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Multi-Dimensional Network

O Different behaviors lead to heterogeneous Interactions
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Heterogeneous Interaction Analysis

O A latent community structure is shared in a
multi-dimensional network
m E.g. a group sharing similar interest

O Goal: Find out the shared community
structure by integrating the interactions at
different dimensions
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Why not just friends network?
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Recap of Modularity

O

Modularity: A measure that compares the within group interaction
with uniform random graph with the same node degree distribution

In a network of m edges, for two nodes with degree d; and d,,
respectively, the expected number of edges between them:

d;d;/2m

The connection strength in a group: Z Aij — didj/2m
ieC,jeC
To partition the network into multiple groups, we maximize

1

C icC.jeC




Modularity Matrix

O Modularity can be formulated in a matrix form
1
Q= —Tr(S"BS)

2m
O B is the modularity matrix

B?;j — A@J — didj/Qm

o With spectral relaxation, S corresponds to the top
eigenvectors of the modularity matrix B



Modularity in M-D Networks

O Average Modularity Maximization (AMM)

m Average the network interaction of different dimensions
- ]

A= 541+ A2+ -+ Ap)
O Total Modularity Maximization (TMM)
= the total sum of modularity at different dimensions

max(Q1+ Q2+ -+ Qp)

O Potential Cons

= Not sure whether the interaction or modularity of different
dimensions are comparable

m Can be sensitive to networks of noisy dimensions



Principal Modularity Maximization

Multi-Dimensional | .57 “celals
Networks & ®=s. afa

Extract Structural
Features via
Modularity
Maximization

Denoise the interaction at each dimension

e These structural features are not necessarily similar, but
are highly correlated.

e Transform these features into a shared space such that
their correlation is maximized.

e Solution: Generalized Canonical Correlation Analysis (CCA)



Canonical Correlation Analysis
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Principal Component Analysis

(PCA) eigvenvector of the covariance matrix



Principal Modularity Maximization
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Overview of PMM

Structural Feature
Extraction

Cross-Dimension
Integration
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PMM Algorithm

O Given: a multi-dimensional network
O Output: shared group structure

o Algorithm:

m Phase I;: Extract structural features from each dimension of the
network

m Phase Il: Combine all the extracted features of each dimension
and perform PCA

= Apply K-means to obtain the discrete partition



Experiments

0 Compare different community detection strategies
= AMM, TMM, PMM

= Modularity maximization on a single dimension
O Verify the sensitivity to noise for different methods

o Data Sets

m Synthetic Data
controlled noise and ground truth information

m Real-World Data
collected from YouTube



Synthetic Data

O 4 dimensions, 3 communities
o 50, 100, 150 members respectively




Pertormance on Synthetic Data
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Average Performance

Table 1: Average Performance Over 100 Runs

Strategy Performance

Aq (.7237 + 0.1924

Single-Dimensional Ao 0.6798 == 0.1333

Aj .6672 + (.1848

Ay 0.6906 = 0.1976

AMM 0.7946 = 0.1623

Multi-Dimensional TMM 0.9157 = 0.1137
PMM 0.9351 =0.1059

Single < AMM < TMM < PMM
PMM: Low Variance




YouTube Data

O Collect contact network, subscription network, and
users’ favorite videos

O Crawl 30,522 user profiles reaching in total 848,003
users and 1,299, 642 favorite videos

O 15,088 active users

o Construct a 5-dimensional network
Contact

Share Contacts

Share subscription

Followed by the same set of people
Share favorite videos
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Evaluation on Real-World Data

O Challenges
= No ground truth
= Need a smart way to do the comparative study

O Evaluation -- Cross Dimension Validation
m Follow the idea of cross validation

m For a network of D dimensions
learn the community structure from (D-7) dimensions
evaluate it on the remaining dimension in terms of modularity



Performance on YouTube Data

<

Methods Aq Ao Aj Aa As
Aq — 0007 .0008 .0008 .0002
Ao 1548 — 0133 0361 0076
Aj 0712 0275 — 0446 0140
Ay 0584 0569 0186 — 0108
As 0314 0135 .0095 0180 —

AMM .1096 0001 0018 0053 0070
TMM 3740 1856 1246 .1800 0706
~PMM 4085 2063 1307 1844 0947

E——

> PMM tends to be the winner



PMM compared with AMM & TMM
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Conclusions & Future Work

O Networks in social media are multi-dimensional and noisy

O Propose an effective Principal Modularity Maximization to extract the
shared group structure
m Extract Structural Features via Modularity Maximization
m Perform Cross-Dimensional Integration via PCA

O Can be applied similarly to other spectral clustering methods

o Future Work:

m Determine whether two network dimensions share the same community
structure?

= Need to remove noisy interaction dimensions?
= One actor assigned to multiple different groups?
= Scalability?
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Weighted AMM & TMM
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Assigning a proper weight to each dimension is not easy!



