential ac-

tions, Vondrick et al. [42] propose to use a regression loss

built upon a ConvNet and forecast limited categories of ac-

tions and objects in a very short period, e.g., one second. In

contrast, we utilize a more flexible encoder-decoder frame-

work, modeling a wider range of temporal information,

and we mainly focus on multiple-choice question answer-

ing tasks in the temporal domain, which goes well beyond

the standard visual recognition.

3. Dataset Collection and Task Definitions

The goal of our work is to present a Video QA system in

temporal domain to infer the past, describe the present and

predict the future. We first describe our dataset collection

and the way to automatically generate template questions in

Section 3.1. Task definitions and dataset analysis would be

discussed in Section 3.2.

3.1. Dataset and QA Pairs Generation

We in total collect over 100,000 videos and 400,000

questions, while QA pairs are generated from existing

datasets in different domains, from cooking scenario, DVD

movies, to web videos:

1. TACoS Multi-Level [27]. TACoS dataset consists of

127 long videos with total 18,227 annotations in the

cooking scenario. It provides multiple sentence de-

scriptions in fine-grained levels, i.e., for each short clip

in the long videos.

2. MPII-MD [29]. MPII-MD is collected from DVD

movies where descriptions are generated from movie

scripts semi-automatically. The dataset contains

68,375 clips and one annotation on average is provided

for each clip.

3. TRECVID MEDTest 14 [1]. TRECVID MEDTest 14

is a complex event wild video dataset collected from

web hosting services such as YouTube. Videos in the

dataset are about 1,300 hours in duration. The videos

are untrimmed and the annotation is provided for each

long video, which can be regarded as a coarse high-

level summarization compared with TACoS and MPII-

MD datasets.

Question templates generation. We use the Stanford NLP

Parser [17] to get syntactic structures of original video de-

scriptions. We divide the questions into three categories,

nouns (objects like food, animals, plants), verbs (actions)

and phrases. Afterwards, question templates are generated

from noun phrases (NP) and verb phrases (VP). During tem-

plate generation, we eliminate prepositional phrases as most

of them are subjective. We use WordNet1 and NLTK2 toolk-

its to identify word categories and choose a set of categories

listed in Table 1. We visualize the distribution of words in

each category using t-SNE [38] in Figure 2. It shows that

categories can be separated, where actions and objects have

a clear margin.

Answer candidates generation. We designed two differ-

ent levels of difficulty in answering questions by altering

candidate similarities. For easy candidate pairs, we ran-

domly choose three distractors within same category from

the same dataset. Stop words like “person”, “man” are fil-

tered in advance and words with frequency less than 10

are filtered following the common practice. As for hard

pairs, based on the observations that video clips in the same

dataset can be in totally different scenes, e.g., the MPII-

MD dataset and the MEDTest 14 dataset, we select the

hard negative candidates from similar descriptions. In ad-

dition to the video datasets, we use description annotations

from Flickr8K [13], Flickr30K [47] and MS COCO [21]

as description sources for similarity search. We first parse

the annotations using the way described above and gather

about 8,000 phrases in total, resulting average length of 6.6

words per phrase. After the preprocessing, we further fil-

ter the candidates using word2vec [24] to retrieve the near-

est phrases in cosine distance. The phrase representation is

generated by averaging the word vectors [20, 22].

1https://wordnet.princeton.edu
2http://www.nltk.org/

3

https://wordnet.princeton.edu
http://www.nltk.org/


artifact
food
action
animal

plant

Figure 2. t-SNE visualization of word embeddings for each cate-

gory learned from word2vec model. Best viewed in color.

Datasets verbs phrases animals food/plant other objects

TACoS 268 964 - 62 134

MPII-MD 869 220 63 129 896

MEDTest 14 671 418 98 174 726

Combine all sources 2,925 5,927 352 598 2,093

Table 1. List of categories and number of collected words in

three datasets. Last rows shows the number of all words and

phrases collected including those from image domains such as

MS COCO [21].

As candidate answers might be ambiguous to the correct

answer, we set a similarity threshold, and then select 10 of

them as the final candidates. We show examples of QA pairs

in different categories and difficulty in Figure 3.

3.2. Task Definitions

Besides describing the current clip, we introduce another

two tasks which are inferring the past and anticipating the

future. In the task of describing the present, we use all three

datasets for evaluation. As to the other two tasks which

are past inferring and future predicting, we perform exper-

iments on TACoS and MPII-MD datasets only as they are

annotated in fine-grained clips. In these tasks, given a video

clip, questions about the previous or next clip need to be

answered. Note that for tasks of describing the past and

future, only the current clip is given and the model has to

reason temporal structures based the given clip. We restrict

the past and future to be not too far away from the current

clip and typically we choose the clip right before or after the

given one, where the time interval is less than 10 seconds.

For each task, we introduce two levels of questions. For

simplicity, we denote our tasks as Past-Easy, Present-Easy,

Future-Easy, Past-Hard, Present-Hard and Future-Hard.

We create three splits for each task and videos are divided

into training, validation and testing sets.

Category: Animal

Q: A/An ____ swims in a pool.

Easy distractors:   Hard distractors:

- bee                  - cat    - duck      - dolphin

- horseback       - clam  - goose    - bear

- bird                  - cow   - penguin - elephant

Category: food/plant

Q: A  man cutting a ____ in the food market.

Easy distractors:     Hard distractors:

- snowball              - grapefruit - cucumber                      

- popcorn               - broccoli    - lemon

- seed                     - orange    - strawberry   

         - wheat      - watermelon 

Category: Phrases

Q: Two boys ____ in a bedroom.

- play with toys

- swing

- pick up empty recycle bin

- shave facial hair

Dog
Pineapple

Category: Actions

Q: He __ her.

- hugs

- kisses

- beats

- runs towards

Category: Actions

Q:  Someone walks toward 

the fence to ___ Someone.

- greet

- hit

- knock

- laugh

Figure 3. Examples of QA pairs for different categories and diffi-

culty. Words colored in green are the correct answers, and difficult

candidates are marked in red.

4. The Proposed Approach

To answer questions about present, past and future, we

first introduce an encoder-decoder framework to represent

context. We then map the visual representation to semantic

embedding space and learn to rank the correct answer with

higher score.

4.1. Learning to Represent Video Sequences

In this section, we describe our model of learning tem-

poral context. We present an encoder-decoder framework

using Gated Recurrent Unit (GRU) [4]. Compared with

Long Short-Term Memory (LSTM) [12], GRU is concep-

tually simpler with only two gates (update gates and reset

gates) and no memory cells, while the performance on se-

quence modeling task [5] is as good as LSTM. Note that

we trained our model with LSTM as well, but it performs

worse than the one with GRU. With GRU, we can achieve

mAP of 24.9% on MEDTest 14 100Ex classification task,

while we can only get 20.4% with LSTM. We suspect that

it is because LSTM with more parameters is more prone to

overfit than GRU.

Gated Recurrent Unit. Denote f1

i , f
2

i , . . . , f
N
i as the

frames in a video vi, where N is the number of frames sam-

pled from the video. At each step t, the encoder generates a

hidden state ht
i, which can be regarded as the representation

of sequence f1

i , f
2

i , . . . , f
t
i . Thus the state of hN

i encodes

the whole sequence of frames. States in GRU [4] are calcu-
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lated as (dropping the video subscript i for simplicity):

rt = σ(Wxrx
t +Whrh

t−1) (1)

zt = σ(Wxzx
t +Whzh

t−1) (2)

h̄t = tanh(Wxh̄x
t +Whh̄(r

t ⊙ ht−1)) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̄t (4)

where xt is the input, rt is the reset gate, zt is the update

gate, ht is the proposed state and ⊙ is element-wise multi-

plication. For the decoder, we use the same architecture as

the encoder, but its hidden state of h0 is initialized with the

hidden state of the last time step N in the encoder. Simi-

lar to [32], we construct our GRU encoder-decoder model

(Figure 4). Besides reconstructing the input frames, we also

train another two models which are asked to reconstruct

the future frames (Figure 4 top) and past frames (Figure 4

bottom), respectively. Our proposed models are capable of

learning good features as the network is optimized by min-

imizing the reconstruction error. In order to achieve good

reconstruction, representation passed to the decoder should

retain high level abstraction of the target sequence. Note

that our three models are learned separately, where encoder

and decoder weights are not shared across models of past,

present and future.

Training. We first train the encoder-decoder models in an

unsupervised way using videos collected from a subset of

MED dataset [1] (exclude MEDTest 13 and MEDTest 14

videos) which consists of 35,805 videos with duration of

over 1,300 hours. The reason to choose MED dataset as

a source for temporal context learning is that videos in

MED dataset have much longer duration, containing com-

plex and profound events, actions and objects for learning.

We collect data apart from our target task datasets as to learn

more powerful model and practically, it is difficult to train a

model from scratch in such a small dataset like TACoS with

only 127 cooking videos. As frames in video are of high

correlations in short range, we sample frames at the frame

rate of 1 fps. We use time span of 30 seconds and set the

unroll length T to 30 for the present model (Model I), 15 for

both past model (Model II) and future model (Model III).

As for the input to GRU model, we use ConvNet fea-

tures extracted from GoogLeNet [34] with Batch Normal-

ization [14] of dimension 1,024 which was trained from

scratch with ImageNet 2012 dataset [30] and we keep Con-

vNets part frozen during RNN training.

We now explain our network structures and training pro-

cess in details. As three models are trained with the same

hyper-parameters, we take Model I as an example. In our

case, reconstruction error is measured by ℓ2 distance be-

tween predicted representation and the target sequence. We

reverse the target sequences in reconstruction scenario and

as indicated in [33], it reduces the path of the gradient flow.

We set the size of GRU units to 1,024 and two GRU lay-

State

copy

Input frames

Decoders

Encoder

Predictions

5

6

9'

8'

7'

6'

5'

4'

3'

2'

1'

Reconstruct

past
(Model II)

Reconstruct

present
(Model I)

Reconstruct

future
(Model III)

4

Learn to Answer

QA pairs

Unsupervised visual context learning

Figure 4. The encoder-decoder model (right): encoder state of last time

step is passed to three decoders for reconstruction. Learn to answer (left):

learned to answer questions in a supervised way.

ers are stacked. Our decoders are conditioned on the in-

puts, and we apply Dropout with rate 0.5 at connections be-

tween first GRU layer and second GRU layer as suggested

by Zaremba et al. [49] to improve the generalization of the

neural network. We initialized h0 for encoder with zeros,

while weights in input transformation layer are initialized

with a uniform distribution in [-0.01, 0.01] and recurrent

weights are with uniform distribution in [-0.05, 0.05]. We

set the mini-batch size to 64 and clip gradient element-wise

at 1 × 10−4. Frame sequences from different videos are

sampled in each mini-batch. The network is optimized by

RMSprop [35], which scales the gradient by a running av-

erage of gradient norm. The model is trained by the Torch

library [6] on a single NVIDIA Tesla K20 GPU and it takes

about one day for the models to converge and finish the

training.

Inference. At inference time, we feed the ConvNet features

extracted from GoogLeNet to the encoder, and obtain the

video features from hidden states. For each video clip, we

initialized h0 to zeros, and pass the current hidden state to

the next step until last input. We then average hidden states

at each time step as the final representation.

4.2. DualChannel Learning to Rank

We present the proposed dual-channel learning to rank

algorithm which jointly models two channels, i.e., word

channel and sentence channel, for learning. Kiros et al. [16]

recently propose the skip-thought vectors to encode a sen-

tence into a compact vector. The model uses an RNN en-

coder to encode a sentence and another two RNN decoders

5



are asked to reconstruct the previous sentence and the next

sentence. It was trained using BookCorpus dataset [50]

which consists of 11,038 books, 74,004,228 sentences and

984,846,357 words. The skip-thought vectors model per-

forms well on many different natural language processing

(NLP) tasks. We utilize the combine-skip model to encode

sentences. For more details, please refer to [16].

We first formulate the problem of multiple-choice ques-

tion answering. Given N questions with blanks together

with corresponding videos, and K candidate answers for

each question, we denote each question as qi, i ∈ 1, . . . , N ,

candidate answers for question qi as pij , j ∈ 1, . . . ,K and

the ground truth for question qi as p′i with index j′i. For

each question qi, let sij be the sentence formed by filling the

blank of question qi with candidate pij . For example, filling

in the template of “A/An swims in a pool” shown in

Figure 3 with candidate “dog”, we can form the sentence of

“A dog swims in a pool”, and false description “A horseback

swims in a pool” is generated with “horseback”.

Given qi, we introduce a dual-channel ranking loss (also

illustrated in Figure 5) that is trained to produce higher sim-

ilarity for the visual context and representation vector of the

correct answer p′i than other distractors pij , j 6= j′i. We de-

fine our loss as:

min
θ

∑

v

∑

j∈K,j 6=j′

λℓword + (1− λ)ℓsent, λ ∈ [0, 1], (5)

with

ℓword = max(0, α− vp
Tpj′ + vp

Tpj),

ℓsent = max(0, β − vs
T sj′ + vs

T sj),

where vp = Wvpv,vs = Wvsv and pj = Wpvyj , sj =
Wsvzj (for simplicity we dropped subscript i). v is the

vector learning from our GRU encoder-decoder model for

video clip vi, yj is the average of word2vec vectors for each

word in candidate pij , zj is the skip-thought vector for de-

scription sij . We constrain these feature representations to

be in unit norm. θ denotes all the transformation parameters

needed to learn in the model, Wvs and Wvp are transforma-

tions that map visual representation to semantic joint space,

while Wsv and Wpv transforms the semantic representation.

Note that Wxx can be a linear transformation or multi-layer

neural networks with hidden units.

Training. During training procedure, we sample false terms

from negative candidates and practically stop summing af-

ter first margin-violating term was found [9]. Empirically,

we choose the sentence embedding dimension to be 500

and word embedding to be 300. The model is trained by

stochastic gradient descent (SGD) by simply setting the

learning rate η to be 0.01 and momentum with 0.9. And

in practice, we set the margin α and β to 0.2, and λ is cross-

validated in held-out validation set.

Kids are playing 

football.

football

Kids are playing 

basketball.

basketball

Scorepos>Scoreneg

Given question:

Kids are playing ___. 

A. basketball

B. football

Wvs

Wvp

Wpv

Wsv

Figure 5. Illustration of dual-channel learning to rank.

Inference. We learned weight of transformations at training

stage and at inference time, we calculate the following score

for each candidate,

score = λvp
Tpj + (1− λ)vs

T sj , (6)

and the candidate with the highest score would be our an-

swer.

5. Experiments

5.1. Evaluation of Describing the Present

In this section, we evaluate our model in the task of de-

scribing the present. We first demonstrate the effectiveness

of our ranking objective by comparing with CCA and then

conduct evaluation of dual-channel learning.

Our dual-channel ranking method improves perfor-

mance. We compare our dual-channel ranking approach

with Canonical Correlation Analysis (CCA) which com-

putes the directions of maximal correlation between a pair

of multi-dimensional variables. To learn CCA, we train two

embedding layers separately. The first CCA maps the sen-

tence description to visual semantic joint-embedding space

and the second one maps the correct answer to the joint

space. In order to answer multiple-choice questions, we

embed each candidate and select the answer that is most

similar to the video clip by Equation 6. We conduct cross-

validation to choose the weight to combine two embed-

dings.

For both methods, we restrict the input features to be

the same. For visual representation, we average frame-level

features extracted from the last fully connected layer of

GoogLeNet. For semantic representation, we use the same

method described in Section 4.2, where sentences are en-

coded by skip-thought vectors, and word2vec is used for

word representation.
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Dataset Split CCA Our objective

split 1 67.1% 77.7%

TACoS split 2 64.9% 78.3%

split 3 63.2% 72.9%

mean 65.1% 76.3%

split 1 36.2% 73.4%

MPII-MD split 2 42.9% 72.5%

split 3 45.7% 69.9%

mean 41.6% 72.0%

split 1 63.1% 81.2%

MEDTest 14 split 2 62.8% 80.9%

split 3 63.6% 81.0%

mean 63.2% 81.0%

Table 2. Comparison between CCA and our objective on Present-

Easy task. The visual feature of averaging frame level 1,024 di-

mension representations from GoogLeNet is used for both ap-

proaches. Our method outperforms CCA with a large margin.

Note that in CCA, the two embedding matrices are

learned separately at training time while the weights of two

embeddings are introduced at validation stage. The method

of late fusing sentence and word descriptions is different

from our dual-channel ranking approach, which integrates

sentences and words representations during training time

and learns to adjust embeddings accordingly. We demon-

strate the effectiveness of our dual-channel ranking method

in Table 2.

As we can see, our objective outperforms CCA with a

large margin. We believe it is because our objective func-

tion learns to integrate two representations, while CCA uses

a fixed embedding matrix during semantic weight learning.

Besides, CCA eliminates negative terms during training,

and as multiple-choice question-answering is required to se-

lect an answer from candidates at testing time, ranking loss

is more suitable for modeling the problem.

Evaluation of dual-channel learning. We then show the

effectiveness of using two channels for learning. The re-

sult of how integrating two representations influences the

performance is shown in Figure 6. As we can see, it is ben-

eficial to integrate word representations during training, and

sentences are weighted more than words. It is because our

visual features represent more of global abstraction, which

is corresponding to the sentence representation, while spe-

cific object features corresponding to the word representa-

tion haven’t been considered in this work. We will explore

this direction in details in the future works.

Comparison between our GRU model and ConvNet

model. To show the effectiveness of our encoder-decoder

approach in modeling the present, we compare our present

model with a strong baseline - averaging frame-level fea-

tures from GoogLeNet. We compare two representations

by placing the visual input to our dual-channel ranking ob-

jective with ConvNet model or our GRU model.

Note that the comparison is reasonable as both fea-

tures are with same dimension of 1,024 and we use the
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Figure 6. The effectiveness of dual-channel learning to rank. We

conduct experiment on Present-Easy task to showcase. λ = 0 cor-

responds to using sentence channel only and λ = 1 corresponds

to using word channel only.

Level Dataset Split 1 Split 2 Split 3 Mean

TACoS 79.1% 81.9% 78.1% 79.7%

Easy MPII-MD 75.5% 74.6% 72.4% 74.2%

MEDTest 14 83.7% 83.0% 82.8% 83.2%

TACoS 66.9% 66.2% 68.2% 67.1%

Hard MPII-MD 47.4% 49.0% 48.3% 48.2%

MEDTest 14 63.0% 63.9% 62.3% 63.1%

Table 3. Results of our GRU model on the task of describing the

present.

Past Future

Dataset Split Easy Hard Easy Hard

split 1 78.1% 65.8% 76.9% 66.1%

TACoS split 2 78.3% 64.4% 79.6% 65.8%

split 3 78.5% 63.9% 79.7% 69.9%

split 1 72.4% 47.0% 75.9% 47.1%

MPII-MD split 2 72.0% 47.0% 73.3% 48.8%

split 3 72.0% 46.9% 71.7% 48.1%

Table 4. Results of our GRU models on inferring past and predict-

ing the future.

same transformation layer and same hyper-parameters dur-

ing training. This result is shown in Table 5. Detailed anal-

ysis will be discussed in next Section.

5.2. Evaluation of Inferring the Past and Predicting
Future

We first show the results of our GRU models in all tasks.

The results of describing the present is in Table 3, while

results of inferring the past and predicting the future are

shown in Table 4. We visualize part of the experiment re-

sults using our GRU models in Figure 7 and some wrong

answers are shown as well.

To demonstrate the effectiveness of our GRU models in

modeling temporal structures, we conduct an interesting ex-

periment which uses ConvNet features of the given clip to

model past and future directly. The results are shown in Ta-
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Describe the present

people ride in _ on a lake. 

   lounge     0.284 

   elevator   0.405

   boat        0.612

   window    0.308

Infer the past

He ____  orange. 

   cuts            0.364 

   washes      0.253

   picks          0.452

   takes out   0.576

Describe the present

He peels ____. 

   food        0.563 

   banana   0.752

   orange   0.831

   juice        0.201

Predict the future

He put orange on a ___. 

   plate     0.284 

   desk     0.405

   table    0.612

   musk    0.308

Describe the present

He put orange on a ___. 

   table     0.587 

   plate     0.611

   musk     0.288

   desk      0.544

Describe the present

A person feeds a ___. 

   rabbit          0.761 

   deer           0.878

   wolf            0.652

   groundhog 0.761

Describe the present

He ____  orange. 

   peals       0.614 

   extracts   0.040

   cuts off    0.591

   washes   0.802

Describe the present

A person ___ a deer. 

   cooks      0.020 

   feeds       0.198

   punches  0.202

   meal        0.044

Describe the present

A horse tries to  ___. 

   stand up     0.723 

   dress up     0.434

   look            0.121

   pray            0.019

Describe the present

people eat ___ in a restaurant.

   sushi          0.589 

   meatball     0.191

   catfish        0.125

   breakfast   0.630

Figure 7. Example results obtained from our model. Each candidate has a score corresponding to a clip. Correct answers are marked in

green while failed cases are in red.

Past Present Future

ConvNets Ours Improv ConvNets Ours Improv ConvNets Ours Improv

Easy 74.8% 78.3% 3.5% 76.3% 79.7% 3.4% 76.4% 78.7% 2.3%

TACoS Hard 62.7% 64.7% 2.0% 65.5% 67.1% 1.6% 64.5% 67.3% 2.8%

Easy 66.8% 72.1% 5.3% 72.0% 74.2% 2.2% 68.7% 73.6% 4.9%

MPII-MD Hard 45.6% 47.0% 1.4% 47.3% 48.2% 0.9% 46.9% 48.0% 1.1%

Table 5. Comparisons between ConvNets and our model for past, present and future modeling.

ble 5. From the result, we have the following observations:

(1) GRU model outperforms ConvNet model in all cases,

and relatively performs better than ConvNet in tasks of in-

ferring the past and predicting the future compared with de-

scribing the present. By comparisons of the performance

among tasks, we find that our GRU model performs rela-

tively better than ConvNets in tasks of inferring the past

and predicting the future, which shows the effectiveness of

our GRU encoder-decoder framework in modeling tempo-

ral structures in videos. As our GRU models are trained

to reconstruct the past and future sequences, they can rep-

resent the past and future in a more reasonable way than

the ConvNet models. Our results also indicate the abil-

ity of our GRU models to capture wider range of tempo-

ral information than ConvNet models. ConvNets trained

from still frames can model temporal structures if objects

in scene don’t change too much in short intervals (one ex-

ample would be in Figure 1, “cucumber” occurs in both cur-

rent and future clip). However, when it comes to modeling

longer sequences, ConvNets will fail to make predictions

due to lack of context.

(2) Our model can achieve better results for future pre-

diction than past inference. For future prediction, we feed

input frames in the order of 4, 5, 6 (Figure 4) and the de-

coder is asked to reconstruct frame in the order 7, 8, 9. As

to past inferring, we feed the same input, but ask the de-

coder to reconstruct target sequence of 1, 2, 3. As the future

prediction model has shorter term dependencies than past

inferring model, future prediction model can be easier to

learn the temporal dependencies, which is consistent with

the observations and hypothesis in [33].

5.3. Limitations and Future Work

Although our results on question answering for video

temporal context are encouraging, our model has multiple

limitations. First, our model is only aware of context of at

most 30 seconds (the longest unroll length). One more flex-

ible and promising approach would be incorporating the at-

tention mechanism [3] to learn longer sequences of context

in videos. Additionally, our model fails to answer questions
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about detailed objects sometimes, due to lack of local vi-

sual features, i.e., region-level, bounding boxes based rep-

resentation. We would like to integrate object detection in-

gredients to localize objects for better visual understanding.

Lastly, we fixed sentence and word representation learning

part in this work. Learning both visual and language repre-

sentations simultaneously is an open problem as indicated

in [9].

6. Conclusion

Unlike video captioning tasks which generate a generic
and single description for a video clip, we introduce an ap-
proach of temporal structure modeling for video question
answering. We utilize an encoder-decoder model trained in
an unsupervised way for visual context learning and pro-
pose a dual-channel learning to ranking method to answer
questions. The proposed method is capable of modeling
video temporal structure in a longer time range. We evalu-
ate our approach on three datasets which have a large num-
ber of videos. The new approach outperforms the compared
baselines, and achieves encouraging question answering re-
sults.
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