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Abstract

We show that the spectral gap problem is undecidable. Specifically, we
construct families of translationally-invariant, nearest-neighbour Hamilto-
nians on a 2D square lattice of d-level quantum systems (d constant), for
which determining whether the system is gapped or gapless is an undecid-
able problem. This is true even with the promise that each Hamiltonian is
either gapped or gapless in the strongest sense: it is promised to either have
continuous spectrum above the ground state in the thermodynamic limit, or
its spectral gap is lower-bounded by a constant in the thermodynamic limit.
Moreover, this constant can be taken equal to the local interaction strength of
the Hamiltonian.

This implies that it is logically impossible to say in general whether a
quantum many-body model is gapped or gapless. Our results imply that
for any consistent, recursive axiomatisation of mathematics, there exist spe-
cific Hamiltonians for which the presence or absence of a spectral gap is
independent of the axioms.

These results have a number of important implications for condensed
matter and many-body quantum theory.
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Part 1

1 Introduction

The spectral gap is one of the most important properties of a quantum many-body
system. It plays a pivotal role in condensed matter, mathematical, and fundamental
physics, and also in quantum computing.

One of the main goals of condensed matter theory is to understand phase
transitions and phase diagrams. The behaviour of the spectral gap is intimately
related to the phase diagram of a quantum many-body system, with quantum
phase transitions occurring at critical points where the gap vanishes. The low-
temperature physics of the system are governed by the spectral gap: gapped
systems exhibit “non-critical” behaviour, with low-energy excitations that behave
as massive particles, preventing long-range correlations [ ]; gapless systems
exhibit “critical” behaviour, with low-energy excitations that behave as massless
particles, allowing long-range correlations.

Many seminal results in mathematical physics prove that specific systems are
gapped or gapless. Examples include the Lieb-Schultz-Mattis result showing that
the Heisenberg chain for half-integer spins is gapless [ ] (extended to higher
dimensions by Hastings [ 1), or the proof of a spectral gap for the 1D AKLT
model [ ]. Other results only apply to gapped systems. Important examples
include exponential decay of correlations [ ], the 1D entanglement area-law
[ ], or the very recent proof that the ground state energy density problem in
IDisin P [ ].

The spectral gap also arises as a key quantity in quantum computing, via
adiabatic quantum computation [ ]. In this type of computation, proven
to be exactly as powerful as the usual circuit model for quantum computation
[ ], the system is initialised in the ground state of an easy Hamiltonian, that
is a Hamiltonian for which the ground state can be easily constructed. Then the
interactions are slowly changed, to end up in a target Hamiltonian whose ground
state encodes the output of the computation. The key property controlling the
efficiency of this method is the minimal spectral gap in the path of Hamiltonians
connecting the initial Hamiltonian to the target. A computational problem has an
efficient quantum algorithm iff there exists such a Hamiltonian path for which the
minimal spectral gap is lower-bounded by an inverse-polynomial in the system
size.

Thus understanding whether a given system is gapped or not is one of the
fundamental questions in quantum many-body physics. Indeed, there are many
famous open problems concerning the spectral gap. A paradigmatic example is the
antiferromagnetic Heisenberg model. Even in 1D, the case of integer spin remains
open as the “Haldane conjecture” [ ], first formulated in 1983. The same ques-



tion in the case of 2D non-bipartite lattices, such as the Kagome lattice, was posed
by Anderson in 1973 [ ]. The spectral gap of such systems remains one of the
main unsolved questions about the long-sought topological spin liquid phase. This
latter problem has gained a lot of attention in recent years [ ] due to materials,
such as herbertsmithite [ ], whose interactions are well-approximated by
the Heisenberg coupling, and which—according to the latest numerical evidence
[ ]—are potential candidates for topological spin liquids. In the related
setting of quantum field theory, determining if Yang-Mills theory is gapped is one
of the Millennium Prize Problems [ ], and is closely related to one of the most
important open problems in high-energy physics: explaining the phenomenon of
quark confinement.

All of these problems are specific cases of the general spectral gap problem:
given a quantum many-body Hamiltonian, is the system it describes gapped or
gapless? Our main result is a proof that the spectral gap problem is undecidable.
This is much stronger than merely showing that a problem is computationally hard.
It implies that it is not merely difficult to determine whether a systems is gapped or
gapless; it is logically impossible to say in general.

This has two subtly distinct meanings. First, the spectral gap problem is
undecidable in precisely the same sense as the Halting Problem is undecidable:
there cannot exist an algorithm, no matter how inefficient, to determine if a general
Hamiltonian is gapped or gapless. This algorithmic undecidability relates to solving
the spectral gap for a family of Hamiltonians, as we might have if we want to map
out the phase diagram of a system as we vary some external parameters. Second,
the spectral gap problem is in general an undecidable question: there exist simple
Hamiltonians for which neither the presence nor the absence of a spectral gap is
provable from the axioms of mathematics. Theorems 3 and 4 in Section 3 make
both of these meanings precise.

The idea that some of the most difficult open problems in physics could be
mathematically proven to be “impossible to solve” is not new. Undecidability of
other physical quantities has been shown in many-body systems for the much easier
cases where either the many-body lattice structure or the translational-invariance is
removed [ ; ; ]. Indeed, proving such impossibility theorems is
highlighted as one of the main open problems in mathematical physics in the list
published by the International Association of Mathematical Physics in the late 90’s,
edited by Aizenman [ ]. Our result, then, can be seen as a major contribution
to this.



2 Preliminaries

2.1 Gapped versus gapless Hamiltonians

The following sets the framework for our analysis and defines the objects and terms
used. Let A(L) :={1,..., L} be the set of sites (or vertices) of a square lattice of
size L € N, which we assume to be at least 2. By & ¢ A(L) X A(L) we denote the
set of edges of the square lattice, directed such that (i, j) € & implies that j lies
north or east of i. Two cases will be considered: periodic boundary conditions
where the outer rows and columns are connected along the same direction as well,
so that A(L) becomes a square lattice on a torus, and open boundary conditions
where these connections are not made.

We assign a Hilbert space H® ~ C? to each site i € A(L) and the tensor
product X)._ H? to any subset S C A(L). To every neighbouring pair (i, j) € &,
we assign a Hermitian operator A € B(H" ® H') describing the interaction
between the sites. In addition, we may assign an on-site Hamiltonian given by a
Hermitian matrix h(lk) € B(HW) to every site k € A(L).

Throughout, we consider Hamiltonians that are built up from such nearest-
neighbour and possibly on-site terms in a translational invariant way. That is, when
identifying Hilbert spaces, 1" = h{" for all k,1 € A(L) and h"-") = h-) if there is
av € Z? so that (7, j') = (i + v, j + v). The total Hamiltonian

HYD = Y R4y (1)

i,))e& keA(L)

can thus be specified by three Hermitian matrices: a d X d matrix h; and two d* X d*
matrices h,o and ., which describe the interactions between neighbouring sites
within any row and column respectively. Hence, it may alternatively be written as

HYD =3 N e S0 ST+ 3 A, 2)

rows ¢ columns r ieA(L)

max{||fowll, [|Acolll, |71]]} 1s called the local interaction strength of the Hamiltonian
and can be normalised to be 1.

Let spec HMP := {1y, A, ...} denote the spectrum, i.e. the set of eigenvalues
of HM? listed in increasing order 1y < A; < .... For clarity we will sometimes
write the Hamiltonian in question as an argument of the eigenvalues. Ay(H*®)
will be called ground state energy, the corresponding eigenvector ground state
and a Hamiltonian H™® frustration-free if its ground state energy is zero while
all h9, h(lk) are positive semi-definite. That is, a ground state of a frustration-free
Hamiltonian minimises the energy of each interaction term individually.

The quantity we are interested in is the asymptotic behaviour of the spectral
gap

AHMP) = 4, (HMY) = Ag(HMP) 3)

9



in the thermodynamic limit, that is, when L — oo. The main result of this paper is,
loosely speaking, that it is in general undecidable whether or not this gap closes in
the thermodynamic limit. To be more precise we need the following definitions:

Definition 1 (Gapped) We say that a family {H"} of Hamiltonians, as described
above, characterises a gapped system if there is a constant y > 0 and a system size
Lo such that for all L > Ly, Ao(HP) is non-degenerate and A(H*P) > . In this
case, we say that the spectral gap is at least y.

Definition 2 (Gapless) We say that a family {H*®} of Hamiltonians, as described
above, characterises a gapless system if there is a constant ¢ > 0 such that for all
&> 0 there is an Ly € N so that for all L > L any point in [1o(H*®), Ag(HM") +¢]
is within distance & from spec HMP,

Note that gapped is not defined as the negation of gapless; there are systems
that fall into neither class. The reason for choosing such strong definitions is
to deliberately avoid ambiguous cases (such as systems with degenerate ground
states). A Hamiltonian that is gapped or gapless according to these definitions
should be recognised as such throughout the literature. Our constructions will
allow us to use these strong definitions, because we are able to guarantee that each
instance falls into one of the two classes. Indeed, we could further strengthen the
definition of “gapless” without changing our undecidability results or their proofs,
below, by demanding that ¢ = ¢(L) grows with L so that lim; _,., ¢(L) = oo.

2.2 Undecidability

There are two different albeit related notions of undecidability, which we will
briefly and informally recall in the following: one, which can be called axiomatic
undecidability, is more related to mathematical logic whereas the other, which
might be called algorithmic undecidability, feels more at home in theoretical
computer science. For a rigorous introduction and a more detailed discussion of
the notions used below we refer to [ ].

A decision problem (i.e. a YES/NO assignment to a each member of a set of
inputs) is algorithmically undecidable if there is no algorithm that terminates and
provides the correct answer upon every input. The notion of an ‘algorithm’ used
here is formally defined in terms of Turing machines, but the Church-Turing thesis
suggests that any other reasonable formalisation will do as well. A simple but
crucial point to note here is that decision problems with only finitely many possible
inputs are trivially decidable by case distinction. In particular, single-instance prob-
lems like "is the spin-1 anti-ferromagnetic Heisenberg model gapped?" are trivially
decidable in the algorithmic sense since either the algorithm "PRINT:’YES’" or
the algorithm "PRINT:"NO’" will provide the correct assignment.

10



Figure 1: (a) A gapped system has a unique ground state 1o(H) and a constant
lower-bound y on the spectral gap A(H) in the thermodynamic limit. (b) A gapless
system has continuous spectrum above the ground state in the thermodynamic limit.
See Definitions | and 2 for the precise definitions.

This differs from the second notion of axiomatic undecidability, also called
axiomatic independence. Within a formal system, which comprises a set of axioms
together with rules defining formal proofs, a statement is undecidable in the
axiomatic sense (or, synonymously, independent) if it can neither be proven nor
disproven from the axioms.

There is a simple, but for our purpose important, relation between these two
notions of undecidability: if a decision problem is algorithmically undecidable,
then for every consistent and recursive formal system in which the problem can be
stated, there are infinitely many instances of the problem each of which can neither
be proven nor disproven from the axioms. The argument is standard [Poo12], so we
only sketch it here informally. Suppose for contradiction that all but finitely many
instances are axiomatically decidable. Since the theorems in our formal system are
recursively enumerable, this would imply that there exists an algorithm which runs
through all theorems, until either a proof or a disproof is found. The exceptions,
since there are finitely many, could be dealt with by case distinction.

In the main part of this paper we prove undecidability of problems concerning
the spectral gap, the ground state energy density and other low temperature proper-
ties of quantum spin systems in the algorithmic sense. Axiomatic independence
then follows as a corollary in the way just stated.

11



3 Main results

For each natural number n, we define ¢ = ¢(n) as the rational number whose binary
decimal expansion contains the digits of n in reverse order after the decimal. We
also fix one particular Universal Turing Machine and call it UTM.

Theorem 3 (Algorithmic undecidability of the spectral gap) We construct ex-
plicitly a dimension d, d* x d* matrices A, B,C, D and a rational number 8 so
that

(i). A is Hermitian and with coefficients in 7 + BZ + %Z,
(ii). B, C have integer coefficients,

(iii). D is Hermitian and with coefficients in {0, 1, B}.

For each natural number n, define:

hi(n) = a(n)l (a(n) an algebraic number)
hyow(m) = D (independent of n)
heo(n) = A+ B (e™B + e ™ B + ™" C + e CY).

Then:

(i). The local interaction strength is < 1. Le. all terms hi(n), h,y,,(n), heoi(n) have
operator norm bounded by 1.

(ii). If UTM halts on input n, then the associated family of Hamiltonians {HP (n))
is gapped in the strong sense of Definition | and, moreover, the gap y > 1.

(iii). If UTM does not halt on input n, then the associated family of Hamiltonians
{H D (n)} is gapless in the strong sense of Definition 2.

Using the classic result of Turing [ ] that the Halting Problem for UTM
on input 7 is algorithmically undecidable, we can conclude that the spectral gap
problem is also undecidable. As noted above, this immediately gives the following:

Theorem 4 (Axiomatic independence of the spectral gap) Let d € N be a suffi-
ciently large constant. For any consistent formal system with a recursive set of
axioms, there exists a translationally-invariant nearest-neighbour Hamiltonian on
a 2D lattice with local dimension d and algebraic entries for which neither the
presence nor the absence of a spectral gap is provable from the axioms.

It is straightforward (if tedious) to extract an explicit value for d in Theorems 3
and 4 from the construction described in this paper.

12



3.1 Implications of the results

These results have a number of implications for condensed matter physics and
fundamental physics. They imply that one can write down simple models whose
phase diagrams are uncomputably complicated. The standard approach of trying to
gain insight into such models by solving numerically for larger and larger lattice
sizes is doomed to failure. The system could display all the features of a gapless
model, with the gap of the finite system decreasing monotonically with increasing
size. Then, at some threshold size, it may suddenly switch to having a large gap.
Not only can this threshold be arbitrarily large; the threshold itself is uncomputable.
In general, we can never know whether a large many-body system is approaching
the asymptotic behaviour of the thermodynamic limit—one more row of atoms may
completely change its properties. Our findings also imply that a result showing
robustness of the spectral gap under perturbations, as for the case of frustration-free
Hamiltonians in [ ], cannot hold for general gapped systems.

Phase diagrams with infinitely many phases are known in quantum systems in
connection with the quantum Hall effect, where fractal diagrams like the Hoftstadter
butterfly can be obtained [ ; ]. Since membership in many fractal sets is
not decidable (when formulated in the framework of real computation; see [ D,
it would be interesting to see whether quantum Hall systems could provide a
real-world manifestation of our findings.

Conjectures about the spectral gap, such as the Haldane conjecture, the 2D
AKLT conjecture, or the Yang-Mills mass gap conjecture, implicitly assume that
these questions can be answered one way or the other. Our results prove that the
answer to the general spectral gap question is not determined by the axioms of
mathematics. Whilst our results are still a long way from proving that any of these
specific conjectures are axiomatically undecidable, they at least open the door to
the possibility that these — or similar — questions about physical models may be
provably unanswerable.

13



4 Extended Overview

Since the proof of our spectral gap undecidability result Theorem 3 is quite long,
in this section we give an overview and discussion of the main ideas in the proof.

The first and most important step in proving undecidability of the spectral gap
is to prove undecidability of another relevant quantity: the ground state energy
density. Once we have this, it is relatively easy to “lift” it to undecidability of the
spectral gap. (More precisely, we give a reduction from the ground state energy
density problem to the spectral gap problem.) The intuition behind this is illustrated
in Figure 2; the proof can be found in Section 9.2.

In fact, undecidability of the ground state energy density is stronger than we
really need to prove undecidability of the spectral gap. It is sufficient to prove
undecidability of the ground state energy with constant promise gap; undecidability
of the ground state energy density implies that this holds even with a promise gap
diverging to infinity.

4.1 Ground state energy density

As in Section 2.1, consider the square lattice A(L) with edge length L € N but in
the general case of v € N spatial dimensions, supporting a translationally-invariant
nearest-neighbour Hamiltonian

- .
HMD = D WP ), @
(i.))eE keA(L)
and let ¢ be its local interaction strength. Assume open boundary conditions. The
ground state energy density is defined as

E,:= lim E(L), where E,(L):= L7 Ag(HMY). (5)

The following simple argument shows that this limit is indeed well defined.
Consider two lattices of different sizes L, L’ € N such that L = nl’ for some n € N.
Assume w.l.o.g. that the interaction terms in the Hamiltonian are all positive semi-
definite. Then H ® is, as an operator, lower bounded by the sum of n” translates
of HAM) . So we have that

Ao(HAP)Y > n” 1o(HMD)), (6)

On the other hand, we can use a product of n” copies of the ground state of HA)
in order to obtain an analogous upper bound on the ground state energy of HA®) of
the form

Ao(HMPY < " g(HM) + 2yn" L Ve, (7)
Dividing both inequalities by L” we are left with
, . 2vc
E,(L'")<E,(L)<E,(L) + 7R (8)

14



Figure 2: To relate ground state energy density and spectral gap, we need: (i) A
Hamiltonian H,(¢) whose ground state energy density is either strictly positive
or tends to O from below in the thermodynamic limit, but determining which is
undecidable, and (ii) a gapless Hamiltonian H; with ground state energy 0. We
combine H,(¢) and H, to form a new local interaction, h(y), in such a way that
h(p) has (iii) an additional non-degenerate 0-energy eigenstate, and the continuous
spectrum of H, is shifted immediately above the ground state energy of H,. (a) If
the ground state energy density of H,(y) is strictly positive, its ground state energy
in the thermodynamic limit must diverge to +co, and A(yp) is gapped. (b) Whereas
if the ground state energy density of H,(¢) tends to O from below, then its ground
state energy in the thermodynamic limit must be < 0, and /(y) is gapless. A proof
can be found in Section 9.2.
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Hence, an interval of order O(1/L’) contains both lim inf and lim sup of E,(L) so
that both must coincide, which proves that lim; _,, E,(L) is well defined.

The ground state energy density is an important physical quantity in its own
right, as well as being our main stepping stone to the spectral gap results. It is
therefore worth a brief digression to note that the above argument also shows that
the ground state energy density can be computed to any precision ¢ > 0 by exact
diagonalisation of H*%) for any L’ > 2vc/6. This immediately implies that the
ground state energy density problem is decidable if we provide a finite promise

gap o.

Proposition 5 (Decidability of g.s. energy density with promise gap) Leto > 0
be a computable number and consider translationally-invariant nearest-neighbour
Hamiltonians on a v—dimensional square lattice with open boundary conditions, fi-
nite local Hilbert space dimensions and algebraic matrix entries. Then determining
whether E, < 0 or E, > 0 is decidable under the promise that E, & (0, 0).

Since the real algebraic numbers form a computably ordered field whose
cardinality is countably infinite, we can think of the input Hamiltonian as being
encoded as natural number.

This is in sharp contrast to the following, which will form the crucial step in
our proof:

Theorem 6 (Undecidability of g.s. energy density) Letd € N be sufficiently large
but fixed, and consider translationally-invariant nearest-neighbour Hamiltonians
on a 2D square lattice with open boundary conditions, local Hilbert space dimen-
sion d, algebraic matrix entries, and local interaction strengths bounded by 1.
Then determining whether E, = 0 or E, > 0 is an undecidable problem.

In the next two sections, we will discuss two approaches to proving Theorem 6
that do not work. Section 4.2 describes a purely classical construction based on
Wang tilings. This gives a Hamiltonian with the correct spectral properties, but it
necessarily requires unbounded local Hilbert space dimension d. In Section 4.3,
we briefly review the Kitaev-Feynman-style local Hamiltonian constructions used
in recent QM A-hardness results. By a new and careful application of the quan-
tum phase estimation technique, described in Section 4.4, extending ideas from
Gottesman and Irani [ ] in Section 4.5, this approach can give a Hamiltonian
with constant local dimension. But it necessarily fails to have the required spec-
tral properties. Finally, in Section 4.6, we discuss how combining ideas from
both these approaches allows us to achieve the required spectral properties whilst
simultaneously keeping the local dimension constant.
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4.2 Wang Tilings

The first approach one might consider to proving undecidability of the ground state
energy is to note the close relationship between tilings and (classical) Hamiltonians,
recalling Berger’s [Ber66] classic result that the tiling problem is undecidable.

We will soon see that this approach is too weak to prove Theorem 6. Nonethe-
less, not only is it helpful to understand why this approach breaks down, the much
more involved construction required to prove our main result will also make use of
Wang tilings, albeit in a less direct way.

A unit square whose edges are coloured with colours chosen from a finite set is
called a Wang tile. A finite set 7~ of Wang tiles is said to tile the plane 7 if there
is an assignment Z> — 7~ so that abutting edges of adjacent tiles have the same
colour. The result we will use is the fact that there exists no algorithm which, given
any set of tiles as input, decides whether or not this set can tile the plane—tiling
is undecidable [Ber66]. Here, rotations or reflections of the tiles are not allowed —
they would make the problem trivial.'

X X OB

XX, T
X T XX

Figure 3: Examples of valid and invalid tilings (bottom) of a set of four Wang tiles
(top).

A tiling problem can easily be represented as a ground state energy problem for
a classical Hamiltonian (i.e. one that is diagonal in a product basis). The mapping
is straightforward: with the identification 7~ = {1, ..., T} we assign a Hilbert space
HD ~ CT to each site i of a square lattice, and define the local interactions via

B = Z Im)(ml;y ® n)(nl ;) , 2

(m,n)eCl-)

'Tf one slightly modifies the rules of the game and requires complementary rather than matching
colours for abutting edges, then the problem remains undecidable even if rotations and reflections
are allowed.
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where the set of constraints C%“” € 7~ x 7~ includes all pairs of tiles (mm, n) which
are incompatible when placed on adjacent sites i and j. As is standard in this
context, we have used (and will be using throughout) Dirac notation. The overall
Hamiltonian on the lattice A(L) is then

HMD .= Z RO, (10)

(i.)eé

Undecidability of the ground state energy of H, with a promise gap of 1 now
follows immediately from undecidability of tiling, and this gives undecidability of
the ground state energy density in the case of open boundary conditions. The full
proof is described in Section 5.

However, there is a crucial and fundamental limitation to this approach: there
is no upper-bound on the local dimension of the Hamiltonian. Rather, the local
dimension grows with the number of tile types. And we cannot impose any bound
on the latter, or else the tiling problem is restricted to a finite number of cases and
is trivially decidable by case enumeration.

On the other hand, this does already allow us to prove a weaker form of
our main result: undecidability of the spectral gap for families of Hamiltonians
with no constraint on the local dimension. From the discussion in Section 2.2,
this immediately implies existence of Hamiltonians for which the spectral gap is
axiomatically independent, albeit Hamiltonians whose local dimension is arbitrarily
large and unknown (in fact uncomputable). Furthermore, this approach can be
extended to prove that any low-energy property that distinguishes a Hamiltonian
from a gapped system with unique product ground state is undecidable. Section 5
of the paper is devoted to proving these results.

Nonetheless, from a physical perspective e.g. of characterising the phase dia-
gram of a system, it is unreasonable to allow the local Hilbert space dimension
to grow arbitrarily large — or indeed to change at all — as the parameters of the
Hamiltonian are varied. So we are still a long way from proving our main result.

Fundamentally, the problem is that the corresponding Hamiltonians are too
simple. For a problem to be algorithmically undecidable, it must admit a countably
infinite number of problem instances. If the local Hilbert space dimension is fixed,
the Hamiltonian is completely specified by a finite number of matrix elements
defining its local interactions. The only way to encode a countably infinite number
of problem instances is to exploit the fact that the matrix elements themselves can
take a countable infinity of values (e.g. arbitrarily precise rational numbers, or even
computable numbers). Whereas the above tiling approach is only sensitive to the
pattern of non-zero matrix elements.

To overcome this, we will need an inherently quantum approach, which is the
topic of the next section.
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4.3 QMA constructions

There is by now a standard approach to proving complexity-theoretic hardness
results for local Hamiltonian problems. The idea, which dates back to Feyn-
man [ ] and was significantly developed by Kitaev [ ] and others [

; ; ], is to construct a Hamiltonian whose ground state encodes
the history of a quantum computation in superposition. If we divide the system into
two registers, a “clock” register and a “computational” register, then the desired
ground state is

1 T
—Z|t> ) (11)
VT + 1=
where |i,) denotes the state of the computation after 7 steps. This superposition
over the history of a computation is often called a computational history state.

It is not difficult to construct a Hamiltonian with this as its unique ground state.
The difficult part is to implement Feynman’s idea using a local Hamiltonian. This
was first done by Kitaev [ ], who showed how to construct such a Hamilto-
nian out of 5-body terms. Kempe, Kitaev, and Regev [ ] improved this to
2-body, Oliveira and Terhal [ ] to nearest-neighbour two-qubit interactions on
a 2D square lattice, and Aharonov et al. [ ] to nearest-neighbour two-body
interactions on a line.

All of these constructions exploit the fact that the interactions can differ from
site to site, in order to encode arbitrary computations. Indeed, for translationally-
invariant nearest-neighbour interactions on a regular lattice, the entire Hamiltonian
is specified by a finite number of two-body terms (and possibly one single-body
term), and it might appear that there are not enough parameters available to encode
arbitrary quantum computations. However, in a remarkable paper, Gottesman and
Irani | ] showed how to construct a translationally-invariant Hamiltonian which
has as its ground state a computational history state for an arbitrary computation.
(In fact, the two-body interaction in the Gottesman and Irani [ ] construction is
the same fixed interaction for al/l problem instances. The input is specified by the
only remaining free parameter: the length of the chain!)

The aim of all these local Hamiltonian constructions was to prove QMA-
hardness of the finite-size ground state energy problem for the corresponding class
of Hamiltonians, by encoding the quantum computation that verifies the witness for
a QMA problem and adding a local term to the Hamiltonian that gives an additional
energy penalty to the “no” output.

An obvious approach to constructing a Hamiltonian with undecidable ground
state energy is to use one of these local Hamiltonian constructions to encode the
evolution of a universal (reversible or quantum) Turing Machine, instead of a QMA
witness verifier, and give an additional energy penalty to the halting state. If we use
the Gottesman and Irani [ ] construction, the resulting Hamiltonian will consist
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of translationally-invariant, nearest-neighbour interactions on a line. Since the
Halting Problem is undecidable, and the ground state energy depends on whether
or not the computation halts, the ground state energy of this Hamiltonian would
seem to be undecidable. As in the tiling approach, this is certainly too weak to
prove undecidability of the energy density. But one might hope that it is sufficient
to prove undecidability of the ground state energy.

However, this Feynman-Kitaev Hamiltonian approach does not even achieve
the weaker result of the tiling approach. There are now two crucial problems:

(i). The Halting Problem is undecidable for the universal Turing Machine on
arbitrary input (or for an arbitrary Turing Machine running on fixed input).
As in the tiling approach of the previous section, it is not at all clear how to
encode this countably infinite family of problems into the constant number
of matrix elements describing the nearest-neighbour interaction.

(i1). The promise gap ¢ in all known local Hamiltonian constructions, and in
particular the translationally-invariant construction of [ ], scales inverse-
polynomially in the system size. Thus (assuming the limits exist)

lim; . a(L non — haltin
lim Ay(HAD) = { Mo L) . s
L—co lim; . a(L) + oD halting (12)
= Llim a(L).

I.e. the ground state energy in the thermodynamic limit is identical in both
the halting and non-halting cases.

These issues are inherent to the spectral gap problem for many-body quantum
systems, where the question is only meaningful or interesting in the thermodynamic
limit of Hamiltonians with regular structure (of which translational-invariance is
the simplest case). Thus they cannot be side-stepped, and overcoming them is the
main task in proving the result.

In the following section, we will see that overcoming (i), whilst challenging,
can be achieved by exploiting the ability to encode quantum computation. Indeed,
this will essentially be the only quantum part of our construction.

However, (ii) presents a more serious obstacle to the history state approach.
There is an inherent trade-off between run-time and promise gap in Kitaev-style
local Hamiltonian constructions, and the run-time is directly related to the system
size when the Hamiltonian is constrained to a lattice. But we are necessarily
working in the thermodynamic limit of arbitrarily large lattice size. We therefore
need a constant promise gap, independent of the length of the computation. This
cannot be achieved by any known local Hamiltonian construction, and may well be
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impossible. Without a constant gap between the halting and non-halting cases, the
ground state energy problem becomes trivially decidable in the thermodynamic
limit. We discuss how we overcome this obstacle in Section 4.6.

4.4 Constant local dimension

To overcome the unbounded local dimension obstacle we faced in Sections 4.2
and 4.3, we must find a way of encoding the countably infinite family of Halting
Problem instances into the finite number of matrix elements describing the local
interactions of a system with fixed local Hilbert space dimension.

If we encode the evolution of a quantum Turing Machine into the ground state
of a local Hamiltonian using a Feynman-Kitaev-style construction, as described in
the previous section, the local dimension will depend on the number of internal
states and alphabet size of the QTM. Whichever universal Turing Machine we
choose to encode, that particular TM will have a fixed state space and alphabet size.
But to encode the Halting Problem, we need a way to feed any desired input to this
encoded universal TM. It is not difficult to construct a special-purpose classical TM
which outputs any given string, starting from a fixed input. But, exactly analogous
to the Wang tiling constructions of Section 4.2, if there is no upper-bound on
the number of different strings that we must be able to produce, then either the
number of internal states or the alphabet size of the Turing Machine is necessarily
unbounded. This is no use to us, as it would again lead to a family of Hamiltonians
with unbounded local dimension.

The only way we can hope to generate arbitrarily long strings using constant
alphabet size and a constant number of internal states is to use a genuinely quantum
construction.! The transition rules of a QTM can have arbitrarily computable
numbers as coefficients. (In fact, algebraic numbers will suffice for our purposes.)
So, whereas for given alphabet size and number of internal states there is only a
finite number of different classical deterministic TMs, there are a countably infinite
number of different QTMs. We will show how the string we want to produce can
be encoded in the transition rule coefficients of a QTM, in such a way that the
QTM writes out this string and then halts deterministically.

At first sight, this might appear to violate the Busy Beaver bound on the run-
time of a TM [ ], or the Holevo bound on the amount of information that
can be extracted from a finite-dimensional quantum state [ ], or other results
that limit the amount of information that can be extracted from a finite-size system.
However, a little more thought reveals there is no contradiction here.

Indeed, something similar is already possible for classical probabilistic Turing
Machines. It is a straightforward exercise to construct a classical probabilistic TM

'Indeed, this will essentially be the only point in our construction where we exploit the fact
that the Hamiltonian is quantum.
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with fixed alphabet and number of internal states which, given access to a coin with
bias p, outputs the binary expansion of p with high probability, in expected run-
time that is a function of the length of the binary expansion. What is perhaps more
surprising is that Quantum Turing Machines allow this to be done deterministically.

The reason this does not violate the Busy Beaver theorem is that, to simulate a
probabilistic or quantum TM on a deterministic TM, the alphabet and/or internal
state size must grow with the precision of the entries in the probabilistic or quantum
transition function.

Nor is there any contradiction with the Holevo bound. We are not encoding
the string in a finite-dimensional quantum state, or even in multiple copies of a
quantum state. We are encoding the string in the unitary transition rules of a QTM,
which we get to apply as many times as we like on any quantum state we like.
Applying the transition rules to a fixed quantum state and performing quantum
state tomography would already allow us to extract the information encoded in the
transition rules to arbitrary precision. Again, perhaps the only somewhat surprising
aspect is that, by exploiting the full power of quantum computation, we can recover
the encoded string exactly, regardless of how long the string is.

The idea behind our construction is to use the quantum phase estimation
algorithm [ ] (running on a QTM) to extract a phase which we encode in a
single-qubit unitary, thereby writing out its binary expansion to the tape. However,
for technical reasons that appear to be insurmountable, it is crucial to our proof
that the phase estimation be carried out exactly, not merely with high probability.
Furthermore, the QTM should halt deterministically after a time that depends only
on the input. Without these properties, the matrix elements of the Hamiltonians we
construct will not be computable, and Theorem 3 becomes vacuous.

It is well-known that the quantum phase estimation circuit can output the
unknown phase ¢ exactly if the phase has a finite binary decimal expansion (i.e.
¢ = a/2" for some a, b € N), given the appropriate set of two-qubit gates [ ].
The universal QTM construction of Bernstein and Vazirani [ ] shows that
any quantum circuit can be implemented on a QTM. But this only implements a
quantum circuit up to some error, not exactly. Indeed, it is not at all clear whether
one can carry out exact phase estimation for arbitrary ¢, even in principle, given
that the precision of ¢ can be arbitrarily high and is unknown to the quantum phase
estimation circuit. (Indeed, a no-go result by Nishimura and Ozawa [ ] shows
that no quantum Turing Machine can exactly simulate quantum phase estimation
on an arbitrary number of qubits.)

We therefore cannot appeal to previous results to show that such a QTM exists.
Instead, in Section 6 we give a detailed and explicit construction of a phase-
estimation QTM, that satisfies the very strict requirements of our spectral gap
undecidability proof. It may seem as if we have achieved nothing, since now we
have the problem of generating the correct input to the phase-estimation QTM!
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But in fact this is not an issue because, firstly, the input is encoded in unary, and
generating a unary string is much simpler than generating an arbitrary string; and
secondly, it does not matter if the upper-bound in the input is larger than the actual
number of digits. Our phase-estimation QTM will still write out the phase exactly,
and halt deterministically in this case. (The run-time of the QTM will depend on
the size of the upper-bound, but run-time is not relevant here.) So we only need to
generate a long string consisting entirely of the same symbol! This is very easy,
especially when we come to encode this QTM into a local Hamiltonian.

However, it is important to note that, if the input upper-bound is wrong, so that
the number of binary digits in the phase exceeds the number specified in the input,
then the only guarantee is that the phase-estimation QTM eventually halts; it could
leave an arbitrary string (or even quantum state) written to its tape.

In this way, if we supply the phase-estimation QTM with a suitable input and
feed its output into a universal TM, the input on which the universal TM runs is
entirely determined by the transition amplitudes of the phase-estimation QTM.
Assuming the properties of the Gottesman and Irani [ ] construction carry
over, the local Hilbert space dimension will be determined by the alphabet size and
number of internal states of the QTMs, which is a constant independent of the input.
Since the alphabet size and number of internal states of any particular universal
TM are clearly constant, the local Hilbert space dimension of the Hamiltonian
encoding this sequence of Turing Machines will also be constant.

4.5 Translational invariance

Gottesman and Irani | ] showed how to construct a fixed Hamiltonian on a 1D
chain, that can encode in its ground state the evolution of a QTM for a number
of time-steps polynomial in the length L of the chain. The input to the QTM in
their construction is determined by the chain length. They accomplish this by first
constructing a translationally-invariant clock to keep track of time, which runs for
a total of L steps. This clock drives a binary counter TM for L steps, leaving the
binary representation of L written on the tape. The clock is then reset, and switches
over to driving the QTM. The binary counting TM and the QTM share the same
tape, so the input to the QTM is the binary representation of L. It is important
to note that the local Hilbert space dimension in the Gottesman and Irani [ ]
construction depends only on the alphabet size and number of internal states of the
Turing Machines (plus some constant multiplicative overhead for the clock).
However, in our case we are interested in the thermodynamic limit. The
Gottesman and Irani [ ] result per se does not achieve what we need. We
cannot use the chain length to encode the input to the QTM, as we are only
concerned with the limit as the length tends to infinity. Instead, we want to encode
the input to the QTM in the Hamiltonian itself, and carry out the same computation
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for any chain length.'

Given our quantum phase estimation QTM from the previous section, it is clear
how we should adapt the Gottesman and Irani [ ] construction to achieve what
we need. Instead of the binary counter TM, we first run our phase estimation QTM.
Provided the chain length is sufficiently large that L > |n|, the phase-estimation
QTM will write the desired string to the tape and then halt. We then switch to
driving a universal reversible TM which shares the same tape.

Whilst this approach does ultimately work, there are a number of technical
issues to overcome. In particular, the length of the computation in the Gottesman
and Irani [ ] construction is limited by the maximum number of time-steps that
the clock can encode, which is O(poly L). Whereas our phase-estimation QTM will
require time O(poly(L)2F) on input of length L. There are a number of ways around
this. Perhaps the simplest — and the one we adopt — is to modify the Gottesman
and Irani [ ] clock construction to count in binary instead of unary, so that the
clock can encode at least Q(2%) time-steps. However, this substantially complicates
the analysis. We also have to address a subtle but important unitarity issue in order
to carry out the required spectral analysis of our Hamiltonian.

We g