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Under-determined reverberant audio source

separation using a full-rank spatial covariance model
Ngoc Q. K. Duong, Emmanuel Vincent and Rémi Gribonval

Abstract—This article addresses the modeling of reverberant
recording environments in the context of under-determined
convolutive blind source separation. We model the contribution
of each source to all mixture channels in the time-frequency
domain as a zero-mean Gaussian random variable whose covari-
ance encodes the spatial characteristics of the source. We then
consider four specific covariance models, including a full-rank
unconstrained model. We derive a family of iterative expectation-
maximization (EM) algorithms to estimate the parameters of each
model and propose suitable procedures adapted from the state-
of-the-art to initialize the parameters and to align the order of
the estimated sources across all frequency bins. Experimental
results over reverberant synthetic mixtures and live recordings
of speech data show the effectiveness of the proposed approach.

Index Terms—Convolutive blind source separation, under-
determined mixtures, spatial covariance models, EM algorithm,
permutation problem.

I. INTRODUCTION

In blind source separation (BSS), audio signals are generally

mixtures of several sound sources such as speech, music, and

background noise. The recorded multichannel signal x(t) is

therefore expressed as

x(t) =
J∑

j=1

cj(t) (1)

where cj(t) = [c1j(t), ..., cIj(t)]
T is the spatial image of the

jth source, that is the contribution of this source to all mixture

channels, I is number of mixture channels. For a point source

in a reverberant environment, cj(t) can be expressed via the

convolutive mixing process

cj(t) =
∑

�

hj(�)sj(t− �) (2)

where sj(t) is the jth source signal and hj(�) =
[ℎ1j(�), ..., ℎIj(�)]

T the vector of filter coefficients modeling

the acoustic path from this source to all microphones. Source

separation consists in recovering either the J original source

signals or their spatial images given the I mixture channels. In
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the following, we focus on the separation of under-determined

mixtures, i.e. such that I < J , assuming that J is known.

Most existing approaches operate in the time-frequency

domain using the short-time Fourier transform (STFT) and

rely on narrowband approximation of the convolutive mixture

(2) by complex-valued multiplication in each frequency bin f
and time frame n as

cj(n, f) ≈ hj(f)sj(n, f) (3)

where the I × 1 mixing vector hj(f) is the Fourier transform

of hj(�), sj(n, f) are the STFT coefficients of the sources

sj(t) and cj(n, f) = [c1j(n, f), ..., cIj(n, f)]
T the STFT

coefficients of their spatial images cj(t). The sources are

typically estimated under the assumption that they are sparse

in the STFT domain. For instance, the degenerate unmixing es-

timation technique (DUET) [2] uses binary masking to extract

the predominant source in each time-frequency bin. Another

popular technique known as ℓ1-norm minimization extracts

on the order of I sources per time-frequency bin by solving a

constrained ℓ1-minimization problem [3], [4]. The separation

performance achievable by these techniques remains limited

in reverberant environments [5], due in particular to the fact

that the narrowband approximation does not hold because the

mixing filters are much longer than the window length of the

STFT.

Recently, a distinct framework has emerged whereby the

STFT coefficients of the source images cj(n, f) are mod-

eled by a phase-invariant multivariate distribution whose pa-

rameters are functions of (n, f) [6]. One instance of this

framework consists in modeling cj(n, f) as a zero-mean

Gaussian random variable with covariance matrix Rcj
(n, f) =

E(cj(n, f)c
H
j (n, f)) factored as

Rcj
(n, f) = vj(n, f)Rj(f) (4)

where vj(n, f) are scalar time-varying variances encoding

the spectro-temporal power of the sources and Rj(f) are

I×I time-invariant spatial covariance matrices encoding their

spatial position and spatial spread [7]. The model parameters

can then be estimated in the maximum likelihood (ML) sense

and used to estimate the spatial images of all sources by

Wiener filtering.

This framework was first applied to the separation of

instantaneous audio mixtures in [8], [9] and shown to provide

better separation performance than ℓ1-norm minimization. The

instantaneous mixing process then translated into a rank-1

spatial covariance matrix for each source. In our preliminary

paper [7], we extended this approach to convolutive mixtures

and proposed to consider full-rank spatial covariance matrices
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modeling the spatial spread of the sources and circumvent-

ing the narrowband approximation to a certain extent. This

approach was shown to improve separation performance of

reverberant mixtures in both an oracle context, where all

model parameters are known, and in a semi-blind context,

where the spatial covariance matrices of all sources are known

but their variances are blindly estimated from the mixture.

In [1] and the following, we extend this work to blind esti-

mation of the model parameters as required for realistic BSS

application. This article provides three main contributions.

Firstly, we explain the appropriateness of full-rank spatial co-

variance models in the context of reverberant source separation

and propose a new full-rank unconstrained model. Secondly,

we design parameter estimation algorithms for these models

by deriving the corresponding expectation-maximization (EM)

[10] update rules and adapting the sparsity-based algorithms

in [3], [11] for parameter initialization and permutation align-

ment. Thirdly, we show that the proposed full-rank uncon-

strained model outperforms state-of-the-art algorithms on a

wide range of data and estimation scenarios.

The structure of the rest of the article is as follows. We

introduce the general framework under study as well as four

specific spatial covariance models in Section II. We then

address the blind estimation of all model parameters from

the observed mixture in Section III. We compare the source

separation performance achieved by each model to that of

state-of-the-art techniques in various experimental settings in

Section IV. Finally we conclude and discuss further research

directions in Section V.

II. GENERAL FRAMEWORK AND SPATIAL COVARIANCE

MODELS

We start by describing the general probabilistic modeling

framework adopted from now on. We then define four models

with different degrees of flexibility resulting in rank-1 or full-

rank spatial covariance matrices.

A. General framework

Let us assume that the vector cj(n, f) of STFT coefficients

of the spatial image of the jth source follows a zero-mean

Gaussian distribution whose covariance matrix factors as in

(4). Under the classical assumption that the sources are uncor-

related, the vector x(n, f) of STFT coefficients of the mixture

signal is also zero-mean Gaussian with covariance matrix

Rx(n, f) =

J∑

j=1

vj(n, f)Rj(f). (5)

In other words, the likelihood of the set of observed mixture

STFT coefficients x = {x(n, f)}n,f given the set of variance

parameters v = {vj(n, f)}j,n,f and that of spatial covariance

matrices R = {Rj(f)}j,f is given by

P (x∣v,R) =
∏

n,f

1

det (�Rx(n, f))
e−x

H(n,f)R−1

x
(n,f)x(n,f)

(6)

where H denotes matrix conjugate transposition and Rx(n, f)
implicitly depends on v and R according to (5). In the fol-

lowing, we assume that the source variances are unconstrained

and focus on modeling the covariance matrices by higher-level

spatial parameters.

Under this model, source separation can be achieved in two

steps. The variance parameters v and the spatial parameters

underlying R are first estimated in the ML sense. The spatial

images of all sources are then obtained in the minimum mean

square error (MMSE) sense by multichannel Wiener filtering

ĉj(n, f) = vj(n, f)Rj(f)R
−1
x

(n, f)x(n, f). (7)

B. Rank-1 convolutive model

Most existing approaches to audio source separation rely on

narrowband approximation of the convolutive mixing process

(2) by the complex-valued multiplication (3). The covariance

matrix of cj(n, f) is then given by (4) where vj(n, f) is the

variance of sj(n, f) and Rj(f) is equal to the rank-1 matrix

Rj(f) = hj(f)h
H
j (f) (8)

with hj(f) denoting the Fourier transform of the mixing filters

hj(�). This rank-1 convolutive model of the spatial covariance

matrices has recently been exploited in [12] together with a

different model of the source variances.

C. Rank-1 anechoic model

For omni-directional microphones in an anechoic recording

environment without reverberation, each mixing filter boils

down to the combination of a delay �ij and a gain �ij specified

by the distance rij from the jth source to the ith microphone

[13]

�ij =
rij
c

and �ij =
1√
4�rij

(9)

where c is sound velocity. The spatial covariance matrix of

the jth source is hence given by the rank-1 anechoic model

Rj(f) = aj(f)a
H
j (f) (10)

where the Fourier transform aj(f) of the mixing filters is now

parameterized as

aj(f) =

⎛
⎜⎝
�1,je

−2i�f�1,j

...

�I,je
−2i�f�I,j

⎞
⎟⎠ . (11)

D. Full-rank direct+diffuse model

One possible interpretation of the narrowband approxima-

tion is that the sound of each source as recorded on the micro-

phones comes from a single spatial position at each frequency

f , as specified by hj(f) or aj(f). This approximation is not

valid in a reverberant environment, since reverberation induces

some spatial spread of each source, due to echoes at many

different positions on the walls of the recording room. This

spread translates into full-rank spatial covariance matrices.

The theory of statistical room acoustics assumes that the

spatial image of each source is composed of two uncorrelated
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parts: a direct part, which is modeled by aj(f) in (11) for

omni-directional microphones, and a reverberant part. The

spatial covariance Rj(f) of each source is then a full-rank

matrix defined as the sum of the covariance of its direct part

and the covariance of its reverberant part such that

Rj(f) = aj(f)a
H
j (f) + �2

revΨ(f) (12)

where �2
rev is the variance of the reverberant part and Ψil(f)

is a function of the distance dil between the ith and the lth
microphone such that Ψii(f) = 1. This model assumes that the

reverberation recorded at all microphones has the same power

but is correlated as characterized by Ψil(f). This model has

been employed for single source localization in [13] but not

for source separation yet.

Assuming that the reverberant part is diffuse, i.e. its inten-

sity is uniformly distributed over all possible directions, its

normalized cross-correlation can be shown to be real-valued

and equal to [14]

Ψil(f) =
sin(2�fdil/c)

2�fdil/c
. (13)

Moreover, the power of the reverberant part within a paral-

lelepipedic room with dimensions Lx, Ly , Lz is given by

�2
rev =

4�2

A(1− �2)
(14)

where A is the total wall area and � the wall reflection

coefficient computed from the room reverberation time T60

via Eyring’s formula [13]

� = exp

{
− 13.82

( 1
Lx

+ 1
Ly

+ 1
Lz

)cT60

}
. (15)

Note that the covariance matrix Ψ(f) is usually employed

for the modeling of diffuse background noise. For instance, the

source separation algorithm in [15] assumes that the sources

follow an anechoic model and represents the non-direct part

of all sources by a shared diffuse noise component with

covariance Ψ(f) and constant variance. Hence this algorithm

does not account for correlation between the variances of

the direct part and the non-direct part. On the contrary, the

direct+diffuse model scales the direct and non-direct part of

Rj(f) by the same variance vj(n, f), which is more consistent

with the physics of sound.

E. Full-rank unconstrained model

In practice, the assumption that the reverberant part is dif-

fuse is rarely satisfied in realistically reverberant environments.

Indeed, early echoes accounting for most of its energy are not

uniformly distributed on the boundaries of the recording room.

When performing some simulations in a rectangular room, we

observed that (13) is valid on average when considering a large

number of sources distributed at different positions in a room,

but generally not valid for each individual source.

Therefore, we also investigate the modeling of each source

via a full-rank unconstrained spatial covariance matrix Rj(f)
whose coefficients are unrelated a priori. This model is the

most general possible model for a covariance matrix. It gen-

eralizes the above three models in the sense that any matrix

taking the form of (8), (10) or (12) can also be considered as

an unconstrained matrix. Because of this increased flexibility,

this unconstrained model better fits the data as measured by

the likelihood. In particular, it improves the poor fit between

the model and the data observed for rank-1 models due to

the fact that the narrowband approximation underlying these

models does not hold for reverberant mixtures. In that sense, it

circumvents the narrowband approximation to a certain extent.

The entries of Rj(f) are not directly interpretable in terms

of simple geometrical quantities. The principal component of

the matrix can be interpreted as a beamformer [16] pointing

towards the direction of maximum output power, while the

ratio between its largest eigenvalue and its trace is equal to the

ratio between the output and input power of that beamformer.

In moderate reverberation conditions, the former is expected

to be close to the source direction of arrival (DOA) while the

latter is related to the ratio between the power of direct sound

and that of reverberation. However, the strength of this model

is precisely that it remains valid to a certain extent in more

reverberant environments, since it is the most general possible

model for a covariance matrix.

III. BLIND ESTIMATION OF THE MODEL PARAMETERS

In order to use the above models for BSS, we need to

estimate their parameters from the mixture signal only. In our

preliminary paper [7], we used a quasi-Newton algorithm for

semi-blind separation that converged in a very small number

of iterations. However, due to the complexity of each iteration,

we later found out that the EM algorithm, which is a popular

choice for Gaussian models [15], [17], [18], provided faster

convergence despite a larger number of iterations.

As any iterative optimization algorithm, EM is sensitive to

initialization [12] so that a suitable parameter initialization

scheme is necessary. Also, the well-known source permutation

problem must be addressed when the model parameters are in-

dependently estimated at different frequencies [11]. We hence

adopt the following three-step procedure as depicted in Fig.

1: initialization of hj(f) or Rj(f) by hierarchical clustering,

iterative ML estimation of all model parameters via EM, and

direction of arrival (DOA) based permutation alignment. The

latter step is needed only for the rank-1 convolutive model

and the full-rank unconstrained model whose parameters are

estimated independently in each frequency bin. It is conducted

after EM parameter estimation, since optimized parameters

provide better DOA information than initial ones and EM does

not always preserve the order of the sources.

Fig. 1. Flow of the proposed blind source separation approach.
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A. Initialization by hierarchical clustering

Preliminary experiments showed that the initialization of the

model parameters greatly affects the separation performance

resulting from the EM algorithm. Yet, the parameter initializa-

tion schemes previously proposed for rank-1 Gaussian models

are either restricted to instantaneous mixtures [18] or non-blind

[7], [12]. By contrast, a number of clustering algorithms have

been proposed for blind estimation of the mixing vectors in

the context of sparsity-based convolutive source separation.

In the following, we use up to minor improvements the

hierarchical clustering-based algorithm in [3] for the purpose

of parameter initialization of rank-1 models and introduce a

modified version of this algorithm for parameter initialization

of full-rank models.

The algorithm in [3] relies on the assumptions that at each

frequency f the sounds of all sources come from disjoint

regions of space and that a single source predominates in most

time-frequency bins. The vectors x(n, f) of mixture STFT

coefficients then cluster around the direction of the associated

mixing vector hj(f) in the time frames n where the jth source

is predominant. It is well known that the validity of the latter

sparsity assumption decreases with increasing reverberation.

Nevertheless, this algorithm was explicitly developed for re-

verberant mixtures.

In order to estimate these clusters, the vectors of mixture

STFT coefficients are first normalized as

x̄(n, f)← x(n, f)

∥x(n, f)∥2
e−i arg(x1(n,f)) (16)

where arg(.) denotes the phase of a complex number and

∥.∥2 the Euclidean norm. We then define the distance between

two clusters C1 and C2 by the average distance between the

associated normalized mixture STFT coefficients

d(C1, C2) =
1

∣C1∣∣C2∣
∑

x̄c1∈C1

∑

x̄c2∈C2

∥x̄c1 − x̄c2∥2 (17)

In a given frequency bin f , each normalized vector of

mixture STFT coefficients x̄(n, f) at a time frame n is first

considered as a cluster containing a single item. The distance

between each pair of clusters is computed and the two clusters

with the smallest distance are merged. This ”bottom up”

process called linking is repeated until the number of clusters

is smaller than a predetermined threshold K. This threshold

is usually much larger than the number of sources J [3], so

as to eliminate outliers. We finally choose the J clusters with

the largest number of samples and compute the initial mixing

vector and spatial covariance matrix for each source as

h
init
j (f) =

1

∣Cj ∣
∑

x̄(n,f)∈Cj

x̃(n, f) (18)

R
init
j (f) =

1

∣Cj ∣
∑

x̄(n,f)∈Cj

x̃(n, f)x̃(n, f)H (19)

where x̃(n, f) = x(n, f)e−i arg(x1(n,f)), and ∣Cj ∣ denotes the

total number of samples in cluster Cj , which depends on the

considered frequency bin f .

Note that, contrary to the algorithm in [3], we define the

distance between clusters as the average distance between the

normalized mixture STFT coefficients instead of the minimum

distance between them. Besides, the mixing vector h
init
j (f)

is computed from the phase-normalized mixture STFT coef-

ficients x̃(n, f) instead of both phase and amplitute normal-

ized coefficients x̄(n, f). This increases the weight of time-

frequency bins of large amplitude where the modeled source

is more likely to be prominent, in a way similar to [2]. These

modifications were found to provide better initial approxima-

tion of the mixing parameters in our experiments. We also

tested random initialization and DOA-based initialization, i.e.

where the mixing vectors h
init
j (f) are derived from known

source and microphone positions assuming no reverberation.

Both schemes were found to result in slower convergence and

poorer separation performance than the chosen scheme.

The source variances were initialized to vinitj (n, f) = 1.

This basic initialization scheme did not significantly affect per-

formance compared to the slower advanced scheme consisting

of finding the vinitj (n, f) most consistent with h
init
j (f) and

R
init
j (f) by running EM without updating the mixing vectors

or the spatial covariance matrices.

B. EM updates for the rank-1 convolutive model

The derivation of the EM parameter estimation algorithm

for the rank-1 convolutive model is strongly inspired from the

study in [12]. Indeed it relies on the same model of spatial

covariance matrices but on a distinct unconstrained model of

the source variances. Similarly to [12], EM cannot be directly

applied to the mixture model (1) since the estimated mixing

vectors remain fixed to their initial value. This issue can be

addressed by considering the noisy mixture model

x(n, f) = H(f)s(n, f) + b(n, f) (20)

where H(f) is the mixing matrix whose jth column is the

mixing vector hj(f), s(n, f) is the vector of source STFT

coefficients sj(n, f) and b(n, f) some additive zero-mean

Gaussian noise. We denote by Rs(n, f) the diagonal covari-

ance matrixof s(n, f). Following [12], we assume that b(n, f)
is stationary and spatially uncorrelated and denote by Rb(f)
its time-invariant diagonal covariance matrix. This matrix is

initialized to a small value related to the average empirical

channel variance as discussed in [12].

EM is separately derived for each frequency bin f for

the complete data {x(n, f), sj(n, f)}j,n that is the set of

observed mixture STFT coefficients and hidden source STFT

coefficients of all time frames. The details of one iteration

are as follows. In the E-step, the Wiener filter W(n, f) and

the conditional mean ŝ(n, f) and covariance R̂ss(n, f) of the

sources are computed as

Rs(n, f) = diag(v1(n, f), ..., vJ(n, f)) (21)

Rx(n, f) = H(f)Rs(n, f)H
H(f) +Rb(f) (22)

W(n, f) = Rs(n, f)H
H(f)R−1

x
(n, f) (23)

ŝ(n, f) = W(n, f)x(n, f) (24)

R̂ss(n, f) = ŝ(n, f)ŝH(n, f) + (I−W(n, f)H(f))Rs(n, f)
(25)
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where I is the I × I identity matrix and diag(.) the diagonal

matrix whose entries are given by its arguments. Conditional

expectations of multichannel statistics are also computed by

averaging over all N time frames as

R̂ss(f) =
1

N

N∑

n=1

R̂ss(n, f) (26)

R̂xs(f) =
1

N

N∑

n=1

x(n, f)ŝH(n, f) (27)

R̂xx(f) =
1

N

N∑

n=1

x(n, f)xH(n, f). (28)

In the M-step, the source variances, the mixing matrix and the

noise covariance are updated via

vj(n, f) =R̂ss jj(n, f) (29)

H(f) =R̂xs(f)R̂
−1
ss

(f) (30)

Rb(f) =Diag(R̂xx(f)−H(f)R̂H
xs
(f)

− R̂xsH
H(f) +H(f)R̂ss(n, f)H

H(f)) (31)

where Diag(.) projects a matrix onto its diagonal.

C. EM updates for the full-rank unconstrained model

The derivation of EM for the full-rank unconstrained model

is much easier since the above issue does not arise. We hence

stick with the exact mixture model (1), which can be seen

as an advantage of full-rank vs. rank-1 models. EM is again

separately derived for each frequency bin f . Since the mixture

can be recovered from the spatial images of all sources, the

complete data reduces to {cj(n, f)}n,f , that is the set of

hidden STFT coefficients of the spatial images of all sources

on all time frames. The details of one iteration are as follows.

In the E-step, the Wiener filter Wj(n, f) and the conditional

mean ĉj(n, f) and covariance R̂cj
(n, f) of the spatial image

of the jth source are computed as

Wj(n, f) = Rcj
(n, f)R−1

x
(n, f) (32)

ĉj(n, f) = Wj(n, f)x(n, f) (33)

R̂cj
(n, f) = ĉj(n, f)ĉ

H
j (n, f) + (I−Wj(n, f))Rcj

(n, f)
(34)

where Rcj
(n, f) is defined in (4) and Rx(n, f) in (5). In

the M-step, the variance and the spatial covariance of the jth

source are updated via

vj(n, f) =
1

I
tr(R−1

j (f)R̂cj
(n, f)) (35)

Rj(f) =
1

N

N∑

n=1

1

vj(n, f)
R̂cj

(n, f) (36)

where tr(.) denotes the trace of a square matrix. Note that,

strictly speaking, this algorithm is a generalized form of EM

[19], since the M-step increases but does not maximize the

likelihood of the complete data due to the interleaving of

(35) and (36). The increase of the log-likelihood and of

the separation performance resulting from these updates is

illustrated in Section IV-C.

D. EM updates for the rank-1 anechoic model and the full-

rank direct+diffuse model

The derivation of EM for the two remaining models is more

complex since the M-step cannot be expressed in closed form.

The complete data and the E-step for the rank-1 anechoic

model and the full-rank direct+diffuse model are identical

to those for the rank-1 convolutive model and the full-rank

unconstrained model, respectively. The M-step, which consists

of maximizing the likelihood of the complete data given their

natural statistics computed in the E-step, could be addressed

e.g. via a quasi-Newton technique or by sampling possible

parameter values from a grid [15]. In the following, we do not

attempt to derive the details of these algorithms since these two

models appear to provide lower performance than the rank-1

convolutive model and the full-rank unconstrained model in a

semi-blind context, as discussed in Section IV-B.

E. Permutation alignment

Since the parameters of the rank-1 convolutive model and

the full-rank unconstrained model, i.e. hj(f), Rj(f) and

vj(n, f), are estimated independently in each frequency bin

f , they should be ordered so as to correspond to the same

source across all frequency bins. This so-called permutation

problem has ben widely studied in the context of sparsity-

based source separation. In the following, we apply the DOA

-based algorithm in [11] to the rank-1 model and explain how

to adapt this algorithm to the full-rank model.

The principle of this algorithm is as follows. Given the

geometry of the microphone array, a critical frequency is de-

termined above which spatial aliasing may occur. The mixing

vectors hj(f) are each unambiguously related to a certain

DOA below that frequency while phase wrapping may occur

at higher frequencies. The algorithm first estimates the source

DOAs and the permutations at low frequencies by clustering

the mixing vectors after suitable normalization assuming no

phase wrapping and then re-estimates them at all frequencies

by taking phase wrapping into account. Note that the order of

source variances vj(n, f) in each frequency bin is permuted

identically to that of the mixing vectors hj(f).
Regarding the full-rank model, we first apply principal

component analysis (PCA) to summarize the spatial covariance

matrix Rj(f) of each source in each frequency bin by its

first principal component wj(f) that points to the direction of

maximum variance. This vector is conceptually equivalent to

the mixing vector hj(f) of the rank-1 model. Thus, we can

apply the same procedure to solve the permutation problem.

Fig. 2 depicts the phase of the second entry w2j(f) of wj(f)
before and after solving the permutation for a real-world

stereo recording of three female speech sources with room

reverberation time T60 = 250 ms, where wj(f) has been

normalized as in (16). The critical frequency below which

this phase is unambiguously related to the source DOAs is

here equal to 5 kHz [11]. The source order appears globally

aligned for most frequency bins after solving the permutation.

IV. EXPERIMENTAL EVALUATION

We evaluate the above models and algorithms under three

different experimental settings. Firstly, we compare all four
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Fig. 2. Normalized argument of w2j(f) before and after permutation align-
ment from a real-world stereo recording of three sources with T60 = 250 ms.

models in a semi-blind setting so as to estimate an upper

bound of their separation performance. Based on these results,

we select two models for further study, namely the rank-

1 convolutive model and the full-rank unconstrained model.

Secondly, we evaluate these models in a blind setting over

synthetic reverberant speech mixtures and compare them to

state-of-the-art algorithms over the real-world speech mixtures

of the 2008 Signal Separation Evaluation Compaign (SiSEC

2008) [5]. Finally, we assess the robustness of these two

models to source movements in a semi-blind setting.

A. Common parameter settings and performance criteria

The common parameter setting for all experiments are

summarized in Table I. In order to evaluate the separation per-

formance of the algorithms, we use the signal-to-distortion ra-

tio (SDR), signal-to-interference ratio (SIR), signal-to-artifact

ratio (SAR) and source image-to-spatial distortion ratio (ISR)

criteria expressed in decibels (dB), as defined in [20]. These

criteria account respectively for overall distortion of the target

source, residual crosstalk from other sources, musical noise

and spatial or filtering distortion of the target.

Signal duration 10 s
Number of channels I = 2

Sampling rate 16 kHz
Window type sine window

STFT frame size 1024
STFT frame shift 512

Propagation velocity 343 m/s
Number of EM iterations 10

Cluster threshold K = 30

TABLE I
COMMON EXPERIMENTAL PARAMETER SETTING

B. Potential source separation performance of all models

The first experiment is devoted to the investigation of the

potential source separation performance achievable by each

model in a semi-blind context, i.e. assuming knowledge of

the true spatial covariance matrices. We generated ten stereo

synthetic mixtures of three speech sources, i.e. two mixtures

with male voices only, two mixtures with female voices

only, and six mixtures with mixed male and female voices,

by convolving different sets of speech signals with room

impulse responses simulated via the source image method. The

positions of the sources and the microphones are illustrated

in Fig. 3. The distance from each source to the center of the

microphone pair was 120 cm and the microphone spacing was

20 cm. The reverberation time was set to T60 = 250 ms.

Fig. 3. Room geometry setting for synthetic convolutive mixtures.

The true spatial covariance matrices Rj(f) of all sources

were computed either from the positions of the sources and the

microphones and other room parameters or from the mixing

filters. More precisely, we used the equations in Sections

II-B, II-C and II-D for rank-1 models and the full-rank di-

rect+diffuse model and ML estimation from the spatial images

of the true sources for the full-rank unconstrained model.

The source variances were then estimated from the mixture

using the quasi-Newton technique in [7], for which an efficient

initialization exists when the spatial covariance matrices are

fixed. Binary masking, ℓ1-norm minimization and ℓ0-norm

minimization were also evaluated for comparison using the

reference software in [5]1 with the same mixing vectors as

for the rank-1 convolutive model. The SDR obtained with ℓ1-

norm minimization was about 0.2 dB below that given by ℓ0-

norm minimization, therefore only the latter is considered for

comparison hereafter. The results are averaged over all sources

and all set of mixtures and shown in Table II, together with the

number of spatial parameters of each model, i.e. the number of

parameters encoding the spatial characteristics of the sources.

The rank-1 anechoic model has lowest performance in terms

of SDR, SIR, and ISR because it only accounts for the

direct path. By contrast, the full-rank unconstrained model has

highest performance in terms of SDR and ISR. It improves

the SDR by 1.7 dB, 1.2 dB, and 1.6 dB when compared to

the rank-1 convolutive model, binary masking, and ℓ0-norm

1Binary masking is achieved in each time-frequency bin by projecting the
mixture STFT coefficients x(n, f) onto the subspace spanned by each mixing
vector hj(f) and selecting the source j0 whose projection has largest ℓ2
norm. The spatial image ĉj0 (n, f) of this source is then set to the projected
mixture STFT coefficients, while that of the other sources is set to zero.
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Covariance
models

Number of
spatial

parameters
SDR SIR SAR ISR

Rank-1 anechoic 6 0.9 2.4 7.8 5.1
Rank-1 convolutive 3078 4.0 7.9 5.4 9.5

Full-rank direct+diffuse 8 3.2 6.7 5.3 7.9
Full-rank unconstrained 6156 5.7 10.8 7.3 11.0

Binary masking 3078 4.5 10.1 5.0 9.4
ℓ0-norm minimization 3078 4.1 7.7 5.9 9.5

TABLE II
AVERAGE POTENTIAL SOURCE SEPARATION PERFORMANCE IN A

SEMI-BLIND SETTING OVER STEREO MIXTURES OF THREE SOURCES WITH

T60 = 250 MS.

minimization respectively. The full-rank direct+diffuse model

results in a SDR decrease of 0.8 dB compared to the rank-1

convolutive model. This decrease appears surprisingly small

when considering the fact that the former involves only 8

spatial parameters (6 distances rij , plus �2
rev and d) instead

of 3078 parameters (6 mixing coefficients per frequency

bin) for the latter. Nevertheless, we focus on the two best

models, namely the rank-1 convolutive model and the full-

rank unconstrained model in subsequent experiments.

C. Blind source separation performance as a function of the

reverberation time

The second experiment aims to investigate two things:

firstly, the blind source separation performance achieved via

these two models as well as via binary masking and ℓ0-norm

minimization; and secondly, the convergence property of EM

iterations for the proposed full-rank unconstrained model in

different reverberant conditions. Ten synthetic speech mixtures

were generated in the same as in the first experiment for each

reverberant condition, except that the microphone spacing was

changed to 5 cm in order to reduce permutation alignment

errors caused by spatial aliasing and the distance from the

sources to the microphones to 50 cm. The reverberation time

was varied in the range from 50 to 500 ms.

The resulting source separation performance in terms of

SDR, SIR, SAR, and ISR is depicted in Fig. 4. Interestingly,

the rank-1 convolutive model and ℓ0-norm minimization re-

sults in a very similar SIR, ISR, and even SDR. Besides,

we observe that in a low reverberant environment, i.e. T60 =
50 ms, the rank-1 convolutive model provides a very similar

SDR and SAR to the full-rank model. This is consistent with

the fact that the direct part contains most of the energy received

at the microphones, so that the rank-1 spatial covariance

matrix provides similar modeling accuracy to the full-rank

model with fewer parameters. However, in an environment

with realistic reverberation time, i.e. T60 ≥ 130 ms, the full-

rank unconstrained model outperforms both the rank-1 model

and binary masking in terms of SDR and SAR and results

in a SIR not very far below that of binary masking. For

instance, with T60 = 500 ms, the SDR achieved via the full-

rank unconstrained model is 2.0 dB, 1.1 dB and 2.3 dB larger

than that of the rank-1 convolutive model, binary masking,

and ℓ0-norm minimization respectively. These results confirm

the effectiveness of our proposed model parameter estimation

scheme and also show that full-rank spatial covariance ma-

trices better approximate the mixing process in a reverberant

room.

The convergence property of EM iteration in different

reverberant conditions for the proposed full-rank uncon-

strained model is evaluated in terms of the log-likelihood

convergence as well as the averaged SDR improvement

of separation results, and is shown in Fig. 5. The log-

likelihood values were computed as the average logarithm

of P
(
x(n, f)∣{vj(n, f)}j , {Rj(f)}j

)
for all time frame n

and frequency bin f after each EM iteration. The first SDR

and log-likelihood value was computed from the initialization

values of vj(n, f) and Rj(f). It can be seen that both the

SDR and log-likelihood value are gradually increased after

each EM iteration and the SDR increase fast during the first

3 EM iterations. After 10 EM iterations, SDR is improved by

2.2 dB and 1.7 dB in the reverberation time of 130 ms and

250 ms, respectively. These figures prove the effectiveness of

the derived EM algorithm in the overall proposed system.

D. Blind source separation performance as a function of the

angle between sources

The third experiment is devoted to the assessment of the ro-

bustness of the considered blind source separation algorithms

to a challenging condition where the source directions become

closer. For that purpose, we simulated room impulse responses

via the source image method for the same room and the same

microphone positions as in Fig. 3, with a distance of 50 cm

from the sources to the center of the microphone pair and a

reverberation time of T60 = 250 ms, but changed the DOAs

of the three sources to 900−�, 900 and 900+�, respectively,

where � = 50, 100, 150, 300 or 600 is the angular distance

between sources. We then generated ten synthetic convolutive

mixtures in the same way as for previous experiments for each

value of �.

The average SDR achieved by the full-rank unconstrained

model, the rank-1 convolutive model as well as binary masking

and ℓ0-norm minimization is depicted in Fig. 6. As expected,

all algorithms result in lower separation performance when

the source directions are closer due in particular to poorer

estimation of the spatial parameters, i.e. spatial covariance

matrices Rj(f) for the full-rank unconstrained model and

mixing vectors hj(f) for other algorithms. But the full-rank

unconstrained model still outperforms other algorithms in all

cases. For instance, when the sources are very close to each

other where � = 50, the full-rank unconstrained model offers

0.9 dB SDR while binary masking only provides 0.2 dB SDR

and both rank-1 convolutive model and ℓ0-norm minimization

results in negative SDR. This supports the benefit of the full-

rank unconstrained model regardless of the source directions.

E. Blind source separation with the SiSEC 2008 test data

We conducted a fourth experiment to compare the proposed

full-rank unconstrained model-based algorithm with state-of-

the-art BSS algorithms submitted for evaluation to SiSEC 2008

over real-world mixtures of 3 or 4 speech sources. Two mix-

tures were recorded for each given number of sources, using



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 8

Fig. 4. Average blind source separation performance over stereo mixtures of three sources as a function of the reverberation time, measured in terms of (a)
SDR, (b) SIR, (c) SAR and (d) ISR.

Fig. 5. Convergence properties of EM iteration for the full-rank unconstrained model.
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Fig. 6. Average blind source separation performance over stereo mixtures
of three sources as a function of the DOA difference between sources.

either male or female speech signals. The room reverberation

time was either 130 ms or 250 ms and the microphone spacing

5 cm [5]. The average SDR achieved by each algorithm is

listed in Table III for comparison since it provides the overall

distortion of the system. The SDR results of all algorithms

besides the proposed full-rank unconstrained model-based

algorithm were taken from the website of SiSEC 20082, except

for Izumi’s algorithm [15] whose results were provided by its

author.

T60 Algorithms
3 source
mixtures

4 source
mixtures

130 ms

full-rank unconstrained 3.3 2.8
M. Cobos [21] 2.3 2.1
M. Mandel [22] 0.1 -3.7
R. Weiss [23] 2.9 2.3
S. Araki [24] 2.9 -

Z. El Chami [25] 2.3 2.1

250 ms

full-rank unconstrained 3.8 2.0
M. Cobos [21] 2.2 1.0
M. Mandel [22] 0.8 1.0
R. Weiss [23] 2.3 1.5
S. Araki [24] 3.7 -
Y. Izumi [15] - 1.6

Z. El Chami [25] 3.1 1.4

TABLE III
AVERAGE SDR OVER THE REAL-WORLD TEST DATA OF SISEC 2008 WITH

5 CM MICROPHONE SPACING.

For three-source mixtures, the proposed algorithm provides

0.4 dB and 0.1 dB SDR improvement compared to the

best current results given by Araki’s algorithm [24] with

T60 = 130 ms and T60 = 250 ms, respectively. For four-source

mixtures, it provides even higher SDR improvements of 0.5 dB

and 0.4 dB respectively compared to the best current results

given by Weiss’s [23] and Izumi’s algorithms [15]. More

detailed comparison (not shown in the Table) indicates that

the proposed algorithm also outperforms most others in terms

of SIR, SAR and ISR. For instance, it achieves higher SIR than

2http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-
determined+speech+and+music+mixtures

all other algorithms on average except Weiss’s. Compared to

Weiss’s, it achieves the same average SIR but a higher SAR.

F. Investigation of the robustness to small source movements

Our last experiment aims to examine the robustness of

the rank-1 convolutive model and the full-rank unconstrained

model to small source movements. We made several record-

ings of three speech sources s1, s2, s3 in a meeting room

with 250 ms reverberation time using omnidirectional micro-

phones spaced by 5 cm. The distance from the sources to

the microphones was 50 cm. For each recording, the spatial

images of all sources were separately recorded and then added

together to obtain a test mixture. After the first recording,

we kept the same positions for s1 and s2 and successively

moved s3 by 5 and 10∘ both clock-wise and counter clock-

wise resulting in 4 new positions of s3. We then applied the

same procedure to s2 while the positions of s1 and s3 remained

identical to those in the first recording. Overall, we collected

nine mixtures: one from the first recording, four mixtures

with 5∘ movement of either s2 or s3, and four mixtures

with 10∘ movement of either s2 or s3. We performed source

separation in a semi-blind setting: the source spatial covariance

matrices were estimated from the spatial images of all sources

recorded in the first recording while the source variances were

estimated from the nine mixtures using the same algorithm as

in Section IV-B. The average SDR and SIR obtained for the

first mixture and for the mixtures with 5∘ and 10∘ source

movement are depicted in Fig. 7 and Fig. 8, respectively.

This procedure simulates errors encountered by on-line source

separation algorithms in moving source environments, where

the source separation parameters learnt at a given time are not

applicable anymore at a later time.

The separation performance of the rank-1 convolutive model

degrades more than that of the full-rank unconstrained model

both with 5∘ and 10∘ source rotation. For instance, the SDR

drops by 0.6 dB for the full-rank unconstrained model based

algorithm when a source moves by 5∘ while the corresponding

drop for the rank-1 convolutive model equals 1 dB. This result

can be explained when considering the fact that the full-rank

model accounts for the spatial spread of each source as well

as its spatial direction. Therefore, small source movements

remaining in the range of the spatial spread do not affect much

separation performance. This result indicates that, besides its

numerous advantages presented in the previous experiments,

this model could also offer a promising approach to the

separation of moving sources due to its greater robustness to

parameter estimation errors.

V. CONCLUSION AND DISCUSSION

In this article, we presented a general probabilistic frame-

work for convolutive source separation based on the notion of

spatial covariance matrix. We proposed four specific models,

including rank-1 models based on the narrowband approxima-

tion and full-rank models that overcome this approximation,

and derived an efficient algorithm to estimate their parameters

from the mixture. Experimental results indicate that the pro-

posed full-rank unconstrained spatial covariance model better
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Fig. 7. SDR results in the small source movement scenarios.

Fig. 8. SIR results in the small source movement scenarios.

accounts for reverberation and therefore improves separation

performance compared to rank-1 models and state-of-the-art

algorithms in realistic reverberant environments.

Let us now mention several further research directions.

Short-term work will be dedicated to the application of the

full-rank unconstrained model to the modeling and separation

of diffuse and semi-diffuse sources or background noise.

Contrary to the rank-1 model in [12] which involves an explicit

spatially uncorrelated noise component, this model implicitly

represents noise as any other source and can account for

multiple noise sources as well as spatially correlated noises

with various spatial spreads. We also aim to complete the

probabilistic framework by defining a prior distribution for

the model parameters across all frequency bins so as to

improve the robustness of parameter estimation with small

amounts of data and to address the permutation problem

in a probabilistically relevant fashion. Finally, a promising

way to improve source separation performance is to combine

the spatial covariance models investigated in this article with

models of the source spectra such as Gaussian mixture models

[18] or nonnegative matrix factorization [12].
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