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A B S T R A C T

Wind power forecasting has supported operational decision-making for power system and electricity markets
for 30 years. Efforts of improving the accuracy and/or certainty of deterministic or probabilistic wind power
forecasts are continuously exerted by academics and industries. Forecast errors and associated uncertainties
propagating through the whole forecasting chain, from weather provider to end user, cannot be eliminated
completely. Therefore, understanding the uncertainty sources and how these uncertainties propagate through-
out the modelling chain is significant to implement more rational and targeted uncertainty mitigation strategies
and standardise the forecast and uncertainty validation. This paper presents a qualitative review on wind power
forecasting uncertainty. First, the definition of uncertainty sources throughout the forecast modelling chain acts
as a guiding line for checking and evaluating the uncertainty of a wind power forecast system/model. For each
of the types of uncertainty sources, uncertainty mitigation strategies are provided, starting from the planning
phase of wind farms, the establishment of a forecasting system through the operational phase and market
phase. Our review finalises with a discussion on uncertainty validation with an example on ramp forecast
validation. Highlights are a qualitative review and discussion including: (1) forecasting uncertainty exists and
propagates everywhere throughout the entire modelling chain, from the planning phase to the market phase;
(2) the mitigation efforts should be exerted in every modelling step; (3) standardised uncertainty validation
practice, including why global data samples are required for forecasters to improve model performance and
for forecast users to select and evaluate forecast model outputs.
. Introduction

High penetration of wind power has been recognised globally as
ne of the most important features of current and future sustainable
ower systems. The natural randomness and variability of the wind
tself can aggravate negative impacts of wind power on power system
peration and market trading, which strengthens the significance of
orecasting technology. Wind power forecasting (WPF) started more
han three decades ago [1], with the first operational forecasting tools
rriving at system operation level some 10 years later at the Danish
ransmission system operators ELSAM and Elkraft System [2]. Since
hen, researchers have been making continuous efforts to improve the
orecasting accuracy and reliability.

✩ ‘This paper was coordinated under the auspices of IEA Wind Task 36 ‘Forecasting for Wind Energy’. Corinna Mörlen, Tuhfe Göçmen, Mark Kelly and Gregor
iebel were funded by the Danish EUDP project ‘‘IEA Wind Task 36 Phase II Danish Consortium’’, Grant Number 64018-0515. Jie Yan was funded by the ’’Young
lite Scientists Sponsorship Program by CAST’’, Grant Number 2019QNRC001.
∗ Corresponding author.

E-mail address: grgi@dtu.dk (G. Giebel).
URL: http://vindenergi.dtu.dk (G. Giebel).

It is impossible to achieve perfect predictions of wind power at
any given time or location, due to many reasons; for instance, one
may consider the endogenetic randomness of weather systems, and
varying wind turbine performance. Many researchers have established
that chaotic atmospheric motions have temporal and spatial scales that
typically span more than six orders of magnitude [3–5]. Along with the
complex wind field, wind turbine performance creates nonlinear and
time-varying uncertainties in wind power forecasting. To improve the
value of forecasts and their usage, we qualitatively review in this work
three questions, when considering the inherent uncertainty in each
forecast: why, when, and to what extent the forecasting uncertainty
will happen. There is plenty of literature in this area [6], which can be
grouped into the following three categories.
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Nomenclature

AEP Annual Energy Production
AGCRN Adaptive Graph Convolutional Recurrent

Network
AI Artificial Intelligence
ARIMA Auto-regressive Integrated Moving Average
ARMA Auto-regressive Moving Average
BRP Balance Responsible Party
Catboost Categorical Boosting
CFD Computational Fluid Dynamics
COSMO LEPS The Limited-area Ensemble Prediction Sys-

tem developed in the framework of the
Consortium for Small-scale Modelling

DBSCAN Density-Based Spatial Clustering of Appli-
cations with Noise

DCRNN Diffusion Convolutional Recurrent Neural
Network

DWD The German Weather Service
EC European Commission
ECMWF European Centre for Medium-Range

Weather Forecasts
ENTSO-E European Network of Transmission System

Operators for Electricity
EPEX European Power Exchange
EPS Ensemble Prediction System
ERCOT Electric Reliability Council of Texas
EU European Union
FLOPs Floating Point Operations
FN False Negatives
FP False Positives
GAN Generative Adversarial Network
GBM Gradient Boosting Machine
GCN Graph Convolution Network
GMAN Graph Multi-Attention Network
GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
GUI Graphical User Interface
GUM Guide to the expression of uncertainty in

measurement
HSSD High-speed Shutdown
IEA International Energy Agency
IEE (Fraunhofer) Institute for Energy

Economics and Energy System Technology
IWES (Fraunhofer) Institute for Wind Energy

Systems
KNN K- Nearest Neighbor
LightGBM Light Gradient Boosting Machine
LSTM Long Short Term Memory
MAE Mean Absolute Error
MEASNET Measuring Network of Wind Energy Insti-

tutes

• Qualitative Uncertainty Source Identification: In the guide-
line of the World Meteorological Organization on communicating
uncertainty in forecasts [7], the main sources of uncertainty in
weather forecasts are identified as atmospheric unpredictability,
(observational) data interpretation, the process of composing a
forecast, and forecast interpretation. Other researchers identified
the uncertainty sources in numerical weather prediction (NWP)
2

E

ML Machine Learning
MPPT Maximum Power Point Tracking
MSEPS Multi-Scheme Ensemble Prediction System
NCEP National Centers for Environmental Predic-

tion
NOAA National Oceanic and Atmospheric Admin-

istration
NWP Numerical Weather Prediction
RANS Reynolds Averaged Navier–Stokes
RMSE Root Mean Square Error
RNNs Recurrent Neural Networks
SCADA Supervisory Control and Data Acquisition
StDev Standard Deviation
STGCN Spatial–Temporal Graph Convolutional Net-

work
TN True Negatives
TP True Positives
TSO Transmission System Operator
UQ Uncertainty Quantification
WFIP Wind Forecasting Improvement Project
WPF Wind Power Forecasting
WRA Wind Resource Assessment
Xgboost eXtreme Gradient Boosting

model parameterisations [8], power curves, and prediction al-
gorithms [9–11]. Uncertainty sources have also been found in
typical models, case studies and other reviews [6,12,13].

• Qualitative Uncertainty Description: In order to take the un-
certainty of the weather prediction into account and to be able to
define periods where forecasts have high or low predictability [8,
14], probabilistic forecasting and the use of ensemble forecasting
arose in the early 2000’s [2,15,16]. More than a decade later,
complex modelling uncertainty was addressed by the validation
& verification framework of [17], though it is not (yet) widely
applied by WPF end-users. Since 2016, the International En-
ergy Agency (IEA) Wind Task 361 on Forecasting has invited
researchers worldwide to discuss and refine our understanding
on the state-of-the-art of error and uncertainty quantification
in NWP and wind power forecasting models [18]. We analyse
the extended existing literature on probabilistic forecasting that
determine, estimate, represent and communicate the uncertainty
in weather and wind power forecasts, decision-making, validation
& verification [8,10,17,19–22].

• Uncertainty Use Cases: Many end users today (in the 2020’s)
are still discussing how to employ probabilistic forecast types in
their daily decision processes, scheduling, trading, balancing, etc.
Even though there are quite a number of use cases of how to
employ probabilistic forecasts in the decision making processes
in power system management and trading (see e.g. [20,22–24]), a
common question posed is how to approach uncertainty in binary
or discrete decision processes [21,25–27].

These categories have underlined the significance of forecast uncer-
tainty and its facets for forecasters and decision-makers alike. Conse-
quently, they have been increasing their efforts in uncertainty quan-
tification (UQ) for the planning of wind farms (e.g. [28]), wind farm

1 Task 36 (2016–2021) initiatives were in 2022 transferred into a broader
erspective and relaunched as Task 51 ‘‘Forecasting for the Weather Driven
nergy System’’
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performance (e.g. [29,30]) and its application to operational fore-
casting and marketing practices [31–35]). However, awareness and
understanding of probabilistic forecasts – and application of UQ to such
– are not (yet) widespread enough to support uncertainty mitigation
and improved use of uncertainty in WPF by many end-users (see
e.g. [36,37]). To shed light into this research gap, one aim of this
review is to contribute with a novel and systematic logic to summarise
existing work relating to WPF uncertainty. It analyses the quality of
knowledge regarding the uncertainties involved, and representation of
the latter in the WPF modelling chain throughout the existing literature.

This review article is designed to be used as a kind of ‘‘uncer-
tainty dictionary’’ for the community, including clear definitions and
comprehensive description of all uncertainty sources relevant to wind
power forecasting (WPF). Our primary objective is to guide forecast
users and wind farm developers through the typical model chain: to
point out where and how uncertainty arises and propagates, in order
to increase their awareness of potential issues and pitfalls — before
they examine and improve their WPF models and forecasting systems.
Fig. 1 shows the uncertainty chain through the three main phases of
a wind power project: the planning phase, the operational phase, and
the marketing phase. A second objective of this review is to describe
the mitigation of uncertainty in those three phases, to help overcome
the perception of WPF uncertainty sources as potential barriers for the
integration of uncertainty forecasts into energy-related decision-making
problems [20,24].

The logic behind our objectives led to this review being organised
as follows: Section 2 reviews the sources of uncertainty in wind power
forecasting induced from the data, model, wind-to-power conversion,
etc. From Sections 3 to 5, the authors review the uncertainty evaluation
and mitigation strategies in the planning, operation, and market phases
corresponding to each uncertainty source mentioned in Section 2.
Section 6 describes advanced algorithms and methods to mitigate un-
certainty in WPF. Section 7 discusses the uncertainty in validating
forecast methods and models. Section 8 summarises our review and
look into current trends and future work associated with uncertainty
aspects of wind power forecasting.

2. Uncertainty sources in wind power forecasting

The concept of uncertainty can be defined as not knowing the exact
value of a quantity, and can be divided into two different parts.

The first is aleatoric uncertainty, which encompasses random vari-
bility due to the stochastic behaviour of a system (e.g., the atmo-
phere); it leads to limited ability in repeating identical conditions, such
s measuring or modelling wind speed under some presumed ‘state’ of
he atmosphere.

The second type of uncertainty is epistemic, which is related to a lack
f knowledge; this can involve measurement error, model deficiencies,
imited number of observations (statistical sampling), and representa-
iveness of models or observations. It is worth noting, as Kiureghian

Ditlevsen [38] wrote, that ‘‘the nature of uncertainties and how one
eals with them depends on the context and application’’.

In the following subsection we describe the sources of uncertainty
n the modelling chain, as well as the input/output data to/from the
odels, and the methods that describe the model uncertainties; this is

hown in Fig. 2. It can be said that these imply an initial focus upon
pistemic uncertainties.

.1. Data quality and availability

Data is the foundation of wind power forecasting, particularly be-
ause WPF often employs data-driven models. Several factors related
o the data introduce uncertainties into WPF:

• data variety
• data size and representativeness
3

• data contamination
• measurement/instrumental uncertainty

In general, data from a larger number of applicable categories, more
sufficient and representative data samples, and less data contamination
are likely to lead to smaller forecast uncertainty. In practice, a certain
level of data quality and amount of data types and sample sizes are
needed, to keep forecast uncertainty at an acceptable level — for both
forecast model training and actual operational forecasting.

2.1.1. Data variety
The basic data requirement for wind power forecasting and train-

ing/tuning is wind speed and direction data at a wind farm along with
power data, typically from a wind turbine’s SCADA system. Besides
wind, other weather data from NWP models as well as meteorological
measurements, produced in the planning phase of a wind farm, are
often available for initial forecast model setup and/or training. De-
pendent on the wind power forecasting methodology more or less of
the collected and measured types of data might be required. Forecast
uncertainty can be reduced as well as enhanced by the amount of
available input data. Generally, the higher the number of degrees of
freedom in a model, the higher the uncertainty of its predictions.
Another aspect of the data variety with respect to uncertainty is the
quality of the data. With low-quality data, the uncertainty may not be
reduced, even if using the most sophisticated algorithms.

2.1.2. Size & representativeness of training sample
The data used for WPF model training should ideally cover the

weather types, wind scenarios, time stamps and wind turbine opera-
tional conditions for a given location, to ensure generalisation and use
of data-driven modelling. One-year data sets are generally regarded as a
safe size for WPF training samples. However, fewer samples can provide
adequate performance under certain scenarios; e.g. newly-built wind
farms or locations with complex weather systems, if a refined technical
route (see subsection Refined Route 2.2.2) is applied.

To train WPF models, historical performance measurements of a
wind park and associated weather forecasts are needed. These should
ideally be available over a period of at least one year to cover all
seasons. If shorter training periods are used, strong wind periods might
not be covered, and the model will not be able to reproduce the upper
part of the turbine power curves. It is also possible that individual
wind directions can be underrepresented, so that the model cannot
sufficiently capture the wake effects there. Weather models are contin-
uously being developed. With longer wind to power training periods,
the weather data may come from several generations of a numerical
weather prediction model and can introduce additional uncertainties
into the power conversion training. The effect on the power training is
hence difficult to estimate, as it depends on the extent of the changes
made in the NWP model over the training period.

2.1.3. Data contamination
Good training samples should be able to represent the actual wind

conditions and wind-to-power conversion process for a wind turbine at
a given site. This can be identified using a scatter-plot of the actual
(measured) wind turbine power curve, as shown by the dotted circles
in Fig. 3. Data contamination typically arises in situations like:

• gaps and errors of wind observations and power measurements,
due to loss of data, communication failure, offset or drifting of
instruments, etc. (see Fig. 3);

• the data record is complete but does not reflect the actual and
representative wind energy conversion process, due to e.g. wind
turbine fault and maintenance or curtailment.

In order to ensure and improve the data quality, it is necessary
to ‘clean’ the data samples before model training. We note that the
data cleaning process will inevitably give data that deviates from the
real measurements, to varying degrees; excessive cleaning increases the
uncertainty of the forecast (thus the cleaning or selection process can

be seen as an optimisation problem).
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Fig. 1. Overview of the Uncertainty Chain through the 3 phases of a wind project.
2.1.4. Measurement/instrumental uncertainty
Some emphasis may be put on measurement uncertainty, because

it: [a] is propagated through the modelling that is involved in the
other uncertainty (sub-)components; [b] is involved in uncertainty
mitigation; and [c] it also has impact on all phases.2

The criteria, pre-defined acceptance range and type of test re-
quired to be conducted in the planning phase of a wind project for

2 The data contamination described in the previous subsection (Sec-
tion 2.1.3) could also be considered uncertainty in measurement of the
power, though it is typically considered separately, because the data
selection/cleaning process extends beyond a simple measurement.
4

both wind and power measurements is defined in the IEC 61400-12-
1 (2017) and 61400-12-2 standards [39]. The calibration for such
industrial wind instrumentation is further detailed in an Annex F of
the 61400-12-1 (‘‘Cup anemometer calibration procedure’’). Alterna-
tively, the calibration rules of cup anemometers used in wind en-
ergy projects can be found in the so-called ‘Round Robin rules’ rec-
ommended by the international Measuring Network of Wind Energy
Institutes (MEASNET)3.

3 Earlier guidelines on instrument calibration and measurement campaigns
for the wind industry can be found in [e.g. 40,41]
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Fig. 2. Overview of the Uncertainty Propagation through the WPF modelling chain.
Fig. 3. Data quality problem 2: abnormal power data.
The associated measurement uncertainty evaluation principles are
described in detail in an Annex D of the IEC 61400-12-1, which also
refers to the so-called GUM.

The ‘GUM’, which is a commonly used abbreviation for the ISO
Guide to the expression of Uncertainty in Measurements [42,43] and
its supplement [44]. It defines that the value of a measurand as only
complete, when it is accompanied by a statement of the uncertainty
of the measurand and otherwise must be considered an approximation
or estimate of that measurand. Another way of stating this defini-
tion (3.1.2 of the GUM), is that any measurement has an uncertainty
associated with it.

Following the GUM, there are two types of measurement uncer-
tainty within any standardised measurements:

• ‘‘type A’’ random errors, i.e. the measuring results of the same
quantity with two different instruments are never the same.

• ‘‘type B’’ systematic errors or bias, i.e. offsets in the instruments.

These roughly correspond to the more general concepts of aleatoric
and epistemic uncertainties, but are not exactly congruent with them.
The ‘GUM’ [43] is less general, although intends to be applicable to a
broad range of measurements such as:

• quality control and quality assurance;
5

• law and regulation enforcement and compliance;
• calibrating standards, instruments and performing of tests allow-

ing tractability of national standards;
• development, maintenance, and comparison of physical reference

standards and materials.

In summary, all of these standards or guidelines (IEC 61400-12,
MEASNET, ‘GUM’ of JCGM) act to hold measurements with sufficient
quality to be input for forecasting tools; this facilitates production of
high quality forecasts.

2.2. Modelling approaches and technical routes for WPF

Overall, the forecasting techniques for wind power can be divided
into deterministic and probabilistic approaches. The latter includes the
uncertainty analysis as well as associated risk indices and comprehen-
sive reviews can be found in [6,10,19,20] for wind power forecasting.

For both deterministic and probabilistic forecasting, the methodol-
ogy can further be divided into three categories: physical, statistical and
hybrid. It should be noted that increasingly popular machine learning
applications for wind power forecasting (also referred as intelligent
methods) are typically considered as an extension of the statistical
methods e.g. [45]. However, they can also be considered in the hybrid
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category, depending on the application [46]. Here in the first part of
this section, the main characteristics of the forecasting approaches are
described and the corresponding uncertainty factors are listed.

The application of these modelling approaches in terms of the target
variable may vary. The technical routes of the WPF in terms of the
temporal and spatial scales are grouped in the second part of this
section and their potential implications on the associated uncertainties
are discussed.

2.2.1. Modelling approaches – statistical & physical & hybrid
Statistical methods generally refer to the application of mathemat-

ical statistics, probability theory, and stochastic processes to forecasting
problems. They typically use a large amount of historical data for model
training or error fitting, establish a mapping relationship between input
variables and output variables, and predict the future wind power value
(or interval of such) based on the trained model. Established tech-
niques include exponential smoothing, auto-regressive moving average
(ARMA) models [47], and auto-regressive integrated moving average
(ARIMA) models [48,49]. These can be applied to both deterministic
and probabilistic forecasting, as seen in e.g. [50,51]. One of the first
operationally applied methods for wind to power conversion was arti-
ficial neural networks (ANN) [52]. With the increased use of big data
analytics, statistical methods for wind power forecasting today also
include artificial intelligence techniques such as machine learning (ML)
approaches; common methodologies include support-vector machines,
regression tree models, random forest models, gradient boosting, and
Gaussian processes. Further ML approaches follow from deep learning
and its sub-categories, i.e. feed-forward, convolutional and recurrent
neural networks, long-short-term memory and gated recurrent unit. If
the historical samples are sufficient in volume and variety, most statis-
tical methods can obtain usable prediction accuracy and generalisation
ability. Therefore, statistical methods are currently the most widely
used forecasting methods, and are a research hotspot in the field of
wind power forecasting.

Machine Learning models try to reproduce the data set they have
been trained on, as accurately as possible, i.e. to reproduce every detail
later in the forecast. If this gets out of hand – the ML model following
every fine detail of only the training data set – then the model is
considered to be over-trained. To prevent the model from adapting all
the noise from the input data and any artefacts, restrictions are placed
on it so that it generalises better. This results in a balancing act between
generalisation and over-training. On the other hand, an overly gener-
alised model would have the consequence that the output signal would
be strongly damped. This trade-off leads to the following uncertainties
in the forecast, depending on whether the model is over-generalised or
over-trained:

• The generalisation tends to lead to the model searching for its
optimal curve in the noisy data. This leads to an underestimation
of the forecast, which can result in the model failing to forecast
the nominal power of the wind farm.

• The over-training can result in a model trying to reproduce
learned artefacts in the later forecast mode, e.g. a curtailment at a
specific wind speed/wind direction combination or storm cut-offs
that was generated by a single gust.

The balance between over- and under-training leads to the so-
called ‘bias–variance dilemma’ [53]: it is usually impossible to fulfil a
minimisation of both bias and variance without losing predictive skill.

The (mean-square) model error can be decomposed into three com-
ponents: bias, variance and a noise term. Bias here means the deviation
of the real value from the best possible model (i.e. with training data
that represent the whole complexity of the problem) and variance de-
notes deviation of training from the best possible model. With a simple
model, the variance can be kept low because the trained model tends
to be closer to the best possible. On the other hand, the error compared
to the measured values increases, i.e. the bias. If a more complex
6

Fig. 4. Generic depiction of model error as a function of the model complexity. The
decomposition of the mean-squared error (MSE) in terms of squared bias, variance, and
a residual noise term can be seen.

model is now assumed, the error of the optimal model compared to
reality is reduced. On the other hand, the deviation of the individual
training from the best possible model increases. Through these two
dependencies, the total error including noise describes a parabola as a
function of model complexity (Fig. 4). The goal is to adjust the model
complexity in an optimal way: the model error of the training compared
to the best possible model should be balanced with the error of the best
possible training compared to the measured values (variance versus
bias). Then the minimum of the parabola in Fig. 4 is reached, and the
error of the prediction (in terms of model complexity) is minimised.

The uncertainties of statistical models come primarily from the
data/training samples, training performance (as a trade-off between
generalisation and under-training), and the algorithm matching with
the data type, data volume and data quality.

Physical methods typically account for effects of the surface that
are on a ‘‘micro-scale’’, such as terrain differences, surface roughness,
and increasingly other factors such as atmospheric stability, to describe
the wind field in and around a wind farm. Generally, NWP data are used
as boundary conditions to calculate the wind speed and direction at the
hub height of each wind turbine using Computational Fluid Dynamics
(CFD) simulations as the physical method (flow model). Accordingly,
based on the theoretical or fitted power curve of the wind turbine,
the predicted wind speed or wind speed error can be converted into
a single-point predicted wind power or power interval. The advantage
of a physical model is that it does not require historical data and is
suitable for building forecasting model(s) of newly built wind farms.
However, properly using advanced physical CFD models (typically
RANS4) can have a high technical threshold and require substantial
computational resources, particularly in complex terrain. In order to
improve the computational efficiency and accuracy of a physical model
with WPF, Li et al. [54] proposed a pre-calculation strategy for the
physical forecasting model.

4 The term CFD is commonly used in some sectors and regions to mean
Reynolds-Averaged Navier–Stokes modelling. RANS solves the mean equations
of motion, and is often used to model mean flow over complex terrain. CFD
also includes large-eddy simulation (LES), which is generally too demanding
of computational resources to use outside of research. Technically, CFD also
includes simpler models based on reduced flow equations (e.g. WAsP), but the
term is not typically applied to denote such.
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The uncertainties of a physical model arise from approximations
made (in the NWP and flow models), their limited resolution of orog-
raphy and flow, and time stepping. Much of this can be described
as model representativeness. A microscale flow (e.g. CFD) simulation
process can improve forecasts, but also has uncertainties, including its
turbulence parameterisation and associated parameter choices, resolu-
tion dependence, limited or nonexistent treatment of buoyancy, and
domain-size limitations.

Hybrid methods are a combination of physical and statistical
method. Every wind power forecasting model has errors — i.e. un-
certainty in its results, and in some cases, even large biases cannot
be avoided. The essential idea of the hybrid forecasting method is
to integrate the forecasting results from a variety of algorithms or
technical routes (multiple forecasting models), so that large deviations
from the target observation due to a single forecasting model can
be reduced, along with the overall uncertainty. In other words the
predictions from various forecast models are combined, to give better
performance on average than any single model would have in terms
of uncorrelated error of the target observations. Uncertainty in hybrid
models is generated mainly from the choice of sub-models and model
weights. A good model portfolio can take advantage of different sub-
models; however, poor design may also exacerbate the shortcomings of
sub-models.

2.2.2. Technical routes: Decentralised, centralised, & refined
In this subsection we discuss the technical routes of building a

WPF model, along with how the associated uncertainties are involved,
and can even be exacerbated. Three main routes will be defined and
discussed: decentralised, centralised and refined methods. Note that the
term decentralised/centralised technical routes is to be understood as
an overall design difference when providing independent WPFs and the
data sharing aspects of it. This could be for individual wind farms, or for
a combined forecast model for a region, control zone or country-wide.

A decentralised route predicts the aggregated power output of a wind
farm by only using the operational and meteorological data from the
wind farm itself. It can also be simply interpreted as different forecast
providers independently establish a WPF model, for each wind farm.
The advantage of this technical route is that data can be obtained with-
out considering data sharing issues around other wind farms or weather
stations. The model scales will not be very large and therefore easier
to train for, especially in terms of computational resources. Further,
the optimisation goals in the model construction process are clear, that
is, to improve the power forecasting accuracy of the target wind farm.
However, its disadvantage is that the independent modelling process
of any single wind farm ignores the meteorological and spatio-temporal
correlations between wind farms, which limits the improvement of fore-
cast accuracy. Moreover, delays in model upgrade and maintenance of
a WPF system installed in a relatively remote wind farm will inevitably
appear, because of the long journey for the predictor/prediction users
to the site in case of instrumentation failures. This can potentially
induce further decrease in forecast accuracy.

Although the overall uncertainties tend to be higher within the
decentralised route, the sources of uncertainty are typically easier
to identify, since the coupling (hence implicit combination of the
uncertainties) within the modelling chain are limited.

The centralised route refers to establishing a combined power fore-
casting model for all wind farms in a region or control zone, which
can mean that in a given region there is only one forecast provider.
Considerations usually include a spatio-temporal correlation of weather
information at multiple locations in the region/control zone, where
wind speed and wind direction at different geographic locations will
be affected by the weather conditions in the upstream neighbouring
locations, and will continue to affect the weather conditions in the
downstream geographic locations. The advantages of a centralised
forecasting route are multiple, as explained below.
7
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• By designing a ‘multi-to-multi’ mapping network, which is able
to reflect weather-related correlations, the forecasting accuracy
of every wind farm in the target region can be improved.

• Through data sharing, more weather and power data in the
area can be utilised, which increases the scales and dimension
(hence generics) of the training data set. This is more suitable for
exploiting the advantages of statistical methods in particular to
capture the complex and internal relations of large-scale data.

• WPF systems with multiple wind farms will be incorporated into
one integrated system, eliminating the need for wind farms to be
maintained individually and facilitating system maintenance and
management. In addition, this kind of centralised management
mode helps wind farm clusters to participate in market bidding as
large power generation assets, and is especially suitable for wind
farm clusters or large-scale wind power bases.

Since the centralised route for WPF includes combination of several
correlated atmospheric and operational parameters, the propagated
uncertainties throughout the model chain are highly affected by their
interdependence. In addition to a higher level of information consid-
ered, frequently observed negative covariances5 reduces the overall
ncertainties of the forecasting system. However, characterising the
ources of the resulting uncertainties is also typically more challenging.

The goal of a refined route is to classify specific weather scenarios or
ind conditions, or to classify the wind turbines into groups according

o their spatial distribution, and then establish corresponding repre-
entative models towards every scenario and group. In this way, the
orecasting accuracy of each scenario and each group can be improved
nd the uncertainty reduced. The rationale behind this refined route is
hat the two routes mentioned above aim mostly towards establishing
model with sufficient generalisation ability, which can adapt to any

eason and wind condition by using collected data samples that cover
any weather scenarios. However, for a single forecasting model to

ontain complex nonlinear relationships under different scenarios, is
sually difficult to obtain. I.e., obtaining a universal and accurate WPF
odel, for wind farms with various weather types or complex wind

onditions, is quite challenging. Limited by the representativeness of
he training samples, the forecasting results of a single model will be
evelled out among various weather scenarios, that is, each scenario
annot achieve the corresponding optimal model design as well as the
ptimal forecasting result.

.3. Algorithm and model setting

.3.1. Model complexity and parameters
Algorithms used in the early age of wind power forecasting, e.g. the

ime series method [55] and Kalman filter method [56], are relatively
imple in terms of modelling; they do not rely on numerical weather
rediction, but the forecasting accuracy decreases rapidly with in-
reased time horizon [57]. In order to improve the prediction accuracy
nd extend the usable prediction time horizon, wind power forecasting
lgorithms are constantly updated, using regression algorithms with
tronger learning capabilities, or optimisation algorithms to optimise
odel parameters. There are two types of commonly used algorithms:
eural network (e.g. back propagation neural network, radial basis
unction neural network, dynamic neural network [58]) and kernel
earning (e.g. support vector machine [59,60], relevance vector ma-
hine [61], extreme learning machine [62], or Gaussian process [63]).
he model complexity and required data scale of the above algorithms
re relatively small, so they are widely termed as ‘shallow models.’
hen the training samples involve multi-dimensional large-scale data,

5 For example, more energetic flow at an upstream wind farm is likely to
ause more prominent cluster wakes for downstream wind farms, inducing
ower production at the waked wind farms.
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complex weather, and low-correlation data, the prediction uncertainty
using such algorithms can be large. Therefore, the shallow model is
more suitable for the refined technical route mentioned above.

In order to supplement the deficiencies of shallow models, one
possibility is to extract data features through manual experience or
feature conversion methods (before establishing shallow wind power
forecasting models), and then construct a nonlinear mapping rela-
tionship between input features and output (wind power). The other
possibility is to use a deep learning (DL) algorithm, which is an ex-
tension of the shallow model. Deep learning uses a complex and deep
network design, which enables it to have strong nonlinear mapping
capabilities and better generalisation performance [64]. Due to the
complexity of DL models, they can better fit multi-dimensional and
large-scale training sample data than shallow models, especially under
complex scenarios and/or centralised technical routes. However, it is
also more difficult to adjust the parameters of a DL model. Therefore,
the model training process is an important source of uncertainty from
deep learning prediction.

2.3.2. Model inputs
Forecasts at different time scales might use different forecast inputs.

Moreover, these input parameters will introduce different degrees or
different forms of errors and uncertainties, in different ways.

Minute/hour-ahead forecasting.

1. Data for Persistence Forecasting.
The simplest method to deal with minute- or hour-ahead fore-
casting is to use a persistence forecast, where the last measured
value is propagated into the next forecast time step. Persistence
forecasting contains a twofold uncertainty that is difficult to
quantify, due to the fact that (1) the forecast is based on a time-
lagged approximation of a past state and (2) the quality of the
measurement defines this state. Nevertheless, it is a method that
provides a reasonable estimate of the future, with time resolu-
tion of a few minutes to a few hours in steady-state weather
situations. To improve upon persistence on a minute scale is a
non-trivial task.

2. Time-series Data.
The minute/hour-ahead wind power forecasting is often based
on the time series characteristics and inertia of the air (advec-
tion) [65]. Time series data of wind speed or wind power are
generally used as model inputs. The uncertainty of model input
is in this case reflected in two aspects:

• Uncertainty of wind resource
Due to the chaotic and stochastic nature of the atmospheric
system, it is difficult to accurately predict the future wind
speed, even in a minute/seconds interval. With exten-
sion of the forecast horizon, the forecasting uncertainty
increases. Meanwhile, the fluctuation amplitudes – and
more generally distributions – of wind resources vary over
seasons, time of day, and regions, so that the forecasting
uncertainty is different.

• Dropout and length of the time-series model inputs
Based on information theory, data gaps and anomalies
lead to the reduction of time-series information, which
leads to the increase of information entropy — and cor-
respondingly, the uncertainty. The learning essence of a
time-series-based model is to extract the continuity of time-
series data. Abnormal and missing data will pollute and
destroy the time-series relationship among the model in-
puts and learning targets, which would greatly increase the
forecasting uncertainty. Moreover, selection of the length
of the time-series data of the model input and output will
also lead to different forecasting uncertainty.
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3. Data assimilation with point measurements and NWP input.
In [20,65] it has been reviewed how classical data assimila-
tion in NWP can be described as assimilation algorithms that
adopt weather or power forecasts with measurements in time
and space for individual sites in a region [66,67] (see also
Section 4.2.1). Various authors [14,21,65] have shown how
an inverted Ensemble-Kalman Filter can make use of power or
power-related measurements and NWP model parameters, along
with the uncertainty of ensemble input data, to propagate point
measurements in time and space. In this case, the uncertainty
distribution of the ensemble is used together with the NWP
forecast, avoiding computationally expensive feedback into the
NWP, to define the future state.

Day-ahead forecasting – NWP. Since the usable forecast horizon of
the persistence method and time-series-based methods is very limited,
NWP data is indispensable for the day-ahead time scale in wind power
forecasting. Due to the power-law relation between wind speed and
power, the NWP error has part in forecasting uncertainty of day-ahead
wind power. Within our WPF context, uncertainty in NWP can be
manifested in two main categories, as described below.

1. Representation of wind speed fluctuations: Time series of
wind speed measurements appear much more volatile and less
smooth than those from NWP. The NWP wind speed sequence al-
ways deviates from the actual wind speed sequence at any given
time, and demonstrates unclear regularity for upward deviation
or downward deviation as well as their deviation amplitude and
phase errors, as shown in Fig. 5.
In general, NWP models calculate internally with a higher tem-
poral resolution (down to 20s) than what is provided to the user
after post-processing the raw data. Nevertheless, the fluctuation
of the parameters is damped by physics to keep the model stable.
The user thus only gets an output for prediction steps of typically
one to three hours. These are, strictly speaking, snapshots from
the forecast calculation and not mean values. Often these are
interpolated to 15-minute averages (which probably fits quite
well due to the damping), to compare with power measure-
ments. Interpretations of the associated time stamp (validity as
a start, end, or middle time) can lead to phase errors. Due to
low temporal resolution output, intra-hourly fluctuations can
often not be mapped and the start or end of ramps cannot be
determined exactly. On the other hand, higher temporal reso-
lution combined with better representation of the fluctuations
in the NWP forecast also generally leads to larger error, as
predictions of significant events are mostly out of phase. In a
verification this results in a so-called ‘‘double punishment’’ or
‘‘double penalty’’ [68,69] (see also Section 6.2.2 and Fig. 11). In
Fig. 6, wind roses from a NWP at multiple points in a Chinese
wind farm (10 km × 8 km) as well as the corresponding wind
measurements are shown to illustrate the differences between
NWP output and measurements.
The calibration of the wind forecast in the NWP model is tra-
ditionally done at 10 m height, where most of the synoptic
measurements are taken with met stations carrying anemometers
at this pre-defined height above ground. This is often done at
locations such as airports, which do not reflect the roughness of
the surrounding area. Only in recent years have meteorological
centres and institutes started to extract wind speeds at 100 m
heights, which correspond more to today’s hub heights; this
has been facilitated by remote sensing, with data from LiDAR,
SODAR, and satellites becoming available. NWP models are not
designed for a specific area of application and operate mostly in
pressure coordinates (levels), which are terrain-following levels
and change according to temperature, air density and pressure.
Thus any physical property at a fixed height needs to be cal-
culated with spatial interpolation. These vertical levels depend
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Fig. 5. Time series wind speed data from NWP and measurements.
Fig. 6. Wind direction rose map of NWP and measurements.
on many aspects, but are usually dependent on the forecast
length regarding the density of levels in the stratosphere and the
desired resolution in the troposphere. The longer the forecast
length, the larger the numbers in the stratosphere, and the
higher the resolution in the boundary layer, the higher the
number of levels in the troposphere. In most NWP models the
vertical levels have a relatively small spacing near the ground,
in order to model boundary layer processes well, with vertical
resolution decreasing away from the surface. The modelled wind
speed value is considered constant over a level or assumed to
be valid for the centre of the level, and must be interpolated
to wind turbine hub height. The fact that the rotor covers a
larger area, which can extend over at least two or three levels,
is often neglected. If the vertical profile of wind would always
follow a logarithmic or power-law then simple interpolation
would be possible, but this is generally not the case. Statistical
models can compensate for this disadvantage to a certain extent
by having two height levels as input to the model, where an
implicit weighting will be optimised in the training process.
Depending on the correction in the weather model, this might
9

lead to systematic overestimation or underestimation of wind
speeds at different heights than the calibrated heights, especially
in areas with complex orography.
In addition, a weather model always outputs only one (volume
average) value per grid cell and assumes a mean orography
below. From this perspective it is desirable that grid cells are
small, i.e. have a ‘high’ (fine) horizontal resolution. Enhanced
resolution also creates increased degrees of freedom in the nu-
merical equations, and hence increased uncertainty and risk of
‘‘double penalties’’ (see above and Section 6.2.2).

2. NWP Ensemble Forecasting Uncertainty. One of the difficul-
ties in quantifying the uncertainty of a weather forecast is the
lack of knowledge of the correct state of the atmosphere at any
point in time. Nowadays there are millions of measurements
taken and exchanged through a global telecommunication sys-
tem network [70], but the atmosphere has so many degrees of
freedom that even with today’s computer capacities, it is not
possible to describe the atmosphere on a global scale without
simplifying models. Due to the lack of knowledge about the
true state of the atmosphere at the outset of a forecast, there is
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an inherent uncertainty in the forward propagation of weather
development in NWP models. Other types of weather uncertainty
arise from the assumptions made to solve the partial differential
equations that govern the atmosphere, the so-called parameter-
isation schemes for (1) physical processes such as condensation,
vertical diffusion, solar radiation, heat exchange, (2) dynamical
processes such as the advection, and (3) climatic data such as
vegetation, hydrological properties and terrain effects.
NWP ensemble model systems play a crucial role in the under-
standing of the weather uncertainty, as they can be configured
to describe the uncertainty of a specific parameter over a specific
time horizon. Ensemble prediction systems (EPS) such as the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble system [71] or the National Centers for Environmen-
tal Prediction (NCEP) Ensemble [72] are designed to describe
uncertainty over forecast horizons of 3–6 days (‘medium’ range).
Meanwhile, multi-scheme ensemble methods such as the multi-
scheme ensemble prediction system (MSEPS) [8,14] or multi-
model ensemble methods such as the limited-area ensemble
prediction system COSMO LEPS (developed in the framework
of the Consortium for Small-scale Modelling [73,74]) charac-
terise and describe the uncertainty of physical and dynamical
processes over short- to medium range horizons (0–10 days).
One of the difficulties with multi-model ensemble methods is
that there is no well-defined uncertainty quantification from the
ensemble members; this is due to the collection of deterministic
models and their specific, often damping nature to perform with
standard meteorological parameters. Designing a multi-model
EPS is difficult and extremely expensive, as all models need to
be maintained [20].

2.4. Wind resource uncertainty

Uncertainty quantification in wind resource assessment (WRA) has
become important enough in the wind energy industry to merit its
own IEC standard: the emerging 61400-15-2.6 WRA can be thought
f as multi-year prediction, within the WPF context. Whether based
n pre-construction wind measurements or operational turbine data,
n practice wind resource uncertainty is generally decomposed into
bservational and model uncertainties: the measurement uncertainties
ropagate through a model chain. Further, as shown in Section 2.5,
he process of ‘converting’ wind into electric power also has its own
bservational and model components. Aspects of power production
ncertainty, particularly within a context ‘detangled’ from wind speed
ncertainty (i.e. treating power production modelling as simply propa-
ating wind speed uncertainty) is discussed more there. Beyond energy
roduction, yet more uncertainties are found later, connected with e.g.
rid behaviour and availability.

Pre-construction uncertainty is important primarily for project fi-
ancing, but also provides a basis for expected operational uncertainty,
s well as potential limits on forecast uncertainty. Operational-phase
ncertainty based on production data is usable for operation, valuation,
nd re-financing of existing farms, as well as for short-term forecasting.

As mentioned in Section 2.3.2, uncertainty of the wind resource –
he wind field itself – can be attributed to its stochastic nature. Due
specially to turbulence, which is modified by terrain, the chaotic
elocity field in the lower atmosphere includes fluctuations over a
arge range of length and time scales (typically spanning 5–6 orders of
agnitude or more, see e.g. Wyngaard, 2010 [5]) and varies randomly

n a very complex manner. The strength of wind speed variations
epends on the scales considered, and this is affected both by atmo-
pheric stability (buoyancy), local surfaces, and distance from surfaces.

6 The IEC 61400-15 was split in 2020 into two parts, with 61400-15-2
overing uncertainty and 61400-15-1 covering site assessment.
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NWP does not resolve turbulence, instead parameterising turbulence’s
mean effects on the mesoscale flow field and other prognostic variables
(e.g. temperature, humidity). Thus in WPF, the uncertainty in the
wind field can vary depending on the model resolution, as well as
the forecast window. Practical methods to account for the uncertainty
in the wind field, which include long-term (climatological) variation
for WRA (as indicated in the emerging IEC 64100-15-2) as well as
unresolved (small-scale) spatio-temporal variation in both WRA and
WPF, are also mentioned earlier in this section.

2.5. Wind-to-power uncertainty

Due to the strong variability of the wind field, the random nature
of turbine control systems, and non-linearity of power curves, the
process of converting wind to power is characterised by randomness,
non-linearity and boundedness [10]. One of the sources of uncertainty
associated with these nonlinear aspects is the continuous change in the
operating state of wind turbines. These are the result of both objective
and non-objective effects, and their influence is reflected in the broad
width of typical scatter-plots showing actual or measured power curves
(see examples in Fig. 3).

2.5.1. Rotor inertia and control offsets
With the influence of rotor inertia under non-stable wind fluctua-

tions, the same incoming wind speed may be converted into different
power outputs [75]. For an incoming wind speed 𝑉 , the power output
is assumed to be 𝑃 (𝑉 ), according to a static power curve. But when a

ind turbine encounters an upward ramp of wind speed, the generator
annot immediately respond but spins faster, though with some lag.
lthough the wind speed increases to 𝑉ramp+, the corresponding power

output of the wind turbine is less than 𝑃 (𝑉ramp+). Similarly, when the
incoming wind speed decreases rapidly enough to some 𝑉 , the power
output is greater than 𝑃 (𝑉 ). These differences in power can be taken as
the uncertainty caused by rotor inertia, which is related to the complex
and dynamic changes of the wind speed.

Wind turbines will inevitably have offsets or delays of actuator
response. Actual power output of wind turbines deviates from the
theoretical value to varying degrees, resulting in uncertainty in the rela-
tionship between wind and power output. Such uncertainties can be re-
duced by optimising control algorithms and upgrading communication
equipment.

2.5.2. Turbine availability and performance variation
The majority of the forecasting approaches rely on constant (or at

least consistent) data streams for training and validation of the WPF
algorithms. Additionally, both for the individual wind farm and the
cluster level, the predictions typically assume 100% turbine availabil-
ity, unconscious of the local operational status and control scenarios
applied. Potential sources of WPF uncertainty in terms of turbine avail-
ability and local (both temporally and spatially) operational conditions
are listed below.

• Wind farm (flow) control: when the turbine(s) are controlled
holistically within a wind farm (via e.g. down or up-regulation
based axial induction and yaw steering based wake redirection)
following several objectives (e.g. grid compliance, wake reduction
for power/revenue maximisation, structural load alleviation etc.).
As the forecast algorithms are typically tuned for power predic-
tion for normal (or greedy) operation, when wind farm control is
activated, it induces bias that can only be corrected by inform-
ing the forecaster of the operational set-points. The uncertainty,
however, remains critical especially for short-term forecasting
as the transient effects (i.e. during the trigger and release of
the set-points) involve complex aerodynamics and fluid–structure
interactions that is generally beyond the adequacy of the WPF
models.
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• Under or over-performance: unlike up- or down-regulation, under-
or over-performance of a turbine(s) refers to the significant
changes in the power production under maximum-power-point-
tracking (MPPT) control (i.e. normal operation). Performance
monitoring techniques that utilise normal behaviour modelling
(e.g. site-specific, expected power curve) are implemented to
capture this ‘unintentional’ deviance in active power, which
commonly occurs due to short- or long-term misalignment of the
turbine(s) to the incoming wind direction (‘yaw misalignment’)
or component failure which may be temporary or permanent.
Potential performance changes of the turbines have a direct
impact on the power forecasts at different temporal and spatial
resolutions, reducing forecast accuracy and quality, as well as
influencing the risk and decision-making processes involved in
market engagement.

• High-speed shutdown: as the operational status of the turbine(s)
affects the forecast quality, the forecast itself also has an impact
on the operation of the turbines. During high-wind periods, fore-
cast uncertainty becomes even more critical as the WPF systems
suggest shutdown above a certain threshold. The forecasts then
also inform re-connection of the wind farms, which significantly
impacts the grid system and its stability. Forecast uncertainty
has serious consequences, especially under high wind periods and
regions, which becomes increasingly important with higher wind
power penetration (grid share). Accordingly, more improved tech-
niques for reliable high wind speed forecasts are more relevant
than ever (see also Sections 6.3.1 and 6.3).

• Turbine (component) or communication failure: in addition to
the operational issues raised above, maintenance of wind power
plants also has a direct implication for WPF accuracy. Especially
with increasing wind assets offshore, the downtime for turbines
tends to span over longer periods as unscheduled maintenance
becomes more demanding in terms of cost and logistics. Com-
bined with larger size and capacity turbines, these off-times result
in significant WPF errors even for larger (temporal and spatial)
scale forecasts. Additionally, when the data communication fails,
real-time data might be unavailable as a model inputs to the
forecasting task. This leads the forecasting uncertainty to rise
sharply, especially for minute or hour ahead forecasting.

• Performance degradation (long term effect): detrimental changes
in the physical condition of the wind turbines occur over time,
with usage and external causes inducing a gradual decrease in
wind farm power production. Also referred as ‘ageing’, the au-
thors of [76] claim up to 1.6 ± 0.2% decrease in turbine power
output per year, later in their lifetime. This also highlights the
importance of the model updates over time for increased WPF
quality, with higher weight on the most recent turbine/wind farm
behaviour.

3. Uncertainty evaluation and mitigation in the planning phase

There are numerous contributions to uncertainty in the planning
phase, as listed in Section 2. This uncertainty is often key to project
financing, and can also impact wind farm design.

3.1. Evaluation of pre-construction uncertainties

The statistical basis of wind resource assessment (WRA) is also
part of the foundation of uncertainty in wind power forecasting. Pre-
construction calculations of the wind resource for proposed projects
typically include uncertainty estimates. For existing turbines in oper-
ation, uncertainty can also be estimated, using production data [e.g.
77]; this is handled in Section 4.

As mentioned in Section 2.4, wind power uncertainty is generally
comprised of observational and model components. In typical pre-
11

construction estimates many models, each treating different effects, are t
used together in order to predict long-term wind statistics. Each model
carries its own (sub-)component uncertainties: e.g., flow modelling
over terrain accounting for different mast and turbine positions [78,
79], vertical extrapolation [80,81], and long-term correction [e.g. 82]
contribute to statistical uncertainty in prediction of wind resources.
Each (sub-)model is either driven by observational data, or by the
output of another sub-model which is ultimately driven by observa-
tions. Thus, observational uncertainty is propagated through the model
‘chain’ used for WRA. For pre-construction WRA there tends to be a
larger number of processes to account for and models needed, com-
pared to production-based assessment. Following the practical scheme
put forth in the IEC 61400-15-2 standard, the primary uncertainty
categories in pre-construction wind resource (energy yield) assessment
are

• measurement uncertainty;
• historical wind resource;
• project and evaluation period variability;
• horizontal extrapolation (flow modelling);
• vertical extrapolation (profiles and stability).

‘Historical wind resource’ includes uncertainties within the long-
term adjustment method used to compensate for pre-construction mea-
surements, which are usually limited to a small fraction of turbine
lifetime (∼1–2 years, compared to ∼20 years), and uncertainties in-
herent in the long-term reference data employed (typically from re-
analysis datasets and/or mesoscale models). The project/evaluation
period variability includes variation in uncertainty associated with
different expected operation horizons (e.g. 1 year vs. 10 or 20 years),
as well as impacts of climate change.

For predicting the wind resource, each sub-model (or model compo-
nent) itself also has an epistemic (systematic) uncertainty, which can be
interpreted as how well the sub-model represents reality; this is usually
contingent upon the values of the inputs to the sub-model (particu-
larly for simpler parameterisations), and often depends also on other
quantities describing the conditions under which the model is used
(which may or may not be included as inputs). Typically microscale
modelling is used for the flow-related aspects of pre-construction WRA
(horizontal and vertical extrapolation), and these each have associated
uncertainties, including propagated measurement uncertainty. As an
example, a simpler flow model may be more robust to uncertainty
in its input (measured wind statistics), but possess more epistemic
uncertainty due to its limited ability to represent flow over more
complex terrain; one input which may affect its uncertainty, but which
is sometimes not provided, is the Obukhov length or its distribution [a
metric of atmospheric stability, c.f. 80,83,84].

Combination of uncertainty components in WRA typically assumes
independence of the various components, leading to simple root-mean-
square addition. However, one may more generically combine uncer-
tainties as in the commonly-citepd Guide to Uncertainty in Measure-
ment (‘GUM’, including [42,43] with supplement [44]). Condensing the
latter for convenience one can write
√

√

√

√

∑

𝑖

[

𝜎2𝑖 +
∑

𝑗>𝑖
(𝜌𝑖𝑗𝜎𝑖𝜎𝑗 )

]

, (1)

where 𝜎𝑖 is the 𝑖th uncertainty component and 𝜌𝑖𝑗 is the correlation
between components 𝜎𝑖 and 𝜎𝑗 . In the event that multiple wind mea-
urements are used, or both production data and wind measurements
re employed, then a more complicated version of (1) arises. To be
ractical, in WRA engineers typically assign weights to each data source
linearly, as coefficients on each 𝜎2𝑖 in Eq. (1)) depending on how
uch the source affects the wind prediction (or energy), and ignore the

orrelations. e.g. for anemometers at multiple locations, weights can be
ssigned according to the fraction of predicted energy corresponding
o each measurement source. The latter example also hints at some of
he practical difficulty of separating the uncertainty in wind resource
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Fig. 7. Examples of measurement outliers and changes in functionality of an instrumentation and the possibility an ensemble forecast provides to detect such issues in an automatic
way.
assessment from uncertainty in energy yield assessment : the models for
power production prediction, or for its uncertainty, may be inseparable
from those for wind prediction. To be more concrete, a related aspect
is that the (uncertainty in) power production or power curve can itself
depend non-linearly on the (uncertainty in) the wind resource. This
becomes quite complicated in the case of interacting wakes, and the
uncertainties may be modelled in a linearised way in order to separate
wind and power production.

In addition to resource assessment and its associated uncertainties,
there is also uncertainty within site assessment – the evaluation of
conditions at a site in order to find an appropriate turbine class – in the
planning phase of a wind farm. The IEC 61400-1 standard outlines this,
requiring the following items associated with measurements: extreme
winds; vertical shear of the mean wind profile (𝑑𝑈∕𝑑𝑧 or shear expo-
nent 𝑑 ln𝑈∕𝑑 ln 𝑧); flow inclination angle; ambient turbulence intensity;
wind speed distribution; and wake-induced turbulence.

These are obtained by a combination of measurements and models,
having uncertainties associated with each; but such siting uncertainty
is beyond the scope of this article. However, it should be noted that
uncertainties in these quantities can also affect project financing or
approval, as they tend to determine the turbine class to be used and
the loads expected for a given turbine.

3.2. Pre-construction mitigation: Observational uncertainty reduction via
ensemble forecasts

One way to deal with uncertainty in measurement signals is to
use ensemble forecasts. A well-calibrated ensemble that resembles the
weather conditions can be used to reject outliers in the measurements.
This method is especially useful for outliers that are still within the
range of the measurement, but unrealistic.

The ensemble spread of a well-calibrated ensemble forecast can also
be used to detect whether an instrument has started to malfunction,
for example ‘drifting’ behaviour whereby an offset arises. Ideally a
measurement fluctuates around the ensemble-mean value. However,
if the measurement begins to fluctuate around a lower or higher
percentile of the ensemble forecasts, and persists without significant
weather changes, this could be due to a malfunctioning instrument.
The plots in Fig. 7 show examples of such outliers and changes in
functionality.
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3.3. Risk vs. uncertainty, and ‘‘bankable’’ resource data

Uncertainty should be distinguished from risk, which may be eval-
uated in conjunction with uncertainty estimates. In pre-construction
estimates, for the past decades it is not unusual to encounter WRA
reports which conflate risk and uncertainty; such conflation can arise
simply, as uncertainty assessments that are overestimated in an at-
tempt to practically account for perceived risk. As the wind industry
converges towards a standard practice(s) for uncertainty estimation in
WRA, objective reporting of uncertainty in resource calculations (and
forecasting) should also improve, including separation of quantified un-
certainties and specific project risks. To account for such, reporting has
been part of the development of the IEC 61400-15 standard. Common
reporting practice – as well as methodology – allows clearer (and more
usable) statistics, which are not polluted by subjective evaluations of
risk. Probabilistic forecasting – especially ensemble forecasting – may
therefore also enter the WRA area in the near future, as an objective
means to quantify the uncertainty and associated risk for projects from
a resource perspective under climate change. Monte Carlo methods
and use of multiple long-term reference data are currently employed
by a growing number of consultants and developers, as a step in the
direction of this kind of forecasting.

Another view comes from considering that historically wind project
financiers have calculated their own risk and/or uncertainty metrics
associated with any particular project. These are often different than
the uncertainty reported in WRA, and are used to determine e.g. the
cost of loans and project financing; they are also driven to some extent
by financial considerations, and (implicit) understanding of the biased
or semi-quantitative nature of uncertainty estimation within WRA. As
the wind industry matures and performs better and more standardised
uncertainty quantification in WRA, financial evaluations of risk and
uncertainty increasingly incorporate the uncertainties reported in pre-
construction project assessments by wind engineers and consultants,
but they cannot (yet) be assumed to be identical to such quoted WRA
uncertainties.

4. Uncertainty evaluation and mitigation methods in the opera-
tion phase

When a wind farm becomes operational, the available information
from the site increases. In addition to production data, this can poten-

tially include both temporal and spatial aspects of the wind resource.
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In this section we discuss the added value of such additional operational
data, relating to potential model improvements through uncertainty
mitigation, and challenges for improved data analytics.

In the operational phase of a wind farm we have to separate
between the functioning of the turbines (hardware), and integration
of the production into the electrical grid and market. The uncertainty
of measurements that drive and control the wind turbines are gen-
erally on a different time scale than that for the forecasting. Even
for high-resolution applications, forecasting uncertainties are typically
addressed at minute(s)-scale [65], while turbine control and its as-
sociated uncertainties are utilised over time intervals of seconds or
even milliseconds. However, with wind farm control studies and com-
mercial applications gaining momentum [85], the timescales of the
problem to be coupled with the turbine controllers are also increased
to several minutes, as the flow within the wind farm is manipu-
lated via the control handles at the turbine. Accordingly, here in this
section the interaction of the forecasting approaches and turbine oper-
ational/conditional status is discussed from the uncertainty assessment
perspective.

4.1. Increased information under operational conditions

4.1.1. Adding wind and turbine performance data
Many grid codes of system operators today require that wind farms

deliver meteorological data; projects greater than 5–10 MW in size are
usually required to submit such data, in addition to their power pro-
duction output. Aside from wind speed and direction, typical variables
include air density, pressure, and temperature. This data is collected
through the SCADA system of the wind farm and/or through direct
power line signals; it is commonly used for the short-term wind power
forecast process, as well as evaluation of power production in cases of
curtailment. In the forecasting process, the wind speed signal is the
most important of these variables, particularly for the prediction and
detection of high-speed shut down events.

Adding relevant (but not redundant) information can reduce the
difficulty of model learning, and reduce the uncertainty of forecasting.
This is also in line with the basic principle of information entropy.
Presently we identify primary types of additional information, which
are part of wind power forecasting (WPF) research:

• Wind and power measurements at more locations, and
spatial–temporal correlations.
Wind power forecasting often employs ‘mapping models’ for a
given reference location. Many researchers have confirmed that
the data at a single location is not necessarily representative of
regional weather conditions, and the power generation profiles
of wind turbines, and therefore limits the robustness of the fore-
casting model. The errors and uncertainties of minute or hour
scale forecasting can be reduced by considering the temporal–
spatial characteristics of wind resources or using the real-time
weather data from nearby wind farms/weather stations to correct
the forecasting results under sudden weather processes [20,86–
88]. Data that can help reduce the forecasting uncertainty might
include wind measurement and power data of multiple wind
turbines in the station or other adjacent wind farms, and NWP
data at multiple locations.

• NWP from multiple sources or Ensemble Prediction Sys-
tem (EPS).
Atmospheric motions exhibit complex and chaotic characteristics.
It is difficult for a single-source NWP to always make accurate
predictions in various weather conditions. NWP from different
sources, e.g. using different initial fields and/or different model
configurations, has different adaptability and accuracy under dif-
ferent weather conditions and at different times. Therefore, the
use of NWPs from multiple sources or a NWP ensemble prediction
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system (EPS) can reduce prediction uncertainty.
• Turbine condition and status information.
For planned maintenance or shutdown, forecast uncertainty can
be easily reduced by removing the predicted power of the wind
turbine that will be under planned maintenance. But for unex-
pected failures and shutdowns, condition monitoring and failure
warnings are beneficial for correcting forecasts in real-time and
reducing the uncertainty.

4.1.2. Using feature engineering to incorporate more features
Feature conversion and extraction. As is well known, wind speed
is the most relevant feature for wind power generation, and it is also
the inevitable input of the power prediction model. However, using
wind speed alone as a model input does not always obtain good pre-
diction results. Multi-dimensional meteorological inputs can effectively
improve the accuracy of wind power forecasting [89], by accounting
for other degrees of freedom in the modelled system, and thus keeping
uncertainties in the models under control.

Many WPF researchers have been working on feature conversion
and extraction. Useful features include statistics (e.g. minimum, maxi-
mum, mean, median, quantiles, logarithmic averages); category (e.g.
weather type); time index (e.g., hour of the day, day of the year);
multi-dimensional meteorological data (e.g. barometric pressure, tem-
perature, and stability metrics along with wind direction, time lagged
inputs of the NWP model). These can effectively improve the accu-
racy of power forecasting, as well as (pre-)processing input data. The
latter – which includes conversion and extraction – has been done
using polynomial constructions [90,91], frequency domain decomposi-
tion [92], dimensionality reduction via Principal Component Analysis
(PCA) [93], deep feature extraction (e.g. auto-encoders [94,95], or with
convolutional neural networks (CNN) [96].

Feature selection. Feature conversion and extraction produces a large
number of quantities that can be essential for WPF model training.
Silva [91] believes that the square and cubic of wind speed are im-
portant features to input into WPF models. However, not all features
have sufficient relevance, and may even increase the uncertainty of
the result [90]. Therefore, it is necessary to filter out driving fea-
tures as model inputs. Mainstream feature selection methods include
filter approaches (e.g. mutual information), wrapper selection methods
(methods include minimal Redundancy Maximal Relevance (mRMR)
and Recursive Feature Elimination (RFE) and are used to select the
optimal feature set for wind and wind power prediction in [97,98]),
and embedded selection (e.g. Automatic Relevance Determination [99]
and the tree method [100,101]).

4.2. Numerical weather prediction uncertainty

In [20] it was found that two chief barriers for industrial adoption
of uncertainty forecasts were lack of understanding of its information
content (the physical and statistical modelling), and standardisation of
uncertainty forecast products. These lead to mistrust and scepticism to-
wards uncertainty forecasts, and their applicability in practice. In [20]
the authors established a reference terminology and reviewed common
methods to determine, estimate, and communicate the uncertainty in
weather and wind power forecasts. Their conceptual analysis of the
state of the art concluded that different uncertainty representations
need to be mapped to specific wind energy-related user requirements,
and that the industry needs to establish multidisciplinary teams in
order to implement stochastic methods into the grid operation and
look-ahead planning. [20] also thoroughly analysed and described
uncertainty in the NWP modelling process. But within the context of
uncertainty propagation, we want to focus on the impact of uncertainty
in the NWP modelling process for the next steps in the modelling chain
(e.g. conversion to wind power), rather than the various methodologies

to generate uncertainty forecasts from NWP models.
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4.2.1. Using wind turbine measurements in the data assimilation process
Quality control is an essential part of today’s real-time forecasting

processes, where measurements are used to adjust the forecasts for
the next few hours ahead. Such data must reflect the current weather
conditions at and around the power plant. If such data are of insuffi-
cient quality, a well calibrated quality control system will reject a large
portion of the delivered data, which in return leads to a lower quality
forecast for the next few hours and bad decision taken by the users
of the forecast, e.g. control room staff or traders. The same is true for
warnings that may not be based on forecasts adjusted with trustworthy
measurements, which when ignored due to mistrust, can lead to critical
situations in the power grid or the physical balancing of the lack or
surplus of power.

A 2019 study carried out by the Irish system operator [102] showed
that without quality requirements and control, meteorological measure-
ment data was not sufficient for use in the forecasting process. The
uncertainty in the data signals, especially wind speed, was found to be
so high that use of the untreated data would not only no longer improve
forecasting, but in fact deteriorate short-term forecasts — especially in
storm events, when it is most needed.

There have been a number of initiatives in cooperation with the
power industry in recent years on that topic, such as the Wind Fore-
casting Improvement Project (WFIP) [67] coordinated by the National
centre of Oceanographic and Atmospheric Administration (NOAA) and
the EWeLINE project [66], coordinated by the Fraunhofer Institute
for Energy Economics and Energy System Technology (IEE) and the
German weather service (DWD). In both projects NWP modellers, wind
power forecasters and system operators were involved in order to
target the research towards the usefulness of such data for the weather
forecasts as well as the benefits for the power industry. Both projects
concluded that forecast quality can only improve if the quality of the
measurements towards which the forecasts are assimilated are of a high
quality, meaning that instruments are chosen that are suitable for the
task and that the instrumentation undergo regular maintenance to be
trustworthy. In fact, it has been identified in both projects that if there
is no specific effort put into standardisation of requirements in the
power industry, the benefits cannot be achieved [27,103].

A work package in the IEA Wind Task 36 Wind Power Forecast-
ing [104] has been created in order to provide recommendations for
standards regarding measurement quality control. A first IEA Wind
recommended practice has been accepted by the executive committee
of the IEA Wind and is going to be published in 2022 [103].

4.2.2. Correcting NWP using data-driven algorithms and wind measure-
ments

It is difficult for mesoscale NWP models to consider microscale
factors such as terrain and wakes, as the temporal and spatial resolution
is limited. Therefore, many researchers have been working on using
artificial intelligence algorithms and actual wind measurements to
statistically downscale and correct the NWP results. We list currently
popular methods below.

• Single-NWP correction method: to establish a mapping model
between the NWP at a single location and wind measurements
at the same location.

• Joint correction of NWPs at multiple locations: a multi-to-multi
mapping structure and a deep-learning-based model for joint
correction of multiple NWPs builds upon the above, using NWP
results at and measurements at multiple locations. Results demon-
strated NWPs adjusted by a joint correction strategy have better
accuracy and spatial wind speed correlation, than those adjusted
with single-location NWP correction [87].

• Correction considering features of wind speed time series: the
above two correction strategies aim to revise the NWP at any
‘independent time slot’, i.e. with no consideration of the implicit
(but real) connection among wind at consecutive time slots. A
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sequence-transfer-based algorithm was proposed to revise the
NWP wind speed, where ML methods are used to derive a dy-
namic relationship between the measured wind speed at time 𝑡
and 𝑡 + 1 [105]. Considering the statistics and time-series fea-
tures of wind speed measurements, a wind speed error correction
model has been established based on gated recurrent unit neural
networks [106], and was shown to improve NWP performance
correction. The decomposition method also considers the features
of wind speed time series and decomposes NWP wind speed time
series into sub-sequences for feature extractions based on Princi-
pal Component Analysis (PCA). The extracted sub-sequences are
then used to correct the NWP via training ML for the relationships
between the NWP error and each sub-sequence [107].

• NWP correction based on weather classification: the ‘weather
classifier’—in the meteorological literature also known as ana-
logues [108], analog ensemble (AnEn) [109,110] or ‘Grosswet-
terlagen’ [111,112]—has been proposed to divide NWP data into
typical weather patterns. NWP correction models corresponding
to different weather patterns or patter switching have shown
improved performance under different weather conditions [113,
114].

4.2.3. Using NWP ensemble prediction systems to handle uncertainty
Integrating NWP output that results from different model initialisa-

tion, configuration, and parameter choices (as well as different NWP
running modes or even versions) is an important method to handle
uncertainty in NWP output. In [20] the uncertainty of the forecasting
chain was reviewed and analysed in depth for NWP ensembles and
their differences in design, ranging from initial condition perturbations
(category 1), stochastic and physics perturbations, to multi-scheme
(category 2) and multi model (category 3) approaches. All these ap-
proaches have in common that they aim to describe the uncertainty of
the weather conditions due to a lack of knowledge regarding the correct
initial conditions of the atmosphere and the incorrectness or under-
determination of the mathematical equations as a result of physical
approximations.

4.2.4. Scenario classification and (Bayesian) model updating
Besides the classical ensemble method described in the previous

Section 4.2.3, there are a number of hybrid methods that are in semi-
operational mode or used for research purposes. For example, in [115],
an optimised fuzzy system was proposed to evaluate the effectiveness
of 12 NWP members covering three different horizontal resolutions
and four different initialisations. Further, it was shown by [116] that
the dimensionality of the NWP portfolios can be reduced by using e.g.
Kernel Density Estimation, with salient features subsequently extracted.
And, in [117] a Bayesian model was employed to make probabilistic
prediction of the wind speed based on ensemble NWP.

Other examples of scenario generation from calibrated ensemble
forecasts were applied by [118] using ensemble copula coupling and
by [119] using a dual-ensemble copula-coupling approach. Here, the
authors proposed to combine two types of information: (1) the structure
of the original ensemble and (2) the auto-correlation error estimated
from past data. The reason is that category 1 EPS (perturbation-based,
see Section 4.2.3) provides the uncertainty in the medium range, where
the spatial–temporal structures of the forecast uncertainty get lost in
the statistical calibration of the ensemble forecasts for each (required)
lead time and location for the short-time horizon (1–3 days). Even
though non-parametric approaches such as the copula coupling with
medium-range EPS or generated from deterministic forecasts [109]
allow some kind of reconstruction of spatio-temporal joint probability
distributions at a low computational cost, none of these methods can
fully describe the forecast-dependent structures without the unrealistic
assumption of a stationary error matrix [20]. In practice, such recon-
structed probability distributions or scenarios only cover the known
or typical ‘extremes’, not those that have a low predictability or are
very rare (with long return rate). In other words, all statistical cali-
bration and generation of uncertainty can only describe what has been

observed in the past, i.e. what is part of the training data.
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4.3. Improving data quality and representativeness

4.3.1. Padding and restoring the missing/abnormal historical data
If the data that is used in operation and maintenance is also applied

in the model training, the model training can give in a misleading
apparent relationship between wind speed and power — resulting in
forecasting uncertainty for future events. Therefore it is necessary to
separate the corresponding data from the training samples. At the same
time, for planned maintenance or shutdown, the uncertainty can be
easily eliminated by removing the predicted power of the wind turbine
that will cease operation. For unexpected failures and shutdowns, the
connection to the condition monitoring and failure warning is ben-
eficial for the forecasting results and reduce forecast uncertainty, if
corrected in a real-time manner.

Missing a small amount of wind or power data will affect the
continuity of the time series, while missing a large amount of data in a
period might even affect the entire data set. The following methods can
help mitigate uncertainty of time-series data, be it for training purposes
or for operational and maintenance purposes.

1. Interpolating and padding missing data.
Data imputation (gap-filling) methods can be categorised into
statistics-based and ML-based. The statistics-based methods in-
terpolate using data from adjacent times, and/or (weighted) av-
erages of data from adjacent wind turbines. This type of method
is friendly and efficient, and suitable for situations where the
missing set is not large. Methods based on machine learning find
a spatio-temporal (‘mapping’) relationship between non-missing
data in a certain time window, based on which the missing data
can be simulated and restored. Widely-used machine learning
algorithms for data imputation include neural networks [120,
121], random forest [122], and K-nearest neighbor (KNN) in-
terpolation [123]. ML methods might have higher accuracy, but
tend to be less efficient than statistical methods for imputation.
For missing power data, the corresponding wind speeds can be
converted into power based on the power curve.

2. Recognising abnormal wind turbine operation/conditions.
In the actual operational environment, the conditions of wind
turbines can be complex. Under some operational conditions,
especially abnormal ones (e.g. wind turbine faults and curtail-
ment), the actual power recorded via SCADA might deviate
greatly from conventional power generation levels. Elimination
of such abnormal data is the premise for obtaining a represen-
tative wind-to-power relation, which the power data restora-
tion is based on. Scatter plots of wind speed versus power are
commonly used to determine the operational conditions, if the
operation logs or fault tags of wind turbines are unavailable.
Three commonly-used methods are based (conditional) on power
density, image recognition, and rules, respectively [75,124].

• Applying simple rules can be an efficient way to avoid
intricate algorithms or model training; e.g. ignoring (‘ze-
roing’) the reported power output for wind speeds below
some threshold around cut-in. However, such rules some-
times require experience with setting criteria, due e.g. to
dependence on wind turbine operational parameters such
as pitch angle and generator rotational speed as well as the
control system. According to the operation principles and
conditions of the wind turbine in question, the range of op-
erational parameters under different operating conditions,
as shown in Fig. 8, can be set as criteria. Note that since
the actual operational conditions of each wind turbine are
different, the criteria corresponding to various operational
conditions needs to be customised for each wind turbine,
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and possibly for different modes of operation as well.
• The ‘density-based’ method determines the operational
conditions based on the distribution of power density with
wind speed, e.g. application of noise to spatial clustering
(DBSCAN) [125–127].

• The method based on image recognition regards the two-
dimensional scatter plot with respect to wind speed and
power as an image, and uses image segmentation to clas-
sify data categories belonging to different operational con-
ditions [128].

3. Power data restoration.
Once the abnormal operational conditions are detected and elim-
inated, the representative and normal power curve model can be
fitted/learned and updated using clean wind speed and power
data samples. The methods for such can be broken into para-
metric and non-parametric types. The parametric method fits
the actual power curve as a mathematical equation, with fitting
parameters [124]. This method is simple and efficient. Neverthe-
less, the fitting performance around the cut-in and cut-out wind
speed might be poor due to the non-linear characteristics of the
power curve. The non-parametric method trains an undefined
(virtual) function to approximate the relationships between wind
speed and power based on machine learning algorithms [124].
Due to the complex joint distribution of actual power and wind
speed (as well as e.g. pitch angle), as shown in scatter plots of
power curves like Fig. 8, the non-parametric method is generally
better for data restoration than the parametric method.

Once the power data is restored, it can be converted from wind
speed based on the fitted or ML-identified (trained) power curve.
Although data restoration can introduce new uncertainties into the
training samples, it improves the data continuity and tends to reduce
the forecasting uncertainty.

4.3.2. Improving the representativeness of training samples
In order to reduce the prediction uncertainty caused by the rep-

resentativeness of training samples and the diversity of weather, and
enhance the model adaptability to specific external conditions, training
sample selection is required to customise the modelling process and to
update the WPF model. This may be done regularly or in real-time as
external conditions change.

Training samples are the fundamental material for WPF modelling.
The data characteristics of the training samples determine the map-
ping relationship expressed by the model. After determining the input
variables of the WPF model, a reasonable training sample selection is
essential to reduce the prediction uncertainty and improve the adapt-
ability of the model. The key to the selection of training samples mainly
includes two aspects:

1. Representativeness of training samples.
In regards to future prediction scenarios, the representativeness
of a given training sample is required to examine whether the
data in the training sample can represent the weather and wind
conditions at a specific prediction time. Generally, inclusion of
more types of weather and wind turbine operational conditions
in the training samples might imply less representativeness of the
training samples to specific external conditions [129]. For shal-
low learning models, it is difficult to capture the representative
features corresponding to the specific prediction points found
in large-scale or complex data sets. In a case study presented
by Yan [130], the prediction accuracy became worse as the
duration of training samples increased. Fig. 9 shows an example
of how WPF accuracy based on yearly samples is lower than that
based on quarterly samples, and that based on quarterly-samples

is worse than using monthly samples.
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Fig. 8. Relations among wind speed, power, and pitch angle.
Fig. 9. Effects of time length of training samples on the WPF RMSE.

2. Number of training samples.
Insufficient training samples will lead to insufficient model train-
ing; however, an excess of training samples leads to over-fitting.
As shown in Fig. 10 [130], there is no linear increase or de-
crease relationship between the number of training samples and
the prediction error; the curves with respect to both variables
have ‘‘sensitive changes’’ and ‘‘saturation’’ phenomena. Satura-
tion means that no matter how the sample size changes, the
RMSE hardly changes; while sensitive change indicates that the
sample size is very sensitive to the RMSE. In addition, the
optimal number of training samples for different WPF algorithms
is different.

During the training sample selection, the representativeness of the
training samples for future prediction scenarios, and the adaptability of
the number of samples to the selected model, should be taken into con-
sideration to obtain higher prediction accuracy and reduce uncertainty.
Selecting the training samples according to seasons, weather, and wind
fluctuation characteristics using a refined technical route is an effective
means to select representative samples. There are three main methods of
doing so, listed below.

• Select the training samples by seasons or months. For wind farms
with obvious seasonal features, quarterly or monthly WPF model
can reduce the predication uncertainty.

• Divide the training samples by weather categories based on pa-
rameterising the wind features, and set the valid ranges of each
feature for different categories. The characteristic parameters may
include: mean value, variance, (bulk) trend magnitude, maximum
value, minimum value, frequency of occurrence per wind speed.
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Fig. 10. Effects of training sample number on the WPF root-mean square error
(RMSE) [130].

This method is simple and easy, however, the weather category
is difficult to distinguish in a rational way. Although the wind
conditions near the threshold are not much different, they are
instinctively divided into two categories, which may affect the
prediction uncertainty.

• Use a clustering algorithm, such as k-means [131] or spectral
clustering [132,133], to classify historical training data.

4.4. Improving data availability in real-time environments

The operation and maintenance process of wind turbines will in-
evitably involve abnormal power generation conditions, which in-
creases the randomness of the actual power generation of the wind
turbines, and in turn increases the uncertainty of power forecasting.
For instance, routine turbine maintenance, unexpected faults, and
unplanned or scheduled shutdown and curtailment fall under abnormal
operation.

There are two common types of operational data anomalies. The
first is observation distortion, which is common in wind speed or wind
direction data, caused by anomalies in wind measurement equipment.
The other is a constant data (or ‘‘dead data’’) problem caused by abnor-
mal communication, which may occur with either wind or power data.



Renewable and Sustainable Energy Reviews 165 (2022) 112519J. Yan et al.

c
a
w
u
t
t
s
r
c
a

4

s
f
a
t
s
b
c
h
t
c
t
w

t
u
t
o
s
f
c
s
t
c

m
c
a
l
e
f

5
p

T
g
o
r
b
e
c
a
l
t
p

o

For data anomalies caused by wind measurement equipment, the 3𝜎
riterion (assuming that data are within three standard deviations from
mean) can be used to detect abnormal data.7 For instance, the average
ind speed and variance of each wind turbine in the wind farm can be
sed as a baseline; or the joint distribution of wind speed of each wind
urbine can also be established to detect the abnormal value exceeding
he threshold. The ‘‘dead data’’ problem can be easily detected by
earching a continuous but constant data according to simple searching
ules. Once abnormal data is detected, the same imputation methods
an be used as for filling in missing data, as described in Section 4.3
bove.

.5. Uncertainty of turbine models and power conversion

In addition to the uncertainty in the characterisation of the up-
tream and downstream wind flow around turbines within a wind
arm, another important source of uncertainty is a result of the design
nd simulation of wind turbines, which includes, but is not limited
o the aerodynamic characteristics of the wind turbine rotor. Possible
ources of uncertainty are found in the geometric properties of the
lades as well as in the parameters of the air-foils, i.e. the aerodynamic
oefficients of lift, drag and moment [134]. These coefficients in fact
ave direct impact on the estimated turbine performance, not only in
erms of wind-to-power conversion through characterising the power
oefficient (𝐶𝑃 ), but also in terms of the interaction of the rotor with
he wind flow; the latter causes velocity deficit downstream through
ake effects, which are typically modelled by a thrust coefficient 𝐶𝑇 .

The air-foil aerodynamic coefficients can be obtained by experimen-
al and numerical techniques, both of which are challenging and lead to
ncertainties of both aleatory and epistemic nature [134]. Additionally,
he rotor blades accumulate dust, dirt, insects and pollen over time
n their surfaces, which are also affected by weather-driven damage
uch as peeling and erosion, typically prominent at the leading edge. In
act, annual energy production (AEP) losses due to leading-edge erosion
an be up to 4.9% in operating wind farms [135]. These changes in
urface conditions during operation can result in significant uncertain-
ies in power capture and affect forecasts directly in terms of power
onversion, and indirectly in terms of the wakes generated [134].

To at least partially mitigate such uncertainties, data-augmented
ethods for site-specific power curves (including probabilistic power

urves [75,124]) and calibrated modelling are increasingly being
dopted. At a single turbine level, an example where modern deep
earning approaches are deployed to mitigate the 𝐶𝑃 (and in gen-
ral turbine model) uncertainties for available power estimation and
orecasting is presented in [134].

. Uncertainty evaluation and mitigation methods in the market
hase

In the market phase we deal with different types of uncertainties.
raditionally, the dimension and generating capacity of the electricity
rid are limited by the instant failure of the largest power plant
n the grid which at any time may need to be balanced with fast-
eacting reserve power. This process has been gradually undermined
y renewable power sources, namely wind and solar. The latter have
ffectively shifted power generation from large-plant setups near load
entres, to highly dispersed smaller-scale power generation units which
re often distributed across low-population areas far away from the
oad centres. The traditional security margin had been directly related
o the generation uncertainty due to unforeseen failures of conventional
ower plants.

7 Assuming the data does not have a ‘fat-tailed’ distribution with significant
ccurrence of events beyond 3𝜎 from the mean.
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Since the large-scale integration of wind (and solar) has started,
the uncertainty in power generation has received a new aspect that
is related to the intermittent generation pattern of such renewable
resources. This type of uncertainty – highly connected to the weather
conditions that fuel the renewable generation – is far smaller, but is
driven by situations which occur far more often than conventional
plant failure. It can be considered as a kind of ‘background noise’ that
requires a transformation of grid operation.

Additionally, political aspects are also responsible for a portion of
uncertainty related to wind (and solar) power forecasting. The follow-
ing sections will illustrate in more detail how forecasting is affected by
these uncertainties, and to some extent provide recommendations to
mitigate some of the uncertainty in the forecast process and training.

5.1. Transparency-related uncertainty

In the European Commissions (EC) Regulation No. 543 from 2013
[136], it is stated that Transmission System Operators (TSOs) are
‘‘...required to publish data on the availability of networks, capacities
of cross-border inter-connectors and generation, load and network
outages as well as insider information’’ in accordance with EC Regu-
lation No. 714/2009—in other words, all relevant market data. In the
regulation [136] it says that ‘‘...the availability of such data is indis-
pensable for market participants’ ability to make decisions on efficient
production, consumption and trading’’. The regulation also states that
‘‘...deeper market integration and the rapid development of intermittent
renewable energy generation sources (such as wind and solar) requires
disclosure of complete, timely available, high-quality and easily di-
gestible information relating to supply and demand fundamentals. The
timely availability of complete sets of data on fundamentals should also
increase the security of energy supplies’’ (see also [137]). It should
allow balance-responsible parties (BRPs) to precisely match supply and
demand, to reduce the risk of blackouts. As a result, TSOs should be
able to better control their networks and operate them under more
predictable and secure conditions.

The information market participants should be provided with –
which has the potential of increasing WPF uncertainty and subse-
quently uninformed decisions – can be summarised as:

• expected consumption;
• planned and unplanned unavailability of power generation and

consumption units, with detailed information on where/when/
why units will not be available to generate or consume, and when
they are expected to return to operation [136];

• detailed information about the overall installed generation ca-
pacity, estimations about total scheduled generation, accounting
separately for intermittent generation, and unit-level data about
actual generation of larger production facilities [136];

• planned and unplanned unavailability of existing cross-border
transmission infrastructure and plans about infrastructure devel-
opments, in order to move power from where it is available to
where it is most needed and adjust portfolios accordingly [138];

• regular updates on planned and offered cross-border transfer ca-
pacities for different time horizons as well as information related
to the allocation and use of capacities [136].

If these types of information are not made available and are not of
high quality, the uncertainty of the production will increase together
with the risk of failure or high balancing costs. The transition from
few organisations and a limited number of generation plants, to large
numbers of players and generation units, has shown to be a challenge
for the electric grid operation and development. In a study from 2018,
Hirth et al. made a review of Europe’s most ambitious electricity data
platform, the ‘‘ENTSO-E Transparency Platform’’ [139]. The authors
listed the lack of announcement of data availability (i.e. which kind
of data is made available) and the lack of accessible documentation

as important issues of the information platform. For example, they
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indicated the lack of information about available capacity underlying
the estimated generation, both in terms of forecasts and actual produc-
tion; this directly relates to the second, third and forth items in the
transparency requirement list above.

Germany is an example of where the partial privatisation of power
trading for wind and solar has led to a situation where crucial informa-
tion is lacking: the available capacity underlying the production data
provided to the transparency platform is unknown, as is the quality of
the up-scaled generation. Worse yet is the fact that the parties providing
these data to the system operators could potentially have conflicts of
interest, as they also provide forecasts to market participants (personal
communication with the TSOs Amprion and 50Hertz). The German
example is a case of problems arising from a lack of transparency in the
market regarding production data, as this also influences the market, if
the predictions for the expected generation from wind power may be
contaminated by conflicts of interest. In other areas, such as the UK,
where BRPs are accountable for the balancing of wind and solar power,
it was also found that the quality of the predictions is insufficient for
system operation. This can then only be resolved, if the system operator
gets access to the real-time generation data from the power plants. This
is again a matter of policy.

The effect of insufficient transparency on the uncertainty of the
forecasting process can be summarised as follows:

• missing input data to the forecasting model;
• missing information from real-time and historic metered produc-

tion;
• missing meta- or standing data8;
• missing planned and unplanned outage information;
• missing available active power information of the power plants.

The overall effects on the power system and market operation can then
be summarised as:

• risk of conflict between market and system operation;
• increased reserve requirement due to a lack of knowledge of

real-time production;
• increased congestion due to a lack of transparency in policy e.g.

storage.

5.2. Uncertainty from political decisions on capacity and infrastructure

The energy system is widely driven and impacted by political de-
cisions. Decisions made in one country/region may have influence on
other (neighbouring) countries/regions with respect to both capacity
and infrastructure. In most countries/regions, wind farms are con-
structed where there is the highest wind potential. This can easily lead
to a skewed geographical distribution that increases the uncertainty of
both the generation itself and the forecasting in comparison to a well
distributed power generation, where forecast errors often balance out
geographically. Policies should therefore incorporate the geographical
distribution in the integration phase to avoid high errors in the forecast-
ing process and hence increased reserve requirement in the transition
phases [140].

Defining requirements for wind farms, in regards to measurements
or additional information for uncertainty reduction, is ideally comple-
mented by incentives that are aligned with policies. Such incentives
are essential, because they can increase the generation and finance
the additional cost for wind farms to provide more information to a
centralised forecasting system of the system operator.

From interviews in Denmark conducted as part of the IEA Wind
Task 36 ‘‘Wind Power Forecasting’’ [18], it was found that the political
decision process is considered to be a major risk factor for investment

8 Here defined as the non-changeable data of a wind project, such as
eographical data of the turbines, turbine type, amount of turbines, etc.
18

p

in new technologies: it is not the market nor the operational aspects. Due
o the globalised economy, this result is not only relevant in Denmark,
ut world-wide.

.2.1. Uncertainty in a high wind penetration area
The forecast uncertainty changes in areas where wind power pene-

ration increases above approximately 30% of the demand [141]. In
reas such as Denmark, Germany, Spain and Ireland, it is observed
hat the average width of the forecast bands (i.e., uncertainty) grows
ore strongly with increase in capacity, compared to the reductions in

orecasting error [142]. In areas where there are power markets, such
ncreases in uncertainty imply higher volatility, and result in potential
ncrease of intra-day trading volume over time [139].

In such high-penetration scenarios, one way to mitigate uncertainty
s to split the forecasting process into different components [25,26,
43]. The most common components are: (1) smoothed out day-ahead
orecasts through training or by using multiple forecasts to dampen
arge errors; (2) variable inta-day forecasts with adjustments from
easurements to balance day-ahead errors; (3) highly variable minute-

cale forecasts for the physical balancing on system operation level or
fter gate closure.

In most electricity markets such as the European Union, USA,
anada, Australia [139,142], the first two forecast components are
ommon practice, also in non electricity market areas such as China,
apan and India. The last component is observed in high penetra-
ion areas, where balancing power is getting short and where wind
ower generation levels on system generation of 65% or more are
pplied [144]. These minute- or hour-scale forecasts are designed
o bridge the gap between the current measurements and intra-day
hort-term (ST) forecasts, which are still significantly smoother than
he actual generation. Such forecasts are mostly dependent on the
vailability and quality of the wind farm data. As the forecast horizon
nd frequency shorten, the need for accuracy and reliability in both
orecasts and measurements increases. This is due to the fact that the
ime from forecast generation to deployment is much shorter, and
onsequently the forecast process must be nearly as reliable as e.g. the
rimary reserve itself [65].

.2.2. Uncertainty from commercialised balancing of wind power
In most of Europe the balancing of wind power and other renew-

bles is done by balance responsible parties (BRP) and not the system
perator. This works especially well for such well-interconnected areas.
n less interconnected areas or island grids, it is more difficult and
herefore balancing is still done mostly by system operators.

A key reason behind such a ‘liberalised’ strategy is the desire to
ake the market more competitive with more actors. Denmark and
ermany were pioneers in the introduction and could provide a proof
f concept for reduced spot market prices in Nordpool and the German–
ustrian part of European Power Exchange (EPEX) in the early years
f the millennium. However, the consumer prices increased, because
he total costs of running the system with a high share of wind power
ncreased for various reasons. The time horizon is one of the main
ifferences between the optimisation strategies of system operators and
raders/BRPs. The trader is typically interested in short time horizons of
aybe one month ahead, where the system operator is concerned with
ore than a year ahead. The shorter-sighted interest of traders could,

n the long run, be a disadvantage. For example, transparency becomes
n issue, if the distribution of generation data of the power plants are
ot regulated and the trader has more or more timely information about
he generation state of turbines. This is the case in Germany, where the
ependency of system operation processes to commercially sensitive
ata is leading to a lack of efficiency in the handling of wind and solar

ower [139,145].
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5.2.3. Uncertainty arising from balancing via interconnections
In some areas, such as Denmark and Germany, inter-connectors

are deployed to handle renewable energy via market coupling, and
special regulations apply to moderate the power flow through the inter-
connectors (e.g. in cases of internal congestion). The inter-connectors
help to reduce price volatility due to uncertainties. An unresolved
challenge remains that it often leads to negative spot market prices
during times of spatially correlated high generation [141], during night
times and in weekends, when there is low demand and high wind
speed [146–148].

5.3. Uncertainty resulting from future application of storage and flexible
demand

Storage is a competitive balancing solution in systems with high
price volatility, or where there are generation limits on the grid.
Both conditions are widely present in Germany for example, which
is a target area for storage in the coming decade. The market price
of storage solutions will be driven by the demand, and may be an
obstacle for deployment in regions where wind power generation is
most cost effective. If the potential for heat pumps and electric cars
is high and provides some opportunities to better utilise variable gen-
eration, such technologies are in direct competition to energy storage
and can therefore become obstacles for development of large-scale
storage – even though these technologies are limited in their capacity,
and probably will be (in the best case) only capable of providing
instantaneous, high frequency balancing tools for primary or secondary
reserves [149]. With that in mind, there are still significant differences
between grids with high share of wind at high levels of interconnection
compared to other control zones and grids with high share of wind
at moderate interconnection levels. The latter will naturally develop
price volatility due to uncertainties in the production with reduced
ability to export over-capacities unless (cascading) storage systems will
be developed [150].

For the forecasting process, storage can increase forecast uncer-
tainty significantly, unless the electricity from the storage is traded on
the market or wind power plants are balanced intelligently (e.g. via
scheduled ‘virtual power plant’ by the storage operator).

Battery storage systems for household prosumers have recently
been studied by [151] with respect to the design of retail prices,
grid fees and levies. There the attractiveness to prosumers of invest-
ing in household storage was evaluated, along with the impact on
system-oriented grid and market operation. In particular they found
that market- and system-oriented operation are not necessarily in har-
mony, and at times even contradict each other; they recommended
caution with the term ‘‘system-oriented operation’’ [151]. In this re-
gard, system-oriented operation is linked to the transparency dilemma
described above (Section 5.1), if the system operator lacks control of
the physical effects of power production and consumption. Accordingly,
the uncertainty in forecasting can increase significantly and incur
large costs. Germany is a classic showcase for this effect, where small
PV systems began to include battery storage to avoid paying taxes
and levies on consumed electricity. With a small percentage of such
systems in the overall grid infrastructure, this is just lowering the
negative consumption for the system operator. However, when the
percentage increases and the consumption of e.g. a million households
stops following general patterns, but instead is skewed due to available
battery capacities, problems can arise in the grid operation; especially
in extreme cases, where there is little power available and a sudden
increase in consumption or vice versa. A recent example of such an
event happened in Texas for the Electric Reliability Council of Texas
(ERCOT) causing large scale black-outs. A storm with extraordinary
cold weather (well below freezing) caused the consumption to rise
exponentially, while power plants were not able to become available
19

and wind turbines were shut-off due to icing [152,153]. This can a
happen anywhere with large amounts of households that use heat
pumps with or without battery storage.

Such situations are good examples to understand why reserve fore-
casts need to be based on physical ensembles, when it comes to ex-
tremes. In the ERCOT case with temperatures dropping below the
freezing point and heat pump efficiency dropping to ∼50% of nor-

al operation, the amount of electricity requested from the system
ncreased dramatically. Today, events like the January 2021 ERCOT
ase [154] are predicted well in advance by the weather services. How-
ver, if the weather information’s uncertainty is not moved forward in
he chain of applications, the risk for damages and failures increases
ramatically [155].

To conclude, the uncertainty chain from weather development to
eather-dependent application needs to be followed and handled cor-

ectly per the forecasting chain — and must be considered in market
esign as well as system operation best-practices.

.4. Uncertainty in price forecasting

Price forecasting is not directly connected to the weather-related
orecasting of wind power, but is a driver of the market mechanisms
nd should therefore be mentioned here as well. Ketterer [156] ex-
lained the impact of wind power generation on electricity prices,
nd provided a substantial amount of references for further study of
rice forecasting. In her study, the effect of wind electricity feed-in
n level and volatility of the electricity price was evaluated, and the
esults confirmed that variable wind power reduces the price level, but
ncreases its volatility, as found an earlier investigation [157]. This in
urn means that the uncertainty in the profitability of electricity plants,
onventional or renewable, increases [156].

. Advanced prediction methods to mitigate uncertainty

.1. Using advanced AI algorithms

The use of artificial intelligence techniques is increasingly popular
n wind (or in general renewable) power forecasting. It is also com-
only referred to as intelligent forecasting, for which the common
ethodologies are exemplified in Section 2.2.1. Intelligent methods or
odels endeavour to learn and fit underlying relationships within a set

f historical weather inputs and wind power output as a ‘‘black box’’.
lgorithms with deep network layers, or employing advanced learning
echanisms, are expected to possess better learning ability during
odel training. For predictions, their accuracy and associated uncer-

ainties ultimately depend on their generalisation ability regarding
nputs beyond the training domain.

.1.1. About shallow machine learning algorithms
So-called gradient boosting machines (GBM) are one of the most

ommonly used shallow learning models, including the eXtreme gradi-
nt boosting (Xgboost) [158], light gradient boosting machine (Light-
BM) [159], and categorical boosting (Catboost) [160] algorithms.
BM stands out in its capability of selecting driving features from rich

multidimensional) input domains. Moreover, the GBM algorithm can
chieve very efficient and good mapping performance between input
nd target values.

In the shallow learning field, model integration technology is also a
romising research area, which includes stacking, bagging, and boost-
ng methods. Stacking is a popular algorithm in many international
rediction competitions. It is generally used to integrate multiple layers
nd multiple base predictors into one WPF model after meta learner
o optimise the weights of all base predictors. Integrating results from
ifferent predictors (better with small deviations but large variance)
an improve the robustness of the forecasting results and reduce its

ssociated uncertainties.
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6.1.2. About deep learning algorithms
Deep learning represents the frontier of machine learning in the

past decade. A large number of advanced deep learning algorithms
have been applied to WPF. From an algorithmic perspective, generative
adversarial network (GAN), attention mechanism and graph convolu-
tion algorithms have great prospects for application. In addition, the
spatiotemporal prediction architecture brings new ideas to future WPF
research; this and the three other DL algorithms can be summarised as
follows.

The GAN algorithm can support scenario forecasting with large-
scale spatiotemporal data by mapping the joint distribution of multiple
wind farms and multiple time slots [161–163].

The attention mechanism can better learn from time-series informa-
tion in short-term and ultra-short-term prediction, mainly focusing on
variable attention mechanism and temporal attention mechanism [164,
165].

The graph convolution network (GCN) expands the convolution
technology to irregular image data so that a complex spatiotemporal
distribution can be displayed and quantified in the WPF algorithm.
For example, the combination of GCN with RNN can better learn the
temporal and spatial dependencies among wind farms and improve the
forecast accuracy [166].

The deep-learning-based spatiotemporal prediction architecture en-
ables the joint forecasting for wind farm clusters in an efficient man-
ner. Examples include Spatial–Temporal Graph Convolutional Network
(STGCN) [167], Diffusion Convolutional Recurrent Neural Network
(DCRNN) [168], Adaptive Graph Convolutional Recurrent Network
(AGCRN) [168], Graph WaveNet [169], and Graph Multi-Attention
Network (GMAN) [170].

6.2. Uncertainty in ramp forecasting

The quantification of uncertainty in ramping forecasts is a challenge
that starts with the correct definition of a ramp event. In a survey
on wind power ramp forecasting, Ferreir [171] and Ouyang [172]
presented four different definitions for ramps in wind power forecasting
(WPF), where the first three definitions mainly consider the change of
amplitude, i.e. a ramp occurs when wind power amplitude exceeds a
predefined threshold value in a certain interval of time and the last
definition uses the wind power rate to indicate a ramp [172]. They
both concluded that each ramp definitions takes a different aspect
into consideration, and will have different applications as well as
advantages and disadvantages. In fact, the uncertainty of the definition
of a ramp event in itself is the subject of the bulk of current literature on
the topic (e.g. [171–175]), as almost every application has the potential
to have its own definition. This makes comparisons of methods quite
difficult, and adds a level of uncertainty to the applicability of methods
when used in new or other circumstances.

There are a number of meteorological characteristics that have been
described in literature [20,65,171,175]. In [173] four of the main mete-
orological characteristics that generate uncertainty and large variations
in wind speeds that lead to wind power ramping are described:

1. Large-scale weather system passages
2. Local or meso-scale circulations (sea–land breezes, mountain–

valley winds, drainage and gap flows)
3. Vertical mixing of momentum (‘‘Dry Convection’’)
4. Thunderstorms (‘‘Moist Convection’’)

[176,177] explores detection of wind speed ramps and their rate of
occurrence, while [178] finds long-term joint-PDFs for the power- and
load-driving characteristics of offshore ramps. The characteristics listed
above are similarly also applicable to solar power ramping [179],
where it is the clouds coming with fronts and moist convection that
are the main generators of uncertainty and strong ramping associated
with items one, two, and four in the above list [180,181].

The non-meteorological characteristics that impact the WPF uncer-
20

tainty around ramping events can be described by (e.g. [27]):
1. effects of wind/solar power clusters and capacity gradients;
2. local effects related to the terrain (especially complex terrain);
3. grid topology;
4. penetration level and local demand.

These characteristics can have little to no effect, but also large effects
on the uncertainty and uncertainty quantification of ramping events.
Dependent on how much power an electric grid can absorb, critical
ramping rates deviate strongly. Also, the dispersion level of the gener-
ating units can add to the uncertainty of ramping events, similar to the
terrain characteristics adding complexity to the forecasting process and
the associated uncertainty.

Hirata et al. [181] investigated causes of uncertainty from applying
artificial intelligence algorithms to the problem and defined five causes
of uncertainty:

1. few similar events available in the past;
2. the space spanned by neighbouring events does not behave well

and they are not linearly independent;
3. the underlying system is sensitive to initial conditions;
4. the underlying system is influenced by stochastic noise;
5. the underlying system is about to change qualitatively.

The authors [181] mention that ‘‘..the first two are related to the
properties of the time series prediction with a neural network ap-
proach’’, which is a known phenomenon (see also 4.2.3) when using
statistical methods to quantify uncertainty in cases of extreme events
or rare wind speeds within a certain time period. In [20] the different
methods for probabilistic forecasting and their ability to quantify the
actual uncertainty are described in detail. The other three uncertainty
sources originate from the properties of the underlying dynamics of the
approaches and their inputs. The latter three properties are difficult
to quantify, unless there is detailed knowledge about the time series
origins, some of which are described in Section 4.2.3.

6.2.1. Definition of ramp forecast uncertainty
In the renewable power arena, the objective of ramp forecasting is

to forecast the change in power generation between two time stamps
relative to the schedule, which is defined by a wind power or solar
power forecast (hereafter referred to ‘‘variable generation’’ abbrevi-
ated as VG). Using a deterministic forecast process for the variable
generation schedule implies that the corresponding deterministic ramp
forecast uncertainty is always zero. A deterministic forecast, therefore,
needs to be complemented with past statistical results to produce some
kind of a ramp result.

In [174] it was found that ‘‘..a single time series of wind power fore-
casts may not include enough information to make secure management
decisions related to the potential occurrence of a ramp’’. They also stud-
ied ‘‘..the extent to which NWP ensembles provide information on the
forecasting of ramps, including the associated uncertainty’’ [174]. By
applying clustering methods and regression models, they also showed
that even the category 2 (see 4.2.3) ensemble forecasts were signif-
icantly better at predicting ramp events, compared to considering a
single, deterministic wind power scenario or climatology.

In [23,182], ramp forecast scenarios were generated by blend-
ing forecasts from four machine learning techniques, to: (1) obtain
wind power forecasts; (2) find historical forecasting uncertainty; (3) fit
the probability distribution function of the forecasts with the help
of a Gaussian mixture model (GMM); and (4) use an inverse trans-
form method based on Monte Carlo sampling for the development of
forecast error scenarios. They further underline the need to improve
probabilistic forecasting of critical wind power ramps.

In [183] forecast uncertainty is estimated using multiple NWP
inputs, statistical processing and adaptive algorithms, where they con-
cluded that ‘‘..the temporal forecast uncertainty can be quantified and
presented to indicate the likely timing and amplitude of wind energy

ramp events’’.



Renewable and Sustainable Energy Reviews 165 (2022) 112519J. Yan et al.
Fig. 11. Schematic of the uncertainty in terms of forecast errors in phase (left) and amplitude (right); here specifically for a ramping event. The dotted areas indicate the area of
the forecast error. Here the forecast is the red curve, the observations are shown with the blue curve.
Applying a physical weather ensemble forecasting process generates
high degrees of freedom, but it is to date the only proven method
that is capable of generating the uncertainty associated with ramping
events [27,174,184]. The schedule for power production generated by
an ensemble forecasting approach is typically a soft curve derived from
many ensemble members. This could be either a median, the average
or a percentile (e.g. P50) of the ensemble members. In this way each
ensemble member provides a ramp result relative to the schedule. In a
low-uncertainty event the ramp values are close to zero and in a high-
uncertainty event the ramp values increase in magnitude, both upwards
and downwards. The longer the ramp lasts, the more accurate the ramp
value is from each ensemble member, because the longer time horizons
filter out some of the phase errors. This means that the uncertainty of
an 8 h ramp allocation is normally less than the 3 h horizon, counted
per hour of allocation [27].

6.2.2. Quantifying the uncertainty of ramp forecasts
When quantifying the uncertainty of ramp forecasts we often think

of the predicted amplitude and timing of the ramping event. When eval-
uating ramp forecasts, it is therefore necessary to not only distinguish
between phase and amplitude of forecast error, but also the possible
timing of significant events [183]. In general statistics with mean or
mean squared errors, which are common evaluation metrics in the
power industry, the amplitude and phase are differently weighted. A
description of how errors in predicted ramp timing (‘phase errors’) are
penalised more than the amplitude errors in ramp forecasts is provided
by [143], including the lack of steepness. Forecast phase errors are
subject to a so-called ‘‘double punishment’’ (sometimes referred to
as ‘‘double penalty’’), where the forecast performance is penalised
twice: once for not forecasting the peak value (in time) and once for
generating it too late. These type of error measures are now considered
to be unsuitable for ramp forecast evaluation (see also [171,172,185]).
Fig. 11 gives a schematic of the double punishment/penalty, illustrating
both phase and amplitude errors. When considering the uncertainty
inherent in wind ramps, hence in power forecasts, the end-user must
take this asymmetry into account if the amplitude of ramp events are
critical. This can be done using e.g. contingency or skill score tables
(which classify forecasts with hits, misses and false alarms instead
of mean error statistics), where there is an incentive for the forecast
provider to put a larger weight on phase and relax on the correct
amplitude [183,186,187]. The same applies for timing errors or the
phase of the ramp. In [183] ramp events are presented as temporal
distributions in a pre-defined period around the ramp event rather than
at one specific point in time. In that way, the forecast uncertainty can
be mitigated.

6.2.3. Mitigation of uncertainty for critical ramps
From a power system perspective, it has been observed that the

security constraints from a system operator can conflict with optimal
power production from wind and solar power [181,188]. In [181] the
causes for uncertainty in prediction of critical ramps are investigated
21
Fig. 12. Schematic of the uncertainty range of the cut-out wind and associated power
drop.

and quantified in order to predict the likelihood of such rapid changes
in wind speed, which cause critical situations with machine learning
techniques. The aim of the quantification is then to find mitigating
measures for the impact of such dangerous fluctuations. [181] also
attempted to produce ramp predictions based on a set of credibility
measures that quantified the associated causes of uncertainty, which
remain unsolved.

6.3. Uncertainty quantification in cut-out wind speeds & high-speed shut-
down

Wind turbines under normal conditions generate full (rated) power
when wind speeds reach rated speed of approximately 12–15 m/s and
up to where the wind farm’s high-speed shutdown (HSSD) set point is
activated. One of the difficulties in quantifying the uncertainty of cut-
out wind speeds is the fact that in modern wind turbines, the latter is
no longer a specific point or wind speed, but a range, usually starting
at about 21 m/s up to 30 m/s, where the wind turbine gradually
pitches the blades out of the wind to reduce loads and consequently
long-term damage. Thus from a forecasting perspective, both wind and
power measurements are needed together to quantify the uncertainty
and thereby become able to calibrate forecasts for HSSD. In Fig. 12
the uncertainty of HSSD signals in the wind range above 21 m/s is
illustrated. The grey area indicates the broad range from 21 m/s up
to 30 m/s where HSSD can occur. In advance of a HSSD event, there
is no indication from time averaged power generation signals from
wind farms to warn of such an event. In other words, HSSD warnings
require wind speed forecasts and signals to be useful for forecasting.
It is necessary for a HSSD forecast application to learn from locally
measured wind speeds around the HSSD set-point of a wind farm.
Although there may be few HSSD events to train the HSSD model,
more detailed training of forecasted wind speeds in the more frequently
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Fig. 13. Scatter plot of measured against forecasted wind speed at two wind farms where (a) the measured wind is much higher in the HSSD range than the forecasted and vice
versa (b) the wind speed much higher than what is measured at the wind farm’s met mast.
occurring 20–25 m/s range can reduce the uncertainty and increase
forecast quality, also in the wind speed rage 25–30 m/s which is where
the HSSD typically occurs.

This also points to the requirement of high-quality measurements
(see 2.1.4) at the wind farms in areas, where high wind speed above
25 m/s is common. In cases where there are no online wind speed
measurements, there exists always an option to use forecasted wind
speed to train HSSD signals in a forecast application. An example is
shown in Fig. 13, where the observed forecast errors are randomly
varying by about 1–2 m/s. This would not be the case with observed
wind speeds and should therefore be applied for the power curve
generation in the high wind speed range, if available.

6.3.1. Use case: Mitigation of uncertainty in high-speed shut-down
In [142] a case study is described with a ‘‘[...] real-time example of

two concurrent HSSD events in Ireland, in which the forecast system
issued warnings when the probability for an HSSD affecting more than
20% of the wind generation capacity exceeded 25%’’. In the establish-
ment of the warning system, the service provider worked closely with
the system operator in order to develop a warning strategy that fit their
needs without being overwhelming. Since Ireland is a country that is
exposed to strong winds from the Atlantic, there are many high-speed
events throughout the autumn and winter seasons.

A warning system must provide a reliable and timely warning
(see also [183]) without too many false alarms, to avoid undermining
the seriousness of the warnings. This has been found to be a major
challenge in such systems. In the example from Ireland [142], forecast
lead time, change of severity level since previous alert, initial day of
the week, valid day of the week, time of day, severity of the event,
actions required, as well as need and ability to call back actions, were
carefully configured.

In the Irish case [142], the alert strategy had two main categories:

1. A well-defined scheme is used for the first warning.
The scheme alerts, when the probability of an event reaching
20% or more of the running capacity exceeds 25% for more than
three consecutive forecast cycles. This still allows a HSSD event
to be alerted 6 days in advance.

2. Limited number of alert.s
Alerts are only issued when the threshold is fulfilled, and not up-
dated until a significant change is observed; e.g. the probability
changes by more than 10% or the affected capacity is reduced
by 10% or more.

Such an alert system prevents the system operator from acting too early
or too late, allowing preparation time in case critical grid situations
may occur due to such an event. By providing an alert, the uncertainty
22
of the forecast cannot be reduced, but the costs of (in)action in terms of
redundancies can be optimised to a large degree. Strategic preparation
is possible by optimising the alert system to specific targets, thereby
reducing the risk of failure of the system while also reducing costs.

From a human decision perspective, it has been found (see e.g. [68,
142,189] that ‘‘[...] providing probabilistic forecasts and measurements
in both graphical and tabular formats is important to the end-users, as
humans react differently to graphics and tabular information’’ [190].
So-called weather literacy [191], i.e. the ability to understand weather
risk and be able to interpret probabilities versus deterministic forecasts
and their inherent uncertainty, is an important aspect for humans to
make rational decisions. In order to accommodate such differences,
it is important to indicate if a forecast was/is not correct: both to
strengthen the confidence in the forecast information, and to assist such
operators to take the best possible actions without wasting resources.
In this respect, we note that not all probabilistic forecasting methods
are useful. In the above described Irish HSSD case a physically based
ensemble forecast is required in order to capture events that may not
be present in historical training data used by the statistical methods.
The current state-of-the-art methods and their applicability have been
described in e.g. [20,142,189], and are a focus of Task 36 (from 2022:
Task 51) within the Technology Collaboration Programme for Wind by
the International Energy Agency (IEA Wind TCP) [104].

6.3.2. Uncertainty of cut-in wind speeds
Cut-in wind speeds can become a risk factor after a high-speed

cut-off event, when wind turbines are not connected to an automatic
SCADA system and have to be started automatically. These risk fac-
tors have been most pronounced where wind turbines lack automatic
control systems. In countries like Denmark, Germany, and Ireland,
turbines made before 2000 often had no automatic control system; thus
extreme events caused a lot of uncertainty in the forecasting process
after frontal passages, where the wind dropped again and generation
should have started. In Ireland this amounted to a significant fraction
of installed capacity, significantly enough that expensive reserve power
needed to be provided at times (personal communication with the Irish
system operator EIRGRID). The mitigation measure for this issue was to
incorporate a high-speed shutdown forecasting tool that also is trained
with existing data from past events to ensure that there was enough
reserve allocated when high-speed shutdown was about to come to an
end [142].

6.4. Uncertainty quantification requirement for reserve forecasting

To maintain system stability, one of the ancillary services required
to be provided by the wind power plants is reserve power, typically
performed via curtailing the wind farm from its maximum available
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power [192,193]. For mandatory down-regulation (or curtailment)
requested by the Transmission System Operators (TSOs), the reserves
can be used to estimate the compensation made for the loss in pro-
duction. The reserves can also be traded in the balancing markets.
Due to their economic value and significance, the assessment of the
accuracy of the reserves (or indirectly the available power) is crucial
and often regulated. The requirements for qualification of reserve
power provision and potential compensation are regional, i.e. market
and legislation dependent. According to the European Network of
Transmission System Operators for Electricity (ENTSO-E) policies, the
quality assurance of the reserves are under TSOs responsibility within
continental Europe [194]. A brief summary for regulations in Europe
with offshore wind power in the grid, is presented in [192] for 2016.
Shortly after that, Germany introduced much stricter regulations for the
compensation during mandatory down-regulation [195], stating that
‘‘the available power is to be estimated/forecasted for 60-s intervals for
down-regulated wind farms’’. Additionally, ‘‘1-min standard deviation
of the percentage error of the available power is required to be less than
3.3% (after the pilot phase)’’. Göçmen et al. [192] therefore concludes
that ‘‘[...] the enforced regulations are difficult to comply with, and are
subject to penalty if not met’’ underlining the importance of uncertainty
quantification for (short-term) reserve forecasting.

In Canada, [196] showed that the characteristics of the wind power
forecast error distribution is the main contributor to the level of risk,
which is also a function of the wind production level. Accordingly, their
results suggest that (temporal and spatial) local wind conditions are a
highly important factor for determination and management of risk, as
well as the estimation of the required level of the balancing reserves
within the system. Although this seemed to be counter-intuitive, it was
found that for certain lead times, the overestimation of the anticipated
generation can serve as a virtual balancing reserve, if it can be predicted
as such. The results also revealed the importance of forecast error
classification, for balancing reserve calculations — independent of the
market structure. Their conclusion was that in addition to the standard
deviation of the wind power forecast errors, the potential systematic
biases introduced at each production level should also be accounted
for when estimating and exchanging balancing reserves [196].

6.5. Assessment of uncertainty in the dynamic modelling of turbines

As stated earlier, the (available) power forecasting is very sensi-
tive to the turbine models considered and their operation strategy.
Physics-based approaches in particular rely on a pre-calculated power
coefficient (𝐶𝑃 ) or nominal/optimum power curve for converting wind
speed forecasts to power. However, local (spatially and temporally)
aspects of the meteorology (e.g. humidity, temperature), flow (e.g.
turbulence), turbine characteristics (e.g. control response [197], and
condition of the blades [198]) affect the 𝐶𝑃 and power curve be-
haviour. These deterministic parameters lack the required dynamic
representation of turbine and wind farm performance, and are sub-
sequently important sources of uncertainty [199]. [134] presents a
‘model-free’ approach to convert wind speed to power as an attractive
alternative in order to eliminate the inadequacy of turbine models
to represent the dynamic power output of a turbine under turbulent
inflow.

6.5.1. Use case: Mitigation of uncertainty in turbine power conversion
(Wind speed to power)

In [134], a case study is described to address and reduce turbine
model inadequacies and other uncertainties for reserve power fore-
casting, where recurrent neural networks, via long-short-term memory
(LSTM) neurons, as a single-input, turbine model-free approach for 1 Hz
(available) power forecasts are utilised. The changing inflow conditions
and turbine control settings are captured via transfer learning, where
the network is updated using the most recent observations in the data
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stream. Even under highly turbulent inflow, the (continuously updated)
Fig. 14. The comparison of the available power forecasts under curtailment via: Direct
𝐶𝑃 approach, Current state-of-the-art 𝐶𝑃 based Wind Speed Observer with Kalman
filter (following the maximum rotational speed control strategy for curtailment) and
turbine model-free (or 𝐶𝑃 -free) LSTM network with transfer learning. The shaded area
corresponds to the effects of ±5% over and underestimation of 𝐶𝑃 during curtailment
for wind speed observer results. The LSTM network has no dependency on level of
curtailment, turbine model or estimation of operational 𝐶𝑃 , providing a robust baseline
for control applications of the short-term forecasts. (Originally presented in [134]).

network is shown to comply with the strictest German grid code
requirements mentioned above. To quantify its added value in terms
of uncertainty reduction, 5% uncertainty is added to 𝐶𝑃 , representing
off-performance conditions (e.g. curtailment). As it is ‘model-free’, the
LSTM network is not affected by the 𝐶𝑃 uncertainty introduced. How-
ever, the bias observed in the novel wind speed and power predictions
with Extended Kalman filter is increased significantly, indicating both
under and over-estimation of the available power (with bias rang-
ing from −5% to 6%) under turbine model uncertainty of 5%. The
comparison is shown in Fig. 14.

6.6. Trade-offs between improvements and effort needed to implement op-
erationally

A limiting factor in the further improvement of wind power fore-
casts is the transition of new approaches to operational use. While some
new models can still be implemented well at laboratory level, they
push the limits of available resources in operational mode. This can
be due to the computing power or memory needed, as well as arising
from data quality limitations; per the latter, if the WPF models are not
robust enough against fluctuating or noisy input data, the realisable
improvement might be reduced.

The model-building process requires large amounts of historical input
data, especially the ML approaches. ML models often rely on the
input data being complete, i.e. if there are missing measurements/data,
they have to be substituted by appropriate methods. Such substitution
reduces the quality of the input data, both during training and later
during operational use. The question then becomes: how robust a
more complex approach is, and whether it can provide a good forecast
despite losses in the quality of input data. In cases involving thousands
of wind farms, the training must be automated. Is it still possible in this
scenario to provide high quality training data for the models, even if
the quality control is done automatically?

The cost of training an ML model often comes from the amount
of computations required, known as FLOPs (floating point operations).
These depend on three categories for the ML model in wind power
forecasting: (a) number of parameters, (b) model size, and (c) length
of data set (i.e. which time period from the past is used for training).
The model size depends on the other two categories, because with

more input data a more complex model is needed to represent that
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information. Together with model complexity the number of FLOPs
increases and so does the cost of training. Depending on the algo-
rithm, training must also be performed more often to optimise global
parameters (hyperparameter tuning) or to start the model with different
random initialisation. In addition, depending on the calculation, there
are the costs that are caused by the training time itself. Here, in addition
to the FLOPs, the hidden costs also play a role: time to load data and
loss of performance due to sub-optimal parallel execution [200]. A
significant increase in the complexity of network structures has been
observed in recent years, especially with deep learning approaches. In
general the cost per FLOP has decreased, due to adapted processors
and improved training methods [201]. However, model complexity as
well as training ‘administration’ (parallel processing, data handling and
communication) continues to increase.

In operational use of a forecast model, the increased computing time
for more complex models should be mentioned. For machine learning
approaches this is moderate, but for NWP models it increases consid-
erably with finer spatial resolutions. In addition, there is the memory
requirement: halving the horizontal NWP grid spacing results in four
times the number of calculation points. Reducing the grid spacing
also increases the degrees of freedom in the numerical solutions, and
potentially the uncertainty of the model results. Additionally, it has
been proven that improvements in NWP forecasts as a result of higher
spatial resolution are often lost in the conversion to wind power, due to
increased risk of phase errors (the so-called double punishment problem
described in Section 6.2.2 and Fig. 11). As a result, the accuracy of
wind power forecasts can decrease with higher resolution, while the
uncertainty can increase significantly with increased resolution [8].
From a computational perspective, doubling the resolution means more
than quadrupling the required CPU time (the temporal resolution usu-
ally must increase too, and often the vertical resolution is increase as
well), which must be justified by robust improvements resulting from
the higher resolution.

The situation of NWP models is similar for ML approaches, with
more complex ML models requiring considerably more memory. This
can lead to a trade-off: do all ML models have to be persistently held in
memory at the same time (due to time constraints), or is there enough
time to load and execute them one after the other? The bottleneck
can be either working memory or access to storage. We remind here
of the operational situations, with several thousand wind farms being
forecasted simultaneously, and one where the calculation must be done
within only a few minutes (depending on the actuality of the forecast).
In the end, a balance has to be found between the available computer
capacities, maximum calculation time, and the realisable improvement
of the new forecast model in operational mode. Typically the effort does
not increase linearly, but rather exponentially with the improvements
that may be achieved. Therefore, the potential model improvements
must be assessed with a thorough cost/benefit analysis, as the gain to
be expected in the operational mode might be only marginal with a
high cost attached to it.

7. Uncertainty and validation

7.1. Uncertainty in verification & validation results

In a recent research study, the uncertainty of a NWP forecast and its
validation has been investigated [202]. The authors verify and validate
model improvements through one or more common data sets against
model results; they also verify the validation methods and quantify the
uncertainty of the results, dependent on the method and data set. The
authors distinguish between verification and validation (V&V), with
definitions found in e.g. the Sandia V&V Framework [17]. In these
definitions, ‘‘..verification is concerned with checking the mechanics
of the model implementation (software code) rather than checking
that the model’s physics are correct. Because the code mechanics may
include the use of discrete equations to represent processes that were
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defined using partial differential equations, there is the risk that numer-
ical errors may be introduced; verification seeks to ensure that these
errors have been identified and minimised. A model may also include
iterative processes to find a solution, which also requires checking.
Validation, on the other hand, is determining the degree to which the
model represents the real world for a particular application. Validation
should be carried out after verification to ensure that the validation
process identifies shortcomings in the model physics and representa-
tion. Validation of an unverified model may otherwise just identify
numerical or coding problems’’ [202]. [202] proposed in their V&V
strategy to use well-defined (i.e., given model data and observations)
test cases that users can check their validation code on. They found that
different validation results were seen due to different interpretations
of time stamps (e.g., values of 10-min averages interpreted at the
beginning or middle of the averaging period), and due to users applying
different averaging techniques of model simulations in the horizontal
and vertical (i.e., matching observation and model locations) [203].

7.1.1. Ad-hoc versus formal validation
Ad-hoc or quantitative validation is a useful tool for both mod-

ellers/forecast providers and instrumentation manufacturers. Typically
a few instruments are used for a limited period of time, and compared
to model results. Conversely, modellers/forecast providers that want
to test their improvements quickly for critical cases use such short
periods to compare qualitatively their simulation with observations at
a few sites. Such ad-hoc validation is useful in a development phase,
but contains a lot of uncertainty in the results (as to whether or not a
certain improvement is only valid locally, for specific cases, or more
generally). In order to validate an improvement in general terms, a
formal validation is required. Formal, or quantitative validation is a
bigger effort, where maybe a few or hundreds of different observations
and parameters are compared to a forecast output using formal agreed-
upon metrics. Such validation is also providing information about the
forecast’s or model’s performance [202]. The same syntax of validation,
in the form of building validation frameworks, has been a subject
in the Recommended Practices for Forecast Solution Selection (Part
3) of IEA Wind Task 36 [186]. Such formal, qualitative validation
is recommended to reduce and mitigate the uncertainty associated
with single metrics that may contain quantitative information about
a specific forecast product, but which are not qualitative performance
measures.

7.1.2. Representativeness, significance and relevance
In the IEA Wind TCP Task 36 guideline [186], it is mentioned that

‘‘uncertainty is an inherent characteristic of the forecast evaluation
process. An objective of the design and execution of a forecast vali-
dation is to minimise the uncertainty, and thereby reduce its impact
on the decisions associated with forecast selection or optimisation’’. In
order to minimise forecast evaluation uncertainty, the guideline [186]
names the main sources of uncertainty in the validation step in terms
of three key attributes: (1) representativeness; (2) significance; and
(3) relevance. The guideline goes so far as to suggest that if any one
of these attributes are not satisfactorily addressed, than a forecast
validation will not provide meaningful information to the forecast
solution decision process [186].

7.1.3. Forecast value versus quality
One topic that is rarely discussed in journal publications is the

difference between quality of a forecast and its value to the user [204].
In academia the quality of a forecast, in terms of some specific or
accepted (standard) quality measures, is the driving factor for the
development of new algorithms and methodologies. The quality of a
method or algorithm however does not a priori also provide value to a
specific user; i.e. in advance it is not known if a specific forecast will

benefit the end-user while satisfying the user’s requirements.
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Validation has an inherent uncertainty, and being at the ‘end’ of
the forecasting chain, is highly underrated in its value for the end
user. Bessa et al. [188] investigated validation of forecasts on their
goodness of fit, and how to build in compromises regarding conflicts in
validation criteria. Such conflicts typically arise when the skewness of
a forecast’s probability distribution benefits one party, but where this
particular skewness implies a degradation of value to another party.
As an example they mention a typical situation: allowing a systematic
forecast bias in order to attain a certain quality measure based on an
average statistical metric, which causes system security issues for a
system operator that has to physically keep the electric grid in balance.
If the system operator receives a significant number of biased forecasts,
wrong decisions will likely be made regarding other generating units,
specifically expensive reserve allocations. Such conflicts of interest
are not limited to different external parties. It is not uncommon that
such conflicts are observed within organisations, when the evaluation
process lacks the priority (or authority) it needs in order to establish
an incentivisation, with an evaluation for the forecast provider to train
and tune forecasts to serve a specific purpose.

7.2. Usage case: Uncertainty validation in ramp forecasting

As described above, it is well known (e.g. Part 3 of [186]) that
the commonly applied metrics of mean absolute error (MAE), mean
squared error (MSE), and root-mean square error (RMSE) – which are
still used to a large extent in the industry to validate wind power
forecasts – alone are only capable of evaluating forecasts for specific ap-
plications under specific circumstances. For ramp forecasts, this is even
more pronounced (see also Section 6.2). For example, Potter et al. [185]
observed that MSE-based metrics tend to over-penalise large errors
and are hence not appropriate for ramp forecasting assessment. They
suggest using three metrics in concert, to verify both absolute errors
(MAE and bias) and the standard deviation around the absolute error
(StDev) [171,172,175,185].

7.2.1. Validation with incentivisation
Standard error metrics may provide some indication of the goodness

of a ramp forecast. However, they do not account for the uncertainty
in ramp occurrence. If this is the aim, we have to define a set of
measures that count the hits, misses and false alarms of a ramp event
and distinguish between economic value and system security by also
counting the reserve spill, defined as non-allocated reserve due to
forecast inaccuracies. Contingency tables are useful tools to get a first
estimate of the uncertainty range over which a ramp forecast should
be accountable. Such a procedure then becomes an optimisation or
incentivisation for the forecast provider, to tune forecasts towards the
ranges in which a hit or miss is defined. The word ‘‘incentivisation’’ may
indicate that economic value counts more than system security. In this
context, we use incentivisation as a kind of optimisation criterion that
could essentially be used for incentivisation of a ramp forecast product
(see Fig. 15).

Beyond contingency tables, one type of metric which can be used for
the user-targeted uncertainty optimisation mentioned above is a cost
function. To demonstrate by means of example: we start by defining
a cost function that penalises misses, and especially particularly large
misses; this would typically be used to ensure system security, and
would not necessarily impact any economic value. This cost function il-
lustrates the particular importance of sufficient penalty for large misses,
to ensure that the ramp forecast is sufficiently optimised towards grid
security. A cost function serving grid security does not need to be more
complicated than the following equation:

cost = 4|𝑃missing| +
1
2
|𝑃spill|, (2)

where 𝑃 is power (in MW). The lowest in (2) is achieved if no spill
nor missing power are forecasted, but it is 8 times more expensive to
miss than spill. Spill may or may not include cases where there is excess
25
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wind or solar power. In other words, the coefficients can differ between
different reserve products, accounting for the ramping.

There is reason to believe that a simple cost function like the above
will work well in extreme cases [27]. Any high speed shut-down (HSSD)
event should be covered, when misses are penalised sufficiently. If that
would not be the case, then it is because the forecaster does not (try
to) predict the HSSD, due e.g. to it being perceived as a rare event with
low likelihood of forecast success.

7.2.2. Index validation with categorical statistics
Hirata et al. [181] introduce an index validation with an error or

so-called ‘confusion’ matrix, for evaluation of their ramp forecasts. It
is similar to a contingency table for categorical statistics in meteorol-
ogy, but mostly used for classification of errors in machine learning
techniques. In comparison to contingency tables, the hits in the error
matrix are named true positives (TP), the correct negatives are named
true negatives (TN), the misses of the contingency table are now
false positives (FP) and false alarms are false negatives (FN). Hirata
et al. [181] overall goal is to ‘‘maximise the true positives and true
negatives and to minimise the false positives and false negatives; in
other words, a perfect forecast would produce only hits and correct
negatives, and no misses or false alarms’’.

In the statistical machine learning matrix, the sensitivity or probabil-
ity of detection (POD or hit rate) indicates how good the forecast is to
predict ramps and was defined by Hirata et al. [181] as

𝑆𝑉 = 𝑃𝑂𝐷 = 𝑇𝑃
(𝐹𝑁 + 𝑇𝑃 )

(3)

where TP is true positive, FN is false negative. The specificity or
probability of false detection (false alarm rate) indicates how good the
forecast is to predict that no ramp has taken place, and was defined as

𝑆𝐶 = 𝑇𝑁
(𝐹𝑁 + 𝑇𝑁)

(4)

where TN is the true negative and FN the false negative. The SC
(FAR) score is sensitive to false alarms, but ignores misses and can
therefore be improved by issuing fewer ‘‘yes’’ forecasts to reduce the
number of false alarms [205]. However, it is an important component
of the relative operating characteristic (ROC), which is also widely used
in probabilistic forecast verification. The precision or false alarm ratio
hows how accurate the prediction for negatives agrees with the true
utcome of false alarms and was defined by Hirata et al. [181] as

𝐴𝑅 = 𝑇𝑁
(𝐹𝑁 + 𝑇𝑁)

. (5)

Lastly Hirata et al. [181] looked at the odds ratio

𝑂𝑅 = 𝑇𝑃 ∗ 𝑇𝑁
(𝐹𝑃 ∗ 𝐹𝑁)

. (6)

This measures the ratio of the odds of making a hit to the probability
of a false alarm and takes prior probabilities into account, but gives
better scores for rarer events [206]. For this reason it is usually not used
in meteorological validation [207]. Instead the odds ratio skill score
(𝑂𝑅𝑆𝑆) is often applied. It looks at the improvement of the forecast
over random chance, and is independent of the marginal totals, i.e. it
is difficult to hedge [208]. The odds ratio skill score is defined as [207]:

𝑂𝑅𝑆𝑆 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)
(𝑇𝑃 ∗ 𝑇𝑁) + (𝐹𝑃 ∗ 𝐹𝑁)

(7)

One other interesting metric is the threat score or critical success in-
ex, as it considers overall how well forecasted ramp events correspond
o observed events. In [209] it is stated that ‘‘..with this score, the
raction of forecast events that were correctly predicted is measured.
t is a kind of accuracy measure, where correct negatives have been
emoved from consideration, i.e. it is only concerned with forecasts that
ere in a pre-defined range’’. In [210] it is concluded that ‘‘..while it

s sensitive to hits, it penalises both misses and false alarms. There is
owever no distinguishing of the forecast error sources, so it, in general,
ill score more poorly for rare events since some hits can occur purely

ue to random chance’’.
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Fig. 15. Schematic plot of a typical uncertainty time series of reserve requirements due to power ramps with zero (difference between schedule and forecast equals zero) as the
basis and positive ramp uncertainty in light blue, negative ramp uncertainty in blue, spill in purple and outliers not fulfilling the reserve requirement reaching out into the magenta
area.
7.2.3. NWP uncertainty quantification with NOAA’s ‘‘ramping tool & met-
ric’’

The ramping tool and metric (RT&M) described by Bianco et al.
[187] can be employed as a use case for the validation of ramping and
UQ in the wind ramp forecast process coming from the NWP side. The
tool has three components:

1. identification of wind ramp events;
2. matching of wind forecast and observed power ramp;
3. calculation of a skill score for the forecast.

The tool was developed to test the ability of a model to forecast ramp
events for wind energy [187]. The users can compare forecasts from a
NWP model to observations from a mast for specifically selected cases.
The cases are selected by defining a critical ramp rate in the power
observations. The accompanying validation code then computes the
skill score of the forecast’s phase, duration, and amplitude in capturing
the ramp event. Users of the tool can integrate skill definitions on
changing the range of ramping and the associated time interval that
may cause a critical situation for the user. The tool has been designed
in a flexible way to accommodate other users’ definitions for critical
ramping, and lets them modify all ranges for their specific purpose(s).
If more extreme events are an issue for the user, a weighting matrix
can be applied for the skill score validation. The tool, its features, and a
use case has been described in detail by Bianco et al. [187] in an open-
access article. The ramp tool itself can be found on the NOAA Earth
System Research Laboratory (ESRL) website.9 The tool is run through a
graphical user interface (GUI) in which one selects from several options
to customise it to specific needs [202].

8. Summary and trends

8.1. Summary and highlights

This review has given a detailed look into the different sources
of uncertainty, propagation of these uncertainties towards the final
forecast, and possible uncertainty mitigation methods for wind power
forecasting. Here we summarise the key points.

Uncertainty sources in Wind Power Forecasting.
In order to propagate uncertainty through the forecasting model

chain, it is necessary to define the sources of uncertainty in each of
the steps — from planning to building and operating a wind farm,

9 The ramp tool may be found at https://www.esrl.noaa.gov/psd/products/
ramp_tool/, and is available as either an executable file or a set of Matlab user
files.
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and then transmission and sale on markets. We define and discuss the
various aspects of data, such as data quality, availability and variety,
sample size and representativeness, data contamination, as well as mea-
surement uncertainty stemming from instrumentation. Thereafter we
dove into the modelling approaches and technical routes of wind power
forecasting and the associated uncertainty, as well as typical algorithms
and model settings; the latter included model complexity, parameters
and input uncertainty. We also defined uncertainty associated with
wind resource, with wind-to-power conversion (covering rotor inertia
and control), as well as uncertainty connected with turbine availability
and performance variations.

Uncertainty evaluation and mitigation in the planning phase.
The planning phase of a wind power project has to deal with many

uncertainties. In this work we limited our review to the evaluation of
pre-construction uncertainties and how to mitigate such uncertainty by
applying ensemble weather forecasts in order to design the resource
assessment for the production of ‘‘bankable’’ data weighing risk against
uncertainties.

Uncertainty evaluation and mitigation in the Operation Phase.
The operation phase, in which a wind farm generates the electricity

to the grid, produces the most uncertainties during the process of
both building and using a wind power forecasting system. In this
phase, DATA would be the first priority to look into for improving the
certainty and reliability of the forecasts. Here we define DATA to have a
wide concept including NWP, historical training sample, real-time data
flow, turbine condition and so on. Therefore, we firstly reviewed how
‘‘added’’ information about weather and wind turbine as well as more
features in model inputs can help the uncertainty mitigation. In order to
reduce the uncertainty of NWP, which generates the most uncertainty
to day-ahead forecasting, we reviewed the methods of data assimi-
lation and data-driven correction using wind turbine measurements,
and the ensemble approach. Historical training samples also have to
be carefully cleaned and selected to ensure its authenticity and rep-
resentativeness. During the operation and maintenance, availability of
real-time data flow should be improve by detecting abnormal data and
filling missing data; moreover wind turbine performance and models
should be calibrated to mitigate uncertainties.

Uncertainty evaluation and mitigation methods in the Market
Phase.

The market phase, or the phase in which wind power starts to be
traded in a power exchange is characterised by adding one more level
of uncertainty into the forecasting process for wind power production.
In this phase, incentives and policies need to consider uncertainties that
may arise in the case of missing transparency, as well as the distribution
of capacity and infrastructure available to distribute the generation.
The uncertainties forecasting processes have to deal with in a system

https://www.esrl.noaa.gov/psd/products/ramp_tool/
https://www.esrl.noaa.gov/psd/products/ramp_tool/
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with a market have been described and analysed with focus on state
of the art challenges and already existing mitigation measures for high
penetration areas, commercialised balancing and balancing over inter-
connections. Some future aspects on the impacts of storage on small
and larger scales as well as price forecasting has been touched and
references provided for further study of these subjects.

Advanced prediction methods to mitigate uncertainty.
Uncertainty in weather and wind power forecasting has been re-

searched for many years and a number of methods to mitigate un-
wanted uncertainty has been developed. We reviewed in this work
advanced artificial intelligence (AI) methods and worked through a
number of forecasting approaches such as ramp forecasting, cut-out
wind speeds and high-speed shutdown, looked into the quantification
of uncertainty for reserve forecasting, assessed the uncertainty in the
dynamic modelling of wind turbines and discussed typical trade-off
uncertainties of forecast improvements versus required resources for
improvement implementations.

Uncertainty in Verification and Validation Results.
Validation and verification is a crucial part for any project and

subject to different types of uncertainty. This review has been lim-
ited to the description of uncertainty in validation results, where we
distinguished between ad-hoc versus formal validation, described the
importance of representativeness, significance and relevance of verifi-
cation results; consideration of different attributes of forecast value and
forecast quality was also made. Additionally, we presented some use
cases as examples for validation with incentivisation, index validation
with categorical statistics, and NOAA’s Ramping Tool & Metric for
quantification of weather forecast uncertainty.

8.2. Trends and future work

Current topics in the forecasting community’s conferences, work-
shops and publications, both in weather forecasting and wind power
forecasting, show that uncertainty in forecasting has been recognised
as a part of the forecasting chain that needs attention. The question
is no longer whether there are uncertainties to deal with, but rather
how to deal with, quantify, and communicate recognised uncertain-
ties in the forecasting processes in a way that can address end-users’
applications. There are a number of gaps in the use of uncertainty
information in end-user applications, and in the way uncertainties can
be communicated. In other words, a paradigm change has happened
regarding the recognition of uncertainties, while the integration and
implementation of methods to deal with the new information is still an
outstanding task for researchers, developers and end-users—with many
unanswered questions. One of those questions is the quantification of
the various uncertainty sources, to support this more qualitative review
with numbers.

One of the trends that can be observed is the increasing level
of interdisciplinary work across various areas, such as meteorology,
(wind) power engineering, applied mathematics, physics, sociology,
and public policy. The interconnection of model input/output and
political inter-dependencies in the integration of wind power into the
electrical grid, and renewables in general, points to the necessity of a
new definition for forecasting as ‘‘integrated forecasting’’; this is in line
with other disciplines, such as integrated design of wind power systems
and integrated wind farm control.

Another trend is the extended horizon of forecasts from short to
medium-term down to minutes and second-ahead forecasting, as well
as seasonal or long-term forecasting; the latter includes quantification
of uncertainties in future production patterns, and the impact of climate
change. In both new forecast horizons, but especially in the minute or
second-term horizons, we can see a trend to better interpret and use
different types of measurements, as well as observations from volume
based instrumentation, for better UQ in wind power forecasting.

As a result of this review and discussions about the state-of-the-art
27

in uncertainty quantification through the modelling chain of wind and v
wind power forecasting, we have identified a number of outstanding
topics. These span the areas of resource assessment, wind power fore-
casting, and validation, as well as market instruments, and are listed
below.

• Resource Assessment

– Uncertainty in wake modelling over terrain, and wake-
associated inter-farm effects;

– top-down/entrainment effects on wind farms;
– wind farm blockage, its stability dependence, and interac-

tion between farms;
– uncertainty quantification (UQ) for advanced physical flow

modelling, i.e. RANS-CFD, over complex terrain.

• Wind Power Forecasting and Uncertainty

– Development of a standardised guideline to validate the
uncertainty in wind power forecasting;

– development of an ‘exemplary uncertainty chain calculation
platform’, illustrating the uncertainty chain using data from
a global set of wind farms to build up standardised and
public data sets for comparisons of different WPF and un-
certainty analysis methods — for the forecast developers,
providers and end-users.

• Market Instruments

– Development of a guideline on uncertainties resulting from
transparency and omissions, particularly for emerging mar-
kets.
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