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Abstract

We study the underdamped Langevin diffusion when the log of the target distribution is smooth

and strongly concave. We present a MCMC algorithm based on its discretization and show that it

achieves ε error (in 2-Wasserstein distance) in O(
√
d/ε) steps. This is a significant improvement

over the best known rate for overdamped Langevin MCMC, which is O(d/ε2) steps under the same

smoothness/concavity assumptions. The underdamped Langevin MCMC scheme can be viewed as

a version of Hamiltonian Monte Carlo (HMC) which has been observed to outperform overdamped

Langevin MCMC methods in a number of application areas. We provide quantitative rates that

support this empirical wisdom.

1. Introduction

In this paper, we study the continuous time underdamped Langevin diffusion represented by the

following stochastic differential equation (SDE):

dvt = −γvtdt− u∇f(xt)dt+ (
√

2γu)dBt (1)

dxt = vtdt,

where (xt, vt) ∈ R
2d, f is a twice continuously-differentiable function and Bt represents standard

Brownian motion in R
d. Under fairly mild conditions, it can be shown that the invariant distribution

of the continuous-time process (1) is proportional to exp(−(f(x) + ∥v∥22/2u)). Thus the marginal

distribution of x is proportional to exp(−f(x)). There is a discretized version of (1) which can be

implemented algorithmically, and provides a useful way to sample from p∗(x) ∝ e−f(x) when the

normalization constant is not known.

Our main result establishes the convergence of SDE (1) as well as its discretization, to the invari-

ant distribution. This provides explicit rates for sampling from log-smooth and strongly log-concave
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distributions using the underdamped Langevin Markov chain Monte Carlo (MCMC) algorithm (Al-

gorithm 2.1).

Underdamped Langevin diffusion is particularly interesting because it contains a Hamiltonian

component, and its discretization can be viewed as a form of Hamiltonian MCMC. Hamiltonian

MCMC (see review of HMC in Neal, 2011; Betancourt et al., 2017) has been empirically observed

to converge faster to the invariant distribution compared to standard Langevin MCMC which is a

discretization of overdamped Langevin diffusion,

dxt = −∇f(xt)dt+
√
2dBt,

the first order SDE corresponding to the high friction limit of (1). This paper provides a non-

asymptotic quantitative explanation for this statement.

1.1. Related Work

The first explicit proof of non-asymptotic convergence of overdamped Langevin MCMC for log-

smooth and strongly log-concave distributions was given by Dalalyan (2017), where it was shown

that discrete, overdamped Langevin diffusion achieves ε error, in total variation distance, in O
(
d
ε2

)

steps. Following this, Durmus and Moulines (2016) proved that the same algorithm achieves ε
error, in 2-Wasserstein distance, in O

(
d
ε2

)
steps. Cheng and Bartlett (2017) obtained results similar

to those by Dalalyan (2017) when the error is measured by KL-divergence. Recently Raginsky et al.

(2017) and Dalalyan and Karagulyan (2017) also analyzed convergence of overdamped Langevin

MCMC with stochastic gradient updates. Asymptotic guarantees for overdamped Langevin MCMC

was established much earlier by Gelfand and Mitter (1991); Roberts and Tweedie (1996).

Hamiltonian Monte Carlo (HMC) is a broad class of algorithms which involve Hamiltonian

dynamics in some form. We refer to Ma et al. (2015) for a survey of the results in this area. Among

these, the variant studied in this paper (Algorithm 2.1), based on the discretization of (1), has a

natural physical interpretation as the evolution of a particle’s dynamics under a force field and drag.

This equation was first proposed by Kramers (1940) in the context of chemical reactions. The

continuous-time process has been studied extensively (Brockett, 1997; Hérau, 2002; Villani, 2009;

Bolley et al., 2010; Calogero, 2012; Mischler and Mouhot, 2014; Dolbeault et al., 2015; Gorham

et al., 2016; Baudoin, 2016; Eberle et al., 2017).

However, to the best of our knowledge, prior to this work, there was no polynomial-in-dimension

convergence result for any version of HMC under a log-smooth or strongly log-concave assumption

for the target distribution. Most closely related to our work is the recent paper Eberle et al. (2017)

who demonstrated a contraction property of the continuous-time process defined (1). That result

deals, however, with a much larger class of functions, and because of this the distance to the invari-

ant distribution scales exponentially with dimension d. Subsequent to the appearance of the arXiv

version of this work, two recent papers also analyzed and provided non-asymptotic guarantees for

different versions of HMC. Lee and Vempala (2017) analyzed Riemannian HMC for sampling from

polytopes using a logarithmic barrier function. Mangoubi and Smith (2017) studied a different vari-

ant of HMC under similar assumptions to this paper to get a mixing time bound of O(
√
dκ6.5

ε ) in

1-Wasserstein distance (same as our result in d and ε but worse in the condition number κ). They

also establish mixing time bounds for higher order integrators (both with and without a Metropolis
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correction) which have improved dependence in both d and ε but under a much stronger separability

assumption1.

Also related is the recent work on understanding acceleration of first-order optimization methods

as discretizations of second-order differential equations (Su et al., 2014; Krichene et al., 2015;

Wibisono et al., 2016).

1.2. Contributions

Our main contribution in this paper is to prove that Algorithm 2.1, a variant of HMC algorithm,

converges to ε error in 2-Wasserstein distance after O
(√

dκ2

ε

)

iterations, under the assumption that

the target distribution is of the form p∗ ∝ exp(−(f(x)), where f isL smooth andm strongly convex

(see section 1.4.1), with κ = L/m denoting the condition number. Compared to the results of

Durmus and Moulines (2016) on the convergence of Langevin MCMC inW2 in O
(
dκ2

ε2

)

iterations,

this is an improvement in both d and ϵ. We also analyze the convergence of chain when we have

noisy gradients with bounded variance and establish non-asymptotic convergence guarantees in this

setting.

1.3. Organization of the Paper

In the next subsection we establish the notation and assumptions that we use throughout the paper.

In Section 2 we present the discretized version of (1) and state our main results for convergence to

the invariant distribution. Section 3 then establishes exponential convergence for the continuous-

time process and in Section 4 we show how to control the discretization error. Finally in Section 5

we prove the convergence of the discretization (1). We defer technical lemmas to the appendix.

1.4. Notation and Definitions

In this section, we present basic definitions and notational conventions. Throughout, we let ∥v∥2
denotes the Euclidean norm, for a vector v ∈ R

d.

1.4.1. ASSUMPTIONS ON f

We make the following assumptions regarding the function f .

(A1) The function f is twice continuously-differentiable on R
d and has Lipschitz continuous gra-

dients; that is, there exists a positive constant L > 0 such that for all x, y ∈ R
d we have

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

(A2) f is m-strongly convex, that is, there exists a positive constant m > 0 such that for all

x, y ∈ R
d,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥x− y∥22.

1. They assume that the potential function f is a sum of d/c functions {fi}
⌈ d

c
⌉

i=1 , where each fi only depends on a distinct

set of c coordinates, for some constant c ∈ N.
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It is fairly easy to show that under these two assumptions the Hessian of f is positive definite

throughout its domain, with mId×d ⪯ ∇2f(x) ⪯ LId×d. We define κ = L/m as the condition

number. Throughout the paper we denote the minimum of f(x) by x∗. Finally, we assume that we

have a gradient oracle ∇f(·); that is, we have access to ∇f(x) for all x ∈ R
d.

1.4.2. COUPLING AND WASSERSTEIN DISTANCE

Denote by B(Rd) the Borel σ-field of Rd. Given probability measures µ and ν on (Rd,B(Rd)), we

define a transference plan ζ between µ and ν as a probability measure on (Rd × R
d,B(Rd × R

d))
such that for all sets A ∈ B(Rd), ζ(A × R

d) = µ(A) and ζ(Rd × A) = ν(A). We denote Γ(µ, ν)
as the set of all transference plans. A pair of random variables (X,Y ) is called a coupling if there

exists a ζ ∈ Γ(µ, ν) such that (X,Y ) are distributed according to ζ. (With some abuse of notation,

we will also refer to ζ as the coupling.)

We define the Wasserstein distance of order two between a pair of probability measures as

follows:

W2(µ, ν) ≜

(

inf
ζ∈Γ(µ,ν)

∫

∥x− y∥22dζ(x, y)
)1/2

.

Finally we denote by Γopt(µ, ν) the set of transference plans that achieve the infimum in the def-

inition of the Wasserstein distance between µ and ν (for more properties of W2(·, ·) see Villani,

2008).

1.4.3. UNDERDAMPED LANGEVIN DIFFUSION

Throughout the paper we use Bt to denote standard Brownian motion (Mörters and Peres, 2010).

Next we set up the notation specific to the continuous and discrete processes that we study in this

paper.

1. Consider the exact underdamped Langevin diffusion defined by the SDE (1), with an initial

condition (x0, v0) ∼ p0 for some distribution p0 on R
2d. Let pt denote the distribution of

(xt, vt) and let Φt denote the operator that maps from p0 to pt:

Φtp0 = pt. (2)

2. One step of the discrete underdamped Langevin diffusion is defined by the SDE

dṽt = −γṽtdt− u∇f(x̃0)dt+ (
√

2γu)dBt (3)

dx̃t = ṽtdt,

with an initial condition (x̃0, ṽ0) ∼ p̃0. Let p̃t and Φ̃t be defined analogously to pt and Φt for

(xt, vt).

Note 1: The discrete update differs from (1) by using x̃0 instead of x̃t in the drift of ṽs.

Note 2: We will only be analyzing the solutions to (3) for small t. Think of an integral

solution of (3) as a single step of the discrete Langevin MCMC.
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Algorithm 1: Underdamped Langevin MCMC

Input : Step size δ < 1, number of iterations n, initial point (x(0), 0), smoothness parameter L
and gradient oracle ∇f(·)

for i = 0, 1, . . . , n− 1 do

Sample (xi+1, vi+1) ∼ Zi+1(xi, vi)
end

1.4.4. STATIONARY DISTRIBUTIONS

Throughout the paper, we denote by p∗ the unique distribution which satisfies p∗(x, v) ∝ exp−(f(x) + 1
2u∥v∥22).

It can be shown that p∗ is the unique invariant distribution of (1) (see Proposition 6.1 in Pavliotis,

2016). Let g(x, v) = (x, x+ v). We let q∗ be the distribution of g(x, v) when (x, v) ∼ p∗.

2. Results

2.1. Algorithm

The underdamped Langevin MCMC algorithm that we analyze in this paper is shown in Algo-

rithm 2.1.

The random vector Zi+1(xi, vi) ∈ R
2d, conditioned on (xi, vi), has a Gaussian distribution

with conditional mean and covariance obtained from the following computations:

E
[
vi+1

]
= vie−2δ − 1

2L
(1− e−2δ)∇f(xi)

E
[
xi+1

]
= xi +

1

2
(1− e−2δ)vi − 1

2L

(

δ − 1

2

(

1− e−2δ
))

∇f(xi)

E

[(
xi+1 − E

[
xi+1

]) (
xi+1 − E

[
xi+1

])⊤]
=

1

L

[

δ − 1

4
e−4δ − 3

4
+ e−2δ

]

· Id×d

E

[(
vi+1 − E

[
vi+1

]) (
vi+1 − E

[
vi+1

])⊤]
=

1

L
(1− e−4δ) · Id×d

E

[(
xi+1 − E

[
xi+1

]) (
vi+1 − E

[
vi+1

])⊤]
=

1

2L

[

1 + e−4δ − 2e−2δ
]

· Id×d.

The distribution is obtained by integrating the discrete underdamped Langevin diffusion (3) up

to time δ, with the specific choice of γ = 2 and u = 1/L. In other words, if p(i) is the distribution of

(xi, vi), then Zi+1(xi, vi) ∼ p(i+1) = Φ̃δp
(i). Refer to Lemma 11 in Appendix A for the derivation.

2.2. Main Result

Theorem 1 Let p(n) be the distribution of the iterate of Algorithm 2.1 after n steps starting with

the initial distribution p(0)(x, v) = 1x=x(0) ·1v=0. Let the initial distance to optimum satisfy ∥x(0)−
x∗∥22 ≤ D2. If we set the step size to be

δ = min

{

ε

104κ

√

1

d/m+D2
, 1

}
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and run Algorithm 2.1 for n iterations with

n ≥ max

{

208κ2

ε
·
√

d

m
+D2, 2κ

}

· log
(

24
(
d
m +D2

)

ε

)

,

then we have the guarantee that

W2(p
(n), p∗) ≤ ε.

Remark 2 The dependence of the runtime on d, ε is thus Õ
(√

d
ε

)

, which is a significant improve-

ment over the corresponding O
(
d
ε2

)
runtime of (overdamped) Langevin diffusion by Durmus and

Moulines (2016). Also note that in almost all regimes of interest δ ≪ 1.

We note that the log(24(d/m+ D2)/ε) factor can be shaved off by using a time-varying step size.

We present this result as Theorem 14 in Appendix C. In neither theorem have we attempted to

optimize the constants.

2.2.1. RESULT WITH STOCHASTIC GRADIENTS

Now we state convergence guarantees when we have access to noisy gradients, ∇̂f(x) = ∇f(x)+ξ,

where ξ is a independent random variable that satisfies

1. The noise is unbiased – E [ξ] = 0.

2. The noise has bounded variance – E[∥ξ∥22] ≤ dσ2.

Each step of the dynamics is now driven by the SDE,

dv̂t = −γv̂tdt− u∇̂f(x̂0)dt+ (
√

2γu)dBt (4)

dx̂t = v̂sdt,

with an initial condition (x̂0, v̂0) ∼ p̂0. Let p̂t and Φ̂t be defined analogously to pt and Φt for

(xt, vt) in Section 1.4.3.

Theorem 3 (Proved in Appendix D) Let p(n) be the distribution of the iterate of Algorithm D

(presented in Appendix D) after n steps starting with the initial distribution p(0)(x, v) = 1x=x(0) ·
1v=0. Let the initial distance to optimum satisfy ∥x(0) − x∗∥22 ≤ D2. If we set the step size to be

δ = min

{

ε

310κ

√

1

d/m+D2
,

ε2L2

1440σ2dκ
, 1

}

,

and run Algorithm 2.1 for n iterations with

n ≥ max

{

2880κ2σ2d

ε2L2
,
620κ2

ε
·
√

d

m
+D2, 2κ

}

· log
(

36
(
d
m +D2

)

ε

)

,

then we have the guarantee that

W2(p
(n), p∗) ≤ ε.

Remark 4 Note that when the variance in the gradients – σ2d is large we recover back the rate of

overdamped Langevin diffusion and we need Õ(σ2κ2d/ϵ2) steps to achieve accuracy of ε in W2.
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3. Convergence of the Continuous-Time Process

In this section we prove Theorem 5, which demonstrates a contraction for solutions of the SDE

(1). We will use Theorem 5 along with a bound on the discretization error between (1) and (3) to

establish guarantees for Algorithm 2.1.

Theorem 5 Let (x0, v0) and (y0, w0) be two arbitrary points in R
2d. Let p0 be the Dirac delta

distribution at (x0, v0) and let p′0 be the Dirac delta distribution at (y0, w0). We let u = 1/L and

γ = 2. Then for every t > 0, there exists a coupling ζt(x0, v0, y0, w0) ∈ Γ(Φtp0,Φtp
′
0) such that

E(xt,vt,yt,wt)∼ζt((x0,v0,y0,w0))

[
∥xt − yt∥22 + ∥(xt + vt)− (yt + wt)∥22

]
(5)

≤ e−t/κ
{
∥x0 − y0∥22 + ∥(x0 + v0)− (y0 + w0)∥22

}
.

Remark 6 A similar objective function was used in Eberle et al. (2017) to prove contraction.

Given this theorem it is fairly easy to establish the exponential convergence of the continuous-time

process to the stationary distribution in W2.

Corollary 7 Let p0 be arbitrary distribution with (x0, v0) ∼ p0. Let q0 and Φtq0 be the distribu-

tions of (x0, x0 + v0) and (xt, xt + vt), respectively (i.e., the images of p0 and Φtp0 under the map

g(x, v) = (x, x+ v)). Then

W2(Φtq0, q
∗) ≤ e−t/2κW2(q0, q

∗).

Proof We let ζ0 ∈ Γ(p0, p
∗) such that Eζ0

[
∥x0 − y0∥22 + ∥x0 − y0 + v0 − w0∥22

]
= W 2

2 (q0, q
∗).

For every x0, v0, y0, w0 we let ζt(x0, v0, y0, w0) be the coupling as prescribed by Theorem 5. Then

we have,

W 2
2 (qt, q

∗)

(i)

≤ E(x0,v0,y0,w0)∼ζ0

[

E(xt,vt,yt,wt)∼ζt(x0,v0,y0,w0)

[

∥xt − yt∥22 + ∥xt − yt + vt − wt∥22
∣
∣
∣x0, y0, v0, w0

]]

(ii)

≤ E(x0,v0,y0,w0)∼ζ0

[

e−t/κ
(
∥x0 − y0∥22 + ∥x0 − y0 + v0 − w0∥22

)]

(iii)
= e−t/κW 2

2 (q0, q
∗),

where (i) follows as the Wasserstein distance is defined by the optimal coupling and by the tower

property of expectation, (ii) follows by applying Theorem 5 and finally (iii) follows by choice of

ζ0 to be the optimal coupling. One can verify that the random variables (xt, xt + vt, yt, yt + wt)
defines a valid coupling between qt and q∗. Taking square roots completes the proof.

Lemma 8 (Sandwich Inequality) The triangle inequality for the Euclidean norm implies that

1

2
W2(pt, p

∗) ≤W2(qt, q
∗) ≤ 2W2(pt, p

∗). (6)

Thus we also get convergence of Φtp0 to p∗:

W2(Φtp0, p
∗) ≤ 4e−t/2κW2(p0, p

∗).

7
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Proof Using Young’s inequality, we have

∥x+ v − (x′ + v′)∥22 ≤ 2∥x− x′∥22 + 2∥v − v′∥22.
Let γt ∈ Γopt(pt, p

∗). Then

W2(qt, q
∗) ≤

√

E(x,v,x′,v′)∼γt
[
∥x− x′∥22 + ∥x+ v − (x′ + v′)∥22

]

≤
√

E(x,v,x′,v′)∼γt
[
3∥x− x′∥22 + 2∥v − v′∥22

]

≤ 2
√

E(x,v,x′,v′)∼γt
[
∥x− x′∥22 + ∥v − v′∥22

]
= 2W2(pt, p

∗).

The other direction follows identical arguments, using instead the inequality

∥v − v′∥22 ≤ 2∥x+ v − (x′ + v′)∥22 + 2∥x− x′∥22.

We now turn to the proof of Theorem 5.

Proof [Proof of Theorem 5] We will prove Theorem 5 in four steps. Our proof relies on a syn-

chronous coupling argument, where pt and p′t are coupled (trivially) through independent p0 and p′0,

and through shared Brownian motion Bt.
Step 1: By the definition of the continuous time process (1), we get

d

dt
[(xt + vt)− (yt + wt)] =− (γ − 1)vt − u∇f(xt)− {−(γ − 1)wt − u∇f(yt)} .

The two processes are coupled synchronously which ensures that the Brownian motion terms cancel

out. For ease of notation, we define zt ≜ xt − yt and ψt ≜ vt −wt. As f is twice differentiable, by

Taylor’s theorem we have

∇f(xt)−∇f(yt) =
[∫ 1

0
∇2f(xt + h(yt − xt))dh

]

︸ ︷︷ ︸

≜Ht

zt.

Using the definition of Ht we obtain

d

dt
[zt + ψt] =− ((γ − 1)ψt + uHtzt).

Similarly we also have the following derivative for the position update:

d

dt
[xt − yt] =

d

dt
[zt] = ψt.

Step 2: Using the result from Step 1, we get

d

dt

[

∥zt + ψt∥22 + ∥zt∥22
]

= −2⟨(zt + ψt, zt), ((γ − 1)ψt + uHtzt,−ψt)⟩

= −2
[
zt + ψt zt

]
[
(γ − 1)Id×d uHt − (γ − 1)Id×d

−Id×d Id×d

]

︸ ︷︷ ︸

≜St

[
zt + ψt
zt

]

(7)

8



UNDERDAMPED LANGEVIN MCMC: A NON-ASYMPTOTIC ANALYSIS

Here (zt + ψt, zt) denotes the concatenation of zt + ψt and zt.
Step 3: Note that for any vector x ∈ R

2d the quadratic form x⊤Stx is equal to

x⊤Stx = x⊤
(
St + S⊤

t

2

)

x.

Let us define the symmetric matrix Qt = (St + S⊤
t )/2. We now compute and lower bound the

eigenvalues of the matrixQt by making use of an appropriate choice of the parameters γ and u. The

eigenvalues of Qt are given by the characteristic equation

det

[

(γ − 1− λ)Id×d
uHt−(γ)Id×d

2
uHt−(γ)Id×d

2 (1− λ)Id×d

]

= 0.

By invoking a standard result of linear algebra (stated in the Appendix as Lemma 18), this is equiv-

alent to solving the equation

det

(

(γ − 1− λ)(1− λ)Id×d −
1

4
(uHt − γId×d)

2

)

= 0.

Next we diagonalize Ht and get d equations of the form

(γ − 1− λ)(1− λ)− 1

4
(uΛj − γ)2 = 0,

where Λj with j ∈ {1, . . . d} are the eigenvalues of Ht. By the strong convexity and smoothness

assumptions we have 0 < m ≤ Λj ≤ L. We plug in our choice of parameters, γ = 2 and u = 1/L,

to get the following solutions to the characteristic equation:

λ∗j = 1±
(

1− Λj
2L

)

.

This ensures that the minimum eigenvalue of Qt satisfies λmin(Qt) ≥ 1/2κ.

Step 4: Putting this together with our results in Step 2 we have the lower bound

[zt + ψt, zt]
⊤ St [zt + ψt, zt] = [zt + ψt, zt]

⊤Qt [zt + ψt, zt] ≥
1

2κ

[
∥zt + ψt∥22 + ∥zt∥22

]
.

Combining this with (7) yields

d

dt

[

∥zt + ψt∥22 + ∥zt∥22
]

≤ −1

κ

[
∥zt + ψt∥22 + ∥zt∥22

]
.

The convergence rate of Theorem 5 follows immediately from this result by applying Grönwall’s

inequality (Corollary 3 in Dragomir, 2003).

9
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4. Discretization Analysis

In this section, we study the solutions of the discrete process (3) up to t = δ for some small δ.

Here, δ represents a single step of the Langevin MCMC algorithm. In Theorem 9, we will bound

the discretization error between the continuous-time process (1) and the discrete process (3) starting

from the same initial distribution. In particular, we bound W2(Φδp0, Φ̃δp0). This will be sufficient

to get the convergence rate stated in Theorem 1. Recall the definition of Φt and Φ̃t from (2).

Furthermore, we will assume for now that the kinetic energy (second moment of velocity) is

bounded for the continuous-time process,

∀t ∈ [0, δ] Ept

[
∥v∥22

]
≤ EK . (8)

We derive an explicit bound on EK (in terms of problem parameters d, L,m etc.) in Lemma 12 in

Appendix B.

In this section, we will repeatedly use the following inequality:

∥
∥
∥
∥

∫ t

0
vsds

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

1

t

∫ t

0
t · vsds

∥
∥
∥
∥

2

2

≤ t

∫ t

0
∥vs∥22ds,

which follows from Jensen’s inequality using the convexity of ∥ · ∥22.

We now present our main discretization theorem:

Theorem 9 Let Φt and Φ̃t be as defined in (2) corresponding to the continuous-time and discrete-

time processes respectively. Let p0 be any initial distribution and assume that the step size δ ≤ 1.

As before we choose u = 1/L and γ = 2. Then the distance between the continuous-time process

and the discrete-time process is upper bounded by

W2(Φδp0, Φ̃δp0) ≤ δ2
√

2EK
5
.

Proof We will once again use a standard synchronous coupling argument, in which Φδp0 and Φ̃δp0
are coupled through the same initial distribution p0 and common Brownian motion Bt.

First, we bound the error in velocity. By using the expression for vt and ṽt from Lemma 10, we

have

E

[

∥vs − ṽs∥22
]

(i)
= E

[∥
∥
∥
∥
u

∫ s

0
e−2(s−r) (∇f(xr)−∇f(x0)) dr

∥
∥
∥
∥

2

2

]

= u2E

[∥
∥
∥
∥

∫ s

0
e−2(s−r) (∇f(xr)−∇f(x0)dr)

∥
∥
∥
∥

2

2

]

(ii)

≤ su2
∫ s

0
E

[∥
∥
∥e−2(s−r) (∇f(xr)−∇f(x0))

∥
∥
∥

2

2

]

dr

(iii)

≤ su2
∫ s

0
E

[

∥(∇f(xr)−∇f(x0))∥22
]

dr
(iv)

≤ su2L2

∫ s

0
E

[

∥xr − x0∥22
]

dr

(v)
= su2L2

∫ s

0
E

[∥
∥
∥
∥

∫ r

0
vwdw

∥
∥
∥
∥

2

2

]

dr
(vi)

≤ su2L2

∫ s

0
r

(∫ r

0
E
[
∥vw∥22

]
dw

)

dr

(vii)

≤ su2L2EK
∫ s

0
r

(∫ r

0
dw

)

dr =
s4u2L2EK

3
,

10
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where (i) follows from the Lemma 10 and v0 = ṽ0, (ii) follows from application of Jensen’s

inequality, (iii) follows as |e−4(s−r)| ≤ 1, (iv) is by application of the L-smoothness property of

f(x), (v) follows from the definition of xr, (vi) follows from Jensen’s inequality and (vii) follows

by the uniform upper bound on the kinetic energy assumed in (8), and proven in Lemma 12. This

completes the bound for the velocity variable. Next we bound the discretization error in the position

variable:

E

[

∥xs − x̃s∥22
]

= E

[∥
∥
∥
∥

∫ s

0
(vr − ṽr)dr

∥
∥
∥
∥

2

2

]

≤ s

∫ s

0
E
[
∥vr − ṽr∥22

]
dr

≤ s

∫ s

0

r4u2L2EK
3

dr =
s6u2L2EK

15
,

where the first line is by coupling through the initial distribution p0, the second line is by Jensen’s

inequality and the third inequality uses the preceding bound. Setting s = δ and by our choice of

u = 1/L we have that the squared Wasserstein distance is bounded as

W 2
2 (Φδp0, Φ̃δp0) ≤ EK

(
δ4

3
+
δ6

15

)

.

Given our assumption that δ is chosen to be smaller than 1, this gives the upper bound:

W 2
2 (Φδp0, Φ̃δp0) ≤

2EKδ4
5

.

Taking square roots establishes the desired result.

5. Proof of Theorem 1

Having established the convergence rate for the continuous-time SDE (1) and having proved a dis-

cretization error bound in Section 4 we now put these together and establish our main result for

underdamped Langevin MCMC.

Proof [Proof of Theorem 1] From Corollary 7, we have that for any i ∈ {1, . . . , n}

W2(Φδq
(i), q∗) ≤ e−δ/2κW2(q

(i), q∗).

By the discretization error bound in Theorem 9 and the Sandwich Inequality (6), we get

W2(Φδq
(i), Φ̃δq

(i)) ≤ 2W2(Φδp
(i), Φ̃δp

(i)) ≤ δ2
√

8EK
5
.

By the triangle inequality for W2,

W2(q
(i+1), q∗) =W2(Φ̃δq

(i), q∗) ≤W2(Φδq
(i), Φ̃δq

(i)) +W2(Φδq
(i), q∗) (9)

≤ δ2
√

8EK
5

+ e−δ/2κW2(q
(i), q∗). (10)

11
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Let us define η = e−δ/2κ. Then by applying (10) n times we have:

W2(q
(n), q∗) ≤ ηnW2(q

(0), q∗) +
(
1 + η + . . .+ ηn−1

)
δ2
√

8EK
5

≤ 2ηnW2(p
(0), p∗) +

(
1

1− η

)

δ2
√

8EK
5
,

where the second step follows by summing the geometric series and by applying the upper bound

(6). By another application of (6) we get:

W2(p
(n), p∗) ≤ 4ηnW2(p

(0), p∗)
︸ ︷︷ ︸

≜T1

+

(
1

1− η

)

δ2
√

32EK
5

︸ ︷︷ ︸

≜T2

. (11)

Observe that, 1 − η = 1 − e−δ/2κ ≥ δ/(4κ). This inequality follows as δ/κ < 1. We now bound

both terms T1 and T2 at a level ε/2 to bound the total errorW2(p
(n), p∗) at a level ε. Note that choice

of δ = εκ−1
√

1/10816 (d/m+D2) ≤ εκ−1
√

5/2048EK (by upper bound on EK in Lemma 12)

ensures that,

T2 =

(
1

1− η

)

δ2
√

32EK
5

≤ 4κ

δ

(

δ2
√

32EK
5

)

≤ ε

2
.

To control T1 < ε/2 it is enough to ensure that

n >
1

log(η)
log

(

8W2(p
(0), p∗)

ε

)

.

In Lemma 13 we establish a bound on W 2
2 (p

(0), p∗) ≤ 3(d/m+D2). This motivates our choice of

n > 2κ
δ log

(
24( d

m
+D2)
ε

)

, which establishes our claim.

6. Conclusion

We present an MCMC algorithm based on the underdamped Langevin diffusion and provide guar-

antees for its convergence to the invariant distribution in 2-Wasserstein distance. Our result is a

quadratic improvement in both dimension (
√
d instead of d) as well as error (1/ε instead of 1/ε2)

for sampling from strongly log-concave distributions compared to the best known results for over-

damped Langevin MCMC. In its use of underdamped, second-order dynamics, our work also has

connections to Nesterov acceleration (Nesterov, 1983) and to Polyak’s heavy ball method (Polyak,

1964), and adds to the growing body of work that aims to understand acceleration of first-order

methods as a discretization of continuous-time processes.

An interesting open question is whether we can improve the dependence on the condition num-

ber from κ2 to κ. Another interesting direction would to explore if our approach can be used to

sample efficiently from non-log-concave distributions. Also, lower bounds in the MCMC field are

largely unknown and it would extremely useful to understand the gap between existing algorithms

and optimal achievable rates. Another question could be to explore the wider class of second-order

Langevin equations and study if their discretizations provide better rates for sampling from particu-

lar distributions.
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Appendix A. Explicit Discrete Time Updates

In this section we calculate integral representations of the solutions to the continuous-time process

(1) and the discrete-time process (3).

Lemma 10 The solution (xt, vt) to the underdamped Langevin diffusion (1) is

vt = v0e
−γt − u

(∫ t

0
e−γ(t−s)∇f(xs)ds

)

+
√

2γu

∫ t

0
e−γ(t−s)dBs (12)

xt = x0 +

∫ t

0
vsds.

The solution (x̃t, ṽt) of the discrete underdamped Langevin diffusion (3) is

ṽt = ṽ0e
−γt − u

(∫ t

0
e−γ(t−s)∇f(x̃0)ds

)

+
√

2γu

∫ t

0
e−γ(t−s)dBs (13)

x̃t = x̃0 +

∫ t

0
ṽsds.

Proof It can be easily verified that the above expressions have the correct initial values (x0, v0) and

(x̃0, ṽ0). By taking derivatives, one also verifies that they satisfy the differential equations in (1)

and (3).

Next we calculate the moments of the Gaussian used in the updates of Algorithm 2.1. These are

obtained by integrating the expression for the discrete-time process presented in Lemma 10.

Lemma 11 Conditioned on (x̃0, ṽ0), the solution (x̃t, ṽt) of (3) with γ = 2 and u = 1/L is a

Gaussian with conditional mean,

E [ṽt] = ṽ0e
−2t − 1

2L
(1− e−2t)∇f(x̃0)

E [x̃t] = x̃0 +
1

2
(1− e−2t)ṽ0 −

1

2L

(

t− 1

2

(
1− e−2t

)
)

∇f(x̃0),

and with conditional covariance,

E

[

(x̃t − E [x̃t]) (x̃t − E [x̃t])
⊤
]

=
1

L

[

t− 1

4
e−4t − 3

4
+ e−2t

]

· Id×d

E

[

(ṽt − E [ṽt]) (ṽt − E [ṽt])
⊤
]

=
1

L
(1− e−4t) · Id×d

E

[

(x̃t − E [x̃t]) (ṽt − E [ṽt])
⊤
]

=
1

2L

[
1 + e−4t − 2e−2t

]
· Id×d.

Proof It follows from the definition of Brownian motion that the distribution of (x̃t, ṽt) is a 2d-

dimensional Gaussian distribution. We will compute its moments below, using the expression in

Lemma 10 with γ = 2 and u = 1/L.

Computation of the conditional means is straightforward, as we can simply ignore the zero-mean

Brownian motion terms:

E [ṽt] = ṽ0e
−2t − 1

2L
(1− e−2t)∇f(x̃0) (14)

E [x̃t] = x̃0 +
1

2
(1− e−2t)ṽ0 −

1

2L

(

t− 1

2

(
1− e−2t

)
)

∇f(x̃0). (15)

16
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The conditional variance for ṽt only involves the Brownian motion term:

E

[

(ṽt − E [ṽt]) (ṽt − E [ṽt])
⊤
]

=
4

L
E

[(∫ t

0
e−2(t−s)dBs

)(∫ t

0
e−2(s−t)dBs

)⊤]

=
4

L

(∫ t

0
e−4(t−s)ds

)

· Id×d

=
1

L
(1− e−4t) · Id×d.

The Brownian motion term for x̃t is given by

√

4

L

∫ t

0

(∫ r

0
e−2(r−s)dBs

)

dr =

√

4

L

∫ t

0
e2s
(∫ t

s
e−2rdr

)

dBs =

√

1

L

∫ t

0

(

1− e−2(t−s)
)

dBs.

Here the second equality follows by Fubini’s theorem. The conditional covariance for x̃t now

follows as

E

[

(x̃t − E [x̃t]) (x̃t − E [x̃t])
⊤
]

=
1

L
E

[(∫ t

0

(

1− e−2(t−s)
)

dBs

)(∫ t

0

(

1− e−2(t−s)
)

dBs

)⊤]

=
1

L

[∫ t

0

(

1− e−2(t−s)
)2
ds

]

· Id×d

=
1

L

[

t− 1

4
e−4t − 3

4
+ e−2t

]

· Id×d.

Finally we compute the cross-covariance between x̃t and ṽt,

E

[

(x̃t − E [x̃t]) (ṽt − E [ṽt])
⊤
]

=
2

L
E

[(∫ t

0

(

1− e−2(t−s)
)

dBs

)(∫ t

0
e−2(t−s)dBs

)⊤]

=
2

L

[∫ t

0
(1− e−2(t−s))(e−2(t−s))ds

]

· Id×d

=
1

2L

[
1 + e−4t − 2e−2t

]
· Id×d.

We thus have an explicitly defined Gaussian. Notice that we can sample from this distribution

in time linear in d, since all d coordinates are independent.

Appendix B. Controlling the Kinetic Energy

In this section, we establish an explicit bound on the kinetic energy EK in (8) which is used to

control the discretization error at each step.

Lemma 12 (Kinetic Energy Bound) Let p(0)(x, v) = 1x=x(0) ·1v=0— the Dirac delta distribution

at (x(0), 0). Let the initial distance from the optimum satisfy ∥x(0) − x∗∥22 ≤ D2 and u = 1/L as

before. Further let p(i) be defined as in Theorem 1 for i = 1, . . . n, with step size δ and number
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of iterations n as stated in Theorem 1. Then for all i = 1, . . . n and for all t ∈ [0, δ], we have the

bound

E(x,v)∼Φtp(i)
[
∥v∥22

]
≤ EK ,

with EK = 26(d/m+D2).

Proof We first establish an inequality that provides an upper bound on the kinetic energy for any

distribution p.

Step 1: Let p be any distribution over (x, v), and let q be the corresponding distribution over

(x, x + v). Let (x′, v′) be random variables with distribution p∗. Further let ζ ∈ Γopt(p, p
∗) such

that,

Eζ

[
∥x− x′∥22 + ∥(x− x′) + (v − v′)∥22

]
=W 2

2 (q, q
∗).

Then we have,

Ep

[
∥v∥22

]
= Eζ

[
∥v − v′ + v′∥22

]

≤ 2Ep∗
[
∥v∥22

]
+ 2Eζ

[
∥v − v′∥22

]

≤ 2Ep∗
[
∥v∥22

]
+ 4Eζ

[
∥x+ v − (x′ + v′)∥22 + ∥x− x′∥22

]

= 2Ep∗
[
∥v∥22

]
+ 4W 2

2 (q, q
∗), (16)

where for the second and the third inequality we have used Young’s inequality, while the final line

follows by optimality of ζ.

Step 2: We know that p∗ ∝ exp(−(f(x) + L
2 ∥v∥22)), so we have Ep∗

[
∥v∥22

]
= d/L.

Step 3: For our initial distribution p(0)(q(0)) we have the bound

W 2
2 (q

(0), q∗) ≤ 2Ep∗
[
∥v∥22

]
+ 2Ex∼p(0),x′∼p∗

[
∥x− x′∥22

]
=

2d

L
+ 2Ep∗

[

∥x− x(0)∥22
]

,

where the first inequality is an application of Young’s inequality. The second term is bounded below,

Ep∗

[

∥x− x(0)∥22
]

≤ 2Ep∗
[
∥x− x∗∥22

]
+ 2∥x(0) − x∗∥22 ≤

2d

m
+ 2D2,

where the first inequality is again by Young’s inequality. The second line follows by applying

Theorem 17 to control Ep∗
[
∥x− x∗∥22

]
. Combining these we have the bound,

W 2
2 (q

(0), q∗) ≤ 2d

(
1

L
+

2

m

)

+ 4D2.

Putting all this together along with (16) we have

Ep(0)
[
∥v∥22

]
≤ 10d

L
+

16d

m
+ 16D2 ≤ 26

(
d

m
+D2

)

.

Step 4: By Theorem 5, we know that ∀t > 0,

W 2
2 (Φtq

(i), q∗) ≤W 2
2 (q

(i), q∗).
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This proves the theorem statement for i = 0. We will now prove it for i > 0 via induction. We have

proved it for the base case i = 0, let us assume that the result holds for some i > 0. Then by (11)

(along with our choice of step-size δ) applied up to the (i+ 1)th iteration, we know that

W 2
2 (q

(i+1), q∗) =W 2
2 (Φ̃δq

(i), q∗) ≤W 2
2 (q

(i), q∗).

Thus by (16) we have,

EΦtp(i)
[
∥v∥22

]
≤ EK ,

for all t > 0 and i ∈ {0, 1, . . . , n}.

Next we prove that the distance of the initial distribution p(0) to the optimum distribution p∗ is

bounded.

Lemma 13 Let p(0)(x, v) = 1x=x(0) ·1v=0— the Dirac delta distribution at (x(0), 0). Let the initial

distance from the optimum satisfy ∥x(0) − x∗∥22 ≤ D2 and u = 1/L as before. Then

W 2
2 (p

(0), p∗) ≤ 3

(

D2 +
d

m

)

.

Proof As p(0)(x, v) is a delta distribution, there is only one valid coupling between p(0) and p∗.

Thus we have

W 2
2 (p

(0), p∗) = E(x,v)∼p∗
[

∥x− x(0)∥22 + ∥v∥22
]

= E(x,v)∼p∗
[

∥x− x∗ + x∗ − x(0)∥22 + ∥v∥22
]

≤ 2Ex∼p∗(x)
[
∥x− x∗∥22

]
+ 2D2 + Ev∼p∗(v)

[
∥v∥22

]
,

where the final inequality follows by Young’s inequality and by the definition of D2. Note that

p∗(v) ∝ exp(−L∥v∥22/2), therefore Ev∼p∗(v)
[
∥v∥22

]
= d/L. By invoking Theorem 17 the first

term Ex∼p∗(x)
[
∥x− x∗∥22

]
is bounded by d/m. Putting this together we have,

W 2
2 (p

(0), p∗) ≤ 2
d

m
+
d

L
+ 2D2 ≤ 3

(
d

m
+D2

)

.

Appendix C. Varying Step Size

Here we provide a sharper analysis of underdamped Langevin MCMC by using a varying step size.

By choosing an adaptive step size we are able to shave off the log factor appearing in Theorem 1.

Theorem 14 Let the initial distribution p(0)(x, v) = 1x=x(0) · 1v=0 and let the initial distance to

optimum satisfy ∥x(0) − x∗∥22 ≤ D2. Also let W2(p
(0), p∗) ≤ 3

(
d
m +D2

)
< ϵ0. We set the initial

step size to be

δ1 =
ϵ0

2 · 104κ

√

1

d/m+D2
,
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and initial number of iterations,

n1 =
208κ2

ϵ0
·
(√

d

m
+D2

)

· log(16).

We define a sequence of ℓ epochs with step sizes (δ1, . . . , δℓ) and number of iterations (n1, . . . , nℓ)
where δ1 and n1 are defined as above. Choose ℓ = ⌈log(ϵ0/ε)/ log(2)⌉ and, for i ≥ 1 set δi+1 =
δi/2 and ni+1 = 2ni.

We run ℓ epochs of underdamped Langevin MCMC (Algorithm 2.1) with step size sequence

(δ1, δ2, . . . , δℓ) with number of iterations (n1, n2, . . . , nℓ) corresponding to each step size. Then we

have the guarantee

W2(p
(n), p∗) ≤ ε,

with total number of steps n = n1 + n2 + . . .+ nℓ being

n =
416 log(16)κ2

ε
·
(√

d

m
+D2

)

.

Proof Let the initial error in the probability distribution be W2(p
(0), p∗) = ϵ0. Then by the results

of Theorem 1 if we choose the step size to be

δ1 =
ϵ0

2 · 104κ

√

1

d/m+D2
,

then we have the guarantee that in

n1 =
208κ2

ϵ0
·
(√

d

m
+D2

)

· log(16)

steps the error will be less than ϵ1 = ϵ0/2. At this point we half the step size δ2 = δ1/2 and run for

n2 = 2n1 steps. After that we set δ3 = δ2/2 and run for double the steps n3 = 2n2 and so on. We

repeat this for ℓ steps. Then at the end if the probability distribution is p(n) by Theorem 1 we have

the guarantee that W2(p
(n), p∗) ≤ ϵ0/2

ℓ < ε. The total number of steps taken is

n1 + n2 . . .+ nℓ =

ℓ∑

i=1

ni

=
208κ2

ϵ0
·
(√

d

m
+D2

)

· log(16)
{
ℓ−1∑

i=0

2i

}

= 104 log(16)κ2 · 2
ℓ

ϵ0
·
(√

d

m
+D2

){
ℓ−1∑

i=0

2−i
}

≤ 104 log(16)κ2 · 2
ε
·
(√

d

m
+D2

)

{2}

=
416 log(16)κ2

ε
·
(√

d

m
+D2

)

,

20



UNDERDAMPED LANGEVIN MCMC: A NON-ASYMPTOTIC ANALYSIS

Algorithm 2: Stochastic Gradient Underdamped Langevin MCMC

Input : Step size δ < 1, number of iterations n, initial point (x(0), 0), smoothness parameter L
and stochastic gradient oracle ∇̂f(·)

for i = 0, 1, . . . , n− 1 do

Sample (xi+1, vi+1) ∼ Zi+1(xi, vi)
end

where the inequality follows by the choice of ℓ and an upper bound on the sum of the geometric

series.

Appendix D. Analysis with Stochastic Gradients

Here we state the underdamped Langevin MCMC algorithm with stochastic gradients. We will

borrow notation and work under the assumptions stated in Section 2.2.1.

DESCRIPTION OF ALGORITHM D

The random vector Zi+1(xi, vi) ∈ R
2d, conditioned on (xi, vi), has a Gaussian distribution with

conditional mean and covariance obtained from the following computations:

E
[
vi+1

]
= vie−2δ − 1

2L
(1− e−2δ)∇̂f(xi)

E
[
xi+1

]
= xi +

1

2
(1− e−2δ)vi − 1

2L

(

δ − 1

2

(

1− e−2δ
))

∇̂f(xi)

E

[(
xi+1 − E

[
xi+1

]) (
xi+1 − E

[
xi+1

])⊤]
=

1

L

[

δ − 1

4
e−4δ − 3

4
+ e−2δ

]

· Id×d

E

[(
vi+1 − E

[
vi+1

]) (
vi+1 − E

[
vi+1

])⊤]
=

1

L
(1− e−4δ) · Id×d

E

[(
xi+1 − E

[
xi+1

]) (
vi+1 − E

[
vi+1

])⊤]
=

1

2L

[

1 + e−4δ − 2e−2δ
]

· Id×d.

The distribution is obtained by integrating the discrete underdamped Langevin diffusion (4) up to

time δ, with the specific choice of γ = 2 and u = 1/L. In other words, if p(i) is the distribution of

(xi, vi), then Zi+1(xi, vi) ∼ p(i+1) = Φ̂δp
(i). Derivation is identical to the calculation in Appendix

A by replacing exact gradients ∇f(·) with stochastic gradients ∇̂f(·). A key ingredient as before in

understanding these updates is the next lemma which calculates the exactly the update at each step

when we are given stochastic gradients.

Lemma 15 The solution (x̂t, v̂t) of the stochastic gradient underdamped Langevin diffusion (4) is

v̂t = v̂0e
−γt − u

(∫ t

0
e−γ(t−s)∇̂f(x̂0)ds

)

+
√

2γu

∫ t

0
e−γ(t−s)dBs (17)

x̂t = x̂0 +

∫ t

0
v̂sds.
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Proof Note that they have the right initial values, by setting t = 0. By taking derivatives, one can

also verify that they satisfy the differential equation (4).

D.1. Discretization Analysis

In Theorem 16, we will bound the discretization error between the discrete process without noise in

the gradients (3) and the discrete process (4) starting from the same initial distribution.

Lemma 16 Let q0 be some initial distribution. Let Φ̃δ and Φ̂δ be as defined in (2) corresponding

to the discrete time process without noisy gradients and discrete-time process with noisy gradients

respectively. For any 1 > δ > 0,

W 2
2 (Φ̂δq0, q

∗) =W 2
2 (Φ̃δq0, q

∗) +
5δ2dσ2

L2
.

Proof Taking the difference of the dynamics in (13) and (17), and using the definition of ∇̂f(x).
We get that

v̂δ = ṽδ + u

(∫ δ

0
e−γ(s−δ)ds

)

ξ (18)

x̂δ = x̃δ + u

(∫ δ

0

(∫ r

0
e−γ(s−r)ds

)

dr

)

ξ,

where ξ is a zero-mean random variance with variance bounded by σ2d and is independent of the

Brownian motion. Let Γ1 be the set of all couplings between Φ̃δq0 and q∗ and let Γ2 be the set of

all couplings between Φ̂δq0 and q∗. Let γ1(θ, ψ) ∈ Γ1 be the optimal coupling between Φ̃δq0 and

q∗, i.e.

E(θ,ψ)∼γ1
[
∥θ − ψ∥22

]
=W 2

2 (Φ̃δq0, q
∗).

Let

([
x̃
w̃

]

,

[
x
w

])

∼ γ1. By the definition of γ1 we have the marginal distribution of

[
x̃
w̃

]

∼ Φ̃δq0.

Finally let us define the random variables

[
x̂
ŵ

]

≜

[
x̃
w̃

]

+ u





(∫ δ
0

(∫ r
0 e

−γ(s−r)ds
)
dr
)

ξ
(∫ δ

0

(∫ r
0 e

−γ(s−r)ds
)
dr +

∫ δ
0 e

−γ(s−δ)ds
)

ξ



 .
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By (18), it follows that

[
x̂
ŵ

]

∼ Φ̂δp0. Thus

([
x̂
ŵ

]

,

[
x
w

])

defines a valid coupling between

Φ̂tq0 and q∗. Let us now analyze the distance between q∗ and ∇̂δq0,

W 2
2 (Φ̂δq0, q

∗)

(i)

≤ Eγ1





∥
∥
∥
∥
∥
∥

[
x̃
ṽ

]

+ u





(∫ δ
0

(∫ r
0 e

−γ(s−r)ds
)
dr
)

ξ
(∫ δ

0

(∫ r
0 e

−γ(s−r)ds
)
dr +

∫ δ
0 e

−γ(s−δ)ds
)

ξ



−
[
x
v

]
∥
∥
∥
∥
∥
∥

2

2





(ii)
= Eγ1

[∥
∥
∥
∥

[
x̃
ṽ

]

−
[
x
v

]∥
∥
∥
∥

2

2

]

+ u · Eγ1





∥
∥
∥
∥
∥
∥





(∫ δ
0

(∫ r
0 e

−γ(s−r)ds
)
dr
)

ξ
(∫ δ

0

(∫ r
0 e

−γ(s−r)ds
)
dr +

∫ δ
0 e

−γ(s−δ)ds
)

ξ





∥
∥
∥
∥
∥
∥

2

2





(iii)

≤ Eγ1

[∥
∥
∥
∥

[
x̃
ṽ

]

−
[
x
v

]∥
∥
∥
∥

2

2

]

+ 4u2

((∫ δ

0

(∫ r

0
e−γ(s−r)ds

)

dr

)2

+

(∫ δ

0
e−γ(s−δ)ds

)2
)

dσ2

(iv)

≤ Eγ1

[∥
∥
∥
∥

[
x̃
ṽ

]

−
[
x
v

]∥
∥
∥
∥

2

2

]

+ 4u2
(
δ4

4
+ δ2

)

dσ2

(v)

≤ W 2
2 (Φ̃tq0, q

∗) + 5u2δ2dσ2,

where (i) is by definition of W2, (ii) is by independence and unbiasedness of ξ, (iii) is by Young’s

inequality and because E
[
∥ξ∥22

]
≤ dσ2, (iv) uses the upper bound e−γ(s−r) ≤ 1 and e−γ(s−t) ≤ 1,

and finally (v) is by definition of γ1 being the optimal coupling and the fact that δ ≤ 1. The choice

of u = 1/L yields the claim.

Given the bound on the discretization error between the discrete processes with and without the

stochastic gradient we are now ready to prove Theorem 3.

Proof [Proof of Theorem 3] From Corollary 7, we have that for any i ∈ {1, . . . , n}

W2(Φδq
(i), q∗) ≤ e−δ/2κW2(q

(i), q∗).

By the discretization error bound in Theorem 9 and the sandwich inequality (6), we get

W2(Φδq
(i), Φ̃δq

(i)) ≤ 2W2(Φδp
(i), Φ̃δp

(i)) ≤ δ2
√

8EK
5
.

By the triangle inequality for W2,

W2(Φ̃δq
(i), q∗) ≤W2(Φδq

(i), Φ̃δq
(i)) +W2(Φδq

(i), q∗)
(i)

≤ δ2
√

8EK
5

+ e−δ/2κW2(q
(i), q∗)

Combining this with the discretization error bound established in Lemma 16 we have,

W 2
2 (Φ̂tq

(i), q∗) ≤
(

e−δ/2κW2(q
(i), q∗) + δ2

√

8EK
5

)2

+
5δ2dσ2

L2
.
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By invoking Lemma 19 we can bound the value of this recursive sequence by,

W2(q
(n), q∗) ≤ e−nδ/2κW2(q

(0), q∗) +
δ2

1− e−δ/2κ

√

8EK
5

+
5δ2dσ2

L2

(

δ2
√

8EK
5 +

√

1− e−δ/κ
√

5δ2dσ2

L2

) .

By using the sandwich inequality (Lemma 8) we get,

W2(p
(n), p∗) ≤ 4e−nδ/2κW2(p

(0), p∗)
︸ ︷︷ ︸

T1

+
4δ2

1− e−δ/2κ

√

8EK
5

︸ ︷︷ ︸

T2

+
20δ2dσ2

L2

(

δ2
√

8EK
5 +

√

1− e−δ/κ
√

5δ2dσ2

L2

)

︸ ︷︷ ︸

T3

.

We will now control each of these terms at a level ε/3. By Lemma 13 we know W 2
2 (p

(0), p∗) ≤
3
(
d
m +D2

)
. So the choice,

n ≤ 2κ

δ
log

(

36
(
d
m +D2

)

ε

)

ensures that T1 is controlled below the level ε/3. Note that 1 − e−δ/2κ ≥ δ/4κ as δ/κ < 1. So

the choice δ < εκ−1
√

5/479232(d/m+D2) ≤ εκ−1
√

5/18432EK (by upper bound on EK in

Lemma 12) ensures,

T2 ≤
16δ2κ

δ

√

8EK
5

≤ ε

3
.

Finally δ ≤ ε2κ−1L2/1440dσ2 ensures T3 is bounded,

T3 =
20δ2dσ2

L2

(

δ2
√

8EK
5 +

√

1− e−δ/κ
√

5δ2dσ2

L2

) ≤ 20δ2dσ2

L2

(

δ2
√

8EK
5 +

√
5δ3dσ2

2L2κ

) ≤ 20δ2dσ2

L2
√

5δ3dσ2

2L2κ

≤ ε

3
.

This establishes our claim.

Appendix E. Technical Results

We state this Theorem by Durmus and Moulines (2016) used in the proof of Lemma 12.

Theorem 17 (Theorem 1 in Durmus and Moulines, 2016) For all t ≥ 0 and x ∈ R
d,

Ep∗
[
∥x− x∗∥22

]
≤ d

m
.
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The following lemma is a standard result in linear algebra regarding the determinant of a block

matrix. We apply this result in the proof of Theorem 5.

Lemma 18 (Theorem 3 in Silvester, 2000) If A,B,C and D are square matrices of dimension d,

and C and D commute, then we have

det

([
A B
C D

])

= det(AD −BC).

We finally present a useful lemma from (Dalalyan and Karagulyan, 2017) that we will use in

the proof of Theorem 3.

Lemma 19 (Lemma 7 in Dalalyan and Karagulyan, 2017) Let A, B and C be given non-negative

numbers such thatA ∈ {0, 1}. Assume that the sequence of non-negative numbers {xk}k∈N satisfies

the recursive inequality

x2k+1 ≤ [(A)xk + C]2 +B2

for every integer k ≥ 0. Then

xk ≤ Akx0 +
C

1−A
+

B2

C +
√

(1−A2)B
(19)

for all integers k ≥ 0.
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