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UNDECIDABLE EXISTENTIAL PROBLEMS FOR ADDITION
AND DIVISIBILITY IN ALGEBRAIC NUMBER RINGS

BY

L. LIPSHITZ1

Abstract. Existential formulas involving addition and divisibility are shown

to be undecidable in the ring of integers of a real quadratic extension of the

rationals. A weaker result is proved for extensions of higher degree.

In [5] it was shown that there is an algorithm for deciding formulas of the

form

3*. ••• 3*„.N/y,(*)| &(*), (1)

where 3c = (xx,..., x„), a\b means "a divides b" and the/ and g¡ are linear

polynomials with coefficients from the integers Z or from the ring R of

integers of an imaginary quadratic extension of the rationals.

In this paper we shall show that the corresponding problem, where R is the

ring of integers of any other algebraic number field (in particular, a real

quadratic extension of the rationals) is undecidable. We shall also show that

when R is the ring of integers of a real quadratic extension of the rationals,

then the (apparently) weaker problem of deciding formulas of the form

3*,..-3x„eÄA/.(x)|a(x) (2)

is also undecidable.
I would like to thank Julia Robinson for making some unpublished notes

available to me, and the referee for helpful criticisms and suggestions.

1. The real quadratic case. In this section we shall show that formulas of the

form (2) are undecidable in the real quadratic case. The undecidability of

formulas of the form (1) then follows immediately.

Let a E N be square free and > 1 and let a2 = a. R is the ring of integers

in Q(a).
Let w = (1 + a)/2 if a = 1 mod 4 and let u = a otherwise. Then R = Z[co]

(see [2, p. 132]). Since 2R c Z[a] it is clear that the problem of deciding

formulas of the form
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122 L. LIPSHITZ

3v3v,Ai«l&(^ (2)

with the f¡ and g¡ having coefficients from Z[a] is equivalent to the problem of

deciding formulas of the form (2).

By the results of Denef [4] that Hilbert's 10th problem is unsolvable for the

ring R (or equivalently for the ring Z[a]), it is sufficient to give an existential

definition of multiplication in Z[a] in terms of addition, subtraction and

divisibility using only the logical connectives A (and) and V (or). Then

putting the formula in disjunctive normal form we would have the undecida-

bility of formulas of the form 33c ezw \A A,-/yC*)!£(,(•*)> which is equivalent

to Vy 3Jcez[a] /\¡fij(x)\gy(x) and, hence, we would have the undecidability

of formulas of the form 3JceZ[a] A>/i(-*)l &(■*)• We shall also use equality (=)

in giving this definition. Using equality we would get the undecidability of

formulas of the form 33c[(A///(*)!&(*)) A (A,fy(Jc) = kj(x))]. We could
then use the linear equations hj(x) = kj(x) to eliminate some of the variables,

leading to an equivalent formula 3y /\¡f(y)\ g¡(y). We shall follow the usual

convention (cf. Hardy and Wright, An introduction to the theory of numbers,

Oxford, 1938, p. 1) that a\b <-» a ^ 0 A 3c(ac = b). From this it follows that

x =5^ 0<r>3y(x\y) and, hence, that inequality is existentially definable by

formulas of the type we are considering. In the sequel we shall use the

inequality symbol with the understanding that it can be eliminated in this

way. Alternatively, if we wanted to allow 0|0 we could define y ¥= 0 as follows

(cf. [4]). Choose prime p ^ 2 such that 4 ^ ± 1 mod p. Then

y ^0**3r,s,h[(ry + s(ph + 2)) = l]

<h> 3A, B, h(y\A /\ph + 2\B A A + B = 1).

Here we use the fact that N(ph + 2) = 4 (mod/?) and, hence, thatpA + 2\ 1

and so y ¥= 0.

It is well known how to define multiplication existentially from addition

and squaring, viz. b- c = d*+(b + c)2 = b2 + c2 + 2d. Consequently, it is

sufficient to define the squaring function existentially from +, —, |, =, =£, 0,

1 using only the logical connectives A» V in the ring Z[a].

Let a and a be as above. N: Z[a]-»Z will denote the norm. In this

paragraph x, y, x¡, y¡ will denote elements of Z. In the rest of this section they

will denote elements of Z[a] unless it is specified otherwise. We shall use

some elementary facts about the Pell equation x2 — ay2 = ± 1 (i.e. x + ay\l).

e = xx + ayx will denote the fundamental unit in Z[a] with e > 1 (cf. [2]).

Then the general solution is given by x + ay = ± s' (i E Z). We shall use

the notation x¡ + ay¡ ■» e' (i G Z). There are two cases to consider, viz.

N(e)= 1 and N(e) = —1. All the lemmas and theorems are true in both

cases. We shall, however, only give the proofs in the case N(e) = 1. The

proofs of Lemmas 1 and 2 require some small modifications in the case
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UNDECIDABLE EXISTENTIAL PROBLEMS 123

N(e) = — 1, which we shall leave to the reader. The other proofs work in

both cases. From now on assume N(e) = I. If e' = x + ay then e~' = x —

ay, x = (e' + e~')/2 E Z ¡rndy - (e1 - e~l)/2a E Z. Thus x¡ = \x\ ~|e1''1

with error < \ and y¡ = \y\ ~ e'''/2a with error < \. Hence x¡ -» oo and

x¡+\ ~ *,• -> oo as / -> oo, and similarly for the^..

Define

PI(x,y)<-*x + ay\\ A x — ay\\ A x + 1 + ay\x + 1 — ay

/\x + 1 — ay\x + 1 + ay /\y =£ 0.

(Recally i- 0<+3z(y\z).)

Lemma 1. There is a positive integer k (= k(a)) such that if k\y then

PI(x,y)+*x,y EZ/\x2- ay2 = I Ay 1=0.

Proof. Suppose that PI(x, y). Since y ^ 0 and a \ 1, we see that x^O and

so x + ay = ± e', x — ay = ± tJTor some / =fcj (both G Z). We shall use o¡

to denote fixed but unknown signs, i.e., a¡ = ±1. Then we have x + ay =

ale', x — ay = o^e7'. From x + 1 ± ay\x + 1 + ay we have N(x + 1 + ay)

= ± N(x -r-l-ay) = a3N(x + 1 - ay), say. Hence N(l + oxe') = a3N(l

+ a2eJ). But

7v~(l + a,£') = (1 + al£')(l + a,£-') = 2 + a^e'' + e-') = 2 + 2a,x,..

Similarly N(\ + 02^) = 2 + 2o-2x,-. (Recall that we are only considering the

case N(e) = 1.) So we have 2 + 2oxx¡ = a3(2 + 2a2x,). Since x¡ and x/+1 — x¡

-> 00 as /-> 00, this implies that for |/| large enough (i.e. excluding a finite

number of cases) we have y = — i and a, = o2. Then x = axx¡ sxiày = oxy¡

are both in Z. We need only choose k > \y¡\ for all the values of / that we

want excluded so that k\y excludes all these exceptional cases. Conversely, if

x, y (GZ) is a solution of the Pell equation, then x + ay = axe' and

x — ay = axe~'. Since (1 + oxe')oxe~' = 1 + o,e-', it is clear that PI(x,y).

Remark. It follows directly from Lemma 1 that if PI(u, v) and ka\u — 1

then u, v E Z.

Define

S(y, u)±*3x3v[PI(x,y) A P/(", ») A k\y

A*|i> + l)/2 A* ± 1|(« - l)/2 Ax± 2|(« + l)/2 - 4

A v|(" - l)/2a Ay ± 1|(« - l)/2a - 1

A* + oty + u + an|2 + 2a:].

Lemma 2. T/W « an I = 1(a) EN such that if l\y then

S(y,u)**3x3v(x,y EZ f\x2 - ay2 = \ /\y ^0/\u,v EZ

A«2 - av2 = 1 A v ¥* OAy2 - (« - l)/2a).
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124 L. LIPSHITZ

Proof. Suppose that S (y, u). From PI(x,y) we see that y ¥= 0. Then from

k\y and Lemma 1 we have that x,y E Z and x + ay = oxe' (i ¥= 0).

From PI(u, v) we have t? ¥= 0. Then from k\y, y\(u - \)/2a and the

remark following Lemma 1, we have u + av = a^ (J =£ 0) and u G Z. From

x + ay + u + ao|2 + 2x we have N(ei + o"3e')|(2 + 2xf, where a3 = o,02»

so N(\ + o3e/'-,')|(2 + 2x)2, i.e., 2 + a3(e^-' + e'-^)|(2 + o,(e' + e"'))2.

From this it follows that for / large enough (i.e. except for finitely many

cases) \j\ < 3|/| (because e > 1). From

jc|(« + l)/2 A x ± l\(u - l)/2 A x ± 2\(u + l)/2 - 4

we have

(« + l)/2 - x2 + (m/24)x(x2 - l)(x2 - 4)   for some m E Z.

So again excluding finitely many cases we have either that (u + l)/2 = x2

(i.e. m = 0) or |(« + 1)/2| > Ke5i for some fixed K > 0 (e.g. K = 3"22-8).

But from \j\ < 3|/| we have \(u + 1)/2| < (e3i/| + l)/2. Hence, excluding

finitely many cases (i.e. for |/| large enough) we have (u + l)/2 = x2. It

follows by direct computation that \j\ = 2|/| and hence that.y2 — (u - \)/2a.

We need only choose / large enough so that l\y, y ¥= 0, excludes all the

exceptional cases.

Conversely, if x,y, u, v E Z satisfy x2 — ay2 = \,y =£ 0 and u2 — av2 = 1,

v ¥=0, and.y2 = (w — l)/2a, it follows by direct computation that x + ay =

± e±i (i E N), and that u + av = s±2i, and that S (y, u) is satisfied.

Now define

Sq,( v, z) «*3u[S(y, u) A l\y A z - (« - l)/2fl].

Lemma 3. (i) Sq,(>>, z)-*y, z EZ, z = y2 and y ¥=Q; (ii) for any «eN

there exist y, z E Z such that Sqx(y, z) A n\y A y ¥* 0.

Proof, (i) is immediate from Lemma 2. For (ii) notice that if x + ay = e'

and u + av = e2' (x, y,u,vE Z), then by direct calculation one sees that

x2 — (u + l)/2 and/2 = (u — \)/2a and, hence, that, except for k\y, l\y, all

of Sq,(y, z) is satisfied. The existence of solutions x, y of the Pell equation

with/ divisible by / or n follows from a theorem of Lucas that for any n EN

there is a solution of x2 — ay2 — +1 with n\y,y =£ 0 (see [3, Theorem XIII]).

The lemma now follows immediately.

Lemma 3 allows us to find pairs y, y2 with v G Z as large as we please.

Next we shall use this to define squaring in Z[a]. The idea is that if x,

z G Z[a], say x = xx + ax2, y — v, + ay2 with the x¡, y¡ G Z and c G Z is

very much larger than the \x¡\ and |/,-| (denoted by c » x, z), and if x\z,

x ± \\z — 1 and x ± c\z — c2, then z = x2. The previous lemma allows us to

pick out the pairs c, c2.
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UNDECIDABLE EXISTENTIAL PROBLEMS 125

Define

Sq(x, z) <-» 3c„ c\, c2, c2, c3, c'3, c4, c, d

[x\cx Ax± l|c, A*fr Az ± l\cx A2acx\c'x

A Sqx(c[, c2) A c2\c'2 A Sqi(c2> ¿3) A c3\c'3

A Sq,(c3, c4) A c4\c A Sq,(c, d) A c ± x\d - z]

V[-x = 0A^ = 0].

Lemma 4. Sq(x, z) <-> x2 = zfor all x,z E Z[a].

Proof. If x2 = z it is easy to use Lemma 3 to obtain the required c¡, c'¡, c, d.

Conversely, suppose Sq(x,y) and x =£ 0. Then d = c2 and c i=- 0 since

Sq,(c, d), and so from c ± x\d — z we have (c2 — x2)/g.c.d.(c + x, c -

x)\c2 — z. Hence, since g.c.d.(c + x, c — x)\2x, we have y(c2 — x2) = 2x(c2

— z) for some y G Z[a]. Next we shall use the fact that c » x, z to show that

y = 2x and, hence, that z = x2. Let x = xx + ax2, z = z, + az2, x2 = x3 +

ax4 with the x¡, z¡ G Z, and let

m = max(|x,|, |x3|, |z,|, íz|x2|, a|x4|, û|z2|) > 1.

From the divisibilities x\cx, x ± \\cx, z\cx and z ± l|c„ it follows by taking

the norms and simple manipulations that m < 4aN(cx)2. From the other

conditions we see that c'x, c2, c'2, c3, c'3, c4,c,d G Z and that

\c\ >N- c'i > c\ = c'4 > c4 = c',8 > (2fl)8|7V(c,)r.

Hence, 16m2 < |c| and thus (2m + l)2 < |c|, since m > 1. Let y = y¡ + ay2

(/„ v2 G Z). Then we have

(y, + ay2)(c2 - x3 - ax4) - 2(x, + otx2)(c2 - z, - o:z2).

So

yx(c2 - x3) - ay2x4 = 2x!(c2 - zx) - 2ax2z2

and

yi(c2 - x3) - yxx4 = 2x2(c2 - z,) - 2x,z2.

(All the letters stand for integers.) Divide both equations by c2 — x3 to get

y\~ Axy2 = 2xxBx + D„   y2 - A2yx = 2x2B2 + D2

with \A¡\, \D¡\ < (2m + l)"3 for / = 1,2 and

1 - (2m + 1)~3< B¡ < 1 + (2m + 1)~3   and   |x,| < m.

Eliminating>>2 and dividing through by 1 — AXA2 we get that

yx = (2xxBx + 2x2B2Ax + Dx + AXD2)/ (1 - AXA2).

The right-hand side~2x, with error < 1/2/w. So since xx and/, G Z we
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126 L. LIPSHITZ

must have y, = 2xx. Similarly y2 = 2x2. Hence z = x2. We now have

Theorem I. If a EN is square free, a > 1, a2 = a and R is the ring of

integers in Q(a), then multiplication is existentially definable from +, —, |, 0, 1,

a (using only A. V). and, hence, formulas of the form

3xx---3x„eK/\fi(x)\gi(x), (2)

with thef and g¡ linear polynomials with coefficients from R, are undecidable.

Corollary. Withf, g¡, R as above formulas of the form

3xx---3xn^r\fi{x)\Si{x) (D

are undecidable.

We can strengthen Theorem 1 to obtain

Theorem 2. There is no algorithm for deciding formulas of the form (2) where

thef and g¡ have coefficients from Z.

Proof. We cannot define y = ax from 0, 1, +, | since there is an

automorphism of Q(a) interchanging a and —a. To establish the theorem,

however, it is sufficient to show how to define z = ± a and y = zx by

existential formula of the language +, —, |, 0, 1,= using only the connectives

A» V- Let e be a unit with e = c + ad, \c\ > 1 (c, d E Z). Then z = ± a**

c ± dz\\. This is clear. Let A(x,y)±*[x\y Acx ± dy\x] V [x = 0 Av = 0].
Then A(x,y)<-» y = ± ax. If x =£ 0 then from x\y we have/ = ux for some

u. Let u = A + aB (A, B E Z). From ex ± dy\x we have immediately that

c + dA + adB\\ and c - dA - adB\\. Hence c + dA + adB = o^e'1 and

c - dA — adB — a2e'2. Since c ¥= 0 the only possibility is A = 0 and, hence,

B = ± 1 and u = ± a. Let z = ± a be fixed. We shall show finally that

/ = zx*r*A(x,y) AA(x + 1,/ + z). One direction is trivial. For the

converse assume A(x,y) A A(x + 1, / + z). Then, by the above, / = axzx,

y + z = o2z(x + 1) (for some a, = ± 1). Hence oxzx + z = o2z(x + 1). So

axx + 1 = a2(x + 1), i.e. (ct, — ajx = o2 — 1. We need only consider the

case x ¥" 0. In this case if o2 = 1 then ox = a2 = 1 and / = zx. If a2 = — 1

then (a, + l)x = — 2, and we must have o, = 1 (for otherwise we get

0 = — 2) and, hence, / = zx.

2. Arbitrary algebraic extensions. In this section we shall prove

Theorem 3. If R is the ring of integers in any proper algebraic extension of

the rationals, other than imaginary quadratic, then formulas of the form

3xx • • • 3xn /\ ¡ f(x)\ gj(5c), where thef and g¡ are linear polynomials with

coefficients from R, are undecidable.

Proof. Let the degree of the extension be n and let ax,.. ., an be an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



UNDECIDABLE EXISTENTIAL PROBLEMS 127

integral basis for R. If x E R, say x = 2,x,a,, then let ||x|| = max,|x,|. Let

the distinct embeddings of R -» C (the complex numbers) be o,,..., a„ and

let K(x) = max,|o-,(x)|. It follows from [2, Lemma 1, p. 119] that there exist

B, C > 0 such that for all x E R,

CK(x) <\\x\\< BK(x).

From the Dirichlet Theorem on Units (cf. [2, Theorem 5, p. 112]) it follows

that R has at least one fundamental unit. (The only proper algebraic

extensions which do not are the imaginary quadratic ones, which we have

excluded.) Hence there are infinitely many solutions to x|l.

We shall use the following

Theorem 4. Let k > 2, L EN and let <p(x, y) satisfy

(i)\/m3x,y(4>(x,y) Ay > ™x),

(ii)Vx,/(<K*,/)-*y <Lx*)-
(The variables range over N.) Then multiplication can be existentially defined in

terms of +, |, 0, 1 and <p.

This theorem has recently been published by A. Bel'tyukov [1].

Define

<l>(x,y)<->3xx, ..., xn,yx, . .. ,y„£z

x = 2 x¡a¡\ 1 A y = S y¡a¡\ ! A x = max \x¡\Ay = max |/,|

(n+1

jAjCy +kx\z Az < *)

We shall show that </> has the above properties (i) and (ii) (with k = n + 1).

(i) Let e be a fundamental unit of R and let m be given. We shall show that

we can choose / andp so that if x — 2x,a;- = e' and/ = 2/,-a, = el+p, then

/ > mx, where x = \\x\\ and/ = ||/||. Now/ + kx = e'iy + k), so N(y +

kx) = ± N(ep + k), where N(w) is the norm of w, N(w) = E¡o¡(w). M =

max|a,(e)| > 1, since II,a,(e) = 1, and if |o-,(w)| = 1 for all /, then w is a root

of unity. Then

\N(ep + k)\ < (Mp + k)"<(Mp + n + 1)"   for k < n + 1.

Hence <p(x,y) will be satisfied with z = \U"kt\N(ep + k)\ if

(Mp + n + l)"(n+n < x.

Since M" + n + 1 < (M + n + Yf and x > CK(x), it is sufficient that

(M + n + i)"("+,)' < CK(x).

But K(x) = max|a,(£')| = (max|o-,(£)|)' = M1, so it is sufficient that

))•
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(M + n + lfn+l)p< CM',

i.e., n(n + 1)/? logM(M + n + 1) < logM(C) + /. So if

/?<(/ + logM(C))/n(n + l)log„(M + n + 1), (3)

then <b(x,y) is satisfied. We also want/ > mx. Now/ > CK(y) = CM'+P

and x < ÄK(x) = 5A/', so we also want CM,+P > BM'm, i.e.

CM" > Bm   or   p > \ogM(Bm/C). (4)

It is clear that we can choose p so that (4) is satisfied and then choose / so

that (3) is satisfied.
(ii) We shall show that there is an L E N so that <t>(x,y)^>y < Lxn+X.

Suppose that 4>(x,y). Then/ = 8x where 5 is a unit of R, and y + kx = x(S

+ k), and since <t>(x,y) is true we have \N(y + kx)\ = \N(8 + fc)| < x" for

k — 1,...,«+ 1. By the pigeonhole principle for some k (1 < k < n + 1),

we have \o¡(6) + k\ > {- for /' = 1.n. For this k we have

|"(S + *)| > ^TIT max|o-,.(S + *)| > ^ [max|a,(5)| -*].

Hence

and so

l^(5 + *)l > ^TT max|a,(5)| '-^K(8),

since fe/2""' < 2 and |7V(5 + Ä;)| > 1. Hence

#(5) < 2n+,max|/V(5 + Jfc)| < 2n+lxn;

and

/ =||/||< BK(y) < BK(8)K(x) < BT+ixH^ - -|2"+,xn+1.

Thus we can take L > (B/C)2n+ ' + 1 and (ii) is satisfied. This completes the

proof of Theorem 3.
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