
Undecidability of Bisimilarity by Defender’s Forcing

PETR JANČAR

Technical University of Ostrava

and
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Stirling (1996, 1998) proved the decidability of bisimilarity on so called normed pushdown pro-

cesses. This result was substantially extended by Sénizergues (1998, 2005) who showed the decid-

ability of bisimilarity for regular (or equational) graphs of finite out-degree; this essentially coin-
cides with weak bisimilarity of processes generated by (unnormed) pushdown automata where the

ε-transitions can only deterministically pop the stack. The question of decidability of bisimilarity

for the more general class of so called Type -1 systems, which is equivalent to weak bisimilarity on
unrestricted ε-popping pushdown processes, was left open. This was repeatedly indicated by both

Stirling and Sénizergues. Here we answer the question negatively, i.e., we show the undecidability

of bisimilarity on Type -1 systems, even in the normed case.
We achieve the result by applying a technique we call Defender’s Forcing, referring to the

bisimulation games. The idea is simple, yet powerful. We demonstrate its versatility by deriving

further results in a uniform way. Firstly, we classify several versions of the undecidable problems
for prefix rewrite systems (or pushdown automata) as Π0

1-complete or Σ1
1-complete. Secondly, we

solve the decidability question for weak bisimilarity on PA (Process Algebra) processes, showing
that the problem is undecidable and even Σ1

1-complete. Thirdly, we show Σ1
1-completeness of

weak bisimilarity for so called parallel pushdown (or multiset) automata, a subclass of (labelled,

place/transition) Petri nets.

Categories and Subject Descriptors: F.3.2 [Semantics of Programming Languages]: Process
models; F.4.2 [Grammars and Other Rewriting Systems]: Decision problems

General Terms: Theory, Verification

Additional Key Words and Phrases: bisimilarity, pushdown automata, process algebra, undecid-
ability

1. INTRODUCTION

Bisimilarity, or bisimulation equivalence [Park 1981; Milner 1989], has been recog-
nized as a fundamental notion in concurrency theory, in verification of behaviour
of (reactive) systems, and in other areas. This has initiated several research di-
rections; one research line explores the (un)decidability and complexity questions
for bisimilarity, where the results have turned out to be different than those for
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classical language equivalence.

We can recall that (the graph of) a nondeterministic finite automaton (NFA)
can be viewed as a finite state labelled transition system (LTS), where accepting
states play no role. Informally speaking, two states r, s of an LTS are bisimilar
if for any transition r

a−→ r′ (s a−→ s′) there is a transition s
a−→ s′ (r a−→ r′)

such that r′, s′ are bisimilar. While language equivalence is well known to be
PSPACE-complete for NFAs, bisimulation equivalence is solvable by fast polyno-
mial algorithms [Paige and Tarjan 1987; Kanellakis and Smolka 1990]. It also makes
good sense to compare states in infinite state LTSs generated by finite descrip-
tions. E.g., a context-free grammar in Greibach normal form naturally generates
an infinite state LTS where the states are finite sequences of nonterminals; a rule
X −→ aY1Y2 . . . Yn (here more appropriately written as X a−→ Y1Y2 . . . Yn) induces
transitions X u

a−→ Y1Y2 . . . Yn u for all sequences u. Bisimilarity between such
states, called BPA (Basic Process Algebra) processes, turned out to be decidable
(in [Baeten et al. 1993] for the normed subclass with no redundant nonterminals,
and in [Christensen et al. 1995] for the full class without any restrictions) while
language equivalence is well-known to be undecidable already for the normed sub-
class. This started the research topic of exploring bisimilarity questions on infinite
state systems, the history of which is reflected in survey papers like [Moller 1996;
Burkart and Esparza 1997; Burkart et al. 2001; Srba 2004; Kučera and Jančar
2006].

The above mentioned BPA systems are a special case of LTSs generated by
finite sets of prefix-rewrite rules. PDA systems, generated by classical pushdown
automata rules pX a−→ qw, are more general w.r.t. bisimilarity (though equivalent
with BPA in the classical language sense). Therefore the decidability results for
BPA could not be automatically extended to PDA, and the decidability question
for PDA processes (i.e., states in PDA systems) remained a difficult open problem,
explicitly formulated, e.g., in [Caucal 1995].

Stirling [Stirling 1996] showed the decidability of bisimilarity for restricted, so
called normed, PDA processes. (A PDA process is normed if the stack can be emp-
tied from every reachable configuration.) Decidability for the whole class of PDA
processes was later shown by Sénizergues [Sénizergues 1998]. The involved proof
extended the technique he used for his famous result showing the decidability of
language equivalence for deterministic pushdown automata [Sénizergues 2001] (see
also [Stirling 2001]); a complete journal version of the bisimilarity result appeared
in [Senizergues 2005]. In fact, the result is more general; we present it in terms
of weak bisimilarity, which is a standard generalization of bisimilarity abstracting
away the silent (internal) actions, i.e. the ε-transitions in our case. Sénizergues
showed the decidability of weak bisimilarity for PDA systems which are ‘disjoint’
(in the terminology of [Stirling 2001], meaning that no configuration admits both
visible and ε-transitions) and where ε-transitions can only deterministically pop the
stack. A natural question asks how far this result can be extended. Stirling [Stir-
ling 1996] formulated the bisimilarity question for so called Type -1 and Type -2
systems. For us it suffices to say that this corresponds to the weak bisimilarity prob-
lem on (nondeterministic) disjoint ε-popping PDAs and on general disjoint PDAs,
respectively. There was a hope that the developed techniques can be extended to
Journal of the ACM, Vol. V, No. N, Month 20YY.
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show the decidability for these more general classes, at least in the normed case.
Such a hope was also strengthened by the fact that several nontrivial results

achieved for pushdown graphs turned out to be extendable to a more general class
of prefix-recognizable graphs, also called REC RAT in [Caucal 1996]; this includes
the decidability of monadic second order logic [Caucal 1996] and the existence of
uniform winning strategies for parity games [Cachat 2002].

We note that due to a terminology mismatch, it was incorrectly indicated
in [Sénizergues 1998] that the positive decidability result applies to Type -1 systems
as well. This was later corrected in [Senizergues 2005], where the author made clear
that the problem for Type -1 systems, i.e. weak bisimilarity on disjoint ε-popping
PDAs, remains open.

The main result of our paper demonstrates that weak bisimilarity on (disjoint) ε-
popping PDAs is undecidable, even in the normed case. To provide a deeper insight,
we accompany this result by a more detailed analysis of the undecidability degrees
for several combinations of types of ε-transitions and (un)normedness. This anal-
ysis contributes to the general experience that the undecidable problems naturally
arising in computer science are either ‘lowly’ undecidable, i.e., residing at the first
levels of arithmetical hierarchy — typically equivalent to the halting problem or to
its complement, and thus Σ0

1-complete or Π0
1-complete — or ‘highly’ undecidable

— at the first levels of analytical hierarchy, typically Σ1
1-complete or Π1

1-complete.
(Later we refer to [Harel 1986], where this phenomenon is also discussed.)

Besides the concrete results, we also consider the technique of their proofs as an
important part of our contribution. Bisimilarity, as well as weak bisimilarity, can be
naturally presented in terms of two-player games (see also [Thomas 1993; Stirling
1995]). In a current ‘position’, i.e. in a pair of states in an LTS, Attacker performs
a transition from one of the states and Defender must respond by performing a
transition with the same action-label from the other state; a new current position
thus arises. If one player is stuck then the other player wins, and an infinite play
is a win of Defender. Thus two states r, s are bisimilar iff Defender has a winning
strategy when starting from (r, s).

Hardness results for (weak) bisimilarity are naturally obtained by constructing
suitable bisimulation games corresponding to instances of a hard problem. Due
to the nature of the game, it is relatively straightforward to implement situations
where Attacker is supposed to determine the following part of a play; if it is Defender
who should determine this, implementations are less obvious (if possible at all). In
our cases, we have succeeded in implementing this ‘Defender’s Forcing’ (‘Defender’s
Choice’ can be another suitable term).

The idea behind this technique is simple, yet powerful. Here we show its versatil-
ity by deriving further results in a uniform way. These results deal with the ‘middle
row’ of so called process rewrite systems hierarchy, which is depicted in Figure 1
from [Mayr 2000] and contains the already discussed class PDA and the classes
PA, PN. Roughly speaking, a PDA system can be viewed as a finite control unit
operating on sequentially composed stack symbols. PA (Process Algebra) systems
were introduced in [Baeten and Weijland 1990]; they combine sequential and par-
allel composition but lack the control unit. PN stands for Petri nets, a well-known
model the study of which was initiated in [Petri 1962]. For us it is sufficient to

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 1. Process rewrite systems hierarchy

consider the subclass PPDA of PN; a PPDA (parallel PDA) system can be viewed
as a finite control unit operating on parallel composition of stack symbols.

By applying the method of Defender’s Forcing we derive the undecidability of
weak bisimilarity for PA processes; in fact, the problem turns out to be Σ1

1-complete
(and thus highly undecidable). Another application demonstrates Σ1

1-completeness
of weak bisimilarity for PPDAs (and thus also for PNs).

Remark. The decidability question for (strong) bisimilarity on PA processes is
still an open problem; in the case of normed PA processes, an involved proof of the
decidability was shown in [Hirshfeld and Jerrum 1999]. For the (unrestricted) sub-
classes BPA, BPP the decidability of bisimilarity was known earlier (see, e.g., [Srba
2004] for references) but the decidability questions for weak bisimilarity on both
BPA and BPP are still open. Bisimilarity on Petri nets was shown to be Π0

1-
complete in [Jančar 1995b]; the proof can be easily reformulated for PPDAs (as
was done in [Moller 1996]). Our proof for weak bisimilarity strengthens and sub-
stantially simplifies the result in [Jančar 1995a].

Structure of the paper. Section 2 contains basic definitions and recalls and/or
proves some useful results. Section 3 shows the Π0

1-complete and Σ1
1-complete

problems we use for the hardness reductions, and Section 4 sketches the main idea
of Defender’s Forcing. Section 5 contains the results for prefix-rewrite systems and
pushdown automata, Section 6 then deals with PA processes, and Section 7 with
PPDA (and Petri nets). Section 8 summarizes the results.

2. PRELIMINARIES

2.1 Labelled transition systems, bisimulation equivalence, games

A labelled transition system (LTS) is a triple (S,Act,−→) where S is a set of states
(or processes), Act is a set of labels (or actions), and −→⊆ S × Act × S is a
transition relation; for each a ∈ Act, we view a−→ as a binary relation on S where
α

a−→ β iff (α, a, β) ∈−→. The notation can be naturally extended to α s−→ β for
finite sequences of actions s; and by α −→∗ β we mean that there is s such that
α

s−→ β.
Given (S,Act,−→), a binary relation R ⊆ S × S is a simulation iff for each

Journal of the ACM, Vol. V, No. N, Month 20YY.
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(α, β) ∈ R, a ∈ Act, and α′ such that α a−→ α′ there is β′ such that β a−→ β′ and
(α′, β′) ∈ R. A bisimulation is a simulation which is symmetric. Processes α and β
are bisimilar, denoted α ∼ β, if there is a bisimulation containing (α, β). We note
that bisimilarity is an equivalence relation.

We use a standard game-theoretic characterization of bisimilarity [Thomas 1993;
Stirling 1995]. A bisimulation game on a pair of processes (α1, α2) is a two-player
game between Attacker and Defender ; to make some further considerations easier,
we view Attacker as “him” and Defender as “her”. The game is played in rounds.
In each round (consisting of two moves) the players change the current pair of states
(β1, β2) (initially β1 = α1 and β2 = α2) according to the following rule:

(1) Attacker chooses i ∈ {1, 2}, a ∈ Act and β′i ∈ S such that βi
a−→ β′i .

He thus creates an intermediate pair which is (β′1, β2) in the case
i = 1, and (β1, β

′
2) in the case i = 2.

(2) Defender responds by choosing β′3−i ∈ S such that β3−i
a−→ β′3−i.

She thus completes one round of the game by playing under the
same action a in the other process.

(3) The pair (β′1, β
′
2) becomes the (new) current pair of states.

Any play (of the bisimulation game) thus corresponds to a sequence of pairs of
states such that Attacker is making a move from every odd position and Defender
from every even one (under the same action which was used by Attacker in the
previous move).

A play (and the corresponding sequence) is finite iff one of the players gets stuck
(cannot make a move); the player who got stuck lost the play and the other player is
the winner. (A play finishing in an intermediate pair on an even position is winning
for Attacker and a play finishing on an odd position is winning for Defender.) If
the play is infinite then Defender is the winner.

We note that all possible plays from a pair (α, β) can be naturally organized in
a tree where each vertex is labelled with a pair of processes, the root being labelled
with (α, β), and each edge, labelled by an action, corresponds to a move of Attacker
or Defender under that action. Each vertex on an odd level (the root is assumed
to be on level one) corresponds to a situation where Attacker chooses a move (i.e.,
an outgoing edge to an intermediate pair on the next level), and each vertex on an
even level corresponds to a situation where Defender chooses a response (i.e., an
outgoing edge with the same label as the label of the incoming edge). A strategy of
Attacker from a pair (α, β) can be viewed as a tree arising from the above “all-plays
tree” by removing all but one outgoing edge (with the corresponding subtrees) from
each odd-level vertex with more than one (immediate) successor. Analogously, a
strategy of Defender arises by removing all but one outgoing edge from each even-
level vertex with more than one (immediate) successor. A strategy of a player is a
winning strategy (WS) if every branch (corresponding to a play) is winning for the
player.

We now recall the following standard fact.

Proposition 2.1. It holds that α1 ∼ α2 iff Defender has a winning strategy in
the bisimulation game starting with the pair (α1, α2); and α1 6∼ α2 iff Attacker has
a winning strategy.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Sometimes we assume that the set Act of actions contains a distinguished silent
action τ . The weak transition relation =⇒ is defined by τ=⇒def= ( τ−→)∗ and a=⇒def=
( τ−→)∗◦ a−→ ◦( τ−→)∗ for a ∈ Act r {τ}.

Given an LTS (S,Act,−→), a binary relation R ⊆ S × S is a weak simulation
iff for each (α, β) ∈ R, a ∈ Act, and α′ such that α a−→ α′ there is β′ such that
β

a=⇒ β′ and (α′, β′) ∈ R. A weak bisimulation is a weak simulation which is
symmetric. Processes α and β are weakly bisimilar, denoted α ≈ β, if there is
a weak bisimulation containing (α, β). (Weak bisimilarity is also an equivalence
relation.)

An analogue of Proposition 2.1 for weak bisimilarity and the weak bisimulation
game can be also easily derived.

Remark 2.2. Nothing changes when we allow the ‘long’ moves α a=⇒ α′ to be
played by Attacker as well (he can do them by a sequence of ‘short’ moves a−→,
τ−→ anyway). The weak bisimulation game can be then viewed as the (‘strong’)

bisimulation game played on the modified LTS (in which =⇒ is the transition
relation). Allowing only ‘short’ moves to Attacker can just technically ease analysis
of some concrete cases.

2.2 Prefix rewrite systems, pushdown automata, normedness

We now define special classes of labelled transition systems (LTSs), namely those
generated by systems of prefix rewrite rules.

The most general prefix rewrite systems we consider are Type -2 systems (in the
terminology to be mentioned later). Such a system S can be viewed as a triple
S = (Γ,Act,∆) where Γ is a finite set of process symbols, Act is a finite set of
actions, and ∆ is a finite set of rewrite rules. Each rewrite rule is of the form
R1

a−→ R2 where a ∈ Act and R1 and R2 are regular languages over Γ such that
ε 6∈ R1 (ε denotes the empty sequence); for concreteness, we can assume that R1, R2

are given by regular expressions.
System S = (Γ,Act,∆) represents the LTS (Γ∗,Act,−→) defined as follows.

A process (a state in the LTS) is any finite sequence of process symbols, i.e., any
element of Γ∗; we use u, v, w, . . . for denoting elements of Γ∗. The transition relation
−→ (i.e., the collection of relations a−→ for a ∈ Act) is defined by the following
derivation rule:

(R1
a−→ R2) ∈ ∆, w ∈ R1, w′ ∈ R2, u ∈ Γ∗

wu
a−→ w′u

Thus any rule (R1
a−→ R2) ∈ ∆ represents possibly infinitely many rewrite rules

w
a−→ w′ where w ∈ R1 and w′ ∈ R2.

We also use the notion of normedness. We say that a process w ∈ Γ∗ is normed
if for any w′ such that w −→∗ w′ we have w′ −→∗ ε. In other words, a process
w is normed iff any finite path from w in the respective LTS can be prolonged to
finish in ε. A norm of a normed process w, denoted by norm(w), is the length of
the shortest action sequence s such that w s−→ ε.

We note the following two propositions regarding normedness.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Proposition 2.3. If two normed processes are bisimilar then they have the same
norm.

Proof. Assume normed u, v with norm(u) < norm(v). For the shortest se-
quence s such that u s−→ ε we have: if v s−→ v′ then v′ is normed and v′ 6= ε (thus
v′ can perform an action). This implies that u and v are not bisimilar.

Proposition 2.4. There is an algorithm which decides whether a given Type -2
process v is normed, and computes its norm in the positive case.

Proof. We can base the algorithm on the well-known fact regarding (classical)
pushdown automata: given a pushdown automaton and an initial (state× stack)
configuration, the set of all (state× stack) configurations reachable from the initial
one is regular, and its representation can be effectively constructed [Büchi 1964]
(further useful references are [Bouajjani et al. 1997; Esparza et al. 2000]).

We observe (see also [Stirling 2000]) that applying a rule R1
a−→ R2 to v, i.e.,

replacing a prefix w ∈ R1 of v by w′ ∈ R2, can be implemented by a series of
ε-moves of a pushdown automaton (whose control unit includes finite automata for
R1, R2).

In this way we can easily derive that, given a Type -2 system and a process v,
the set post∗(v) — consisting of all processes reachable from v — is an effectively
constructible regular set. Similarly, the set pre∗(ε) — consisting of all processes
from which ε is reachable — is an effectively constructible regular set. Checking
normedness of v now amounts to verifying whether post∗(v) ⊆ pre∗(ε).

Computing norm(v) for a normed v can be accomplished by stepwise constructing
pre(ε), pre( pre(ε) ), pre( pre( pre(ε) ) ), . . . until v is included; here pre(R) denotes
the set of processes from which some u ∈ R is reachable in one step. Such a compu-
tation can be again easily reduced to computing the sets of reachable configurations
of pushdown automata.

The other systems we consider arise from the above defined Type -2 systems by
restricting the form of rewrite rules. We use the terminology introduced by Stirling
(see, e.g., [Stirling 2003]). In Figure 2, R1, R2 and R stand for regular sets over Γ;
w, w′ stand for elements of Γ∗ (the respective regular languages are thus singletons);
and X,Y, p, q stand for elements of Γ. We have added Type -1b to Stirling’s table;
his Type -1 coincides with our Type -1a.

Remark 2.5. The classes Type -1a and Type -1b are incomparable w.r.t. bisim-
ilarity and strictly above Type 0 and below Type -2 systems. (We show this in the
report [Jančar and Srba 2006].)

We can note that Type 1 1
2 rules are classical pushdown rules (p, q are ‘highlighted’

as elements of the set of control states which is disjoint with the stack alphabet).
In this paper we thus take the term pushdown automaton (PDA) as a synonym
of a Type 1 1

2 system; the class of LTSs defined by PDAs was shown to coincide
(up to isomorphism) with the class of Type 0 systems [Caucal 1992]. For technical
convenience, we also view p

a−→ qw, pX a−→ ε, p a−→ ε as PDA-rules.
We say that a PDA is ε-popping if the τ -rules are only of the form pX

τ−→ q. A
PDA is ε-pushing if the τ -rules are only of the form pX

τ−→ qXw (or p τ−→ qw).
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Type Form of Rewrite Rules

Type -2 R1
a−→ R2

Type -1a/-1b R
a−→ w / w

a−→ R

Type 0 w
a−→ w′

Type 1 1
2

pX
a−→ qw

Type 2 X
a−→ w

Type 3 X
a−→ Y, X

a−→ ε

Type -2

vvvv HHHH

Type -1a

HHH Type -1b

vvv

Type 0 = Type 1 1
2

Type 2

Type 3

Fig. 2. Hierarchy of prefix rewrite systems

(We use the term ‘ε-popping’ rather than ‘τ -popping’ to recall the standard notion
of ε-transitions of a pushdown automaton.)

For completeness, we add that Type 2 systems are also called BPA (Basic Pro-
cess Algebra) systems, and Type 3 systems correspond to finite labelled transition
systems.

Remark 2.6. The normedness of a PDA-process is usually defined as the ability
to empty the stack from every reachable configuration. Such a normed PDA can
be easily transformed to match our definition of normedness (of a Type -2 system)
by using a special bottom-of-the-stack symbol ⊥ and by adding the rules q⊥ e−→ ε,
where e is a special ‘end’-action.

2.3 PA processes

The term PA comes from ‘Process Algebra’. It is a formalism including both sequen-
tial and parallel composition and it was introduced by Baeten and Weijland [Baeten
and Weijland 1990]. A PA process rewrite system ( i.e., a (1, G)-PRS in the termi-
nology of [Mayr 2000] ) can be viewed as a triple (Γ,Act,∆), similarly as a prefix
rewrite system. However, the (PA-)processes, i.e., the states in the respective LTS,
are not just sequences of process symbols from Γ; they can combine sequential and
parallel composition, being defined by

P ::= ε | X | P.P | P ||P where X ranges over Γ.

The rewrite rules in ∆ are now (only) of the form X
a−→ P , where X ∈ Γ, a ∈ Act

and P is a (PA-)process. The transition relation is given by the following derivation
rules.

(X a−→ E) ∈ ∆

X
a−→ E

E
a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E||F a−→ E′||F
F

a−→ F ′

E||F a−→ E||F ′

As expected, we can easily derive that the parallel composition can be viewed as
commutative and associative (while sequential composition is only associative).

Normedness of PA processes has the same meaning as in prefix rewrite systems:
a process P is normed if every finite path starting from P (in the respective LTS)
can be prolonged to reach ε.
Journal of the ACM, Vol. V, No. N, Month 20YY.
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2.4 Parallel pushdown automata, Petri nets

In our framework, a Petri net can be viewed as a triple (Γ,Act,∆) where the
processes (i.e., Petri net markings) are just parallel compositions of process symbols.
A process α can then be viewed just as a mapping (or a multiset) α : Γ→ N. The
rules have the form β

a−→ γ where β, γ are processes (markings). The derivation
rule for transitions can be presented as follows.

β
a−→ γ

β||α a−→ γ||α

Parallel pushdown automata (PPDA) constitute a strict subclass of Petri nets. A
PPDA arises from a (usual) PDA when we view the ‘stack’ as parallel composition
of symbols (which is associative and commutative). We can thus use the same
notation for PPDAs (and their rules) as for PDAs. But the rule pX a−→ qw is now
performable whenever the current control state is p and X occurs somewhere in the
stack (which is a multiset of stack-symbols).

2.5 (Weak) bisimilarity problems in Π0
1 and Σ1

1

The results of this paper establish Π0
1-completeness and Σ1

1-completeness of the
(weak) bisimilarity problems for several classes of LTSs (introduced above). It is
the hardness part which is crucial; the membership in Π0

1 or Σ1
1 can be demonstrated

easily, and we thus handle this here.
Let us recall that the class Π0

1 (in the arithmetical hierarchy) consists of problems
whose complements are semidecidable, i.e., of those problems which have algorithms
halting just on the negative instances.

Recall also that to demonstrate that α, β are not bisimilar, it is sufficient to
present a winning strategy (WS) for Attacker, from the pair (α, β). Such a strategy
can be viewed as a tree which was described before Proposition 2.1. We note that
each branch of the tree corresponds to a possible play when Attacker plays according
to the assumed winning strategy; each branch is thus finite (finishing by Defender’s
getting stuck).

In image finite systems (for each α, a, the set {β | α a−→ β} is finite), this WS is
a finite tree, and all ‘candidate’ trees can thus be systematically generated by an
algorithm. This well-known idea (see, e.g.,[Hennessy and Milner 1985]) immediately
yields the following proposition.

Proposition 2.7. Bisimilarity is in Π0
1 for Type -1a systems, for PA systems,

and for Petri nets. Weak bisimilarity is in Π0
1 for ε-popping PDAs.

Bisimilarity (i.e., the problem if two given processes in a given system are bisim-
ilar) is in Π0

1 also for normed Type -1b systems, though they are not image finite.
The idea is that a WS (winning strategy) for Attacker does not need to count
with ‘too long’ responses of Defender. We derive this as a consequence of the next
proposition which is formulated more generally.

We say that an LTS (S,Act,−→) is effective iff both S and Act are decidable
subsets of the set of all finite strings in a given finite alphabet and the relation
−→ is decidable. An LTS (S,Act,−→) is called finitely over-approximable (w.r.t.
bisimilarity) iff for any α, β ∈ S and a ∈ Act, a finite set E(α,β,a) ⊆ S can be
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effectively constructed so that whenever β a−→ β′ and β′ ∼ α then β′ ∈ E(α,β,a).
Thus the (finite) set E(α,β,a) over-approximates the set of a-successors of β which
are bisimilar with α.

Proposition 2.8. Bisimilarity on effective and finitely over-approximable la-
belled transition systems is in Π0

1.

Proof. The above mentioned tree demonstrating a WS for Attacker can be
assumed finite since at each node (α, β) where Defender is obliged to response by a
move β a−→ β′ it suffices to consider only (the finitely many) β′ ∈ E(α,β,a). It is thus
sufficient to systematically generate all finite trees and check for each of them if it
happens to represent a WS for Attacker; the checking can be done algorithmically
due to our effectiveness assumptions.

Corollary 2.9. Bisimilarity is in Π0
1 for normed Type -1b systems. Weak

bisimilarity is in Π0
1 for normed ε-pushing PDAs.

Proof. Type -1b systems are obviously effective; it is thus sufficient to show that
normed Type -1b systems are finitely over-approximable. We recall that normed
bisimilar processes must have equal norms (Proposition 2.3), and we note that
norm(u) ≥ |u|/k where k is the length of the longest left-hand side in the rules
w

a−→ R of the respective normed Type -1b system (and |u| is the length of u).
Since norm(u) is computable by Proposition 2.4, the required (finite) set E(u,v,a)

for given processes u, v and an action a can be defined as { v′ | |v′| ≤ k ·norm(u) }.
The argument for normed ε-pushing PDAs is the same.

Membership in the class Σ1
1 (of the analytical hierarchy) is obvious for all (weak)

bisimilarity problems considered in this paper: processes α and β are (weakly)
bisimilar iff there exists a set of pairs which contains (α, β) and satisfies the (1st
order arithmetic definable) conditions required by the definition of (weak) bisimu-
lation.

Proposition 2.10. (Weak) bisimilarity is in Σ1
1 for Type -2 systems, for PA

systems, and for Petri nets.

3. PROBLEMS FOR HARDNESS REDUCTIONS

In the first subsection we define some variants of Post’s Correspondence Problem
(PCP) which are suitable for deriving hardness results in the case of prefix-rewrite
systems and PA-systems (since these systems naturally model sequences).

The second subsection recalls some problems for (Minsky) counter machines;
these machines constitute a universal computational model which is particularly
suitable for deriving hardness results for PPDA (or Petri nets).

3.1 Variants of Post’s Correspondence Problem

For our aims, a PCP-instance INST is defined as a nonempty sequence
(u1, v1), (u2, v2), . . . , (un, vn) of pairs of nonempty words over the alphabet {A,B}
where |ui| ≤ |vi| for all i ∈ {1, 2, . . . , n} (|u| denoting the length of u).

An infinite initial solution of a given PCP instance is an infinite sequence of
indices i1, i2, i3, . . . from the set {1, 2, . . . , n} such that i1=1 and the infinite words
Journal of the ACM, Vol. V, No. N, Month 20YY.
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ui1ui2ui3 · · · and vi1vi2vi3 · · · are equal. A recurrent solution is an infinite initial
solution in which index 1 appears infinitely often.

By inf-PCP we denote the problem to decide whether a given PCP instance has
an infinite initial solution; rec-PCP denotes the problem to decide whether a given
PCP instance has a recurrent solution.

Proposition 3.1. (1) Problem inf-PCP is Π0
1-complete. (2) Problem rec-PCP

is Σ1
1-complete.

These facts can be easily established from well-known results; we refer, e.g.,
to [Ruohonen 1985] for the (low) undecidability and to [Harel 1986] for the high
undecidability.

Remark 3.2. Our (additional) requirement |ui| ≤ |vi| is non-standard but it can
be easily checked to be harmless for the validity of Proposition 3.1; we use it for its
technical convenience. This follows directly from the standard textbook reduction
of the halting problem to PCP. For example, the reduction provided in [Sipser 2005,
Chapter 5.2] consists of seven parts. Parts 1. to 5. deal with the simulation of a
Turing machine computation and produce an instance of PCP which satisfies our
requirement |ui| ≤ |vi|. The last two categories of pairs of strings in Part 6. and
Part 7. are used to equalize the lengths of the two generated words in case that an
accepting configuration is reached. Since our question is about the existence of an
infinite computation, we can safely omit the pairs from the last two categories.

It is also useful to note the following obvious fact, which will be im-
plicitly used in later reasoning. By a partial solution of a PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) we mean a finite sequence i1, i2, i3, . . . , i` such that
ui1ui2 . . . ui` is a prefix of vi1vi2 . . . vi` .

Proposition 3.3. Given a PCP-instance and a sequence i1, i2, i3, . . . of indices
where i1 = 1, the following three conditions are equivalent:

—i1, i2, i3, . . . is an infinite initial solution,
—for each `, the sequence i1, i2, i3, . . . , i` is a partial solution,
—for infinitely many `, the sequence i1, i2, i3, . . . , i` is a partial solution.

3.2 Minsky counter machines

A (Minsky) counter machine (MCM) M , with nonnegative counters c1, c2, . . . , cm,
is a sequence of (labelled) instructions:

1 : instr1; 2 : instr2; . . . n : instrn

where instrn = HALT and instri, for i ∈ {1, 2, . . . , n−1}, are of the following two
types (assuming j, k ∈ {1, 2, . . . , n}, r ∈ {1, 2, . . . ,m}):

Type (1) cr := cr + 1; goto j
Type (2) if cr = 0 then goto j else (cr := cr − 1; goto k)

The instructions of type (1) are called increment instructions, the instruction of
type (2) are zero-test (and decrement) instructions.

The computation of M on the input (i1, i2, . . . , im) is the sequence of configura-
tions (i, n1, n2, . . . , nm), starting with (1, i1, i2, . . . , im), where i ∈ {1, 2, . . . , n} is
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the label of the instruction to be performed, and n1, n2, . . . , nm ∈ N are the (cur-
rent) counter values; the sequence is determined by the instructions in the obvious
way. The computation is either finite, i.e. halting by reaching the instruction n :
HALT, or infinite.

We define inf-MCM as the problem to decide whether the computation of a given
2-counter MCM on (0, 0) is infinite, and we recall the following well-known fact.

Proposition 3.4. Problem inf-MCM is Π0
1-complete.

A nondeterministic Minsky counter machine is defined as MCM above but with
an additional type of instructions, the nondeterministic choice:

Type (3) goto j or goto k

We define rec-NMCM as the problem to decide whether a given 2-counter non-
deterministic MCM has an infinite computation on (0, 0) which uses instruction 1
infinitely often. We can refer to [Harel 1986] regarding the following fact.

Proposition 3.5. Problem rec-NMCM is Σ1
1-complete.

4. DEFENDER’S FORCING

An important ingredient in the constructions of our reductions is a method which
we call “Defender’s Forcing” (DF). Here we just sketch the main idea informally
and abstractly; later sections provide examples of concrete applications.

When deriving a hardness result, it is often useful to model a (nondeterministic)
‘computation’, i.e. a sequence of configurations, of a system by means of the (weak)
bisimulation game on a suitably created LTS. A play then gives rise to two (slightly
differing) representants of a concrete computation. E.g., let us assume that the pair
(α, β) represents a current configuration C and (α1, β1), (α2, β2), . . . , (αn, βn) are
the pairs representing the configurations C1, C2, . . . , Cn, respectively, which are the
possible outcomes of one computational step from C. If we want that it is Attacker
who chooses the next configuration, an obvious implementation in the bisimulation
game is the following: we use actions a1, a2, . . . , an and put α ai−→ αi, β

ai−→ βi for
all i ∈ {1, 2, . . . , n}. Attacker can choose i and play (α, β) ai−→ (αi, β). Defender
can only answer from the intermediate pair by (αi, β) ai−→ (αi, βi). Hence Attacker
forces the next configuration (αi, βi).

The situation where we need that it is Defender who chooses the next configura-
tion is more complicated. An (abstract) solution can look like this: we introduce
auxiliary states α′ and β′1, β

′
2, . . . , β

′
n and create the following transitions, also called

rules (to anticipate the later use).

α
a−→ α′

α
a−→ β′i β

a−→ β′i

α′
ai−→ αi β′i

ai−→ βi

β′i
aj−→ αj for i 6= j

Here subscripts i, j range over {1, 2, . . . , n}; thus the rule α a−→ β′i stands for the
n rules α a−→ β′1, α a−→ β′2, . . ., α a−→ β′n, the rule β′i

aj−→ αj , i 6= j, stands for
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 3. From (α, β) Defender chooses and forces (α1, β1) or (α2, β2)

n(n−1) rules like β′1
a2−→ α2, β′8

a5−→ α5, etc. Figure 3 presents the rules graphically
for the case n = 2; the framed rules are represented by the dashed arrows.

By using frames we have highlighted the use of DF; Attacker must make sure that
the framed rules are never used (neither by him or her) since otherwise Defender
can install a pair with equal components — an obvious win for her. Starting from
(α, β), Attacker is thus forced to play α

a−→ α′, reaching an intermediate pair
(α′, β), and it is now Defender who chooses i and plays β a−→ β′i. In the resulting
pair (α′, β′i) Attacker is forced to use the action ai, and the only answer of Defender
then installs the pair (αi, βi).

The idea can be generalized in several ways, e.g., to handle infinitely many pos-
sible outcomes (by using τ -rules). The main technical problem is if and how this
idea of forcing can be realized in particular classes of LTSs.

5. PREFIX REWRITE SYSTEMS, PUSHDOWN AUTOMATA

5.1 Π0
1-completeness

In this subsection we show how the Π0
1-complete problem inf-PCP can be reduced to

the bisimulation game on several subclasses of prefix rewrite systems and pushdown
automata. We use the subclasses for which the (weak) bisimilarity problem is in
Π0

1, thus deriving Π0
1-completeness results.

Let us consider a fixed instance INST of inf-PCP, i.e., a sequence of pairs
(u1, v1), (u2, v2), . . . , (un, vn) over the alphabet {A,B}; symbols I1, I2, . . . , In will
represent the indices 1, 2, . . . , n. We can imagine the following abstract game: start-
ing with the one-element sequence I1, Attacker repeatedly asks Defender to prolong
the current sequence Ii1Ii2 . . . Ii` by one Ii (of her choice), and eventually switches
to check if the current sequence represents a partial solution (i.e., if ui1ui2 . . . ui` is
a prefix of vi1vi2 . . . vi`); the negative case is a win for Attacker, the positive case
is a win for Defender. It is obvious that INST has an (infinite initial) solution iff
Defender has a WS in the described game.

We now implement this abstract game as the bisimulation game starting with the
Journal of the ACM, Vol. V, No. N, Month 20YY.
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pair ( q0I1⊥, q′0I1⊥ ) of processes of the below described normed Type -1a system.
Since we use prefix rewriting, it is convenient to represent the current sequences
in the reversed order, as Ii`Ii`−1 . . . Ii1 , and prolong them ‘to the left’. The special
symbol ⊥ is used as an endmarker (the bottom-of-the-stack symbol) which here
just helps to guarantee normedness. The final checking, i.e., the verification phase,
can be naturally performed on two copies of the sequence of indices, where one
sequence is interpreted over ui’s, the other over vi’s. These two copies arise in the
generating phase, and they also serve for enabling DF (Defender’s Forcing). We
first give all the rules of the Type -1a system, and then explain them in detail.

Notation. We let I∗ stand for the regular expression (I1 + I2 + · · · + In)∗. By
uR we denote the reverse image of u. By head(w) we denote the first symbol of
w; tail(w) is the rest of w. By h(w) (head-action) we mean a if head(w) = A, and
b if head(w) = B. Subscripts i, j range over {1, 2, . . . , n}; thus the rule q0

g−→ pi

stands for the n rules q0
g−→ p1, q0

g−→ p2, . . ., q0
g−→ pn, the rule pi

aj−→ q0Ij ,
i 6= j, stands for n(n−1) rules like p1

a2−→ q0I2, p8
a5−→ q0I5, etc.

(G1) rules: q0
g−→ t

q0
g−→ pi q′0

g−→ pi

t
ai−→ q0Ii pi

ai−→ q′0Ii

pi
aj−→ q0Ij where i 6= j

(S1) rules: q0
s−→ qu

q0(I∗)Ii
s−→ qvw q′0(I∗)Ii

s−→ qvw for all suffixes w of vRi

(V1) rules: quIi
h(uR

i )−→ qu tail(uRi ) qvIi
h(vR

i )−→ qv tail(vRi )
quA

a−→ qu qvA
a−→ qv

quB
b−→ qu qvB

b−→ qv
qu⊥

e−→ ε qv⊥
e−→ ε

As introduced in Section 4, the frames highlight the use of DF; Attacker must
make sure that the framed rules are never used since otherwise Defender can install
a pair with (syntactically) equal components. E.g., if Attacker wants to use the
action g in a pair (q0w, q′0w) then he is forced to play q0

g−→ t; in a pair (tw, piw)
Attacker is forced to use the action ai, etc.

To show that q0I1⊥ ∼ q′0I1⊥ iff INST has an (infinite initial) solution, we first
assume that there is such a (fixed) solution i1, i2, i3, . . . and describe a WS for
Defender. The play starts with the pair (q0I1⊥, q′0I1⊥), and as long as Attacker
uses (G1)-rules, Defender forces that the play goes through longer and longer pairs

( q0Ii`Ii`−1 . . . Ii1⊥ , q′0Ii`Ii`−1 . . . Ii1⊥ ) (∗)

where i1=1 and Ii1 , Ii2 , . . . , Ii` represents a prefix of the assumed (fixed) solution
i1, i2, i3, . . .. We observe that Defender can guarantee this since it is her who chooses
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Ii2 , Ii3 , . . ..
Hence if Attacker wants to win, he has to switch (from generating to verification),

i.e., to use (S1)-rules in some pair (∗); he is then forced to use q0
s−→ qu. Defender

answers by shortening the ‘right-hand side’ sequence so that the resulting pair

( quIi`Ii`−1 . . . Ii1⊥ , qvw IimIim−1 . . . Ii1⊥ ) (∗∗)

satisfies

(ui`)R(ui`−1)R . . . (ui1)R = w (vim)R(vim−1)R . . . (vi1)R . (1)

Finally the (deterministic) (V1)-rules clearly show that Defender wins.
If INST has no solution then there is an obvious WS for Attacker. He repeatedly

uses (G1) until a pair (∗) which does not correspond to a partial solution appears.
This will eventually happen. Then Attacker switches, using q0

s−→ qu, and after
Defender’s response we must get a pair (∗∗) where the condition (1) does not hold.
Thus the following verification phase is clearly winning for Attacker.

The given Type -1a system (G1), (S1), (V1) is obviously normed. We note that
it can be easily modified to yield an equivalent instance of the weak bisimilarity
problem for (normed) PDA; we just replace (S1) with

(S1-τ) rules: q0
s−→ qu q′0

s−→ r′

q0
s−→ r′ r′Ii

τ−→ r′ | qvw for all suffixes w of vRi .

Notation. We have used here (and we will also use later) the convention that a
collection of rules α a−→ β1, α a−→ β2, . . ., α a−→ βm can be written more concisely
as α a−→ β1 |β2 | . . . |βm; the separation symbol “ | ” should not be confused with
the symbol “||” used for parallel composition.

We observe that (S1-τ) rules can be viewed as a faithful implementation of (S1);
Defender cannot gain by finishing the τ -sequence before reaching qv: Attacker could
then perform any sequence of τ -moves on the right-hand side himself while the left-
hand side (starting with qu) is ‘frozen’ since no τ -moves are available there. We
also note that the arising PDA (with rules (G1), (S1-τ), (V1)) can be easily made
ε-popping — by viewing each qvw in the (S1-τ) rules as a special control state and
adding the appropriate rules to (V1).

Another observation is that instead of using rules of the type R −→ w (for
shortening the vi-side during the switching phase) we can use the rules w −→ R
for prolonging the ui-side, preserving the property that INST has a solution iff
Defender has a WS:

(S2) rules: q′0
s−→ qv

q0
s−→ qu(A+B)∗ q′0

s−→ qu(A+B)∗

(S2-τ) rules: q′0
s−→ qv

q0
s−→ r q′0

s−→ r

r
τ−→ rA | rB | qu

Recalling Propositions 3.1(1) and 2.7 and Corollary 2.9, we thus get the following
theorems.
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Theorem 5.1. The bisimilarity problem is Π0
1-complete

—for both normed and unrestricted Type -1a systems (R −→ w); shown by (G1,
S1, V1),

—for normed Type -1b systems (w −→ R); shown by (G1, S2, V1).

Theorem 5.2. The weak bisimilarity problem is Π0
1-complete

—for both normed and unrestricted ε-popping PDA; shown by (G1, S1-τ , V1),
—for normed ε-pushing PDA; shown by (G1, S2-τ , V1).

5.2 Σ1
1-completeness

We again consider a fixed sequence (u1, v1), (u2, v2), . . . , (un, vn) over the alphabet
{A,B}, now as an instance INST of rec-PCP. We modify the previously described
abstract game as follows: starting with the one-element sequence I1, Attacker re-
peatedly asks Defender to prolong the current sequence Ii1Ii2 . . . Ii` by a (finite)
segment Ii`+1 , Ii`+2 , . . . , Ii`+m

where i`+m = 1, and eventually switches to check if
the current sequence represents a partial solution. We can easily verify that INST
has a (recurrent) solution iff Defender has a WS in the modified game.

For implementation we need to modify the generating rules, using now rules of
the type R1 −→ R2 (or ε-popping and ε-pushing steps of PDAs) to this aim. The
new generating rules are the following (we recall our convention that the subscript
i ranges over {1, 2, . . . , n}).

(G2) rules: q0
g−→ t

q0
g−→ t′I1I

∗ q′0
g−→ t′I1I

∗

t′
g−→ q′0

tI∗
g−→ q0I

∗ t′I∗
g−→ q0I

∗

(G2-τ) rules: q0
g−→ t

q0
g−→ p′ q′0

g−→ p′

p′
τ−→ p′Ii | t′I1

t′
g−→ q′0

t
g−→ t1 t′

g−→ t1

t1Ii
τ−→ t1

t1
τ−→ t2

t2
τ−→ t2Ii | q0

We note that the rules tI∗
g−→ q0I

∗, t′I∗
g−→ q0I

∗ (type R1 −→ R2) guarantee
that Defender can still reach a syntactic equality in the case when Attacker chooses
to take ‘Defender’s role’ and generate a segment on the left-hand side, possibly
different than that generated by Defender on the right-hand side.

Attacker is thus forced to let Defender generate the segments on both the right-
hand side and the left-hand side. To remove any possibility that Defender could
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gain by adding a different segment on the left-hand side than she has added on the
right-hand side, we add the following rules.

(S-ind) rules: q0
sd−→ qd q′0

sd−→ qd

(V-ind) rules: qdIi
di−→ qd (for all i ∈ {1, 2, . . . , n})

qd⊥
e−→ ε

Following the previous arguments, it is straightforward to verify that Defender
has a WS from (q0I1⊥, q′0I1⊥) in the normed Type -2 system (G2), (S1), (S-ind),
(V1), (V-ind) iff there is a (recurrent) solution of INST. The same holds for the PDA
system (G2-τ), (S1-τ), (S-ind), (V1), (V-ind) (in the weak bisimulation game).

We observe that we really needed the rules w −→ R for generating the segments;
these are used also in (S2). In fact, we can confine ourselves to using just such
rules in the whole system, by adding a new role to the special symbol ⊥: we can
implement erasing a (so far generated) sequence by ‘killing’ it with⊥, which disables
any access to its ‘right-hand side’; this means that the suffix following the leftmost
occurrence of ⊥ can be deemed nonexistent. Thus we ‘pay’ by unnormedness for
using only w −→ R rules.

The respective (G3) rules arise from (G2) by replacing the ‘second half’; similarly
for (G3-τ)-rules.

(G3) rules: q0
g−→ t

q0
g−→ t′I1I

∗ q′0
g−→ t′I1I

∗

t′
g−→ q′0

t
g−→ q0I

∗⊥ t′
g−→ q0I

∗⊥

(G3-τ) rules: q0
g−→ t

q0
g−→ p′ q′0

g−→ p′

p′
τ−→ p′Ii | t′I1

t′
g−→ q′0

t
g−→ t2⊥ t′

g−→ t2⊥
t2

τ−→ t2Ii | q0

Verifying that Defender has a WS from (q0I1⊥, q′0I1⊥) in the system (G3), (S2),
(S-ind), (V1), (V-ind) iff there is a (recurrent) solution of INST is again straight-
forward (using the fact that any sequence q0Ii`Ii`−1 . . . Ii1⊥w can be viewed as
q0Ii`Ii`−1 . . . Ii1⊥). Similarly for (G3-τ), (S2-τ), (S-ind), (V1), (V-ind).

Recalling Propositions 3.1(2) and 2.10, we get the following theorems.

Theorem 5.3. The bisimilarity problem is Σ1
1-complete

—for both normed and unrestricted Type -2 systems (R1 −→ R2); shown by (G2,
S1, S-ind, V1, V-ind),

Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · Petr Jančar and Jǐŕı Srba

—for unrestricted Type -1b systems (w −→ R); shown by (G3, S2, S-ind, V1,
V-ind).

Theorem 5.4. The weak bisimilarity problem is Σ1
1-complete

—for both normed and unrestricted PDA (with ε-pushing and ε-popping); shown by
(G2-τ , S1-τ , S-ind, V1, V-ind),

—for (unnormed) ε-pushing PDA; shown by (G3-τ , S2-τ , S-ind, V1, V-ind).

6. PA PROCESSES

The class of PA processes is especially interesting from the point of view of imple-
menting the rec-PCP abstract game. We can again naturally represent sequences
but we can not use an (explicit) control unit to interpret them. Nevertheless, the
required control unit is very restricted, and it can be modelled by a (modest) use
of parallelism.

We again assume a fixed INST of the rec-PCP problem, a sequence
(u1, v1), (u2, v2), . . . , (un, vn) over the alphabet {A,B}, and construct an appro-
priate weak bisimulation game. The players will start with the pair

(q0V1⊥||C, q′0V1⊥||C)

which is ((q0V1⊥)||C, (q′0V1⊥)||C) since we use a convention that sequential com-
position binds more tightly than parallel. The (weak bisimulation) game is played
according to the following PA-rules. Here i again ranges over {1, 2, . . . , n}; and we
use parentheses in C

z−→ (C || qw) to highlight the (only one) use of ‘||’ (not to be
confused with the separation sign ‘ | ’). An explanation of the rules follows after
their listing.

(G-PA) rules: q0
g−→ t

q0
g−→ p′ q′0

g−→ p′

p′
τ−→ p′Vi | t′V1

t′
g−→ q′0

t
g−→ t2⊥ t′

g−→ t2⊥
t2

τ−→ t2Vi | q0

(S-PA-I) rules: q′0
s−→ qc

q0
s−→ r1⊥ q′0

s−→ r1⊥
r1

τ−→ r1Ui | r2
r2

τ−→ r2A | r2B | qc

(S-PA-II) rules: qc
z−→ ε qc

τ−→ ⊥
C

c1−→Ma,b C
c2−→Md C

z−→ (C || qw)
qw

τ−→ qwUi | qwVi | qwA | qwB | ε
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(V-PA) rules: Ui
di−→ ε Vi

di−→ ε

Ui
τ−→ (ui)R Vi

τ−→ (vi)R

A
a−→ ε A

τ−→ ε

B
b−→ ε B

τ−→ ε

Md
di−→Md

Ma,b
a−→Ma,b Ma,b

b−→Ma,b

Remark 6.1. The processes q0V1⊥||C, q′0V1⊥||C are obviously unnormed. A mi-
nor point is that there is no rewrite rule with ⊥ at the left-hand side, though the
definitions of PA processes sometimes require at least one rewrite rule for every
process symbol. We could add a harmless rule ⊥ f−→ ⊥ if we needed to handle this.

Let us now assume that INST has a (fixed recurrent) solution i1, i2, i3, . . .; we
show a WS of Defender from the pair (q0V1⊥||C, q′0V1⊥||C). A part of this WS will
be to mimic every move of Attacker in the (derivatives α of the) “C-components”;
we can thus concentrate on the components q0V1⊥, q′0V1⊥. We first note that
(G-PA)-rules are, in fact, (G3-τ)-rules (the unnormedness, i.e., ‘killing’ by ⊥ is
important) where we just use Vi instead of Ii.

Remark. Unlike the case of PDAs, here we cannot use ‘control states’ qu, qv for
interpreting Ii; therefore we use symbols Vi which carry the information about the
indices and about the fact that they will be interpreted as vi’s. The left-hand side
sequence will at the end contain Ui’s but we start with generating two copies of a
Vi-sequence for enabling DF (Defender’s Forcing).

As long as Attacker uses (G-PA)-rules, Defender prolongs the so far generated se-
quences Vi` , Vi`−1 , . . . , Vi1 (where i` = i1 = 1) by segments Vi`+m

, Vi`+m−1 , . . . , Vi`+1

where i`+m = 1, following the assumed solution i1, i2, i3, . . . of INST.
If Attacker wants to win, he must use (S-PA-I)-rules at some moment, in fact the

rule q′0
s−→ qc, for switching to the verification phase. At this moment, we have the

(intermediate) pair

( q0 Vi`Vi`−1 . . . Vi1⊥||α , qc Vi`Vi`−1 . . . Vi1⊥||α )

(omitting the suffix after ⊥) and Defender now responds by a (long) transition s=⇒
on the left-hand side. There she kills the Vi-sequence by q0

s−→ r1⊥ and by τ -rules
she generates a Ui-sequence supplemented by a sequence w ∈ {A,B}∗. So she can
install the pair

( qc wUi`Ui`−1 . . . Ui1⊥||α , qc Vi`Vi`−1 . . . Vi1⊥||α )

where w (ui`)R(ui`−1)R . . . (ui1)R = (vi`)R(vi`−1)R . . . (vi1)R. Now if α = Ma,b||α′
or α = Md||α′ for some α′ then by inspecting the (V-PA)-rules it is clear that the
two processes are weakly bisimilar. The only remaining chance for Attacker is that
C appears in α and he plays qc

z−→ ε on some side. Then Defender performs the
killing qc

τ−→ ⊥ on the other side and by using C z−→ C||qw and the τ -rules from qw
she installs the syntactic equality (when the suffixes behind ⊥ are ignored). Hence
Defender has a winning strategy in this case.

On the other hand, if INST has no (recurrent) solution, Attacker can use the
following WS. He makes no moves from C and repeatedly asks Defender to prolong
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the generated Vi-sequences (not caring whether Defender generated the same seg-
ments on both sides) until the right-hand side sequence does not represent a partial
solution. This must eventually happen. Then Attacker uses q′0

s−→ qc, thus forcing
Defender to make an s=⇒ move and install a pair

( q w Ui′
`′
Ui′

`′−1
. . . Ui′1⊥ || C, qcVi`Vi`−1 . . . Vi1⊥ || C )

where q ∈ {r1, r2, qc,⊥}. Since (the nonempty sequence) i1, i2, . . . , i` is not a partial
solution, necessarily either the condition

(eq-ind): `′ = ` and i′j = ij for j = 1, 2, . . . , `

or the condition

(eq-word): w (ui′
`′

)R(ui′
`′−1

)R . . . (ui′1)R = (vi`)R(vi`−1)R . . . (vi1)R

is not satisfied.
In the case q = qc Attacker wins as follows: if (eq-ind) is not satisfied then

Attacker plays C c1−→Ma,b and if (eq-word) is not satisfied then he plays C c2−→Md;
now Attacker’s win is clear (from the (V-PA)-rules). If q = ⊥ then Attacker
obviously wins, e.g., by performing C

c1−→ Ma,b and then qc
z−→ ε on the right-

hand side. If q ∈ {r1, r2} then Attacker changes q by one or two τ -moves into qc;
Defender can either make empty moves or the move qc

τ−→ ⊥ on the right-hand
side, which results in a winning situation for Attacker, as handled in the previous
cases.

Recalling Propositions 3.1(2) and 2.10, we have thus shown the following theorem.

Theorem 6.2. Weak bisimilarity is Σ1
1-complete for PA processes.

7. PARALLEL PUSHDOWN AUTOMATA, PETRI NETS

7.1 Π0
1-completeness

Reducing the Π0
1-complete problem inf-MCM to the bisimulation game on PPDA

processes appeared implicitly in [Jančar 1995b], where it was presented on Petri
nets; [Moller 1996] then described the used Petri nets explicitly as PPDAs. We
recall the (short) construction here because it is used (and enhanced) in our Σ1

1-
completeness result for weak bisimilarity.

Given a 2-counter MCM M with n instructions (as in Subsection 3.2), we con-
struct a PPDA system in which q1 ∼ q′1 iff the computation of M on (0, 0) is
infinite. We use the pair of symbols qi, q′i for (the label of) the ith instruction,
i ∈ {1, 2, . . . , n}, and symbols C1, C2 for unary representations of the values of
counters c1, c2. We define the following rules corresponding to instructions of M
(where action a can be read as ‘addition’, i.e., increment, d as ‘decrement’, z as
‘zero’, and h as ‘halt’).

‘i : cr := cr + 1; goto j’:

qi
a−→ qjCr q′i

a−→ q′jCr
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‘i : if cr = 0 then goto j else (cr := cr − 1; goto k)’:

qiCr
d−→ qk q′iCr

d−→ q′k
qi

z−→ qj q′i
z−→ q′j

qiCr
z−→ q′jCr q′iCr

z−→ qjCr

‘n : HALT’:

qn
h−→ ε

If M halts on (0, 0) then Attacker can force the correct simulation of M in
both components of the starting pair (q1, q′1) and finally win by playing qn

h−→ ε
(because there is no rule for q′n). If the computation of M on (0, 0) is infinite then
Defender forces Attacker to perform the correct simulation of the computation
anyway (threatening by syntactic equality), and she thus wins.

This (and image finiteness) implies the following result [Jančar 1995b; Moller
1996].

Theorem 7.1. Bisimilarity is Π0
1-complete for PPDA.

7.2 Σ1
1-completeness

We now consider a nondeterministic MCM M with two counters c1, c2 as an in-
stance of the Σ1

1-complete problem rec-NMCM. We want to construct a PPDA
system where q1 ≈ q′1 iff there is an infinite computation of M on (0, 0) which uses
instruction 1 infinitely often.

We first make our modelling task easier by introducing a new nondeterministic
instruction

i: raise cr; goto j .

Its performing means adding a (nondeterministically chosen) nonnegative integer to
cr. We transform M into M ′ with 3 counters c1, c2, c3 as follows. Every instruction
i : instri of M is replaced (and simulated) by two instructions in M ′, with labels
2i−1 and 2i.

1 : instr1 is replaced by

1 : raise c3; goto 2
2 : instr1

i : instri, for i ∈ {2, 3, . . . , n}, is replaced by

2i−1 : if c3 = 0 then goto 2n (halt) else (c3 := c3 − 1; goto 2i)
2i : instri

Inside instri, i ∈ {1, 2, . . . , n}, each ‘goto j’ is replaced by ‘goto (2j−1)’.
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To satisfy our goal, it is obviously sufficient to construct a PPDA system in
which q1 ≈ q′1 iff there is an infinite computation of M ′ on (0, 0, 0) (it necessarily
performs instruction 1 infinitely often). The increment and zero testing instructions
of M ′ are realized by the PPDA rules as in the previous subsection; as before, the
(asymmetric) halting rule q2n

h−→ ε is added.
The nondeterministic choice is to be resolved by Defender, so it is realized by the

following variant of (G1).

‘i : goto j or goto k’:

qi
c−→ ri q′i

c−→ pj | pk
qi

c−→ pj | pk

ri
aj−→ qj pj

aj−→ q′j
ri

ak−→ qk pk
ak−→ q′k

pj
ak−→ qk

pk
aj−→ qj

It thus remains to enable that Defender chooses the number to be added to c3
when instruction 1 (of M ′) is performed; this is handled by the following variant of
(G2-τ).

‘1 : raise c3; goto 2’:

q1
g−→ r1

q1
g−→ p′1 q′1

g−→ p′1

p′1
τ−→ p′1C3 | r′1

r′1
g−→ q′2

r1
g−→ p1 r′1

g−→ p1

p1C3
τ−→ p1

p1
τ−→ p1C3 | q2

We note that the rule p1C3
τ−→ p1 allows to decrease the number of C3’s, which

is again added to enable DF; if Attacker would try to generate the left-hand side
number of C3’s by himself, he would be punished by a syntactic equality.

The rules could be obviously modified to implement a general instruction ‘i :
raise cr; goto j’, by adding some rules (similar to (S-ind), (V-ind)) which would
enable that Attacker wins if Defender does not add the same number of Cr’s on
both sides. In our special case we do not need this since Defender cannot gain by
such ‘cheating’.

If M ′ has an infinite computation (on (0, 0, 0)) then Defender can force that such
a computation is simulated, and she wins. If there is no infinite computation of M ′
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on (0, 0, 0), Attacker can eventually force reaching the control state q2n on one side
and q′2n on the other side, and he wins by the asymmetric rule q2n

h−→ ε.
We have thus proved the following theorem.

Theorem 7.2. Weak bisimilarity is Σ1
1-complete for PPDAs.

8. SUMMARY

The following tables summarize the known results for the prefix-rewrite hierarchy
(recall Figure 2) and pushdown automata.

(Strong) bisimilarity on prefix rewrite systems

Normed Processes Unnormed Processes

Type -2 Σ1
1-complete Σ1

1-complete
Type -1b Π0

1-complete Σ1
1-complete

Type -1a Π0
1-complete Π0

1-complete
Type 0

and
decidable

[Stirling 1998]
decidable

[Senizergues 2005]

Type 1 1
2

EXPTIME-hard
[Kučera and Mayr 2002]

EXPTIME-hard
[Kučera and Mayr 2002]

Type 2
in P

[Hirshfeld et al. 1996]
in 2-EXPTIME

[Burkart et al. 1995]

P-hard
[Balcazar et al. 1992]

PSPACE-hard
[Srba 2002]

Type 3
in P

[Paige and Tarjan 1987]
in P

[Paige and Tarjan 1987]
[Kanellakis and Smolka 1990] [Kanellakis and Smolka 1990]

P-hard
[Balcazar et al. 1992]

P-hard
[Balcazar et al. 1992]

Weak bisimilarity on pushdown automata

Normed Processes Unnormed Processes

unrestricted Σ1
1-complete Σ1

1-complete
ε-pushing only Π0

1-complete Σ1
1-complete

ε-popping only Π0
1-complete Π0

1-complete

All undecidability results (Π0
1-completess and Σ1

1-completeness) have been proved
in this paper. We can add that Sénizergues’ decidability result applies to so called
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regular graphs of finite out-degree. These can be characterized by Type -1a rules
R

a−→ w with the restriction that R is a prefix-free regular language (as discussed
in the report [Jančar and Srba 2006]). Hence, informally speaking, the decidability
boundary lies between the prefix-free and the unrestricted rules R a−→ w. In other
words, between deterministic ε-popping and unrestricted ε-popping in the case of
weak bisimilarity for pushdown automata.

Our further results showed Σ1
1-completeness of weak bisimilarity on PA processes

as well as Σ1
1-completeness of weak bisimilarity on PPDA processes (and Petri nets).

Finally, we would like to note that the decidability questions of weak bisimilarity
are still open for BPA and BPP. The techniques developed in this article are not
applicable to these classes because they seem to lack the possibility to simulate the
control-state unit.
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