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THE JOURNAL OF SYMBOLIC LoGic 

Volume 41, Number 3, Sept. 1976 

UNDECIDABLE PROPERTIES OF FINITE 

SETS OF EQUATIONS 

GEORGE F. McNULTYl 

In memory of Robert Louis Eldridge 

?0. Introduction. Though equations are among the simplest sentences 
available in a first order language, many of the most familiar notions from 
algebra can be expressed by sets of equations. It is the task of this paper to 
expose techniques and theorems that can be used to establish that many 
collections of finite sets of equations characterized by common algebraic or 
logical properties fail to be recursive. The following theorem is typical. 

THEOREM. In a language provided with an operation symbol of rank at least 
two, the collection of finite irredundant sets of equations is not recursive. 

Theorems of this kind are part of a pattern of research into decision 
problems in equational logic. This pattern finds its origins in the works of 
Markov [8] and Post [20] and in Tarski's development of the theory of relation 
algebras; see Chin [1], Chin and Tarski [2], and Tarski [23]. The papers of 
Mal'cev [7] and Perkins [16] are more directly connected with the present 
paper, which includes generalization of much of Perkins' work as well as 
extensions of a theorem of D. Smith [22]. V. L. Murskil [14] contains some of 
the results below discovered independently. Not all known results concerning 
undecidable properties of finite sets of equations seem to be susceptible to the 
methods presented here. R. McKenzie, for example, shows in [9] that for a 
language with an operation symbol of rank at least two, the collection of finite 
sets of equations with nontrivial finite models is not recursive. D. Pigozzi has 
extended and elaborated the techniques of this paper in [17], [18], and [19] to 
obtain new results concerning undecidable properties, particularly those of 
algebraic character. 

This paper is itself a continuation of [13] where the basic methods used here 
were developed. The present paper includes without proofs the pertinent 
results of the earlier paper. 

A substantial part of this paper was included in my Ph.D. thesis submitted in 
June 1972, to the University of California at Berkeley. Professor Alfred Tarski 
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590 GEORGE F. McNULTY 

was my thesis advisor and I am grateful for his advice and encouragement. 
I also found special profit from talks with Professors Ralph McKenzie 
and Don Pigozzi. Some of the results below were announced in [10], [11], 
and [12]. 

?1 gathers together those results from [13] which are essential in the 
remainder of the paper; the section also contains several new theorems useful 
in ?2. Unfortunately ?1 is rather technical and the interested reader is 
encouraged to consult [13] especially concerning the proof of Theorem 1.7. ?2 
contains six theorems. The first three are general undecidability results with 
relatively simple proofs. The others have a more specialized character and the 
last two have more delicate proofs. It has turned out to be unwieldy to present 
proofs of all the undecidability results accessible by our methods. Instead it is 
hoped that the reader can reconstruct the remaining proofs. 

Our general references in algebra are Gratzer [3] and Henkin, Monk, and 
Tarski [4, Chapter 0]. The reader is assumed to be familiar with basic notions 
from universal algebra such as congruence lattices and subdirectly irreduci- 
ble algebras. Chang and Keisler [0] is our principal reference for notions 
and notation from model theory and first order logic. Tarski's survey article 
[24] is our reference for concepts specific to equational logic. The reader 
unfamiliar with undecidable theories and recursive functions is referred to 
Rogers [21]. 

The remainder of this introduction is a summary of our results. 
Let A be a set of equations. A is consistent provided A has an infinite model; 

A is equationally complete if A is consistent and the same equations hold in any 
two nontrivial models of A; A is irredundant if A {- } fr for all 8 E A; A is 
K-categorical provided A is consistent and any two models of A of cardinality K 

are isomorphic; A is decidable if {8: A H 8} is recursive; A is a base of T 
provided T is a set of equations and A and T have the same models; A is 
essentially finitely based provided every extension of A is finitely based; A is 
residually small if there is a cardinal which is an upper bound on the size of the 
subdirectly irreducible models of A; A is residually finite if all subdirectly 
irreducible models of A are finite; 'y is a nontrivial congruence lattice identity 
provided 'y is a lattice identity which fails in the lattice of congruences of some 
algebra; A satisfies the congruence lattice identity y if 'y is true in the lattice of 
congruences of every model of A. VA = {n: A has an irredundant base of n 
equations}. 

What follows is a table of undecidable properties of finite sets of equations 
which have been established by the methods described below. Various weak 
conditions are sometimes imposed on the language and these conditions are 
described in ?1. If P(Y) is a property of the sets E of equations and L is a 
language, then the corresponding line in the table means that {E: P(Y) and E is 
a finite set of L-equations} is not recursive. I have tried to cite the literature 
and give credit to the people who discovered the various results. Where one of 
the results is proved in the body of this paper the appropriate theorem is cited 
by number-special cases and immediate corollaries are treated similarly. 
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UNDECIDABLE PROPERTIES 

Property of I 

1. E is consistent. 

2. E is equationally 

complete. 

3. E is decidable. 

4. E is the base 

of a, finite algebra. 

5. E is consistent 

and decidable. 

6. Fix a nonempty 

set S of positive 

integers. I is a base 

for an algebra with 

cardinality in S. 

7. E is &o-categorical. 

8. E is w1-categorical. 

9. E is categorical 

in all infinite 

powers. 

10. III = 1 and I is 

consistent. 

11. IIIA= 1 and Eis 

decidable. 

12. III = 1 and is 

a base of a 

finite algebra. 

13. 11I=1andIis 

essentially 

undecidable. 

Conditions on L 

L is nontrivial. 

L is nontrivial 

and finite. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial 

and finite. 

L is nontrivial 

and finite. 

L is nontrivial. 

L is nontrivial 

and finite. 

L is strong. 

L is strong. 

L is strong. 

L is strong. 

References 

Perkins [16] and 

McNulty [13]. 

Special case: 

Perkins [16]. 

Theorem 2.6, special 

case: Perkins [16]. 

Special case: 

Perkins [16]. 

Theorem 2.6. 

Closely related to 

Theorem 2.6. 

Closely related to 

Theorem 2.6. 

Closely related to 

Theorem 2.6. 

Closely related to 

Theorem 2.6. 

Corollary of Theorem 

2.1, cf. remark follow- 

ing Theorem 2.5. 

Corollary of 

Theorem 2.4. 

Corollary of 

Theorem 2.4. 

Corollary of 

Theorem 2.4. 
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14. E is irredundant. 

15. E is consistent 

and irredundant. 

16. n E VI, where n is 

a fixed positive 

integer. 

17. n E VI and I is 

consistent, where 

n is a fixed 

positive integer. 

18. E is essentially 

finitely based. 

19. E is consistent 

and essentially 

finitely based. 

20. Fix A a set of 

L-equations not 

true in every 

algebra. Ih\A. 

21. Fix A a set of 

L-equations with 

a consistent 

finitely based 

extension. I is 

consistent and IkA. 

22. E is residually 

small. 

23. E is residually 

finite. 

24. E has arbitrarily 

large simple models. 

25. E has no infinite 

Jonsson model. 

26. Fix y a nontrivial 

congruence lattice 

identity. I satisfies 

the congruence 

lattice identity y. 

27. E is a base of a 

primal algebra. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is nontrivial. 

L is strong or L 

has three unary 

operation symbols. 

L is strong. 

L is strong. 

L is strong. 

L is strong. 

L is strong. 

L is strong. 

Theorem 2.7. 

Theorem 2.7. 

Pigozzi (unpublished) 

Theorem 2.7, special 

case: Smith [22]. 

Theorem 2.7. 

Murskil [14]. 

Like Theorem 2.8, 

Murskii [14], independently. 

Theorem 2.8. 

Corollary to 

Theorem 2.4. 

Corollary to 

Theorem 2.4. 

Corollary to 

Theorem 2.4. 

Corollary to 

Theorem 2.4. 

Corollary to 

Theorem 2.5. 

Corollary to 

Theorem 2.5. 
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28. E is a base of a 

quasi-primal 

algebra. 

29. Fix y a nontrivial 

congruence lattice 

identity. I is 

consistent and 

satisfies the 

congruence lattice 

identity y. 

30. Fix A a finite 

set of equations 

such that A F 0 6 vo 
for some nontrivial 

term 0. I is a 

base for A. 

L is strong. 

L is strong. 

L is nontrivial. 

Corollary to 

Theorem 2.5. 

Corollary to 

Theorem 2.5. 

McNulty [13] and 

Murskif [14], 

independently. 

?1. Preliminaries. Algebras are denoted by capital German letters A, A,... 
while their universes are denoted by the corresponding Roman capitals 
A, B..... We will be particularly concerned with the manipulation of equations 
and terms. Generally lower case Greek letters 4, df, o-, r, 0, ... represent terms 
while 4 -fr is an equation between terms. Since on all but a single occasion in 
this paper every first order sentence is universal, we suppress all quantifiers. 
Hence 4 =fr, unless otherwise specified, is the universal closure of the 
equation between the terms 4 and qd. The letters r and E are reserved for finite 
sets of equations. If A and 0 are sets of equations, then A =0 means they have 
the same models. 

The countable first order languages we deal with here all have the same 
denumerably infinite collection of variables VO, v1, v2,*, but they are allowed 
to differ in their operation symbols. No language occurring in this paper has 
relation symbols. Each operation symbol has a rank which is the number of its 
arguments. A language is nontrivial provided it has an operation symbol of 
rank at least two or it has at least two different operation symbols of rank one. 
A language is strong if it has an operation symbol of rank at least two. A term 0 
is nontrivial (strong) provided a variable occurs in 0 and any language for 
which 0 is a term is nontrivial (strong). Terms are conceived as certain strings 
of variables and operation symbols. 

If P is a term in the variables VO, V *, vn1, then 4[0o, *, an-l is the term 
resulting from substituting the terms Oi for vi in 4 for all i = 0. * *, n - 1. If x is 
the only variable to occur in 4, then 4[0] is the result of substituting 0 for x. 
More generally if 0 = (0: i EC w) then 4[0] is the term resulting from the 
substitution of Oi for vi in 4 for all i E co. 4[0] (and 44[ ) * *, On-,l) are called 
substitution instances of 4. We write 1 q when 0 and qd are terms without 
common substitution instances; ? T qd means that some substitution instance of 
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4 is also a substitution instance of dq. If A and 'P are sets of terms, then A I 1 
means 8 1 ? for all 8 E A, 4 E (D. 

DEFINITION 1.1. A set A of terms satisfies the subterm condition provided 
(i) no variable belongs to A and 
(ii) if 8, 8' E A and + is a subterm of 8 which is not a variable such that 

4 TS', then 4)=8=8 , 
The subterm condition turns out to be a primary tool in the proofs below. It 

was devised by Ralph McKenzie and introduced in McNulty [13]. Pigozzi uses 
it in [17], [18], and [19] where sets satisfying the subterm condition are said to 
be nonoverlapping. Some fundamental results concerning the subterm condi- 
tion which are required in this paper were established in [13]. For convenience 
they are repeated here without proof as are a few other necessary theorems 
from the literature. 

DEFINITION 1.2. Let A be a set of terms and A be any nonempty set. A 
function F with domain A and range included in the set of finitary operations 
on A is said to agree according to rank provided the rank of F(8) is the number 
of distinct variables occurring in 8, for every 8 E A. An element b E A 
annihilates F provided the value of F(8) at any tuple including b is just b, for 
all 8E A. 

The next theorem is our basic "model-construction" device which is used 
repeatedly below. It is an extension of Theorem 2.5 from [13] and may be 
proved in the same manner. 

THEOREM 1.3. Let A be any set of terms satisfying the subterm condition; let 
F be any assignment of finitary functions on w to the terms in A which agrees 
according to rank. There is an algebra W with universe w such that for all 8 E A 
and all terms 4, tf, and iT where 4 and qP are shorter (as strings of symbols) than 
any term in A 

(i) 8A = F(8), 
(ii la P, 0 -d ( if 0 /, I', 

(iii) if some member of w annihilates F, then A 1= 4 iT only if every variable 
occurring in iT also occurs in 4, and 

(iv) if p and 7j are terms with p 1 rq, p'IA, and q'IA for all nonvariable 
subterms p' of p and q' of qr, then p' and i ' have disjoint ranges; moreover if 
only one variable occurs in p then p' has no fixed points. 

As will be observed in some of the arguments in the next section we will 
often find it desirable to translate from one language to another by means of a 
system of definitions. We assure the faithfulness of the translation by selecting 
a set of defining terms which satisfies the subterm condition. The next few 
definitions specify the translation device we use. 

DEFINITION 1.4. Consider two languages, L and L', and a one-to-one 
function 8 mapping the operation symbols of L to terms in L' in such a way 
that 8(Q) is an L'-term in whichV0, v, *, vn-1 are exactly the variables to occur, 
whenever Q is an operation symbol of L of rank n. We define the function in8, 
the interpretation of L in L' on the basis of 8, from the set of L -terms into the set 
of L'-terms by the following recursion: 

(a) insx = x for all variables x, 
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(b) inQ = 8(Q) for every L-operation symbol Q of rank 0, 
(c) in.(Q+0-... ** i)= =(Q)[in.00, - * , in40,] where Q is an L-operation 

symbol of rank n > 0 and 1m, *, On-, are L-terms. 
If (P is a set of L terms then in, (P = {in40: k E (D}. Likewise if N is a set of 
L-equations, inN = {inch intqe: p qf E N}. 

The language in which the key undecidability result, due to Mal'cev, is 
formulated has two operation symbols and both are unary. For technical 
reasons it is more convenient to reserve the four letters f, g, h, and k to be 
unary operation symbols and Lo to be the language with exactly these 
operation symbols. 

DEFINITION 1.5. Let L and L' be languages with L an expansion of Lo by 
unary operation symbols. Let N be any set of L-equations and 0 be any set of 
L' equations; let 8 be a function fulfilling the conditions in Definition 1.4. 
Finally let 4 q- be any L-equation. We define: 

B(N, 4 q-, 8, 0) = inN U {ins(he [kvo])[yj ] ins (h4)[kvo])[p]: y p E 0} 
U {ins(hq [kvo])['y] -y: there exists an L'-term p with 

p -y E0 or y p E@}. 

The idea behind this rather complicated definition is to link N H 4 f with 
0 B(N, 4) q,, 8, 0) at least under favorable circumstances. One of these 
favorable circumstances is formalized in the following definition. 

DEFINITION 1.6. A absorbs 'P for 0 provided A and (P are sets of terms and 
0 is a set of equations with 

0H{4)[8,8,8,***]8:8elA andOE14. 

We write "8 absorbs ?> for 0" instead of "{8} absorbs {4} for 0". 
THEOREM 1.7. (See Theorem 3.11 and Corollary 2.7 in [13].) Let L and L' 

be languages with L an expansion of Lo by unary operation symbols. Let 8 be a 
function satisfying the conditions of Definition 1.4. Let A be the range of 8, N be 
a set of L-equations in which vo is the only variable to occur, and 0 be a set of 
L'-equations such that 

(1) A satisfies the subterm condition, 
(2) 0 k +- for all 4, tf E A, 
(3) A U {y: there is p with yo p E 0 or p by E 0} absorbs A for Z. 

Then for any L-equations g and 71 in which vo is the only variable to occur we 
conclude 

(4) N if ifB(N, ,8, 0) 0, and 
(5) if N/a, then NH'q iff B(N, A, 8, 0)Hins8q. 
REMARK. We note here that in proving this theorem in the cases when 

NS~u we provide a model of B(N, A, 8,0) by means of Theorem 1.3. 
Consequently, a stronger statement based on 1.3(ii)-(iv) is possible and will in 
fact be tacitly used below. 

THEOREM 1.8 (MAL'CEV [7]). There is a finite set M of equations in which 
the only variable to occur is vo and the only operations symbols to occur are f and 
g such that 

(1) if M q 0 tp and 0 is a variable, then 0 = tf, and 
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(2) { q q: M H 4 qf and f, g, and vo are the only symbols to occur in 0 and 
qf} is not recursive. 

Theorem 1.8 is the basis upon which all the undecidability results of this 
paper are established. The letter M is reserved throughout this paper for a 
fixed set satisfying this theorem. We also assume that M is irredundant, i.e. 
M -{ }/ Y for any ,u E M. Most of our results proceed from Theorem 1.7 by 
letting M = N and making appropriate choices for 8 and 0. So most of the rest 
of this section is devoted to the remaining conditions in Theorem 1.7: 
constructing sets satisfying the subterm condition which at the same time enjoy 
some absorption properties. We begin with an artificial though convenient 
definition. 

DEFINITION 1.9. Let 0 be a nontrivial term. 
(i) If 0 = pk+lqHpnx, where p and q are distinct unary operation symbols, H 

is a (possibly empty) string of unary operation symbols, x is a variable, and 
n, k EC , then m(0)= {pk+lqHx,pkqHx}. 

(ii) If 0 = HQOO... **n-i, where Q is an operation symbol of rank n > 1, H 
is a (possibly empty) string of unary operation symbols, and 00, . ), n-, are 
terms, then m(0) = {0, Oo, .., n- 

THEOREM 1.10 (THEOREM 2.26 IN [13]). Let 0 be any nontrivial term in 
which all operation symbols to occur are unary. There is a set A of terms such that 
for any set 0 of equations and any set P of terms 

(1) A is infinite, 
(2) A satisfies the subterm condition, and 
(3) if P U m (0) absorbs 0 for 0, then P U A absorbs A for 0 and 

e f 
{I = 0: 0, 4 

E 
A}. 

THEOREM 1.11 (THEOREM 2.30 IN [13]). Let 0 = Q~o... **n- where Q is 
an operation symbol of rank n > 1 and o0, ', anal are terms. Suppose that the 
variable x occurs in 0. There is a set A of terms such that for any set 0 of 
equations and any set P of terms 

(1) A is infinite, 
(2) A satisfies the subterm condition, and 
(3) if P U m (0) absorbs 0 for 0, then P U A absorbs A for 0 and 

0 OF{+ 0 [x, x, x, ...]: 0 E Al. 

Yet another definition is helpful in handling the remaining case of this sort. 
DEFINITION 1.12. Let 0 be a term. 0 is defined by the following recursion: 

(i) x+= x for all variables x, 
(ii) Q+= Q for all operation symbols Q of rank 0, 

(iii) () = O+ for all unary operation symbols p and terms ?>, 
(iv) (QO *... *n-I)+ = Q+O+ - *-- for all operation symbols Q of rank 

n > 1 and all terms o0, * *, n-I 
0+ is obtained by deleting all unary operation symbols. A+ = {8+: 8 E A} 

whenever A is a set of terms. 
THEOREM 1.13 (THEOREM 2.33 IN [13]). Let 0 be any nontrivial term. There 

is a set A of terms such that for any set 0 of equations and any set P of terms 
(1) A is infinite, 
(2) if an operation symbol with rank at least two occurs in 0, then A+ is infinite 
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and satisfies the subterm condition, and 
(3) if D U m (0) absorbs 0 for 0, then P U A absorbs A for 0 and 

0 f{ - : ,I E A}I 
We need one more sequence of preliminary results on the construction of 

sets satisfying the subterm condition. 
THEOREM 1.14 (THEOREM 2.23 IN [13]). Let L and L' be any two lan- 

guages and let in, be an interpretation of L in L'on the basis of 8. Let P be any 
set of L terms such that both 4 and the range of 8 satisfy the subterm condition. 
Then ins P satisfies the subterm condition. 

THEOREM 1.15. Let L be a strong language and let 0 be any finite set of 
nonvariable L-terms in which vo is the only variable to occur. There is an infinite 
set A of L-terms such that A satisfies the subterm condition and AI I . 

PROOF. For convenience we assume L has a binary operation symbol B. Let 
n be a natural number greater than the number of occurrences of symbols in 
any term in 0. Let 

= BvoB 0v Jo = BvoBvoB 0vJ 1 

1= BvoB n+ 1 V +1=Bv0Bv0B n+1von2, 

4,=BvB2nV2n+l 2n~~ 
(Pn BvoB 0n 2n+ n = BvoBvoB 0n n 

Let T = 40[41[42 
... 

[Pn]]] and 0r = O[4ql - ..* [qin **] . Based on a 
straightforward inspection we see that {f-, o-} satisfies the subterm condition. 
Suppose 0 E 0 and p and 71 L-terms with 0[r] = v[p]. From the structure of IT 

it follows that there is a j with O < j < n such that .j [... [on4[p]] ' ''] is a 
subterm of 7. Consequently 71 is longer than 0 and so 7 can occur no more 
than n times as a subterm of 0 [71]. On the other hand 0j [... [fPn [P]] ... ] occurs 
many more than n times in IT[p]. This is a contradiction, so X 1 0. The same 
can be said for cr. Now let P = {f2gk+lfgvo: k E w}. P satisfies the subterm 
condition. Let 8(f)= X and 8(g) = a- and set A = in,(. By Theorem 1.14, A 
satisfies the subterm condition and moreover every member of A is a 
substitution instance of v. Hence A 10 and the proof is complete. 

This theorem does not hold for languages which are not strong. Consider the 
language Lo and let 0 = {fvo, gvo, hvo, kvo}. There is no set A of Lo with A l 0. In 
fact we could take 0 to be any set consisting of all LO-terms in vo whose length 
is less than a given n > 1 and the same would be true. 

THEOREM 1.16 (THEOREM 2.9 IN [13]). 
(i) If L is a nontrivial language, then there is a denumerably infinite set A of 

L-terms which satisfies the subterm condition such that vo occurs in each of the 
terms in A. 

(ii) If L is a strong language, then there is a set A of L-terms which satisfies 
the subterm condition such that for each n > 0 the variables VO, Vn1 occur 
simultaneously in infinitely many terms in A. 

?2. Undecidable properties. In this section we will establish several of the 
undecidability results mentioned at the conclusion of the introduction. The 
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proofs not included differ in detail and, to some extent, in conception from 
those presented here; but they do not differ in spirit and it is hoped that the 
interested reader will be able to devise for himself the proofs not included. It is 
not surprising that arguments establishing the undecidability of various proper- 
ties of finite sets of equations in strong languages are simpler than those for the 
wider class of nontrivial languages. We begin this section with three theorems 
of a rather general nature that have between them most of the results 
mentioned in the introduction as special cases provided the language is strong. 
The rest of this section is devoted to obtaining theorems about nontrivial 
languages. Here I do not know any comprehensive general theorems and my 
approach to these results is more ad hoc. We begin with the single place in this 
paper where existential quantifiers are important. 

DEFINITION 2.0. A first order sentence 4 is a Murskil sentence provided 
that 4 is not universally valid and 4 is a disjunction of existential prenex 
sentences, the quantifier-free part of each being an equation in which only one 
variable appears on each side. 

THEOREM 2.1 (MURSKII [14]). Let L be a strong language. Let G be a 
collection of finite sets of L-equations with the following properties: 

(1) if FEEG and F= , then IEG, 
(2) {vo-vi}EG, and 

(3) there is a Murskil sentence 4 such that IF F 4 for all F E G. 
Then G is not recursive. 

PROOF. Let 
4 V 3 VO V1 (qok [ VO] ; Ok [ V I ]) V V 3 vo(o7j [ vo] - rj [ v0]) 

k<n j<m 

be the Murskil sentence specified in the theorem. Let 0 be the set of all 
nonvariable subterms of qf/k, Ok, oj, and rj where k < n and j < m. We can 
assume no variable different from vo occurs in any term in 0. Since 4 is not 
universally valid we observe that neither qfik nor Ok may be vo and further that 
qfJk; Ok and crib r, for all k < n and j < m. According to Theorem 1.15 there 
must be four terms Im, IT, IT2, and 7T3 such that {im, ITa, IT2, 1T3}1I and 
{Tco T, 721 3} satisfies the subterm condition. Let 8(f) = Io, 8(g) = ir1, 8(h) = 

IT2 and 8 (k) = I73- Consider B (M, t 8, {vo vi}) for any equation ,t in f, g, and 
vo. According to Theorem 1.7 

(i) If M F k, then B (M, #g 8, {Jvo vil}) {vo 0 vi} and therefore 
B(M, 8,{vo~ vl})E G. 

(ii) If M Yv ,, then B (M, , 8, I{vo v vi}) has a denumerable model. 
More can be said of (ii). If MY ,g, then M has a denumerable model in which ,t 
fails. With the help of Theorem 1.3 B(M, g, 8, I{vo vi}) has a denumerable 
model W such that Ifd and O' have disjoint ranges for all k < n and moreover 
oaW and rI have disjoint ranges unless one is vo and in that case the other will 
have no fixed points, for j < m. Hence 

(iii) if M,/ Y, then B(M, ,t, 8,{vo 0 vi}) has a model in which 4 fails and so 
B (Me, g, Ivo v I) 0G. 

The theorem follows from (i) and (iii) by Theorem 1.8. 
In [14] Murskil formulates Theorem 2.1 for nontrivial languages. The proof 
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he sketches is correct for strong languages and it is somewhat different from the 
proof just presented. The theorem is false for nontrivial languages as the 
following example reveals. 

EXAMPLE 2.2. Let 4 = 3vorv[fvo = gvl] and let G = {rF: IF F and F is a set 
of equations in f and g}. Then F E G iff there is -y E r where f is the leftmost 
symbol of one side of -y and not the leftmost symbol of the other side. (If f is 
the leftmost symbol of both sides of every equation in F, then the two element 
model of F assigning f and g different constant functions will fail to satisfy 4.) 
This amounts to a decision procedure for G. 

DEFINITION 2.3. Let L and L' be languages and let A be a set of L- 
equations while 0 is a set of L'-equations. We say that A is a definitional reduct 
of 0 iff there is an interpretation ins of L into L' such that for every infinite 
model W of A there is a model 93 of 0 with the same universe as W and such that 
whenever Q is an operation symbol (of rank n) of L, we have 8(Q) = 

(Qvo. Vn1)'. 
We note that the notion of definitional reduct is closely connected to the 

notion of definitional (alias rational) equivalence of varieties. See Tarski [24] 
and especially Mal'cev [6]. 

THEOREM 2.4. Let K be any collection of finite sets of equations in a strong 
language such that 

(i) {vo - vi} E K, 
(ii) if A E K and FrA, then F E K, and 

(iii) there is a consistent set E of equations such that if E is a definitional 
reduct of A, then A 0 K. 

Under these conditions K is not recursive. 
PROOF. Let L be a strong language and let E be a set of equations fulfilling 

(iii). It does no harm to suppose that f, g, h, and k do not occur in E and that no 
operation symbol of rank 0 occurs in E. Let L' be the language whose 
operation symbols are those which occur in E together with f, g, h, and k. So L' 
has finitely many operation symbols. By Theorem 1.16, there will be an 
interpretation ins for L' into L with the range of 8 satisfying the subterm 
condition. Let A(a ) = B(M, ,t, 5,{ vo v vi}) U in, for each equation ,t in f, g, 
and vo. 

(i) If MF t, then B(Mg,8,{vo-vl})-{vo-vi} and so A(g)CK. 
(ii) If MY ,t and W is an infinite model of X, then M has a model 93 with the 

same universe as W such that ,t fails in 93. According to Theorem 1.7 (with an 
implicit use of Theorem 1.3) A(g) has a model C with the same universe as W 
establishing that E is a definitional reduct of A(^). Hence A(g) 0 K. 

Invoking Theorem 1.8 finishes the proof. 
We note that the set E specified in Theorem 2.4 (iii) need not be in the same 

language as the sets of equations in K. But if E is in a nontrivial language then 
the language of K can be nontrivial, too. 

THEOREM 2.5. Let H be a collection of finite sets of equations in a strong 
language such that 

(i) H is not empty, 
(ii) if AE H and A IF, then IFE H, and 
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(iii) for each F E H there is a term r in which both vo and v1 occur such that 
FkT- vo. 

Then H is not recursive. 
PROOF. Let F E H and let r be a nontrivial term such that IF H- vo. By 

Theorem 1.13, there are four terms Oo, Al, 02, and O3 such that {40+, 0)1, 02+, 43+} 

satisfies the subterm condition and IF k{40 v0, VO 1 VO, 02 0 Vo, 03 vo}. Let 
6(f)= 4)o, 6(g)= 0)1, 6(h)= 42, and 6(k)= 03; 8 (f)- 40 6+(g)=4Xl, 
6+(h)= 0+2, and 6+(k)= 04+. It is simple to verify that 

(1) if M F ,t, then B (M, ,t, 8, IF) IF, so B (M, ,t, 8, F) E H. Also, by Theorem 
1.7 (by an implicit use of Theorem 1.3) we obtain 

(2) if M Y g, then B (M, g, , +IF) has a model W depending only on the 
operation symbols occurring in 40+, )++, )+2, and )+3 such that W F XT vo only if 
vo is the sole variable to occur in ir. 

By replacing all the unary operations of W by the identity function we obtain 
a model 93 of B (M, ,t, 8, F) with the same property. Hence B (M, ,t, 8, F) 0 H. 
So the theorem is established by Theorem 1.8. (The reader should notice that 
any model of M can be extended to another model of M in which the 
operations have a common fixed point. This allows the use of Theorem 1.3(iii) 
in constructing the model W above.) 

Theorems 2.1 and 2.4 admit refinements. In fact it is possible to prove in 
these cases that the collection of singleton sets in G and the collection of those 
in K are not recursive. The key to this refinement is a theorem due to 
McKenzie and Tarski independently (see Tarski [24]). Their theorem asserts 
that for a certain finite set F of ring equations there is a recursive map F from 
finite sets of equations (regardless of language) into the set of all equations such 
that F(FU 1) FU 1. 

The remaining three theorems of this paper are meant to illustrate how sharp 
results can be obtained for nontrivial languages. Perkins in [16] proved that in a 
language provided with two binary operations and two constants the property 
of being the base of a decidable theory is undecidable. We improve this 
theorem as follows. 

THEOREM 2.6. Let L be a recursive nontrivial language. Each of the follow- 
ing sets is not recursive: 

(i) {E: X is a decidable set of L-equations }, 
(ii) {E: X is a decidable consistent set of L-equations}. 
PROOF. Let L' be a nontrivial finite sublanguage of L. Let F be the set of 

equations asserting that all the operations have the same constant value. Then 
F is both consistent and decidable. Let 0 any nontrivial term such that either no 
operation symbol of rank more than one occurs in 0 or else the leftmost symbol 
in 0 is an operation symbol of rank at least two. According to either Theorem 
1.10 or Theorem 1.11 we can obtain a function 8 from the operation symbols of 
Lo into the terms of L' satisfying all the hypotheses of Theorem 1.7. So if , and 
,q are any equations in f, g, and vo, then if M F ,t, we conclude that 
B (M, ,t, 8, F) -IF and hence is both consistent and decidable and if M iv ,, then 
M F iff B (M, g, 8, F) k inset and so B (M, ,g, F) I) is consistent and undecidable. 
The proof is completed by invoking Theorem 1.8. 
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THEOREM 2.7. Let L be any nontrivial language and let n be any positive 
integer. The following sets are not recursive. 

(i) {E: E is an irredundant set of L-equations}, 
(ii) {E: E is a consistent irredundant set of L-equations}, 

(iii) {E: E is a set of L-equations with n E V1}, 
(iv) {E: E is a consistent set of L-equations with n E V1}. 
PROOF. Consider first the language L' with just two operation symbols s 

and t, both unary. Let 8 be the function defined by 

8(f) = s2tstv0, 8(g) = s2t2stv0, 6(h) = s2tl3styo 8(k) = S2t4stvo. 

Let A = (8(f), 8(g), 8(h), 8(k), S2tlstvo, S2t6Stvo}. Then A is a set of L'-terms 
satisfying the subterm condition. Let F = {svo tvi}. Let ,t be any equation in 
f, g, and vo, and set D()= B (M, 8, F,) U{s 2tSstvo s 2t6stvo}. 

Claim 1. If M F , then D (gt)-{svo = tvi} and D (g) is redundant. 
Claim 2. If M Y a, then D (g) is irredundant and 1 0 V D (g). 
PROOF. Recall that M is irredundant. Let f' and g' be new unary operation 

symbols and N = M U {f'vo g'vo} and 8(f') = s2ttstv0 and 8(g') = S2t6Stvo. 

Now N is irredundant and D (g) = B (N, g, 8, IF). By Theorem 1.7, D (g)- 
{inset}frins71 whenever q E N. Three equations remain to be checked in order 
to establish that D (i ) is irredundant. They have the forms svo - a, tvO f3-, and 
Yy - y' where vo and both s and t occur in a, f3, and -y, and vl and both s and t 
occur in -y'. Since vo is the only variable occurring in D(yt)--- {-y =-y'} we 
conclude that D(g) {-y - y'}f -y - y'. Since no equation in D(g)- {svo- a} 
has svo as one of its sides we conclude D(t) -{svo a} IYsvo a. Similarly 
D (# ) - {tvo f3 }VJ tvo f 3. So D (#t ) is irredundant. Furthermore any base for 
D (a) must have an equation with one side sy for some variable y, similarly one 
side must be ty and finally the base must include an equation with different 
variables on each side. So if 1 E VD (it) we would have {svo tvi} =D (ig). But 
by Theorem 1.7, D(gt)f svo tv1. This completes the proof of Claim 2. 

Now let {00, Oi} U {4i: 1 c i < n} U {Jqi: 1 - i < n} be any set of L-terms in 
which vo is the only variable to appear (and it occurs in every term) and such 
that the whole set satisfies the subterm condition. Let p(s) = 0 and p(t)= = 

and E(^) = inpD(g) U {I qi: 1 c i < n}. 
Claim 3. If MF t, then E(t)-{0o-0-zO[vi]} U {4i.tqi:l c i<n} and 

n EVE(y). 
Claim 4. If Mfrta, then E(^) is irredundant and n0 VE(,u). 
PROOF. First observe that any base of E(^) must include, up to renaming 

variables, {4i hfi: 1 c i < n}. (This is most easily seen by examining the 
possible proof of this set of equations.The subterm condition is important to 
this examination.) It follows from Claim 2 and Theorem 1.3 that E(^) is 
irredundant. In addition to (4'i ~ hi: 1 c- i < n} any base of E(^) must include 
an equation with one side 0 (up to renaming variables), an equation with one 
side 01 (up to renaming again), and an equation in which two variables occur. 
Now by Theorems 1.7 and 1.3, E(,t)fr 00- O[vj]. So E(^) cannot have a base 
with n elements. 

By Theorem 1.8, Claims 3 and 4 suffice to prove all parts of the theorem. 
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Theorem 2.7(iii) in the case when n = 1 and L has two binary operation 
symbols and two constants was found independently by D.Smith [22]. In the 
case n = 1 and L nontrivial, Theorem 2.7(iii) was announced in [11]. Don 
Pigozzi first proved Theorem 2.7(iii) in its full generality. The present proof 
differs from Pigozzi's proof which is unpublished. Theorem 2.7 answers some 
questions raised by Tarski in [24]. 

THEOREM 2.8. Let L be a language with at least three unary operation 
symbols or some operation symbol of rank at least two. Let A be any set of 
L-equations. {E: E kA and E is a consistent set of L-equations} is recursive iff A 
has no consistent finitely based extensions. 

PROOF. If A has no consistent finitely based extensions, then the set in 
question is empty and hence recursive. We consider four disjoint cases to 
establish the converse. 

Case I. A is true in every L-algebra. Then {E: E is a consistent set of 
L-equations} = {E: E is a consistent set of L-equations and E FkA}. The conclu- 
sion follows by Theorem 3.15 of [13]. 

Case II. 4) fr E A with 4u:;< fr and there is a consistent set F of L- 
equations and a nontrivial term 0 in which all operation symbols are unary such 
that IFF Aand m(0) U {Iy: y - p E F or p - zy E for some p} absorbs 0 for E. 
Using Theorem 1.10 we obtain a map 8 from the operation symbols of Lo to 
terms in L which fulfills all the hypotheses of Theorem 1.7. So by Theorems 1.7 
and 1.3 we obtain MIItk iff B(M,, ,IF)FF iff B(M,g,8,FI)F) -q for all 
equations ,t in f, g, and vo. The case is finished by appeal to Theorem 1.8. 

Case III. 4) fr E A with 4u'-< fr and there is a consistent set F of L- 
equations and a nontrivial term 0 in which an operation symbol of rank at least 
two occurs such that F FA and m (0) U {Iy: -y - p E F or p - y E F for some p} 
absorbs 0 for F. In the event that A does not fall into Case I or Case II and yet 
A' is true in every L-algebra, the proof is simple and left to the reader. So we 
assume 4+ q fi. We use Theorem 1.13 in the same way we used Theorem 1.10 
in the previous case to obtain M F ,t iff B (M, ,t, 8+, I") FF+ iff 
B(M, ,t, +, F+)FA+ iff B(M, ,t, 8+, F+)F 4I+ - + for all equations ,t in f, g, and 
vo. Let N = {svo0 vo: s is a unary operation symbol of L}. Clearly if M F k 
then B(M,t,5,F+J+)UNFA+ but B(Mt,5+J +) U NkFp p+:p is an L- 
term}. Consequently M F ,t iff B (M, g, 5, IF) FA and this case is done. 

Case IV. None of the other cases hold. Let F be any finite consistent set of 
equations such that F FA and let L' be the language specified by all the 
operation symbols occurring in F. The constant theory of L' (the theory 
asserting that all operations have the same constant value) cannot extend A 
unless one of the previous cases holds (see the proof of Theorem 2.6 for a 
typical use of the constant theory). Consequently, there must be an L'-term 0 
which is of the form s nVo for some unary operation symbol s with n > 0 and 
0 v vo E A. Let L" be the language with all operation symbols of L' excepts s. 
Notice that L" is nontrivial and let C be a base for the constant theory of L". 
Evidently C U {svo 0 vo}lFA . For any L-term 0 let 0 be the term obtained by 
deleting all occurrences of s. Again the situation is simple if 4 = qf for all 
4) qf E A. So we assume 4) qf E A and 4? f. By either Theorem 1.10 or 
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Theorem 1.11 we can find a function 8 such that for every equation ,t in f, g, 
and v0 

(1) if MFkt, then B(M, t, 5, IF)U {svo~ vo}lA, and 
(2) if M fr , then B (M, ,, a, ,F)fr i. 

From (2) we easily obtain 
(3) if M f rt, then B(M, ,t, 5, F) U {svo vo} r --q. 

Hence M F ,t iff B (M, , 8, IF) FA and the proof of the claim finishes the 
theorem. 

It should be remarked that this theorem fails to be true if L is permitted to 
have as operation symbols only two unary operation symbols. In particular 
{E: F{tfoz vo, gvo0 gvl} and E is a set of equations in f and g} is recursive, cf. 
Example 4.5 in [13]. Independently, Murskif announced in [14] a related result 
mentioned in the introduction. 

?3. Open problems. At present there seems to be no satisfactory general 
theorem concerning undecidable properties of finite sets of equations in 
nontrivial languages. Also there is no general theorem known to me concerning 
properties not preserved under equivalence. I would be interested in work in 
both of these directions. 

Here are problems of a more specific nature. 
1. Let m -n>0 and let [n,m]={j:m -j-n and jE w}. Is {F:VF= 

[n, m] and F is a set of L-equations} recursive for any nontrivial language and 
any integers m - n > 0? 

2. Call a set E of L-equations base-decidable provided {F: IF 1} is recur- 
sive. Is there any nontrivial language L such that {F: F is base-decidable and F 
is a set of L-equations} is recursive? 

3. Discover some common algebraic or logical properties of finite sets of 
equations which turn out to be decidable. 

4. Develop the theory of decidable properties of finite algebras. Many 
properties here appear to be decidable and analysis according to computational 
complexity would be of interest. It is not known whether the set of finitely 
based finite groupoids is recursive, cf. Perkins [15]. 
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