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ABSTRACT

Context. Standing transverse oscillations of coronal loops are observed to operate in two regimes: rapidly decaying, large amplitude
oscillations and undamped small amplitude oscillations. In the latter regime the damping should be compensated by energy supply,
which allows the loop to perform almost monochromatic oscillations with almost constant amplitude and phase. Different loops
oscillate with different periods. The oscillation amplitude does not show dependence on the loop length or the oscillation period.
Aims. We aim to develop a low-dimensional model explaining the undamped kink oscillations as a self-oscillatory process caused by
the effect of negative friction. The source of energy is an external quasi-steady flow, for example, supergranulation motions near the
loop footpoints or external flows in the corona.
Methods. We demonstrate that the interaction of a quasi-steady flow with a loop can be described by a Rayleigh oscillator equation
that is a non-linear ordinary differential equation, with the damping and resonant terms determined empirically.
Results. Small-amplitude self-oscillatory solutions to the Rayleigh oscillator equation are harmonic signals of constant amplitude,
which is consistent with the observed properties of undamped kink oscillations. The period of self-oscillations is determined by the
frequency of the kink mode. The damping by dissipation and mode conversion is compensated by the continuous energy deposition
at the frequency of the natural oscillation.
Conclusions. We propose that undamped kink oscillations of coronal loops may be caused by the interaction of the loops with
quasi-steady flows, and hence are self-oscillations, which is analogous to producing a tune by moving a bow across a violin string.
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1. Introduction

Kink oscillations of solar coronal loops have been intensively
studied for almost two decades since their observational detec-
tion in the extreme ultraviolet (EUV) band by Aschwanden et al.
(1999) and Nakariakov et al. (1999). It is commonly accepted
that these oscillations are standing kink modes of coronal loops,
with the periods determined by the loop length, its magnetic
field, and the density of the plasma inside and outside the
loop (e.g. Nakariakov & Ofman 2001). This interpretation was
based on the theory of fast magnetoacoustic modes of coro-
nal loops modelled as field-aligned plasma cylinders that was
developed by Zaitsev & Stepanov (1982) and Edwin & Roberts
(1983). Alternative models interpret kink oscillations as the
magnification of photospheric motions by the sensitivity of the
equilibrium magnetic topology to a small footpoint perturba-
tion (Schrijver & Brown 2000), displacements of coronal loops
by fast wave trains created by geometrical dispersion in the
stratified atmosphere (Uralov 2003), or a pattern of interfer-
ence fringes produced by fast magnetoacoustic waves guided
by a coronal arcade (Hindman & Jain 2014). A recent statistical
study, however, demonstrated that the oscillation period scales
with the length of the oscillating loop (Goddard et al. 2016). This
finding supports the interpretation, at least in the majority of ob-
served cases, in terms of a model invoking fast magnetoacoustic
eigen modes of individual coronal loops or their bundles.

Kink oscillations of loops are detected to appear in two
different regimes: large-amplitude rapidly decaying oscillations
and small-amplitude undamped oscillations (Wang et al. 2012;
Nisticò et al. 2013). In the former regime the loop displacement
reaches several minor radii of the loop and, typically, the oscil-
lation decays in a few oscillation cycles. In the latter regime the
amplitude is usually smaller than the minor radius of the loop,
and remains constant or low-varying for a number of oscillation
cycles (Anfinogentov et al. 2013, 2015). The same loop may os-
cillate in both these regimes, that is before and after some impul-
sive excitation (Nisticò et al. 2013). Interestingly, the oscillation
period remains the same in both regimes.

Damping of kink oscillations is commonly attributed to cou-
pling of the collective kink oscillation with Alfvénic torsional
motions localised in the vicinity of a narrow resonant layer
(e.g. Ruderman & Roberts 2002; Goossens et al. 2002). Recent
results demonstrated that the oscillation amplitude experiences
either exponential or Gaussian time decay (Hood et al. 2013;
Pascoe et al. 2016), however in a number of cases it is difficult
to distinguish between these two scenarios.

Large-amplitude, rapidly decaying kink oscillations of
coronal loops are usually excited by low coronal erup-
tive events that mechanically displace them from equilibrium
(Zimovets & Nakariakov 2015). Small-amplitude undamped
kink oscillations are observed continuously without any visible
driver. Similar to the oscillations in the decaying regime, the
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Fig. 1. Example of undamped oscillations of coronal loops, illustrated
by a time distance map made for a slit directed across the oscillating
loop. The oscillation was measured on 8 March 2011, beginning at
19:40 UT in AR 11165 at 171 Å with SDO/AIA.

period of undamped kink oscillations was found to scale with
the loop length (Anfinogentov et al. 2015). Assuming that the
small-amplitude undamped kink oscillations are subject to the
same damping mechanism as the large-amplitude, rapidly de-
caying kink oscillations, there should be some mechanism that
continuously supplies the oscillating loops with energy to com-
pensate the damping.

In this Letter we discuss possible mechanisms that could lead
to sustained undamped kink oscillations of coronal loops. We
demonstrate that the observational properties of these oscilla-
tions are, in particular, consistent with the outcomes of a model
accounting for the negative friction between the loop footpoints
and surrounding super-granulation flows.

2. Observational results

Undamped oscillations are detected as periodic, almost har-
monic displacements of coronal loops. In Fig. 1 we show an
example of such a process that is detected at 171 Å with the
Atmospheric Imaging Assembly on the Solar Dynamics Ob-
servatory (SDO/AIA). This oscillation was first analysed by
Wang et al. (2012). During the oscillation, its amplitude expe-
riences some variation, however it is typically much weaker
and at much longer timescale than in the rapidly decaying
regime. Sometimes up to 10–20 cycles of oscillations with al-
most constant amplitude are observed (e.g. Wang et al. 2012;
Nisticò et al. 2013). Using the observations of undamped oscil-
lations in 21 non-flaring active regions (NOAA 11637–11657)
observed in January 2013 in the 171 Å channel of SDO/AIA
(Anfinogentov et al. 2015), we constructed scalings of the oscil-
lation amplitudes with the period and loop length (Fig. 2). It is
evident that the displacement amplitude gradually increases with
the length of the oscillating loop and oscillation period. In con-
trast, the velocity amplitude that is estimated as the displacement
amplitude multiplied by 2π and divided by the oscillation period,
does not show any dependence on the length and period.

3. Models based on driven oscillations

Consider different models that could be responsible for the un-
damped oscillations of a damped oscillator. Nakariakov et al.
(2009), Nisticò et al. (2013), and Anfinogentov et al. (2015) sug-
gested describing the displacement a(t) of the loop top by a
driven damped harmonic oscillator equation,

d2a(t)
dt2

+ δ
da(t)

dt
+ Ω2

Ka(t) = f (t), (1)
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Fig. 2. Scalings of different parameters of undamped kink oscillations
and oscillating loop parameters. Top left: displacement amplitude vs.
loop length. Top right: velocity amplitude vs. loop length. Bottom left:
displacement amplitude vs. oscillation period. Bottom right: velocity
amplitude vs. oscillation period.

where δ is the damping coefficient, ΩK is the natural fre-
quency of the kink oscillation, and f (t) is an external driving
force that compensates damping caused by dissipation and/or
mode conversion. The damping coefficient can be obtained
empirically from the large-amplitude, rapidly damped oscilla-
tory regime. The excitation of loop oscillations by harmonic
and random footpoint motions has also been addressed in 2D
and 3D models (e.g. Ofman & Davila 1995; Poedts & Boynton
1996; Berghmans & Tirry 1997). The most attention has been
paid, however, to mode coupling and energy issues.

There are difficulties in reproducing the observed properties
of undamped oscillations in terms of model (1) with a harmonic
driver (i.e. 5 min oscillations of the loop footpoints). If the ex-
ternal force f (t) is harmonic with the cyclic frequency ω0, as
proposed in, for example Nisticò et al. (2013), the amplitude of
the driven solution should depend on the difference between the
driving force frequency and the natural frequency ΩK. In the
steady state, the oscillation occurs at the driving frequency and
the driven oscillation amplitude is inversely proportional to the
difference Ω2

K − ω
2
0. In other words, the amplitude of a harmon-

ically driven, damped oscillator is a Lorentz curve, which has a
maximum at the natural frequency ΩK, but falls off rapidly for
mismatching frequencies. Thus the loops with kink frequencies
close to the driving frequency should show oscillations with the
largest amplitudes. In other words, the scaling of the oscillation
amplitudes with periods should have a pronounced peak. How-
ever, the observed dependence of the displacement and velocity
amplitudes on the oscillation periods (Fig. 2) does not have any
peak at a certain frequency. The frequency ΩK is prescribed, in
particular, by the loop length (Edwin & Roberts 1983), however,
the scaling of the amplitude with the loop length does not have
any peak either. Also, asymptotically, the damped driven oscil-
lator oscillates with the frequency of the driver. It is not clear
how the harmonic driver could have different, but stable frequen-
cies ranging from 60 s to 600 s, as is detected in observations
(Anfinogentov et al. 2015).

Another possibility is the driving force to be a continuously
operating random function, f (t) = R(t), as it was suggest in,
for example Anfinogentov et al. (2015) for the interpretation of
decayless kink oscillations. The random driver could be associ-
ated with granulation motion near footpoints of the oscillating
loop. This mechanism was considered in De Groof et al. (1998),
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Fig. 3. Typical oscillations of a damped oscillator with a continuously
operating random driver. Left: the random driving function. Right: the
driven oscillation. The time is shown in units of oscillation periods,
2π/CK. The units of the vertical axes are arbitrary.

De Groof & Goossens (2000) in the context of coronal heating.
Figure 3 shows a typical response of a damped harmonic oscil-
lator to random driving. It is evident that the behaviour of the
loop is different from shown in Fig. 1; both oscillation phase
and amplitude experience intermittent variation. A similar result
was obtained by De Groof & Goossens (2002) for a model that
accounted for mode coupling. Interestingly, this behaviour re-
sembles the regime studied in Nisticò et al. (2014), thus it may
occur in the corona, but not in the regime discussed here.

In model (1), oscillations with the natural frequency could
occur if the system is from time to time excited by short pulses.
In this case, however, the resultant signal would be a series of
exponentially decaying oscillation trains, which is not consistent
with the observations either.

4. Self-oscillatory model

A possible way to compensate for the dissipation losses, while
keeping the oscillation frequency and quasi-monochromaticity,
is if the interaction of the loop with the surrounding moving
medium is not “stiff”, but slippery. Consider a mechanical ana-
logue: a spring pendulum with the weight on a rough conveyor
belt moving at a constant speed v0 (Fig. 4). Its equation of
motion is

d2a(t)
dt2

+ δ
da(t)

dt
+ Ω2

Ka(t) = F

(

v0 −
da(t)

dt

)

, (2)

where on the left-hand side we use the same notations as in
Eq. (1) with the dissipative parameter δ accounting for, for ex-
ample the dissipation in the spring. The function F describes the
friction between the load and the belt, which depends on their
relative speed. Because of the dependence of F on da/dt, Eq. (2)
is, in general, non-linear. Making the Taylor expansion of the
function F, we obtain the Rayleigh oscillator equation,

d2a(t)
dt2

−















∆ − α

(

da(t)
dt

)2












da(t)
dt
+ Ω2

Ka(t) = 0, (3)

where ∆ is the difference of the linear frictions with the belt and
in the spring, and α a constant that depends on v0 (e.g. Rayleigh
1945). In the Taylor expansion the linear term was set to zero,
as it would result in a uni-directional friction force bias. By a
simple substitution, Eq. (3) may be rewritten as the Van der Pol
equation. Originally, Eq. (3) was derived by Lord Rayleigh for
modelling the oscillations of a clarinet reed.

If the linear friction between the load and the belt is stronger
than other dissipative processes, for instance in the spring, the

Fig. 4. Sketch of the proposed analogy between a coronal loop interact-
ing with a supergranulation flow, a “string” and a “bow”, respectively,
and a spring pendulum on a steadily moving conveyor belt.

Fig. 5. Self-oscillatory solutions of the Rayleigh equation for the initial
amplitude that is smaller (left) and larger (right) than the limit cycle
amplitude. The time is shown in the units of oscillation periods, 2π/CK.
The units of the vertical axis are arbitrary.

parameter ∆ is positive. This corresponds to the case of the effec-
tive negative damping, also known as over-stability. In this case
the oscillation amplitude grows exponentially, until it reaches a
certain amplitude prescribed by the parameters of the Rayleigh
oscillator equation, and corresponding to a limit cycle. Math-
ematically this effect is controlled by the non-linear term in
the square brackets, which accounts for the finite amplitude ef-
fects. In the case of a large initial amplitude, the solution de-
creases to the limit cycle value. For small amplitudes, the limit
cycle period coincides with the period 2π/ΩK. Figure 5 demon-
strates two scenarios of the excitation of oscillatory solutions of
Eq. (3) for the initial amplitude that is larger and smaller than
the limit cycle amplitude. After a quick transition, the oscilla-
tory pattern becomes harmonic with the period coinciding with
the period 2π/ΩK.

In oscillation theory such a behaviour is known as
auto-oscillations, self-sustained oscillations, or simply self-
oscillations (Andronov et al. 1996; Jenkins 2013). Self-
oscillations occur in non-conservative dissipative systems. In
contrast with driven oscillations, a self-oscillator itself sets
the frequency and phase with which it is driven, keeping the
frequency and phase for a number of periods. Self-oscillations
occur in various dynamical systems in physics, engineering,
biology, and economics. Usually, parameters of self-oscillations,
such as amplitudes, periods, and phases, are independent of
the initial excitation of the system after some transition time.
Self-oscillations could be considered processes of a production
of a periodic signal, for example an alternate current, from
a steady energy supply, such as a direct current. A relevant
example to our discussion is the response of a violin when
the bow is slowly moving across the string. When playing a
note, there is some minimum, threshold speed at which the bow
must be moved, but moving it faster does not change the note
and only makes it louder. The possible analogy between the
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excitation of kink oscillations of coronal loops and a violin was
pointed out by Goedbloed (1995).

In the case of kink oscillations the coronal loops play the role
of a string, while the role of the bow can be played, for example
by supergranulation motions; see Fig. 4. Indeed, as a character-
istic timescale of these motions is several hours and a typical
horizontal scale is several tens of Mm (e.g. Rieutord & Rincon
2010), it can be considered a steady motion around the loop foot-
point. Thus, the interaction of the loop with a supergranulation
flow could be considered in terms of Eq. (3). The average veloc-
ity amplitude of undamped kink oscillations, about 4 km s−1 (see
Fig. 2, right panels), is detected at the loop tops, where the fun-
damental kink modes have antinodes, while the interaction with
the flow occurs near the footpoints. As the fundamental modes
have nodes near the loop footpoints, their velocity amplitudes are
very small near the loop footpoints. Thus, it is possible that the
threshold value for the onset of negative friction is reached and
a self-oscillation occurs. Another possibility would be an upflow
passing the coronal part of the loop, which was discussed, for in-
stance in Nakariakov et al. (2009). In this case, the vortex shed-
ding effect should be suppressed, which can take place, among
other reasons, because of the external magnetic field.

5. Discussion and conclusions

In this Letter we propose a model that interprets the un-
damped quasi-harmonic kink oscillations of coronal loops as
self-oscillations occurring because of the slippery sliding inter-
action of the loop with a quasi-steady flow across it. The model
is based on the Rayleigh ordinary differential equation that has
a limit cycle solution corresponding to the self-oscillations. This
model successfully reproduces observed properties of this class
of kink oscillations. It explains the quasi-monochromaticity of
the oscillations, as the oscillation period is determined by the
natural kink mode. It is also consistent with the observed linear
dependence of the oscillation period on the loop length. Also,
this model explains the apparent independence of the oscillation
amplitude on the period, as different loops have different peri-
ods, and the energy is taken from the steady flow at this specific
period and with the specific rate required to compensate the dis-
sipative losses. This is a feature of self-oscillations. Thus, the
model also explains the undamped nature of the oscillations in
the presence of dissipative and mode conversion processes.

We must stress that the proposed self-oscillatory mechanism
is based on a semi-empirical and low-dimensional description,
and thus can only be considered as a conceptual model. The
governing equation (Eq. (3)) was not rigorously derived from
the set of MHD equations, but was constructed accounting for
the physical effects that are important for reproducing the ob-
served behaviour. Such low-dimensional, conceptual models ap-
pear to be very useful in various applications, for example the
self-organised criticality model (e.g. Aschwanden et al. 2016).
The proposed model obviously misses a number of other poten-
tially important effects, in particular, the possibility of the ex-
citation of multiple modes and harmonics. These effects need
to be included in more advanced models. Also, the nature of
the friction force between the external flow and the loop, and
the determination of the threshold speed require attention. How-
ever, we believe that the proposed conceptual, low-dimensional
model provides new insights, and is useful for identifying the
basic physical mechanisms for the existence of undamped kink
oscillations of coronal loops. The ability of the model to explain
observational properties of undamped kink oscillations suggests
the need for its further development.

Another interesting potential outcome of this study is its pos-
sible relevance to the coronal heating problem. Self-oscillatory
motions described by Eq. (3) are essentially dissipative, with the
dissipative losses compensated by the continuous energy supply.
The dissipated energy is, possibly via mode coupling, converted
into heat in the corona. The estimation of this energy may shed
light on the coronal energy balance. This estimation needs to ac-
count for 2D effects, in particular, in the mode localisation in the
external medium (e.g. Goossens et al. 2013) and, hence, cannot
be performed in terms of the discussed low-dimensional model.

Other examples of self-oscillatory processes in the solar at-
mosphere could be a cyclic pattern of chromospheric evapora-
tion, condensation and reheating (e.g. Müller et al. 2003), and
non-linear thermal overstability (e.g. Kumar et al. 2016). Also,
a class of quasi-periodic pulsations in flaring energy releases
that are caused by spontaneous repetitive magnetic reconnection
(“magnetic dripping”, see e.g. Nakariakov et al. 2010), could be
considered in terms of self-oscillations. Investigation of these
processes is an interesting future task.
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