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Abstract. Timed automata were introduced by Alur and Dill in the
early 1990s and have since become the most prominent modelling for-
malism for real-time systems. A fundamental limit to the algorithmic
analysis of timed automata, however, results from the undecidability of
the universality problem: does a given timed automaton accept every
timed word? As a result, much research has focussed on attempting to
circumvent this difficulty, often by restricting the class of automata under
consideration, or by altering their semantics.

In this paper, we study the decidability of universality for classes
of timed automata with minimal resources. More precisely, we consider
restrictions on the number of states and clock constants, as well as the
size of the event alphabet. Our main result is that universality remains
undecidable for timed automata with a single state, over a single-event
alphabet, and using no more than three distinct clock constants.

1 Introduction

Timed automata were introduced by Alur and Dill in [3] as a natural and versatile
model for real-time systems. They have been widely studied ever since, both by
practitioners and theoreticians. A celebrated result concerning timed automata,
which originally appeared in [2] in a slightly different context, is the pspace

decidability of the language emptiness (or reachability) problem.
Unfortunately, the language inclusion problem—given two timed automata A

and B, is every timed word accepted by A also accepted by B?—is known to be
undecidable. This severely restricts the algorithmic analysis of timed automata,
both from a practical and theoretical perspective, as many interesting questions
can be phrased in terms of language inclusion. Over the past decade, several
researchers have therefore attempted to circumvent this negative result by in-
vestigating language inclusion, or closely related concepts, under various assump-
tions and restrictions. Among others, we note the use of (i) topological restric-
tions and digitization techniques: [10,6,18,15,17]; (ii) fuzzy semantics: [9,11,16,5];
(iii) determinisable subclasses of timed automata: [4,20]; (iv) timed simulation
relations and homomorphisms: [21,13,12]; and (v) restrictions on the number of
clocks: [19,7].

The undecidability of language inclusion, first established in [3], derives from
the undecidability of an even more fundamental problem, that of universality:
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does a given timed automaton accept every timed word? Research has shown the
undecidability of universality to be quite robust, although it does break down
under certain (fairly stringent) hypotheses, which we survey in Section 3.

The goal of the present paper is to study the (un)decidability of universality
for classes of timed automata with minimal resources. Here ‘resource’ refers
to quantities such as number of discrete states, number of clocks, size of the
alphabet, number or magnitude of clock constants, etc. Our main result is that
the universality problem remains undecidable for timed automata with a single
state, over a single-event alphabet, and using the clock constants 0 and 1 only.1

At a conceptual level, one can paraphrase this result as asserting the existence
of an undecidable problem for stateless and eventless real-time systems. Any
computation carried out by such a device must rely exclusively on clocks, which
can be viewed as some kind of unwieldy ‘analog’ memory. Clocks can only be
reset (to zero) and compared against the constants 0 and 1;2 moreover, they
continually increase with time, and hence are quite poor at holding information
over any given period of time.

One potential application of our work lies in establishing further decision
problems about real-time systems to be undecidable; in this respect, the absence
of any state or event structure in the formulation of our problem suggests it
should be a well-suited target for a wide variety of real-time formalisms.

This paper summarises the key ideas and constructions of [1], to which we
refer the reader for full details.

2 Timed Automata

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and �� ∈ {=, �=, <, >, ≤, ≥} is a comparison operator:

φ ::= true | x �� k | φ ∧ φ | φ ∨ φ.

A timed automaton is a six-tuple (Σ, S, S0, Sf , X, Δ), where

– Σ is a finite set (alphabet) of events,
– S is a finite set of states,
– S0 ⊆ S is a set of start states,
– Sf ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– Δ ⊆ S × S × Σ × ΦX × P(X) is a finite set of transitions. A transition

(s, s′, a, φ, R) allows a jump from state s to s′, consuming event a ∈ Σ in the
process, provided the constraint φ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain unchanged.

1 This result holds over weakly monotonic time; over strongly monotonic time, we
require the clock constants 1, 2, and 3 instead. Full details are presented in Section 3.

2 Note that we do not allow comparing clocks against each other.
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Remark 1. An important observation is that diagonal clock constraints (of the
form x−y �� k) are not allowed in our model of timed automata. This restriction
strengthens our main single-state undecidability results, in that multiple states
cannot simply be encoded through the fractional ordering of clock values; see [22].

We will abuse notation and allow transitions to be labelled by sets of events, in
addition to individual events. A transition labelled by U ⊆ Σ simply corresponds
to |U | copies of the transition, one for each event in U .

For the remainder of this section, we assume a fixed timed automaton A =
(Σ, S, S0, Sf , X, Δ).

A clock valuation is a function ν : X → R
+, where R

+ stands for the non-
negative real numbers. If t ∈ R

+, we let ν + t be the clock valuation such that
(ν + t)(x) = ν(x) + t for all x ∈ X .

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and
delayed transitions π = (s0, ν0)

d1,θ1−→ (s1, ν1)
d2,θ2−→ . . .

dn,θn−→ (sn, νn), where di ∈
R

+ and θi = (si−1, si, ai, φi, Ri) ∈ Δ, subject to the following conditions:

1. s0 ∈ S0, and for all x ∈ X , ν0(x) = 0.
2. For all 0 ≤ i ≤ n − 1, νi + di+1 satisfies φi+1.
3. For all 0 ≤ i ≤ n − 1, νi+1(x) = νi(x) + di+1 for all x ∈ X \ Ri+1, and

νi+1(x) = 0 for all x ∈ Ri+1.
4. sn ∈ Sf .

Each di is interpreted as the time delay between the firing of transitions, and
each configuration (si, νi), for i ≥ 1, records the data immediately following

transition θi. Abusing notation, we also write runs in the form (s0, ν0)
d1,a1−→

(s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) to highlight the run’s events.
A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈ Σ∗ is a word and

τ = 〈t1t2 . . . tn〉 ∈ (R+)∗ is a non-decreasing sequence of real-valued timestamps
of the same length.

Such a timed word is accepted by A if A has some accepting run of the form
π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) where, for each 1 ≤ i ≤ n,
ti = d1 + d2 + . . . + di.

Remark 2. Our timed semantics is weakly monotonic, in that it allows multiple
events to occur ‘simultaneously’, or, more precisely, with null-duration delays
between them. We will also consider an alternative semantics, termed strongly
monotonic, which requires the timestamps in timed words to be strictly increas-
ing. As it turns out, our main undecidability results remain essentially the same,
although some of the constructions have to be altered in places.

3 The Universality Problem

Consider a class of computational machines that act as language acceptors, such
as finite automata or pushdown automata. A particular machine is said to be
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universal if it accepts all possible words (over the relevant alphabet). The uni-
versality problem, for the class of machines in question, consists in determining
whether a given machine is universal or not.

The universality problem is a cornerstone of formal language theory, and
has been extensively studied in a wide array of contexts. Moreover, it is the
simplest instance of the language inclusion problem, since virtually all interesting
computational classes will comprise universal machines.

In this paper, we are interested in universality for certain restricted classes of
timed automata. This problem splits naturally into two main instances, accord-
ing to the assumption made on the monotonicity of time. A timed automaton
is said to be universal over weakly monotonic time if it accepts all timed words
(over its alphabet), and is said to be universal over strongly monotonic time if
it accepts all timed words in which the timestamps are strictly increasing.

3.1 Background

The most fundamental result concerning universality for timed automata is Alur
and Dill’s proof of undecidability in the general case (over both weakly and
strongly monotonic time) [3]. An examination of that proof reveals that univer-
sality is in fact undecidable for the class of timed automata having at most two
clocks.

Much more recently, it was discovered that universality is decidable for timed
automata having at most one clock (irrespective of the monotonicity of time) [19],
using results from the theory of well-structured transition systems [8]. Together
with Alur and Dill’s work, this completely classifies the decidability of univer-
sality as a function of the number of clocks allowed.

The paper [19] also proves that universality is decidable for timed automata
that only make use of the clock constant 0 in clock constraints. On the other hand,
[3] shows that allowing any additional clock constant leads to undecidability.

Henzinger et al. introduced the notion of digitization in [10]. Using this tech-
nique, it is possible to show that, over weakly monotonic time, universality is
decidable for open3 timed automata. Universality is however undecidable for
closed timed automata (regardless of the monotonicity of time) as well as for
open timed automata over strongly monotonic time [18].

3.2 Main Results

The primary focus of this paper is to study universality for timed automata in
which the number of states, the size of the alphabet, and the number of different
clock constants are simultaneously restricted. Our main results are as follows:

Theorem 1. Over weakly monotonic time, the universality problem is undecid-
able for timed automata with a single state, a single-event alphabet, and using
clock constants 0 and 1 only.
3 A timed automaton is open if it only uses open (strict) comparison operators in

clock constraints, i.e., {<, >, �=}.
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Theorem 2. Over strongly monotonic time, the universality problem is unde-
cidable for timed automata with a single state, a single-event alphabet, and using
clock constants 1, 2, and 3 only.

Remark 3. The above restrictions (number of states, size of alphabet, and num-
ber of clock constants) seemed to us the most natural and important ones to
consider. We note that there would be no point in restricting in addition the
number of clocks, since the total number of instances of such timed automata
would then essentially be finite, vacuously making any decision problem decid-
able.

We also note that bounding the number of transitions, even on its own, would
likewise result in a finite number of ‘distinguishable’ timed automata, and would
therefore also make decidability issues moot.

The next section is devoted to proving Theorem 1. A proof sketch of Theorem 2
is given in Section 5.

4 Universality over Weakly Monotonic Time

At a high level, Alur and Dill’s original undecidability proof runs as follows.
Take a two-counter machine M with a distinguished halting state, and produce
an encoding of its runs as timed words. In this encoding, a step or instruction
of M is carried out every time unit; the values of the counters are encoded as
repeated, non-simultaneous events, by exploiting the density of the real num-
bers to accommodate arbitrarily large numbers. One then manufactures a timed
automaton A that accepts all timed words that do not correspond to some en-
coding of a valid halting run of M. In other words, A is universal iff M does
not halt, which immediately entails the undecidability of universality.

The construction of A makes heavy use of nondeterminism. More precisely,
A accepts the encodings of all ‘runs’ that are either invalid or non-halting. The
latter is easy to detect: a run is non-halting if it doesn’t end in the distinguished
halting state of M. Invalid runs, on the other hand, exhibit at least one local
violation, e.g., the consecutive values of one of the counters are inconsistent at
some stage, or an illegal jump was made from one state to another, or the timed
word does not respect the prescribed format, etc. In each case, A uses nonde-
terminism to ‘find’ and expose the local violation, and accept the corresponding
timed word.

Our task here is to reproduce this overall approach under the stringent limi-
tations of Theorem 1. The main ingredients are as follows:

1. We show that one can construct A to be a linear safety timed automaton,
i.e., an automaton whose only loops are self-loops and all of whose states are
accepting.

2. Moreover, we can reduce the alphabet of A to a single letter by encoding
different symbols as fixed numbers of ‘simultaneous’ events.
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3. Since A is linear, it can only change control states a bounded number of
times over any run. Assume that all clocks initially have value greater than
or equal to 1 (which can be achieved by accepting any behaviour during the
first time unit). We can then reduce A to having a single state, by encoding
other states through various combinations of certain clocks having value less
than 1 and other clocks having value greater than or equal to 1.

4. Finally, the overall correctness of the construction requires that various tech-
nical conditions and invariants in addition be maintained throughout runs
of A; for example, if the delay between two consecutive events ever exceeds
1, then all subsequent behaviours should be accepted.

We now present the technical arguments in detail.

4.1 Two-Counter Machines

A two-counter machine M is a six-tuple (Q, q0, qf , C, D, Ξ), where Q is a finite
set of states, q0 ∈ Q is the initial state, qf ∈ Q is the halting state, C and D
are two counters ranging over the non-negative integers, and Ξ is the transition
relation. Both counters are initially empty, and M starts in state q0. Every state
except qf has a unique outgoing transition in Ξ associated to it. Such a transition
can either: (i) increment or decrement (if non-zero) one of the counters, and
subsequently jump to a new state; or (ii) test one of the counters for emptiness
and conditionally jump to a new state.

A configuration of M is a triple (q, c, d), where q is the current state and c,
d are the respective values of the counters. A configuration is halting if it is of
the form (qf , c, d). We assume that the transition relation is fully deterministic,
so that each non-halting configuration has a unique successor. It is well-known
that the halting problem for two-counter machines, i.e., whether a halting con-
figuration is reachable from (q0, 0, 0), is undecidable [14].

We associate to any given two-counter machine M a set of strongly monotonic
timed words L(M) that are encodings of the halting computations of M. Our
alphabet is Σ = Q ∪ {a, b} (where we assume a, b /∈ Q). If M does not halt,
then naturally we let L(M) = ∅. We otherwise note that, since M is de-
terministic, it has at most one valid halting computation, which we denote
π = 〈(s1, c1, d1)(s2, c2, d2), . . . , (sn, cn, dn)〉. We then include in L(M) all timed
words (σ, τ) that satisfy the following:

1. σ = σinitσ
′σend, where σ′ = (s1a

c1bad1)(s2a
c2bad2) . . . (sn−1a

cn−1badn−1)sn,
and σinit, σend ⊆ Σ∗. In other words, σ can be decomposed as a prefix σinit, in
which anything is allowed, followed by σ′, which is a fairly straightforward
encoding of π, and capped by a suffix σend, in which anything is allowed
once again.4 The values of the counters in configurations correspond to the
number of consecutive a’s, with b acting as a delimiter between the encodings
of the first and the second counter.

4 As we will aim to capture the complement of L(M) using a safety automaton—whose
language is therefore prefix closed—it is necessary for L(M) to be suffix closed.
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2. τ is strongly monotonic.
3. τ = τinitτ

′τend, where τinit, τ ′, and τend are sequences whose lengths respec-
tively match those of σinit, σ′, and σend. Moreover, all timestamps in τinit
are strictly less than 1.

4. The associated timestamp of each si in σ′ is i. Moreover, if the timestamp
of the first b in σ′ is 1 + tb, then the timestamp of the ith b is i + tb. An
immediate consequence is that the time delay between successive events in
σ′ is always strictly less than 1.

5. For all 1 ≤ i ≤ n − 2: (i) if ci+1 = ci, then for each a with timestamp t in
the time interval (i, i + tb), there is an a with timestamp t + 1 in the time
interval (i+1, i+1+ tb); (ii) if ci+1 = ci +1, then for each a with timestamp
t + 1 in the interval (i + 1, i + 1 + tb), except the last one, there is an a with
timestamp t in the interval (i, i+tb); (iii) if ci+1 = ci−1, then for each a with
timestamp t in the interval (i, i + tb), except the last one, there is an a with
timestamp t + 1 in the interval (i + 1, i + 1 + tb); (iv) similar requirements
hold for the second counter.

By construction, M halts iff L(M) is not empty.

4.2 Linear Safety Timed Automata

Given a two-counter machine M = (Q, q0, qf , C, D, Ξ) as above, we sketch how
to construct a timed automaton A that accepts precisely all strongly monotonic
timed words that do not belong to L(M). We ensure that A enjoys a number of
technical properties, as follows:

1. A is linear, i.e., the only loops in its transition relation are self-loops. As a
result, A can only change control states a bounded number of times over any
run.

2. A is a safety timed automaton, i.e., all of its states are accepting.
3. As per the definition of L(M), A’s alphabet is Σ = Q ∪ {a, b}.
4. A has a unique state, which we call the sink state, from which there is

no transition to a different state. A moves into the sink state as soon as
a violation is detected; we therefore postulate a Σ-labelled self-loop on the
sink state, i.e., it accepts any behaviour.

5. A makes use of several clocks, some of which ensure that A only accepts
strongly monotonic timed words.5

Two important clocks are abs and ev . The clock abs is never reset and
therefore indicates the total amount of time elapsed since the beginning of a
run. After time 1, the clock ev is meant to be reset whenever an event occurs,
unless a violation has already been detected. More precisely, ev obeys the
following rules:
– ev is never reset while abs < 1.

5 Although the aim of the present section is to establish an undecidability result over
weakly monotonic timed words, the automata we are considering here, which act as
intermediate tools, are required to accept only strongly monotonic timed words.
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– ev is not reset on transitions leading to the sink state; in particular, the
sink state itself never resets ev .

– From every state, there is a Σ-labelled transition to the sink state
guarded by the clock constraint (abs > 1 ∧ ev ≥ 1). In other words,
once the absolute time exceeds 1, we require that events always occur
less than 1 time unit apart, otherwise we record a violation.

– ev is always reset when (abs > 1∧ev < 1), and when (abs = 1∧ev = 1),
unless the transition is headed to the sink state.

6. A accepts any behaviour before time 1; this is achieved by postulating a
Σ-labelled self-loop on initial states, guarded by abs < 1.

7. A cannot leave an initial state until at least time 1; this is achieved by
guarding all transitions leading away from an initial state by abs ≥ 1.

8. Let us call an inner state one that is neither an initial state nor the sink
state. If an inner state has a self-loop, it must be be labelled either by a or
by Σ \ {qf}.

9. After time 1, qf can only label transitions that are headed into the sink
state, i.e., once a violation has already been detected; otherwise, A would
potentially accept encodings of valid halting computations of M.

It remains to show that we can indeed construct a timed automaton A that
captures the complement of L(M) and has Properties 1–9. This is achieved as
in Alur and Dill’s proof, by amalgamating various simple automata, each of
which captures some local violation of a halting computation of M.6 Suppose,
for example, that from state q3, M is supposed to increment counter D, and
move to state q5. One possible violation of this transition could consist in failing
to increment D as per the encoding prescribed in Subsection 4.1, which requires
the insertion of an extra a before q5 in the corresponding timed word. Figure 1
depicts an automaton that captures precisely this behaviour in the case D is
originally non-empty.

���������	
������

abs<1,Σ

�� abs=1,q0 ���������	
������

Σ\{qf }

�� q3 ���������	
������

a

��
b ���������	
������

a

��
a

x:=0
���������	
������

q5 ���������	
������

Σ\{qf }

�� x=1,a
���������	
������

Q
���������	
������

Σ

��

Fig. 1. A linear safety timed automaton that captures an incrementation violation
on the second counter. In the interest of clarity, we have omitted data pertaining to
Property 5 (strong monotonicity and the treatment of clock ev).

The (numerous) other cases are equally straightforward; full details can be
found in [1].

4.3 Restricting to a Single Event

Let M = (Q, q0, qf , C, D, Ξ) be a two-counter machine. We give a way to
encode, or ‘flatten’, any strongly monotonic timed language L over alphabet
6 Note that our automata are trivially closed under union.



Undecidability of Universality for Timed Automata 33

Σ = Q ∪ {a, b} into a weakly monotonic timed language ˜L over the singleton
alphabet {a}.

We define a renaming relation R from Σ to (untimed) words over alphabet
{a}. This relation will be one-to-one for all events in Σ apart from qf .

We first set aRa and bRaa, i.e., the letter ‘a’ is renamed to the word ‘a’, and
the letter ‘b’ is renamed to the word ‘aa’. Next, let s1, . . . , sm be an enumeration
of Q \ {qf}. We set siRai+2, for 1 ≤ i ≤ m. Finally, for all j ≥ 1, we set
qfRam+2+j. In other words, qf renames to the words am+3, am+4, am+5, . . . .

Note that the renaming relation is total and surjective, in that every event in
Σ renames to one or more words over {a}, and every non-empty word over {a}
is the renaming of some event in Σ.

The renaming relation R lifts naturally to a renaming relation from strongly
monotonic timed words over Σ to weakly monotonic timed words over {a}.
Formally, write uRũ iff, for every event e with timestamp t in u, there are exactly
k ‘simultaneous’ events a with timestamp t in ũ, for some k such that eRak, and
vice-versa. For L a strongly monotonic timed language over Σ, we then let ˜L be
the image of L under this renaming. It is immediate that L is Σ-universal over
strongly monotonic time iff ˜L is {a}-universal over weakly monotonic time.

Let the timed automaton A be defined as in the previous subsection, i.e., the
strongly monotonic language L(A) of A is precisely the complement of L(M) with
respect to strongly monotonic timed words. Our next task is to define a single-
event linear safety timed automaton ˜A that accepts precisely the language L̃(A).

˜A can be obtained from A in a straightforward manner. Consider first an
e-labelled transition of A that is not a self-loop, with e ∈ Σ. If e �= qf , then
replace this transition by a sequence of k instantaneous a-labelled transitions,
where eRak. (Instantaneity can be enforced via a clock constraint such as ev = 0
on transitions.) If e = qf , on the other hand, Property 9 guarantees that the
transition is headed to the sink state, from which anything will be accepted,
so it likewise suffices to replace the original transition by a sequence of m + 3
instantaneous a-labelled transitions that end in the sink state.

The case of self-loops is somewhat more subtle. It is clear that we need only
handle self-loops on inner states, since any behaviour is allowed in any case in
initial states (while abs < 1) and in the sink state. Property 8, however, guar-
antees that self-loops on inner states are either labelled by a or by Σ \ {qf}. In
the first case there is clearly nothing to change. In the second case, we assume
that ˜A has the use of m + 2 special clocks y1, y2, . . . , ym+2. Whenever an event
occurs, ˜A resets the y-clock of lowest index that is not already zero. If all y-clocks
are zero, no transition is enabled. In this way, no more than m + 2 consecutive
‘simultaneous’ a’s are possible from any inner state, in effect preventing encod-
ings of qf from occurring. (Note that as soon as some non-null amount of time
elapses, all y-clocks automatically have non-zero values again.)

Stringing everything together, we have that M does not halt iff A is Σ-
universal over strongly monotonic time iff the single-event timed automaton ˜A
is {a}-universal over weakly monotonic time. Moreover, it is immediate from our
construction that ˜A also satisfies Properties 1–9, mutatis mutandis (in particular,
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˜A’s alphabet is simply {a}, and ˜A accepts both weakly and strongly monotonic
timed words).

4.4 Restricting to a Single State

The final step is to transform ˜A into a single-state automaton ̂A that accepts
precisely the same language.

We have already observed that the linearity of ˜A places an upper bound on
the total number of possible changes between states in any run of the automaton.
Equivalently, the transition graph of ˜A, with all self-loops removed, is simply
a directed acyclic graph, or DAG. It follows that one can enumerate the states
of ˜A as s1, s2, . . . , sp so that the transition relation is monotone with respect to
this enumeration: any transition si −→ sj of ˜A is such that i ≤ j.7 Note that
this entails that sp is the sink state.

Let z1, z2, . . . , zp be p new clocks for ̂A to use. Our rough intention is to encode
state sk by having, for every 1 ≤ i ≤ p, zi < 1 iff i ≤ k. In order to adequately
circumvent various technical difficulties (for instance, in initial states all clocks
start with value 0), we refine this correspondence as follows:

1. Initial states are associated with the clock constraint:

φinit ≡ abs < 1 ∨ (abs = 1 ∧ z1 = 1 ∧ z2 = 1 ∧ . . . ∧ zp = 1).

2. The sink state sp is associated with the clock constraint:

φsink ≡ (abs > 1 ∧ ev ≥ 1) ∨ (abs ≥ 1 ∧ z1 < 1 ∧ z2 < 1 ∧ . . . ∧ zp < 1).

3. While abs < 1, we do not reset the z-clocks. Afterwards, on any transition,
we systematically reset all z-clocks whose values are already strictly less than
1.

4. When entering any inner state sk, we ensure, for all 1 ≤ i ≤ p, that zi < 1
iff i ≤ k (which is achieved by resetting all clocks zi with i ≤ k on every
transition with target sk). It is clear that this discipline can be maintained,
thanks to the monotonicity of the transition relation with respect to the
enumeration of the states, and the fact that all z-clocks, upon leaving an
initial state, have value at least 1.
The clock constraint associated with an inner state sk is therefore:

φsk
≡ abs ≥ 1 ∧

∧

{zi < 1 | i ≤ k} ∧
∧

{zi ≥ 1 | i > k} ∧ ¬φsink.

Recall that, after the initialisation phase (i.e., after time 1), consecutive events
normally always occur strictly less than 1 time unit apart, otherwise the automa-
ton transitions to the sink state (cf. Property 5 in Subsection 4.2). It therefore
follows that, for any inner state sk, the clock constraint φsk

, which holds upon

7 Formally, such an enumeration can be obtained by topologically sorting the under-
lying transition DAG.
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entering sk, in fact holds continuously until the next transition occurs, unless
that transition is headed for the sink state.

A second important observation is that, once φsink holds, it holds forever.
Indeed, the clock ev is never reset in the sink state, so the clock constraint
ev ≥ 1, once true, never changes. On the other hand, if ev < 1, then we must
have zi < 1 for all i. Moreover, we also have zi ≤ ev for all i, since the z-clocks
all had to be reset when the sink state was first entered. It immediately follows
that if the zi’s subsequently ever reach 1, then so does ev , so that φsink does
indeed hold continuously.

The construction of ̂A from ˜A is now straightforward. All states are merged
into one, and every transition

�������������� !s
φ, a, R:=0

��"#$%&'()��������s′

of ˜A is replaced by a self-loop

"#$%&'()��������

��� ���

φs∧φ, a, R′:=0

��

in ̂A, where φs is the clock constraint associated with state s, and the new reset
set R′ comprises R together with all clocks zi that are required to be reset upon
entering s′.

It is easy to see that ̂A and ˜A simulate each other’s behaviour almost perfectly.
The only difference is that ̂A can ‘silently’ transition from an initial or an inner
state into the sink state, simply through the passage of time (this occurs if clock
ev reaches 1). But in such a case, ˜A’s next transition would take it to the sink
state as well, so that there would be no visible difference in terms of behaviour
(and language accepted) between the two automata.

We conclude that ̂A is universal over weakly monotonic time iff the two-
counter machine M does not halt. ̂A has a single state and a singleton alphabet;
moreover, it is straightforward to verify that the only clock constants required
in its construction are 0 and 1.

This completes the proof of Theorem 1.

5 Universality over Strongly Monotonic Time

The overall approach to proving the undecidability of universality for single-
state, single-event timed automata over strongly monotonic time is very similar
to that for the weakly monotonic case. The main difference is that we cannot
encode a plurality of events through instantaneous repetitions of a single event; in
particular, we have no good way of mimicking the delimiter b. We must therefore
alter our encoding of the halting computations of two-counter machines.
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Let M = (Q, q0, qf , C, D, Ξ) be a two-countermachine. Recall that in Section 4,
configurations of M were encoded over a unit-duration time interval. The essential
difference is that here we encode configurations over three time units, as follows.

Let s1, . . . , sm be an enumeration of Q \ {qf}, and consider a configuration
(s, c, d) of M. Given an integer k, we can encode this configuration over the time
interval [k, k + 3) using a single event a. More precisely:

1. We encode the state s in the interval [k, k + 1), using i occurrences of a if
s = si, and using m+j occurrences of a, for any j ≥ 1, if s = qf . In addition,
we require in both cases that the first a occur at time k.

2. We encode the value c of the first counter in the interval (k + 1, k + 2) using
c occurrences of a.

3. We encode the value d of the second counter in the interval (k + 2, k + 3)
using d occurrences of a.

The construction of a timed languageL′(M) containing encodings of the halting
computation of M as strongly monotonic timed words can now proceed along the
same lines as before. There is an ‘initialisation’ phase during the first three time
units, followedby an encoding of the computation as successive configurations, and
finally an arbitrary suffix. The counter discipline is the same as before, ensuring
integrity by copying the contents of the counters exactly three time units apart.

Finally, a single-state, single-event linear safety timed automaton ̂A′ can be
constructed along the same lines as before to recognise the strongly monotonic
complement of L′(M). While not in the sink state, this automaton resets a
distinguished clock every three time units; using the constants 1, 2, and 3,8 it
can therefore correctly check timed words for violations, as judged against the
encoding described above. We leave the details of the construction to the reader.

This completes the proof sketch of Theorem 2.

6 Concluding Remarks

In this paper, we have studied the undecidability of the universality problem for
timed automata with minimal resources, and have obtained some fairly stringent
bounds: universality remains undecidable for timed automata with a single state,
over a single-eventalphabet, and using no more than three distinct clock constants.

One natural question is whether we can further tighten the restriction on
clock constants. For example, it is an open problem whether the single constant
1 would suffice, over either weakly or strongly monotonic time.
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