Under-constrained Execution: Making Automatic Code
Destruction Easy and Scalable

Dawson Engler and Daniel Dunbar
Computer Systems Laboratory
Stanford University

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools, Symbolic execution

General Terms
Reliability, Languages
Keywords

Bug finding, symbolic execution, dynamic analysis.

1. INTRODUCTION

Software testing is well-recognized as a crucial part of the
modern software development process. However, manual
testing is labor intensive and often fails to produce impres-
sive coverage results. Random testing is easily applied but
gets poor coverage on complex code. Recent work has at-
tacked these problems using symbolic execution to automat-
ically generate high-coverage test inputs [3, 6, 4, 8, 5, 2].

At a high-level these tools use variations on the follow-
ing idea. Instead of running code on manually or randomly
constructed input, they run it on symbolic input initially al-
lowed to be “anything.” They substitute program variables
with symbolic values and replaces concrete program oper-
ations with ones that manipulate symbolic values. When
program execution branches based on a symbolic value the
system (conceptually) follows both branches at once, main-
taining a set of constraints called the path condition which
must hold on execution of that path. When a path termi-
nates or hits a bug, a test case can be generated by solving
the current path condition to find concrete values. Assuming
deterministic code, feeding this concrete input to an unin-
strumented version of the checked code will cause it to follow
the same path and hit the same bug.

However, these tools (and all dynamic tools) assume you
can run the code you want to check in the first place. In the
easiest case, testing just runs an entire application. This
requires no special work: just compile the program and exe-
cute it. However, the exponential number of code paths in a

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISSTA'07, July 9-12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/000%5.00.

large program makes it difficult to reach all code, even with
new symbolic tools. Additionally, code guarded by com-
plex dependencies, for example global configuration options,
thread scheduling, or intricate code paths can be tricky to
hit in practice. Finally, some programs just cannot run in
the test environment and require laborious construction of
a fake environment. Operating systems are an obvious ex-
ample: they do not work when run at user-space, yet almost
all checking tools only work on user-space programs.

An alternative is to cut the code to check out of its con-
taining system and test it in isolation. This approach alle-
viates the burden of executing the entire system and allows
testing modules that may not be able to natively run on the
testing system. On the other hand, cutting subsystems out
of large real systems has proven quite difficult because of
their deep entanglement with the surrounding system, col-
loquially referred to as “environment problem.”

Recent work has tried to minimize this effort. JPF in-
troduced lazy initialization, which automatically generates
complex data structures, potentially guided by user specifi-
cation of invariants that must hold on them [7]. CUTE [§]
does a similar thing using built-in consistency checks. Un-
fortunately, for large pre-existing systems it is not practical
to expect the system to provide built-in consistency checks
or to require the user to manually specify input precondi-
tions. DART [6] makes up simple data structure elements ez
nihilo without user specifications. However, given its blind-
ness to program invariants, what it makes up can easily
cause explosions of false positives.

This paper’s contribution is the idea of under-constrained
execution, a simple but powerful twist on symbolic execution
that makes it possible to take an arbitrary function and run
it without initializing any of it data structures or doing en-
vironmental modelling, yet still find quality errors with few
false positives. Under-constrained execution lets symbolic
values be explicitly marked as being under-constrained, indi-
cating that their symbolic values may violate preconditions.
(I.e., that constraints on their symbolic values are missing,
such as that a pointer is not null.) It then works almost
identically to symbolic execution with lazy initialization, but
with one change: if an error involves an under-constrained
operand wu, it only flags the error if it can prove the error
must occur for all values of u. Otherwise it asserts that the
constraint needed to prevent the error holds and continues
execution. For example, given the expression x/u if u is
under-constrained but it can prove u = 0 (perhaps because
of a prior comparison) then it will emit a “divide-by-zero”
error. Otherwise it adds the constraint u # 0 and continues.



Because under-constrained execution explicitly reasons about

what it knows for sure (because it has all constraints) and
what it only knows approximately (because of missing con-
straints), it can reason more carefully about symbolic op-
erations. As a result, it can run code whose data is in an
invalid state and still get a clean stream of errors out. We
tested this claim by using under-constrained execution to
run Linux at user-level. We were able call Linux’s device
driver functions and system calls without doing any setup
whatsoever (i.e., not running a single line of init, all data
was uninitialized) and yet still find 36 bugs and get many
tests that went through over 20 unique branches.

We describe under-constrained execution (§ 2) and then
present our preliminary Linux results (§ 3).

2. OVERVIEW

We first discuss how symbolic execution works in our EXE
tool [4] and then how to extend this approach to do under-
constrained execution.

2.1 Basic symbolic execution in EXE

EXE supports efficient symbolic execution via program
instrumentation. It provides a facility for users to explicitly
mark which memory locations should be treated as hold-
ing symbolic data whose values are initially entirely uncon-
strained. Statements and expressions in the source program
are translated in order to operate on such symbolic vari-
ables. In the case when the inputs to a particular statement
all have exactly one value, i.e. they are concrete, the source
program is translated in such a way as to directly execute
the original code. When the program is executed and a
symbolic branch expression is reached the constraint solver
is used to determine if the expression is known to be either
true or false. If so then the appropriate branch is followed,
otherwise the program execution conceptually proceeds non-
deterministically along both paths and the appropriate ex-
pression is added to the current set of path constraints. In
practice EXE uses depth-first search as well as breadth-first
and heuristic search to guide the program execution. For
further details we refer the reader to [4].

To make this discussion concrete, suppose we use EXE
to check a simple network implementation, where read msg
has been instrumented to return symbolic data:

read_msg(msg, sizeof msg);
if (msgl[8] == 12)
connection[msg[2]].pkts++;

After the call to read_ msg the contents of msg are symbolic
and unconstrained. When we reach the if-statement, EXE
will fork execution, on the true path adding the constraint
msg[8] = 12 and on the false path that msg[8] # 12. On
the true branch, EXE then checks if the value of msg[2] can
cause a memory overflow of connection. Since msg comes
from the network, it can have any value whatsoever. Thus
EXE emits an error. When code reaches the end of a path
or error, the current constraints constraints will be solved
for concrete values to generate a concrete test of the path.

2.2 Under-constrained execution

Directly applying EXE (or any prior symbolic execution
tool) to an isolated component of a larger software system is
not as simple as the previous example. Consider the trivial
contrived routine in Figure 1 which inserts some value into

a global list structure. The function expects that the pointer
argument 1st is non-null and that the list is unlocked; if the
function were simply to be called with symbolic arguments
then most of the output would be spurious errors because
these preconditions have not been met.

The root of the problem comes from taking symbolic in-
puts that are missing constraints (because they violate pre-
conditions such as a lock is not held) yet checking them as if
all constraints were known by flagging an error if any value
could cause the error. The basic idea of under-constrained
execution is to track which symbolic variables are missing
constraints and use this knowledge to more carefully reason
about errors.

In under-constrained execution, symbolic values with miss-
ing constraints are marked as under-constrained to distin-
guish them from the ezxactly-constrained symbolic variables
of the previous subsection (for which we have all constraints).
Under-constrained values have the same semantics as exactly-
constrained symbolic values except when used in an expres-
sion that causes an error to occur. In general it is not pos-
sible to know whether or not such an error is real because
a missing constraint on the value may make the error infea-
sible. In this case, we flag an error only if all solutions to
the currently known constraints on the value cause the error
to occur: in this case it does not matter what constraints
are missing. * Otherwise we add the negation of the error
condition as a constraint and continue executing. For exam-
ple, if an array a of size n is indexed by a under-constrained
unsigned variable u then if we can prove u causes an over-
flow (u >= n) we will emit an error, but otherwise will add
the constraint v < n. Assertions in client code are treated
similarly: if EXE can prove an assertion involving an under-
constrained value must fail, it emits an error. Otherwise, it
adds the constraint that the assertion is true and continues.

Note that program errors involving only concrete values
and exactly-constrained symbolic values generate errors as
before.

Intuitively, this approach can be viewed as recovering the
preconditions from the program’s behavior: when we do a
check, then in the absence of additional information (i.e.,
when we cannot prove the condition fails) we assume the
check succeeds and add any constraints it assumes to the
current set and continue, flagging any subsequent actions
that violate the values this constraint forces. This con-
ceptually simple change to traditional symbolic execution
transforms it from a technique that is essentially unusable
for anything but perfectly set-up code and turns it into a
general-purpose, powerful approach that it is possible to
shove large amounts of code through.

Testing code using under-constrained execution becomes
much simpler; we just specify that the inputs and global data
used by a module is under-constrained and start running it.
To illustrate this process we step through part of the code
in Figure 2, which uses the lock and unlock functions given
in Figure 1

Testing of the contrived function in the given code roughly
works as follows:

start: Mark 1st as under-constrained. If the code had

The exception is that a missing precondition could mean
that the path we are on is infeasible; we assume that code
is meant to do useful work and explore all paths as long as
their branches are internally consistent, similar to what a
path-sensitive static analysis would do.



1: elem *list_head(list *lst) {
2: elem *e;

3 if (Ist—>must_lock)

4: lock(&Ilst—>lock);
5: e = Ist—>head,;

6: if (Ist—>must_lock)

7 unlock(&Ist—>lock);
8: return e;

9: }

10: void contrived(list *1st) {

11: elem *e;
12: if (Ist—>must_lock)
13: lock(&lst—>lock);

14: e = list_head(Ist);
Figure 1: Contrived example for illustration

void lock(int *1) {
assert(*l == 0);
¥ =1;

} }

void unlock(int *1) {
assert(*l == 1);
=0

Figure 2:
threading.

Simple lock checking code; assumes single-

read global values, EXE would mark these under-constrained
as well. Start running the code by calling contrived(1lst).

line 12: The pointer 1st is under-constrained so we as-
sume that 1st—must_lock is a valid memory reference. At
this point our system will create a memory block for 1st and
mark it under-constrained, the details of this are explained
more thoroughly below. Since the system has no knowl-
edge about lst—must_lock it will assume the branch can
go either way, forking execution and asserting its value is
non-zero and zero on the true and false paths, respectively.

line 13: One of the processes will call lock(). The value
&lst—1lock is under-constrained and thus lock’s assert
will not fire; however after this the value is no longer under-
constrained — it is known to be 1.

line 14: Both processes execute a call to 1ist_head(1st).

line 3: At this point 1st—must_lock is known in one
process to be non-zero and in other to be zero; each process
will only follow the appropriate path through the branch
without forking.

line 4: The process which followed the true path (at line
12) will call 1ock() again. At this point the system will try
to prove that the assert will fire. In this case it can, since
the lock was explicitly set to 1 (by the lock call at line 13).
The system will emit an error report.

Below we discuss two implementation issues: skipping
code and propagating under-constrained values.

Skipping code. Support for under-constrained values al-
lows us to skip function calls at will. If a function is skipped
then its side-effects are unknown and may have introduced
additional constraints on the execution. However, we can
model this behavior by marking the function result as under-
constrained. Similarly, any local or global data objects that
the function might have access to must be (possibly re-)
marked as under-constrained. While this may prevent the
detection of some errors, skipping functions serves as a useful
tool to limit the scope of the analysis without incurring the

300

200

100 F

" e i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 3: An overlay histogram showing the number of gen-
erated test cases which cover the given number of unique
branches. This data is from both the base (black bars)
and under-constrained (white bars) executions of 15 Linux
system calls. Under-constrained execution generated over
thirty times as many unique paths (3733 v. 114) and had a
significantly better average unique branch depth.

exponential cost of exploring all reachable paths and could
be easily combined with iterative deepening strategy. More
generally, we can similarly skip over troublesome constructs,
such as certain loops or assembly code, by just marking the
locations these constructs may modify as under-constrained.

Propagating under-constrained values. For the most
part implementing under-constrained execution was a nat-
ural extension to EXE. EXE already tracks which variables
are symbolic and which are concrete. We simply added the
ability to flag certain symbolic values as under-constrained
and modified EXE to propagate this flag as under-constrained
values are written into new memory locations.

One subtlety arises when a constraint involving both under-
constrained and exactly-constrained values is added to the
current path condition. In this case it is no longer correct
to consider the symbolic value as exactly-constrained. Sup-
pose we execute the statement “if (s<t) ...” where s is
exactly-constrained and t is under-constrained. We can no
longer treat s as exactly-constrained because the unknown
preconditions on t may restrict its value. Intuitively: since
this conditional adds a constraint to s in terms of t, but
t is missing constraints, then s is now missing constraints
as well. The current implementation deals with this prob-
lem by propagating the under-constrained flag to exactly-
constrained symbolic variables when a constraint involving
both is added to the path condition. Unfortunately, this
conservative strategy can “taint” exactly-constrained vari-
ables unnecessarily. We are currently investigating methods
of minimizing this effect.

3. PRELIMINARY RESULTS

The idea of under-constrained execution came from at-
tempting to check Linux device drivers using our initial EXE
system. Driver code makes up the bulk of a modern oper-
ating system and is notoriously buggy [1, 9]. While drivers
ostensibly require a physical version of the device they are
intended to drive, they only interact with the device through
memory-mapped I/0O, which mechanically looks like a mem-
ory array with odd read and write semantics. Thus, we can
effectively test a driver by marking this array as symbolic
and unleashing the driver on it. The driver’s resultant in-
teractions with this symbolic memory will drive it down its
code paths.



We planned to extract drivers from the rest of the operat-
ing system and run them at user level using EXE. Initially,
this plan seemed like a mildly arduous adventure with fairly
high chances of success. It instead turned out to be com-
pletely impractical because of the difficulty setting up the
driver environment.

We compiled around 900 drivers from Linux 2.6.19 and de-
fined many stub functions for routines these drivers called
but did not define. We also modified around twenty rou-
tines to enable deeper checking, such as adding assertions to
locking functions and making memory allocation fail. Un-
fortunately, calling driver routines still requires manually
setting up the driver’s data structures correctly. While we
did so well enough to get the simplest driver functions to
work (initialization and cleanup) and find bugs in several
dozen drivers, this approach did not work well when we tried
to check the more complex routines (e.g., read, write or
ioctl). Misunderstandings of subtle dependencies caused
almost all drivers to immediately crash after accessing im-
properly initialized data structures. We spent over six weeks
of manual tweaking trying to get environmental initializa-
tion right. In the end, while we got a few drivers working,
we gave up.

We then had the idea of under-constrained execution. We
added a simple implementation of it to EXE and reapplied
it to Linux with two changes. First, instead of manually
defining stubs as before, we automatically generated imple-
mentations that did no work but returned a value marked
as under-constrained. (We did reuse the twenty checking
functions from the previous effort.) Second, we did no man-
ual driver initialization but instead had EXE automatically
mark all driver state as under-constrained. As a result, we
could then call any driver code directly, without doing any
setup whatsoever.

We then did some preliminary bug finding. We first re-
checked the initialization and cleanup code of drivers, get-
ting 36 bugs in total. (We missed some bugs because the
base EXE generates a test case that can be rerun using Val-
grind, but due to time limitations the under-constrained ver-
sion does not.) We then ran two of the more complex driver
functions ioctl and write, which had proven previously in-
tractable. We found 4 ioctl bugs (out of 146 drivers) and
2 write bugs (out of 88 drivers). Most of these bugs could
be exploited by malicious user applications.

We also did a crude measurement of how deeply under-
constrained execution can push a completely uninitialized
complex system. We compiled most of the core Linux ker-
nel and linked it to produce a user-level application. We
then called fifteen randomly-selected Linux system calls with
symbolic arguments, without doing any setup whatsoever
and ran them for five minutes each. We ran this experi-
ment with the base EXE system (no under-constrained ex-
ecution and no lazy data structure generation) then with
the under-constrained version. We measured coverage by
counting the unique branches hit on each path (conserva-
tively avoiding double counting for loops, which would oth-
erwise make the under-constrained version look even bet-
ter). Figure 3 shows these results. As expected, calling
system calls without initializing their data structures and
without under-constrained execution makes most crash al-
most immediately. In contrast, the under-constrained ver-
sion of EXE works very well, and gets extremely far in many
system calls despite only running them for five minutes.

4. CONCLUSION

While dynamic tools can check executed paths deeply,
they only check paths in code they can run. Empirically,
this puts a hard limit on their efficacy. A quick way to see
how much they leave on the table is to compare their bug
counts to those of a good modern static tool: static tools
typically find hundreds to thousands of errors in a large sys-
tem, while dynamic tool bug counts tend to be in the tens,
when they can check a system at all.

Static analysis’s secret weapon is that it can check any
code it can parse, whether or not is is clear how to dynami-
cally reach that code or run it at all. The goal behind under-
constrained execution is to provide dynamic tools with an
equivalent ability by giving them a way to take any arbitrary
function and run it without doing any setup or environmen-
tal modelling whatsoever, yet still find quality errors with
few false positives. Our hope is that this approach finally
lets dynamic tools supersede static ones in terms of bug
counts by making it easy to shove orders of magnitude more
code through them.

Acknowledgments. Cristian Cadar wrote the bulk of
the base EXE system. Philip Guo set up the device driver
framework and found all of the bugs. Peter Pawlowski mea-
sured the coverage in Figure 3. This research was sup-
ported by National Science Foundation CAREER award
CNS-0238570-001, an NSF TRUST center grant, and De-
partment of Homeland Security grant FA8750-05-2-0142.

5. REFERENCES

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,

C. McGarvcy, B. Ondrusek, S. K. RaJamam and A. Ustuner.
Thorough static analysis of device drivers. In EuroSys ’06:
Proceedings of the 2006 EuroSys conference, pages 73—-85, New
York, NY, USA, 2006. ACM Press.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), pages 123-133, July 2002.

[3] C. Cadar and D. Engler. Execution generated test cases: How to
make systems code crash itself. In Proceedings of the 12th
International SPIN Workshop on Model Checking of Software,
August 2005.

[4] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: Automatically generating inputs of death. In Proceedings
of the 18th ACM Conference on Computer and
Commaunications Security, October-November 2006.

[5] P. Godefroid. Compositional dynamic test generation. In
Proceedings of the 34th Symposium on Principles of
Programming Languages (POPL’07), Jan. 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI),
Chicago, IL USA, June 2005. ACM Press.

[7] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
Proceedings of the Ninth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
2003.

[8] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In In 5th joint meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE’05), Sept. 2005.

[9] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. In OSDI, pages 1-16, Dec. 2004.



