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Growing consensus suggests that autism spectrum disorders (ASD)

are associated with atypical brain networks, thus shifting the focus

to the study of connectivity. Many functional connectivity studies

have reported underconnectivity in ASD, but results in others

have been divergent. We conducted a survey of 32 functional

connectivity magnetic resonance imaging studies of ASD for

numerous methodological variables to distinguish studies support-

ing general underconnectivity (GU) from those not consistent with

this hypothesis (NGU). Distinguishing patterns were apparent for

several data analysis choices. The study types differed significantly

with respect to low-pass filtering, task regression, and whole-brain

field of view. GU studies were more likely to examine task-driven

time series in regions of interest, without the use of low-pass

filtering. Conversely, NGU studies mostly applied task regression

(for removal of activation effects) and low-pass filtering, testing for

correlations across the whole brain. Results thus suggest that

underconnectivity findings may be contingent on specific method-

ological choices. Whereas underconnectivity reflects reduced

efficiency of within-network communication in ASD, diffusely

increased functional connectivity can be attributed to impaired

experience-driven mechanisms (e.g., synaptic pruning). Both GU

and NGU findings reflect important aspects of network dysfunction

associated with sociocommunicative, cognitive, and sensorimotor

impairments in ASD.

Keywords: autism spectrum disorder, functional connectivity MRI,

functional networks, underconnectivity, BOLD synchronization

Introduction

Neuroscientific studies of autism spectrum disorders (ASD)
have accumulated an almost infinite wealth of empirical data in
the past few decades. Despite many complexities and incon-
sistencies in this literature, it has become abundantly clear that
ASD is not a localized brain disorder, but a disorder involving
multiple functional networks (Geschwind and Levitt 2007;
Müller 2007; Rippon et al. 2007). Neuroimaging studies of ASD
have therefore increasingly focused on connectivity analysis.
While the number of conventional functional magnetic
resonance imaging (fMRI) studies aiming to localize task-
evoked blood oxygen level--dependent (BOLD) effects has
continued to grow, complementary implementations of the
fMRI technique to examine functional cooperation between
brain regions have become more common. These approaches
are loosely held together by the term ‘‘functional connectivity
MRI’’ (fcMRI), despite many methodological divergences that
will be discussed below.

Several reviews on the neurobiology of ASD have focused on
functional connectivity. Belmonte et al. (2004) suggested
a combination of reduced long distance but increased local
connectivity in ASD. This idea was further developed in a more
extensive review by Rippon et al. (2007), who speculated that
disordered long-distance connectivity may be accompanied by
‘‘noisy’’ processing at the local level. This may, in turn, relate to
reports of increased density of cortical minicolumns with
reduced lateral inhibition (Casanova and Trippe 2009) and
other biological and genetic findings that suggest an increased
cortical excitation/inhibition ratio in ASD (Rubenstein and
Merzenich 2003). With respect to impaired long-distance
connectivity, the hypothesis is supported by anatomical MRI
findings of aberrant white matter growth patterns in the first
few years in ASD (Courchesne et al. 2001; Sparks et al. 2002;
Hazlett et al. 2005) and reduced white matter integrity later in
life, as reported in several diffusion tensor imaging (DTI)
studies (Alexander et al. 2007; Cheung et al. 2009; Fletcher
et al. 2010; Shukla et al. 2011). Reviewing anatomical and
functional imaging findings, Hughes (2007) considered under-
connectivity as a potential ‘‘first firm finding’’ on ASD. However,
with the growing number of fcMRI studies published in the
past few years, it appears timely to reconsider the question of
how firm the finding truly is.

At first glance, underconnectivity appears to be supported by
a large set of empirical results. Based on their findings of
reduced synchronization of the BOLD signal associated with
sentence comprehension between a number of regions of
interest (ROIs), Just et al. (2004) first formulated an ‘‘under-
connectivity theory’’ and proposed that ‘‘autism is a cognitive
and neurobiological disorder caused by underfunctioning
integrative circuitry’’ (p. 1817). The proposal actually contains
two separate claims, relating to 1) the empirical validity of the
‘underconnectivity’ theory and 2) the causal role of such
underconnectivity in the development of the disorder. The
present survey will focus on a thorough evaluation of the first
claim, although we will return to the question of causality in
the Discussion.

Subsequent to this original study and the formal under-
connectivity proposal, the theory has found broad support in
many fcMRI studies (Just et al. 2004, 2007; Villalobos et al.
2005; Bird et al. 2006; Cherkassky et al. 2006; Kana et al., 2006,
2007, 2009; Kennedy and Courchesne 2008; Kleinhans et al.
2008; Koshino et al. 2008; Mason et al., 2008; Lee et al. 2009;
Mostofsky et al. 2009; Solomon et al. 2009; Damarla et al. 2010;
Lombardo et al., 2010; Weng et al., 2010). Given the number of
these studies and placement in high-impact journals, it may be
easily overlooked that a significant number of other studies
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have reported mixed or increased fcMRI effects in ASD
(Koshino et al. 2005; Welchew et al. 2005; Mizuno et al.
2006; Turner et al. 2006; Wicker et al. 2008; Monk et al. 2009;
Noonan et al. 2009; Shih et al. 2010).

Empirical inconsistencies are not new in neuroscientific
research on ASD. In many cases, this has been attributed to
heterogeneity of the disorder, often coupled with small sample
sizes, or with a lack of stringent diagnostic criteria. While such
clinical issues may play a role, methodological factors cannot be
ruled out. Thai et al. (2009), although not explicitly contra-
dicting the underconnectivity view, raised several methodo-
logical concerns, including differences in response to tasks
applied during fMRI scanning between ASD and control groups,
details of ROI selection, as well as limits in spatial and temporal
resolution. Jones et al. (2010) systematically examined effects
of task regression in a data set acquired during different overt
word generation conditions. They found underconnectivity
between numerous ROI pairs for task-driven effects in their
ASD group, which disappeared almost entirely when effects of
task were removed, especially when each of their task
conditions were modeled by separate regressors (presumably
leaving only minimal residual task effects). Jones et al. (2010)
also suggested that inverse findings of ‘‘overconnectivity’’ in
ASD may relate to global signal regression, that is, removal of
whole-brain signal fluctuations across time points.

The present survey attempts to elucidate the reasons for
inconsistencies in the fcMRI literature in ASD, based on
a comprehensive tabulation of methodological differences
between studies. However, as will become clear below, the
implications of these inconsistencies reach well beyond the
methodological realm and relate to known or suspected
patterns of neurodevelopmental disturbances in ASD. Rather
than simply being a nuisance, the fact that not all fcMRI studies
have been able to replicate underconnectivity is therefore an
opportunity for an improved understanding of the disturbances
in emerging functional networks, which ultimately determine
the profile of socio-communicative and other impairments
commonly seen in ASD.

Methods

We identified 32 fcMRI studies in ASD through PubMed searches (as
listed in Table 1). The cutoff date for inclusion was 4 November 2010.
Each publication was examined for a large number of methodological
variables and for results, with each study being reviewed at least twice
by two co-authors who were blind to each other’s reviews. Any
inconsistencies between reviewers were resolved through repeated
close reading of respective journal articles. For practical purposes, we
refrained from any attempts to obtain additional methodological
information not stated in published articles from authors. The variables
included in this survey are described in detail below.

Samples

For each group (ASD, typically developing [TD]), sample size, age,
and IQ scores were entered and group-matching criteria were noted.
For the ASD group, diagnostic tools were stated, including Diagnostic
Statistical Manual of Mental Disorders (American Psychiatric Asso-
ciation 2000), Autism Diagnostic Observation Schedule (Lord et al.
1999), Autism Diagnostic Interview -- Revised (Rutter et al., 2003),
Childhood Autism Rating Scale (Schopler et al. 1980), and In-
ternational Classification of Diseases (ICD; ICD-10, 1994), as well as
sample composition with regard to differential diagnoses (autistic
disorder, Asperger’s disorder, Pervasive Developmental Disorder--Not
Otherwise Specified).

Conditions

All experimental and control conditions were entered based on
description provided by authors (i.e., no critical review of the adequacy
of cognitive terminology was attempted). If all data were acquired
during rest, this was considered the experimental condition. Design
features, such as blocked versus event-related fMRI, were also entered.
For blocked data sets, it was noted whether all or only selected types of
blocks were included in fcMRI analyses.

Data Acquisition

Basic functional image acquisition parameters, such as repetition time
(TR), voxel size, and number of time points, were entered. If data were
acquired across different runs and concatenated for analysis, this was
also noted.

Seed Identification and Field of View

We determined whether fcMRI seeds were identified based on
activation results for the given data set (or results imported from
other studies), or whether they were based on anatomical criteria. For
activation-derived seeds, we further noted whether these were based
on activation observed in the TD group, in the ASD group, in both
groups pooled together, or on effects of significant activation differ-
ences between groups (TD >ASD or ASD >TD).

The field of view (FOV) specifies the search space for connectivity
effects with a given seed. We entered whether the FOV was limited to

Table 1

Selected methodological variables by study type

Study Low-pass
filter

Global
signal
removal
based on

Task
regression
selection

Seed
selection
based on

Whole-brain
field of view

GU: Studies supporting general underconnectivity

Anderson et al. (2010) Yes No Noa (anat)b No
Assaf et al. (2010) ns No Noa aCOMB No
Bird et al. (2006) No ns No aCOMB No
Cherkassky et al. (2006) No No No aCOMB No
Damarla et al. (2010) ns ns No aCOMB No
Jones et al. (2010): M1 Yes No No aCOMBþaTD No
Jones et al. (2010): M2/3 Yes No Yes aCOMBþaTD No
Just et al. (2004) ns ns No aTD (litTD) No
Just et al. (2007) Yes ns No aCOMB No
Kana et al. (2006) Yes ns No aCOMB No
Kana et al. (2007) Yes ns No aCOMB No
Kana et al. (2009) No Yes No aCOMB No
Kennedy and Courchesne (2008) Yes Yes Noa aTD No
Kleinhans et al. (2008) No ns No aCOMB Yes
Koshino et al. (2008) Yes ns No aCOMB No
Lee et al. (2009) No No No aCOMB No
Lombardo et al. (2010) No Yes No aTD (litTD) No
Mason et al. (2008) No ns No aCOMB No
Mostofsky et al. (2009) No ns No aCOMB No
Solomon et al. (2009) No ns No aTD No
Villalobos et al. (2005) No ns Yes anat Yes
Weng et al. (2010) Yes ns Noa anat (litTD) No

NGU: Studies inconsistent with general underconnectivity

Agam et al. (2010 )c Yes ns No anatþaCOMB Yes
Ebisch et al. (2010 )c Yes Yes Noa litTDþaTD Yes
Jones et al. (2010): M3 þ GSR Yes Yes Yes aCOMBþaTD No
Koshino et al. (2005) ns ns No anat No
Mizuno et al. (2006) Yes No Yes anat Yes
Monk et al. (2009) Yes ns Noa aTD (litTD) No
Noonan et al. (2009) Yes No Yes aCOMB Yes
Shih et al. (2010) Yes No Yes litTDþanat Yes
Turner et al. (2006) Yes No Yes anat Yes
Welchew et al. (2005) ns ns No anat Yes
Wicker et al. (2008) ns No No litTDþaTD No

Note: aCOMB, activation in TD and ASD groups combined; anat, anatomical landmarks. aTD,

activation in TD group; litTD, expected activation site based on TD literature; ns, not stated.
aStudy used resting-state data (see Results for explanation why these were coded as non--task

regressed).
bStudy tested for fcMRI effects for each anatomical brain voxel and its contralateral homolog.
cStudy graphically reports mixed fcMRI effects (both TD[ ASD and ASD[ TD).
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activation-derived ROIs (using the specific distinctions described above)
or to anatomically determined ROIs; or whether fcMRI statistics were
performed for all other brain voxels (i.e., the maximal search space).

Preprocessing and Statistics

Two questions concerning head motion were considered. First, was
head motion computed for each group and was a statistical test of
potential group differences performed? Second, were motion time
series used as orthogonal regressors (nuisance variables), and if so, in
what way (e.g., a covariate at the group level or regressors at the single-
subject level for each of the six translational and rotational axes; use of
temporal derivatives)? These motion-related steps are relevant in fcMRI
analyses, in at least two ways: 1) Residual unaccounted motion may
result in artifactual correlations (and anticorrelations) of time series
throughout the brain; and 2) motion (even when fully corrected) may
result in noisy or washed-out time series in seeds or ROIs from signal
interpolation during spatial realignment, which may reduce detection
of true correlations.
We further entered whether any temporal filtering (high, low, or

band-pass) was performed prior to fcMRI analyses. Whereas high-pass
filtering serves the removal of low-frequency drift and other noise,
low-pass filtering may be considered crucial for the detection of low-
frequency fluctuations that have been shown to reflect network-
specific intrinsic (i.e., non task-driven) connectivity most robustly
(Biswal et al. 1995; Cordes et al. 2001; Fox and Raichle 2007). It was
also noted whether global signal regression (or global intensity
normalization) was performed, that is, the removal of effects
associated with whole-brain signal fluctuations across time points
within a time series. Global signal regression has been shown to
result in the detection of negative correlations, for example, in
studies of task-negative (or ‘‘default mode’’) networks (Fox et al.
2009; Van Dijk et al. 2010), which may in turn affect comparisons
between ASD and TD groups (Jones et al. 2010). A recent study by
Schölvinck et al. (2010) suggests that global low-frequency fluctua-
tions of the BOLD signal are partly accounted for by correlated
fluctuations in local field potentials. Aside from further supporting
the neural basis of low-frequency BOLD fluctuations, this finding
suggests that global signal regression may remove true fluctuations in
neuronal activity, resulting in potentially artifactual detection of
interregional anticorrelations (cf. debate in Murphy et al. 2009 vs.
Fox et al. 2009).
Furthermore, it was determined whether task effects (in studies

using task paradigms) were removed and what the precise procedure
for the removal of task effects was. We distinguished between gross
removal of task effects (using only a single regressor for several
conditions) as opposed to fine removal of task effects (using separate
regressors modeling each task condition). This latter distinction
corresponds to the one made by Jones et al. (2010) between their
methods ‘‘M2’’ and ‘‘M3.’’ Inclusion or removal of task effects in fcMRI
analyses is important because it determines whether detected
correlations are primarily driven by activation (response to stimuli or
task trials) or intrinsically generated (in the absence of task effects).
Any additional preprocessing feature, for example, the use of
physiological regressors, was also entered.
The type of single-subject analysis (e.g., regression) and the type of

within- and between-group statistic (e.g., t-test) was entered. Some
fundamental differences in statistical approaches, such as regression,
structural equation modeling, or dynamic causal modeling, relate to
other variables considered separately. For example, dynamic causal
modeling typically implies the detection of task-related effects (Lee
et al., 2006), as discussed above. Further statistical details, such as
Fisher’s r-to-z# conversion (for comparing results from first level single-
subject analyses in group level statistical tests) and the correction for
multiple comparisons, were entered separately. Finally, we also noted
whether negative correlations were observed in single-subject analyses
and whether such potential negative correlations were included or
discarded in analyses at the group level.

Findings and Definition of Study Types

Our goal was to elucidate potential methodological reasons for diverse
findings in overall patterns of connectivity. Therefore, we did not

attempt to enter findings comprehensively by listing all regions with
significant between group differences as this was beyond the scope of
our survey. We restricted our tabulation to an abridged characteriza-
tion of findings of significantly greater fcMRI effects in TD compared
with ASD groups (TD >ASD) and inverse findings (ASD >TD). Based on
the overall pattern of findings from direct group comparisons, we
assigned each study to one of the two types. Studies that exclusively
reported effects of greater functional connectivity in TD compared
with ASD groups were coded as ‘‘GU studies,’’ that is, studies
consistent with a model of general underconnectivity (GU) in ASD
(see Table 1, top). Note that this does not imply significant
underconnectivity findings for every single pair of ROIs in these
studies. For example, Just et al. (2004) found significantly reduced
functional connectivity for only 10 of 186 ROI pairs but reported no
single ROI pair with inverse findings. Conversely, studies with mixed
or predominantly inverse effects (ASD > TD) were coded as ‘‘NGU
studies,’’ that is, studies that were not consistent with GU (Table 1,
bottom). One study (Brieber et al. 2010) was excluded from the
listing in Table 1 and all quantitative analyses because it did not report
any significant fcMRI group differences and could thus not be
assigned to a study type. Two studies (Agam et al. 2010; Ebisch et al.
2010) were classified as NGU studies, although they presented their
findings with exclusive focus on underconnectivity effects in ASD.
However, both of these graphically presented inverse effects of
greater connectivity in ASD, without discussing them (see figure 5A in
Agam et al., 2010 and figures. 2--5 in Ebisch et al., 2010). The study by
Jones et al. (2010), which used several methodological approaches
(with different results) applied to the identical data set, was counted
as three separate studies (i.e., method 1 without task regression and
methods 2 and 3 with task regression as two GU studies, and method
3 with task and global signal regression as NGU study; cf.
Supplementary Table 1). Table 1 thus lists a total of 22 GU studies
and 11 NGU studies.

Results

A comprehensive matrix of methodological details for each
study is presented in Supplementary Table 1. A first pass
examination of the data showed that for many methodological
variables, systematic differences between the two types of
studies were unlikely. Among the demographic variables, both
types included predominantly adults and adolescents, and IQs
for ASD cohorts were in the normal range in both types. Task
conditions varied greatly, but both types included sensorimotor
as well as complex cognitive tasks. The only condition for
which multiple studies from different groups were available
was rest. Four of these had GU results (consistent with GU),
two reported NGU results (not consistent with GU). Data
acquisition parameters also varied somewhat across studies, but
type-specific differences were not apparent. For example, most
studies of both types used block designs. TR, which determines
temporal resolution and thus the frequency range at which
correlated oscillations can be detected, was between 1000 and
3000 ms in both types of studies.

Given the obvious impact of head motion on functional
connectivity effects (Auer 2008; Weissenbacher et al. 2009), as
described above, it was surprising to find that 19 of the 32
studies made no statement about this potential confound at all.
Only four studies clearly stated the absence of significant group
differences in motion.

While differences in participant characteristics, study con-
ditions, and data acquisition were unlikely to be major
contributors to overall differences in fcMRI results, more
distinct patterns of differences between the two types were
seen for several parameters related to preprocessing and
statistical analysis. These are summarized in Table 1. Global
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signal removal is included here solely based on the findings
from Jones et al. (2010). Information in Table 1 has been
simplified for greater clarity (for details, see Supplementary
Table 1). Results for each of these parameters are described
below. Information was not always available from each study
and numbers of included studies are stated for each
parameter. As explained above, the study by Jones and
colleagues was counted three times, based on its different
methods applied.

Low-pass Filtering

This parameter was coded solely with respect to the question
of whether low-pass or band-pass filtering was applied to
specifically focus on low-frequency fluctuations < .1 Hz based
on studies showing that network-specific intrinsic functional
connectivity is predominantly detected in BOLD time series in
the range of 0.01 < f < 0.1 Hz (Biswal et al. 1995; Cordes et al.
2001). The use of high-pass filters in many studies serves
a different purpose (removal of drift and other noise at even
lower frequencies, typically <0.01 Hz) and lends itself to
conflation of low-frequency intrinsic fluctuations and task
activation effects occurring predominantly at slightly higher
frequencies.

Information was available for 27 out of 33 studies. Among 22
GU studies, 9 used low-pass filters, whereas 10 studies applied
high-pass filters. All of the eight NGU studies, for which
temporal filtering information was explicitly stated, used low-
pass filtering.

Global Signal Removal

Only 16 studies overall provided explicit information regarding
global signal removal. Three of nine GU studies and two of
seven NGU studies performed global signal regression or some
other procedure to remove effects of global signal changes.

Task Regression

Among the 18 GU studies that applied tasks, 16 took no
measures to remove activation effects driven by a task
paradigm. Two studies used orthogonal regressors to remove
modeled task effects. Four further studies used resting-state
data. Task regression is logically unfeasible in studies that lack
controlled experimental conditions. However, it is understood
that the resting state is associated with distinct mental activity
(Mason et al. 2007), which is in principle uncontrolled and hard
to monitor. In TD individuals, such mental activity is
considered to correspond to the ‘‘default mode’’ (Raichle
et al., 2001; Greicius et al., 2003; Fransson, 2005; Greicius et al.,
2009), but this assumption cannot necessarily be made for
participants with ASD (Kennedy et al., 2006). Since regression
of activity changes related to cognitive processing is imprac-
ticable in resting-state studies, we coded these as non task-
regressed. Among the nine NGU studies that applied tasks, five
performed task regression. Two further studies used resting-
state data.

Seed Selection

Of the 22 GU studies, 15 selected fcMRI seeds based on
activation effects detected in both TD and ASD groups, coded
as ‘‘aCOMB’’ in Table 1. Four studies, used seeds solely
identified from activation analyses in the TD group (aTD),
and three studies identified seeds based on anatomical criteria

(including the study by Anderson et al., 2010, which tested
BOLD correlations for every single brain voxel and its homolog
in the contralateral hemisphere). In one of these (Weng et al.
2010), anatomy-based seed location was informed by the TD
literature on expected domain-specific activation effects
(coded ‘‘litTD’’ in Table 1). Of the 11 NGU studies, three used
activation effects from TD and ASD groups combined, four used
seeds derived from TD activation, and four applied purely
anatomical criteria.

For data reduction, seeds were further coded with respect to
possible bias toward TD or ASD groups. No distinct bias in favor
of ASD participants was found in any study. Five of the 22 GU
studies and 4 of 11 NGU studies used seeds that were distinctly
biased in favor of TD groups (either aTD or litTD). A less
conservative threshold for potential TD bias was used in
a secondary comparison, including studies coded as aCOMB. As
discussed in detail below, the reasoning was that activation
effects detected for both TD and ASD groups may be
predominantly driven by effects in TD groups that are less
affected by interindividual variability. Results for the stringent
and the less conservative definition of TD bias are presented
separately in Figure 1.

Field of View

Among the 22 GU studies, only two reported fcMRI effects for
the whole brain. The remaining 20 studies reported effects
only for a limited number of ROIs. This pattern was different
for the 11 NGU studies, 7 of which tested for fcMRI effects in
the whole brain. The study by Welchew et al. (2005) is
included among these, because the 90 ROIs used in their
analyses covered the entire cerebrum and several subcortical
structures. Four of the NGU studies did not report whole-
brain findings.

Data Reduction and Visualization

Further data reduction was attempted to highlight the main
patterns of differences between studies of the two types. In
Figure 1A, the fraction of studies assigned to each type are
shown, calculated separately for each of the main methodo-
logical parameters described above. For example, of the 17
studies using low-pass filtering, 9 were GU studies and 8 were
NGU studies. Note that most fractions are higher for GU than
for NGU studies, for the simple reason that overall more GU than
NGU studies have been published. However, three exceptions
become apparent, with greater fractions for NGU studies. These
are the use of task regressors, the strict exclusion of seeds that
could be biased in favor of TD groups (including those coded as
aCOMB), and the use of a whole brain FOV.

In Figure 1B, these fractions are collapsed into difference
scores (fraction GU minus fraction NGU) for each methodo-
logical choice. For example, whereas the choice of low-pass
filtering implies little prediction bias, the choice of not using
low-pass filtering is strongly predictive in favor of GU results.
The latter reflects the finding that all studies that explicitly
opted against low-pass filtering reported GU findings (cf. Fig.
1A). Aside from lack of low-pass filtering, the methods choices
most strongly predictive of GU findings were lack of whole-
brain FOV and lack of task regression. Conversely, removal of
task activation effects and detection of fcMRI effects in the
whole brain (rather than only in ROIs) were predictive of NGU
findings.
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We further calculated a prediction differential for each
methodological parameter by subtracting the prediction bias
scores from Figure 1B for each ‘‘No’’ option from those for the
corresponding ‘‘Yes’’ option. For example, the prediction score
of 1.0 for ‘‘low-pass filter no’’ was subtracted from the
prediction score of 0.06 for ‘‘low-pass filter yes,’’ for a prediction
differential of –0.94. As seen in Figure 1C, the use of seeds that
were predominantly based on activation effects in TD groups
(when studies coded as aCOMB were included, see Discussion)
showed potential bias in favor of GU findings, whereas low-pass
filtering, task regression, and whole-brain FOV favored NGU
findings.

In Figure 1D, differences in methodological fingerprints
between GU and NGU studies are depicted in a radar plot,

representing the fraction of studies applying the six types of
methodological choices of interest, calculated separately for
each study type. Note that fractions are thus calculated
differently from those shown in Figure 1A. For example, 7 of
11 NGU studies (64%) used a whole-brain FOV, whereas this
was the case in only 2 of 22 GU studies (9%). The radar plot
provides a different perspective on the data, highlighting that
the two types of findings (GU vs. NGU) are indeed associated
with substantially different methodological profiles.

Statistical Analysis

A Fisher’s Exact test was used to examine the frequency of
each methodological decision for each study outcome (as
shown in Fig. 1D). NGU studies differed significantly (P < 0.05)

Figure 1. (A) Fraction of studies by type for each selected methodological choice. (B) Prediction bias, calculated as the difference between study types (fraction GU � fraction
NGU). (C) Prediction differential, calculated as the difference between Yes and No options for each methodological choice. (D) Radar plots for two types of studies showing
differences in methodological fingerprints. *Excluding resting studies. **Significant difference between study types. For further details, see text.
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from GU studies for low-pass filtering, task regression (with and
without resting-state studies included), and whole-brain FOV.
There was no difference between the study types for global
signal regression (P = 1) or TD-biased seed selection (P = .47).

Discussion

We tabulated a large number of methodological variables for 32
fcMRI studies in ASD published between 2004 and November
2010. We first grossly separated studies based on overall
patterns of findings, distinguishing those consistent with the
hypothesis of general underconnectivity (GU) (Just et al. 2004),
and those that were not (NGU). GU studies reported
exclusively greater fcMRI effects in TD than in ASD groups,
while those with mixed or predominantly inverse findings
(ASD > TD) were labeled NGU studies. First inspection of the
complete data summarized in Supplementary Table 1 showed
that many demographic and methodological variables were
unlikely to provide clues as to the inconsistencies in findings
between the two study types. In an attempt to highlight the
most likely factors, we focused on four parameters for which
distinguishing patterns were apparent. These were low-pass
filtering (isolating BOLD fluctuations <0.1 Hz), regression of
task-driven activation effects, use of seeds explicitly or
potentially biased toward activation in TD groups, and inclusion
of the whole brain (rather than ROIs) in tests of fcMRI effects.

Global signal removal was further included as a variable of
interest in Table 1 based on a recent study by Jones et al.
(2010), which suggested that global signal regression might be
an explanatory factor in findings of partially greater connectiv-
ity in ASD compared with TD groups. However, while only 16
studies provided explicit information in this respect, even
these limited results suggest that global signal regression or
similar procedures may have little consistent effect on the
patterns of results. The findings by Jones et al. (2010) could be
related to the use of a data set acquired during overt speech
with unusually short 10-s blocks, which differs substantially
from other fcMRI studies and may therefore limit the general
interpretation of results. In addition, despite their thorough
and systematic approach Jones et al. did not manipulate many
of the methodological variables considered in the present
survey. For example, most of their results were derived from
analyses limited to seeds and ROIs based on detected or
expected activation effects.

Treatment of head motion was not included as a variable of
interest in Table 1 simply because of a lack of disclosure in the
literature. In 28 of 32 studies, no statement regarding statistical
tests to ascertain absence of group differences in head motion
was found. This was surprising, given the obvious potential for
head movement to affect fcMRI results (Auer 2008; Weissen-
bacher et al. 2009). Note that an appearance of reduced
connectivity could in principle be exclusively explained by
greater motion in one group compared with another. Since
participants with ASD may tend to move more during fMRI
scanning than their TD peers, the fact that this obvious
confound was not addressed in most studies is troubling.
However, one may hope that in many cases this reflects
a failure of disclosure rather than a true methodological flaw.

Several steps of further data reduction allowed us to identify
which methodological choices most strongly biased findings
one way or the other. Absence of low-pass filtering and task
regression as well as failure to test for fcMRI effects

everywhere in the brain were the three choices that tended
to be associated with findings consistent with GU (Fig. 1B).
More specifically, all studies that explicitly opted against the
use of low-pass filters presented findings of the GU type (only
TD > ASD effects). Conversely, every single study combining
low-pass filtering, task regression, and whole-brain FOV
reported NGU findings, with mixed effects or even pre-
dominantly greater functional connectivity in ASD than TD
groups. While this suggests a clear pattern of differences
between study types (Fig. 1D), it also shows that no single
methodological choice uniquely determines the type of fcMRI
results (GU vs. NGU). Instead, it is most likely the confluence of
several methodological choices that makes the difference. The
three variables highlighted here (low-pass filtering, task
regression, and FOV) are the most probable factors, based on
the available literature. However, it is conceivable that other
factors may come to light once a sufficient number of relevant
studies become available. For example, the focus on task-driven
effects in BOLD time series (in studies that opt against low-pass
filtering and task regression) may be most strongly associated
with GU findings when task paradigms are used that tap into
domains of impairment in ASD.

While study sample size is an issue, especially given that only
11 NGU studies were available, the pattern of results generates,
as a working hypothesis, the expectation that future studies
opting not to focus on low-frequency fluctuations in the range
0.01 < f < 0.1 Hz through low-pass or band-pass filtering may
tend to generate results supporting the GU hypothesis. On the
other hand, future studies that implement low-pass filtering,
task regression, and whole-brain FOV are more likely to
generate findings inconsistent with this hypothesis. A facetious
interpretation would imply that each group of researchers may
generate the types of results that best fit their preconceived
ideas about connectivity in ASD, simply by making a few crucial
methodological choices. However, such considerations—while
interesting from a methodological point of view—fail to
capture the true significance of our findings for the study of
connectivity in ASD. We will therefore first briefly discuss the
implications of these pivotal methodological variables and then
turn to the neurodevelopmental conclusions that can be drawn
with respect to functional and anatomical connectivity in ASD.

Task-driven Versus Intrinsic Fluctuations in the BOLD

Signal

The preponderance of GU findings in ASD is likely related to
the focus on activation-driven correlations in many studies.
These are studies that leave intact BOLD changes prompted by
task and control conditions. The approach is undoubtedly of
interest, but it is important to consider its implications. As
suggested by Jones et al. (2010, p.408), fcMRI analyses that do
not regress out task effects to isolate intrinsic BOLD fluctua-
tions ‘‘simply reflect the differences in task-related response . . .

and whether this should really be called a measure of
‘connectivity’ is debatable.’’ This comment may be considered
radical, implying that 15 of 16 GU studies (not counting the
study by Jones et al. themselves as well as four resting studies)
that failed to remove task effects may have been mislabeled as
‘‘functional connectivity’’ studies in the strictest sense. From
this perspective, almost the entire literature supporting general
functional underconnectivity in ASD might be considered
misleading because it focuses on task-specific synchronization
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between brain regions that may or may not reflect underlying
connectivity. However, we do not believe that the term
‘‘functional connectivity’’ should be unilaterally usurped by
adherents of one or another methodological approach. What is
crucial, in our view, is awareness of the impact of methodo-
logical choices and a refined interpretation of fcMRI studies in
ASD that reconciles diverse findings. While methodological
differences between fcMRI studies are surely multifactorial, it
appears that the fcMRI literature in ASD can be broadly divided
into two main approaches: one that focuses on task-driven
effects, which could be called ‘‘activation fcMRI,’’ and one that
strives to remove activation effects, which we will call
‘‘intrinsic fcMRI.’’

Note that intrinsic fcMRI is not synonymous with resting-
state fcMRI (Van Dijk et al. 2010). First, as mentioned above,
intrinsic BOLD fluctuations can be extracted from data
acquired during task performance (i.e., not rest) through task
modeling and low-pass filtering (Fair et al. 2007; Fox and
Raichle, 2007). Second, the resting state is in reality a highly
active state (Mason et al. 2007) and BOLD fluctuations
observed for this state may be compounded by cognitive
events unless measures (such as low-pass filtering) are taken to
minimize their effects.

A second aspect related to the distinction between
activation and intrinsic fcMRI concerns temporal filtering of
BOLD time series. Low-pass filtering or band-pass filtering at
about 0.01 < f < 0.1 Hz can serve two complementary
purposes. First, it will further reduce components in BOLD
time series related to task processing (i.e., activation effects).
This applies even to data sets acquired with blocked designs (as
in most current ASD fcMRI studies), where task-control cycles
occur at frequencies <0.1 Hz, thus passing typical low-pass
filters. However, any fluctuations related to individual trials
within blocks or to event-related trials presented at a higher
frequency may be attenuated or removed through low-pass
filtering. Second, and more crucially, low-pass filtering will
isolate or accentuate frequency fluctuations considered to
reflect network-specific intrinsic functional connectivity most
prominently (Cordes et al. 2001; Fox and Raichle 2007).
Although the nature of these slow fluctuations is not
completely understood, recent evidence suggests that they
may reflect history of regional coactivation and Hebbian effects
of plastic changes in network organization (Lewis et al. 2009).
They have been furthermore found to coincide with phase-
locked oscillations in local field potentials (Leopold et al. 2003;
Schölvinck et al. 2010), which may in turn reflect slow
fluctuations in spontaneous neurotransmitter release (Fox
and Raichle 2007). Electrical recording in nonhuman primates
suggests that low-frequency fluctuations correspond to net-
work-specific modulations of higher frequency oscillations
(delta, theta, gamma), which implies a hierarchical temporal
organization linking low and high frequencies (Lakatos et al.
2005).

A third aspect related to the distinction between activation
and intrinsic fcMRI deals with the selection of seeds or ROIs.
When fMRI data acquired during task performance are used,
a simple and straightforward solution is to identify seeds based
on activation clusters. Assuming that the task is designed to tap
into the network of interest, the seed can then be considered
to reflect a node in this network. This approach may be
susceptible to circular logic (Kriegeskorte et al. 2009). Regions
that strongly activate together in a TD group for a specific task

will trivially tend to be highly correlated with each other. For
such ROIs, the activation effects in an ASD group may be less
robust. It is therefore possible that the activation-specific
components in ROI time series are less distinctive and more
variable in an ASD group than in their controls. Such greater
variability will in turn most likely result in reduced time series
correlations between ROIs.

While the impact of an explicit TD bias on seed selection is
thus transparent, it is more debatable in the more common
case of seed selection based on activation effects for TD and
ASD groups combined (coded aCOMB in Table 1). This was the
case in 15 of 22 GU, but only 3 of 11 NGU studies. In this
approach, seeds or ROIs are determined either based on
activation analyses for both ASD and TD groups pooled
together, on activation sites shared by both groups on within-
group analyses, or by combining activation clusters seen either
in one or the other group. While this procedure does not
appear to imply any explicit TD bias that may result in GU-type
findings, subtle biases may nonetheless be at work in some
instances. Few imaging studies have focused on interindividual
variability of activation effects in ASD. Consistent with an
earlier fMRI study suggesting atypical spatial variability of
activation for a simple motor task in ASD (Müller et al., 2001),
Hasson et al. (2009) observed normal intra-individual, but
increased interindividual variability of activation associated
with complex stimulation (viewing a movie clip) in adult men
with ASD. More variable (or otherwise noisy) effects in ASD
compared with TD groups may result in overall activation
results (from pooled analyses for both groups) reflecting
patterns for the TD group more closely than those for the
ASD group. In this context, it is further relevant that most
fcMRI studies applied tasks in domains suspected to be
impaired in ASD. Based on these considerations, a less stringent
definition of TD bias (including studies coded as aCOMB) was
additionally used in Figure 1. However, we consider the
question whether or not such studies may truly imply a TD
bias that will affect fcMRI results as unresolved. While it is
generally clear from our results shown in Figure 1 that TD-
biased seeds may play some role in predicting GU findings, we
consider this finding less robust compared with those on low-
pass filtering and task regression.

Looking for fcMRI Effects in the Whole Brain

A further methodological parameter that was found to have
potential impact on overall patterns of fcMRI findings was the
FOV, that is, the search space for the detection of BOLD time
series correlations. GU studies almost never reported whole-
brain results and instead focused on ROIs, which were usually
regions of expected or empirically detected domain-specific
activation. In contrast, a whole-brain FOV was used in 7 of 11
NGU studies. Differences in FOV affect the probability of type II
error (because of increased need for multiple comparison cor-
rection in whole-brain analyses), which could in principle
account for a greater likelihood of detecting GU effects in
studies limited to ROIs. However, differences in correction
factors cannot provide a complete explanation for differences in
findings because they cannot account for increased detection of
greater functional connectivity in ASD groups in NGU studies
with whole brain FOV (and thus higher correction factors).

While the rationale for taking a limited FOV to focus on
specific ROIs may be justified by a priori hypotheses, failure to
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examine whole-brain effects may impede a comprehensive
understanding of connectivity. The theoretical importance of
using a whole-brain FOV will be discussed in detail below in the
context of potentially divergent connectivity patterns within
and outside functional networks.

Functional and Anatomical Connectivity: A

Developmental Scenario

From the methodological perspective, the above discussion
suggests that differential findings of reduced or increased
functional connectivity relate to several crucial choices in data
processing pathways. However, this does not imply that one
pattern of findings is more ‘correct’ than another. Instead, it
becomes necessary to integrate differential findings into
a theoretical framework that may account for them. We will
therefore turn to findings from studies of anatomical connec-
tivity in ASD. Cooperation between distal nodes in functional
networks relies on axonal connections. DTI, the most common
method for examining anatomical connectivity in vivo, opens
a window into white matter microarchitecture by detecting
the diffusion of water molecules along axonal tracts (Mori and
Zhang 2006). DTI studies for age groups comparable to those
studied with fcMRI (i.e., older children, adolescents, and adults)
have quite consistently reported reduced fractional anisotropy
(FA) in comparison with TD individuals in a variety of white
matter regions (Barnea-Goraly et al., 2004; Alexander et al.
2007; Keller et al., 2007; Lee et al. 2007; Cheung et al. 2009),
reflecting reduced coherence of axonal tracts or other types of
white matter damage. A few studies that also examined other
DTI indices found complementary evidence of white matter
compromise by detecting increased mean diffusivity and/or
radial diffusivity in corpus callosum, arcuate fasciculus, and
other regions (Alexander et al. 2007; Lee et al. 2007; Fletcher
et al. 2010; Shukla et al., 2010). Converse findings of enhanced
FA and reduced MD or radial diffusivity in ASD have been
virtually nonexistent in these studies, with one recent ex-
ception (Cheng et al. 2010).

Evidence from participants with ASD ages 8 years and
upwards therefore overall appears to support the GU hypoth-
esis. However, it is remarkable that a few DTI studies that
included younger children reported partially divergent results.
Ben Bashat et al. (2007) found increased FA for a number of
tracts (including corpus callosum) in a small sample of toddlers
with ASD (ages 1.8--3.3 years). Focusing on frontal lobe tracts in
children around age 5 years, Sundaram et al. (2008) found
reduced FA only for short-range fibers. Long-range fibers, on
the contrary, appeared to be intact and greater in length in
children with ASD compared with TD children. These di-
vergent findings may be related to brain growth anomalies in
ASD. As first reported by Courchesne et al. (2001), brain
volume is atypically enlarged in children with ASD around age
2--4 years. This early overgrowth affects both gray and white
matter, indicating abnormal trajectories in the development of
connectivity early in life. The limited DTI evidence for young
children may suggest that early white matter overgrowth could
at least in part reflect precocious maturation of axonal fibers.
Atypically flat white matter growth at later ages, as also seen by
Courchesne et al. (2001), may correspond to diminished
myelination, which typically occurs in tandem with mecha-
nisms for cortical maturation, such as synaptic stabilization and
pruning (Quartz and Sejnowski, 1997). The DTI evidence,

albeit incomplete thus far, suggests that abnormalities of white
matter architecture in ASD may differ between early years of
overgrowth and older childhood and adulthood. Such a di-
chotomy would be consistent with a model of precocity of
white matter development early in life, followed by an
impairment of differentiation of functional networks, which
in the TD brain relies on synaptic stabilization and pruning
(Kandel et al. 2000).

Projected onto the issue of divergent results in the fcMRI
literature, this developmental model generates the following
working hypothesis. Reduced network differentiation would
be expected to be associated with reduced functional con-
nectivity within neurotypical networks (reflecting diminished
constructive processes, such as synaptic stabilization and
axonal myelination), which is, however, accompanied by
diffusely increased connectivity outside neurotypical networks
(reflecting diminished regressive processes, such as synaptic
pruning). This working hypothesis, which is overall consistent
with the results of our survey, reconciles GU findings from
studies that focus on ROIs within networks of interest with
apparently divergent NGU findings from studies that included
the whole brain in their FOV and therefore also tested for
fcMRI effects outside neurotypical networks. Two recent
studies (Agam et al. 2010; Ebisch et al. 2010) serve as telling
examples. Each of these focused on domain-specific circuits
(anterior cingulate cortex/frontal eye fields and insula net-
work, respectively) and detected GU-type findings for these.
However, in both studies, figures were presented that actually
showed inverse findings of greater connectivity in ASD groups
as well (figure 5A in Agam et al. 2010 and figures 2--5 in Ebisch
et al. 2010), which were not mentioned in the publications
themselves (but confirmed in personal communication with
the lead authors). Although these reports were thus presented
as GU studies, they belonged in fact to the NGU type (and were
assigned correspondingly). The absence of any mention of
inverse fcMRI effects (ASD > TD) in these studies may reflect
a preconception that only underconnectivity effects are of
interest to the field.

In summary, our survey of fcMRI studies in ASD suggests
that different methodological approaches may be partly
responsible for inconsistent findings. Studies reporting find-
ings in agreement with GU tend to refrain from low-pass
filtering and statistical removal of task-related activation
effects and to focus on ROIs that are often based on activation
sites. On the other hand, studies examining fcMRI effects in
the whole brain after implementing low-pass filtering and
removal of task-driven variance from BOLD time series tend to
have more mixed results, often identifying regions of
atypically increased functional connectivity in ASD. Both
approaches, here called activation fcMRI and intrinsic fcMRI,
may reveal different aspects of abnormal functional networks
in ASD. Atypical fcMRI results in ASD—both of the GU and the
NGU type—may be outcomes of early aberrations of white
matter development and disturbances in experience-driven
network formation through regressive and constructive pro-
cesses, such as synaptic pruning and stabilization, as well as
myelination.

Challenges and Perspectives

The wealth of ASD studies published in the past decades has
failed to produce a comprehensive understanding of the

2240 Survey of fcMRI in Autism d Müller et al.



neurobiological causes of the disorder, which would provide
a firm basis for informed therapeutic interventions. Many
findings from an overwhelming abundance of studies have
remained isolated, unreplicated, or otherwise questionable.
Among the few neuroscientific findings that appear solid are
those of abnormal white matter growth trajectories and
impaired connectivity. However, acceptance of an under-
connectivity theory, as widely found in the field, appears
primarily based on the sheer number of supportive fcMRI
studies in high-impact journals, rather than a careful assess-
ment of the underlying methods and their limitations. Our
survey aims to highlight that the findings are more complex
and related to methodological choices. The question of
functional connectivity in ASD, rather than being definitively
answered, as some may believe, still remains to be posed in
a clearly defined way. If the question concerns how distal
brain regions cooperate during activation in response to
a task, a technique we called activation fcMRI would be
appropriate. If we are instead asking how spontaneous BOLD
fluctuations are synchronized across distal brain regions,
presumably as a reflection of stable networks emerging from
long-term effects of Hebbian plasticity, the distinctly different
approach of intrinsic fcMRI will be required. Finally, if our
question regards the anatomical pathways of interconnecting
networks, DTI and tractography would be the methods of
choice to examine axonal fibers in vivo. None of these
approaches is ‘‘right’’ or ‘‘wrong,’’ but awareness of their
strengths and weaknesses—and in particular their differential
sensitivities (i.e., precisely which neurobiological processes
and entities they can or cannot detect)—is needed today in
functional connectivity studies of ASD. What is needed for the
future will be the methodologically informed use of combined
approaches, taking advantage of their partly complementary
strengths and weaknesses for a more comprehensive de-
scription of connectivity in ASD.
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Funding

National Institutes of Health (R01-DC006155, R01-MH081023)
with additional funding for B.K. (1T32-DC007361-03).

Notes

Conflict of Interest : None declared.

References

Agam Y, Joseph RM, Barton JJ, Manoach DS. 2010. Reduced cognitive
control of response inhibition by the anterior cingulate cortex in
autism spectrum disorders. Neuroimage. 52:336--347.

Alexander AL, Lee JE, Lazar M, Boudos R, Dubray MB, Oakes TR,
Miller JN, Lu J, Jeong EK, McMahon WM, et al. 2007. Diffusion tensor
imaging of the corpus callosum in Autism. Neuroimage. 34:61--73.

American Psychiatric Association 2000. Diagnostic and Statistical
Manual of Mental Disorders-IV-TR Washington, DC: American
Psychiatric Association.

Anderson JS, Druzgal TJ, Froehlich A, Dubray MB, Lange N, Alexander AL,
Abildskov T, Nielsen JA, Cariello AN, Cooperrider JR, et al. 2010.
Decreased interhemispheric functional connectivity in Autism.
Cereb Cortex.

Auer DP. 2008. Spontaneous low-frequency blood oxygenation level-
dependent fluctuations and functional connectivity analysis of the
‘resting’ brain. Magn Reson Imaging. 26:1055--1064.

Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. 2004.
White matter structure in autism: preliminary evidence from
diffusion tensor imaging. Biol Psychiatry. 55:323--326.

Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA,
Webb SJ. 2004. Autism and abnormal development of brain
connectivity. J Neurosci. 24:9228--9231.

Ben Bashat D, Kronfeld-Duenias V, Zachor DA, Ekstein PM, Hendler T,
Tarrasch R, Even A, Levy Y, Ben Sira L. 2007. Accelerated maturation
of white matter in young children with autism: a high b value DWI
study. Neuroimage. 37:40--47.

Bird G, Catmur C, Silani G, Frith C, Frith U. 2006. Attention does not
modulate neural responses to social stimuli in autism spectrum
disorders. Neuroimage. 31:1614--1624.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med. 34:537--541.

Brieber S, Herpertz-Dahlmann B, Fink GR, Kamp-Becker I,
Remschmidt H, Konrad K. 2010. Coherent motion processing in
autism spectrum disorder (ASD): an fMRI study. Neuropsychologia.
48:1644--1651.

Casanova M, Trippe J. 2009. Radial cytoarchitecture and patterns of
cortical connectivity in autism. Philos Trans R Soc Lond B Biol Sci.
364:1433--1436.

Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP. 2010. Atypical
development of white matter microstructure in adolescents with
autism spectrum disorders. Neuroimage. 50:873--882.

Cherkassky VL, Kana RK, Keller TA, Just MA. 2006. Functional
connectivity in a baseline resting-state network in autism. Neuro-
report. 17:1687--1690.

Cheung C, Chua SE, Cheung V, Khong PL, Tai KS, Wong TK, Ho TP,
McAlonan GM. 2009. White matter fractional anisotrophy differ-
ences and correlates of diagnostic symptoms in autism. J Child
Psychol Psychiatry. 50:1102--1112.

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH,
Quigley MA, Meyerand ME. 2001. Frequencies contributing to
functional connectivity in the cerebral cortex in "resting-state"
data. AJNR Am J Neuroradiol. 22:1326--1333.

Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD,
Chisum HJ, Moses P, Pierce K, Lord C, et al. 2001. Unusual brain
growth patterns in early life in patients with autistic disorder: an
MRI study. Neurology. 57:245--254.

Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL,
Minshew NJ, Just MA. 2010. Cortical underconnectivity coupled
with preserved visuospatial cognition in autism: evidence from an
fMRI study of an embedded figures task. Autism Res. 5:273--279.

Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL,
Buitelaar JK, Bekkering H. 2010. Altered intrinsic functional
connectivity of anterior and posterior insula regions in high-
functioning participants with autism spectrum disorder. Hum Brain
Mapp.

Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU,
Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE. 2007. A
method for using blocked and event-related fMRI data to study
"resting state" functional connectivity. Neuroimage. 35:396--405.

Fletcher PT, Whitaker RT, Tao R, Dubray MB, Froehlich A,
Ravichandran C, Alexander AL, Bigler ED, Lange N, Lainhart JE.
2010. Microstructural connectivity of the arcuate fasciculus in
adolescents with high-functioning autism. Neuroimage.
51:1117--1125.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat Rev
Neurosci. 8:700--711.

Fox MD, Zhang D, Snyder AZ, Raichle ME. 2009. The global signal and
observed anticorrelated resting state brain networks. J Neuro-
physiol. 101:3270--3283.

Fransson P. 2005. Spontaneous low-frequency BOLD signal fluctuations:
an fMRI investigation of the resting-state default mode of brain
function hypothesis. Hum Brain Mapp. 26:15--29.

Cerebral Cortex October 2011, V 21 N 10 2241

Supplementary material
http://www.cercor. oxfordjournals.org/
http://www.cercor. oxfordjournals.org/


Geschwind DH, Levitt P. 2007. Autism spectrum disorders: de-
velopmental disconnection syndromes. Curr Opin Neurobiol.
17:103--111.

Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional
connectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc Natl Acad Sci U S A. 100:253--258.

Greicius MD, Supekar K, Menon V, Dougherty RF. 2009. Resting-state
functional connectivity reflects structural connectivity in the
default mode network. Cereb Cortex. 19:72--78.

Hasson U, Avidan G, Gelbard H, Vallines I, Harel M, Minshew N,
Behrmann M. 2009. Shared and idiosyncratic cortical activation
patterns in autism revealed under continuous real-life viewing
conditions. Autism Res. 2:220--231.

Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J,
Piven J. 2005. Magnetic resonance imaging and head circumference
study of brain size in autism: birth through age 2 years. Arch Gen
Psychiatry. 62:1366--1376.

Hughes JR. 2007. Autism: the first firm finding = underconnectivity?
Epilepsy Behav. 11:20--24.

ICD-10 1994. International Classification of Diseases World Health
Organization, Geneva.

Jones TB, Bandettini PA, Kenworthy L, Case LK, Milleville SC, Martin A,
Birn RM. 2010. Sources of group differences in functional
connectivity: an investigation applied to autism spectrum disorder.
Neuroimage. 49:401--414.

Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. 2007.
Functional and anatomical cortical underconnectivity in autism:
evidence from an FMRI study of an executive function task and
corpus callosum morphometry. Cereb Cortex. 17:951--961.

Just MA, Cherkassky VL, Keller TA, Minshew NJ. 2004. Cortical
activation and synchronization during sentence comprehension in
high-functioning autism: evidence of underconnectivity. Brain.
127:1811--1821.

Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Adam Just M. 2009.
Atypical frontal-posterior synchronization of Theory of Mind
regions in autism during mental state attribution. Soc Neurosci.
4:135--152.

Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. 2006.
Sentence comprehension in autism: thinking in pictures with
decreased functional connectivity. Brain. 129:2484--2493.

Kana RK, Keller TA, Minshew NJ, Just MA. 2007. Inhibitory control in
high-functioning autism: decreased activation and underconnectiv-
ity in inhibition networks. Biol Psychiatry. 62:198--206.

Kandel ER, Jessell TM, Sanes JR. 2000. Sensory experience and the fine
tuning of synaptic connections. In: Kandel ER, Schwartz JH, Jessell
TM, editors. Principles of Neural Science. New York: Elsevier.
p. 1115--1130.

Keller TA, Kana RK, Just MA. 2007. A developmental study of the
structural integrity of white matter in autism. Neuroreport. 18:
23--27.

Kennedy DP, Courchesne E. 2008. The intrinsic functional organization
of the brain is altered in autism. Neuroimage. 39:1877--1885.

Kennedy DP, Redcay E, Courchesne E. 2006. Failing to deactivate:
resting functional abnormalities in autism. Proc Natl Acad Sci U S A.
103:8275--8280.

Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R,
Johnson LC, Greenson J, Dawson G, Aylward E. 2008. Abnormal
functional connectivity in autism spectrum disorders during face
processing. Brain. 131:1000--1012.

Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA,
Just MA. 2005. Functional connectivity in an fMRI working memory
task in high-functioning autism. Neuroimage. 24:810--821.

Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA.
2008. fMRI investigation of working memory for faces in autism:
visual coding and underconnectivity with frontal areas. Cereb
Cortex. 18:289--300.

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. 2009. Circular
analysis in systems neuroscience: the dangers of double dipping. Nat
Neurosci. 12:535--540.

Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. 2005.
An oscillatory hierarchy controlling neuronal excitability and

stimulus processing in the auditory cortex. J Neurophysiol.

94:1904--1911.
Lee JE, Bigler ED, Alexander AL, Lazar M, DuBray MB, Chung MK,

Johnson M, Morgan J, Miller JN, McMahon WM, et al. 2007. Diffusion

tensor imaging of white matter in the superior temporal gyrus and

temporal stem in autism. Neurosci Lett. 424:127--132.
Lee L, Friston K, Horwitz B. 2006. Large-scale neural models and

dynamic causal modelling. Neuroimage. 30:1243--1254.
Lee PS, Yerys BE, Della Rosa A, Foss-Feig J, Barnes KA, James JD,

Vanmeter J, Vaidya CJ, Gaillard WD, Kenworthy LE. 2009. Functional

connectivity of the inferior frontal cortex changes with age in

children with autism spectrum disorders: a fcMRI study of response

inhibition. Cereb Cortex. 19:1787--1794.
Leopold DA, Murayama Y, Logothetis NK. 2003. Very slow activity

fluctuations in monkey visual cortex: implications for functional

brain imaging. Cereb Cortex. 13:422--433.
Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. 2009.

Learning sculpts the spontaneous activity of the resting human

brain. Proc Natl Acad Sci U S A. 106:17558--17563.
Lombardo MV, Chakrabarti B, Bullmore ET, Sadek SA, Pasco G,

Wheelwright SJ, Suckling J, Baron-Cohen S. 2010. Atypical neural

self-representation in autism. Brain. 133:611--624.
Lord C, Rutter M, DiLavore P, Risi S. 1999. Autism diagnostic

observation schedule Los Angeles (CA): Western Psychological

Services.
Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST,

Macrae CN. 2007. Wandering minds: the default network and

stimulus-independent thought. Science. 315:393--395.
Mason RA, Williams DL, Kana RK, Minshew N, Just MA. 2008. Theory of

Mind disruption and recruitment of the right hemisphere during

narrative comprehension in autism. Neuropsychologia. 46:269--280.
Mizuno A, Villalobos ME, Davies MM, Dahl BC, Müller R- A. 2006.

Partially enhanced thalamo-cortical functional connectivity in

autism. Brain Res. 1104:160--174.
Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C.

2009. Abnormalities of intrinsic functional connectivity in autism

spectrum disorders. Neuroimage. 47:764--772.
Mori S, Zhang J. 2006. Principles of diffusion tensor imaging and its

applications to basic neuroscience research. Neuron. 51:527--539.
Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ.

2009. Decreased connectivity and cerebellar activity in autism

during motor task performance. Brain. 132:2413--2425.
Müller R-A. 2007. The study of autism as a distributed disorder. Ment

Retard Dev Disabil Res Rev. 13:85--95.
Müller R-A, Pierce K, Ambrose JB, Allen G, Courchesne E. 2001. Atypical

patterns of cerebral motor activation in autism: a functional

magnetic resonance study. Biol Psychiatry. 49:665--676.
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. 2009.

The impact of global signal regression on resting state correlations:

are anti-correlated networks introduced? Neuroimage. 44:893--905.
Noonan SK, Haist F, Müller R-A. 2009. Aberrant functional connectivity

in autism: evidence from low-frequency BOLD signal fluctuations.

Brain Res. 1262:48--63.
Quartz SR, Sejnowski TJ. 1997. The neural basis of cognitive de-

velopment: a constructivist manifesto. Behav Brain Sci. 20:537--596.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,

Shulman GL. 2001. A default mode of brain function. Proc Natl

Acad Sci U S A. 98:676--682.
Rippon G, Brock J, Brown C, Boucher J. 2007. Disordered connectivity

in the autistic brain: challenges for the "new psychophysiology". Int

J Psychophysiol. 63:164--172.
Rubenstein JL, Merzenich MM. 2003. Model of autism: increased ratio of

excitation/inhibition in key neural systems. Genes Brain Behav.

2:255--267.
Rutter M, LeCouteur A, Lord C. 2003. Autism Diagnostic Interview - R

Los Angeles (CA): Wester Psychological Services.
Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. 2010. Neural

basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A.

107:10238--10243.

2242 Survey of fcMRI in Autism d Müller et al.



Schopler E, Reichler RJ, DeVellis RF, Daly K. 1980. Toward objective
classification of childhood autism: childhood Autism Rating Scale
CARS. J Autism Dev Disord. 10:91--103.
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