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Abstract—Microelectronic circuits exhibit increasing variations
in performance, power consumption, and reliability parameters
across the manufactured parts and across use of these parts
over time in the field. These variations have led to increasing
use of overdesign and guardbands in design and test to ensure
yield and reliability with respect to a rigid set of datasheet
specifications. This paper explores the possibility of constructing
computing machines that purposely expose hardware variations
to various layers of the system stack including software. This
leads to the vision of underdesigned hardware that utilizes a
software stack that opportunistically adapts to a sensed or mod-
eled hardware. The envisioned underdesigned and opportunistic
computing (UnO) machines face a number of challenges related
to the sensing infrastructure and software interfaces that can
effectively utilize the sensory data. In this paper, we outline
specific sensing mechanisms that we have developed and their
potential use in building UnO machines.

Index Terms—Computer architecture, design automation,
design for manufacture, digital integrated circuits, micro-
procesors, reliability, system software.

I. Introduction

T
HE PRIMARY driver for innovations in computer sys-

tems has been the phenomenal scalability of the semicon-

ductor manufacturing process that has allowed us to literally

Manuscript received March 28, 2012; revised August 5, 2012; accepted
September 16, 2012. Date of current version December 19, 2012. This
work was supported in part by the National Science Foundation Variability
Expedition award under Grants CCF-1029030, CCF-1028831, CCF-1028888,
CCF-1029025, and CCF-1029783. The focus of the National Science Foun-
dation Computing Expedition on Variability-Aware Software for Efficient
Computing with Nanoscale Devices (http://www.variability.org) is to address
these challenges and develop prototypical UnO computing machines. This
paper was recommended by Associate Editor V. Narayanan.

P. Gupta, L. Dolecek, and M. B. Srivastava are with the University
of California, Los Angeles, CA 90024 USA (e-mail: puneet@ee.ucla.edu;
dolecek.ucla@gmail.com; mbs@ucla.edu).

Y. Agarwal, R. K. Gupta, T. S. Rosing, and S. Swanson are with the Univer-
sity of California, San Diego, CA 92093 USA (e-mail: yuvraj@cs.ucsd.edu;
rgupta@ucsd.edu; tajana@eng.ucsd.edu; swanson@eng.ucsd.edu).

N. Dutt and A. Nicolau are with the University of California, Irvine, CA
92617 USA (e-mail: dutt@ics.uci.edu; nicolau@ics.uci.edu).

S. Mitra is with Stanford University, Stanford, CA 447337 USA (e-mail:
subh@stanford.edu).

R. Kumar is with the University of Illinois at Urbana-Champaign, Urbana,
IL 61820 USA (e-mail: rakeshk@illinois.edu).

D. Sylvester is with the University of Michigan, Ann Arbor, MI 48105 USA
(e-mail: dennis@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2223467

print circuits and build systems at exponentially growing ca-

pacities for the last three decades. After reaping the benefits of

the Moore’s law driven cost reductions, we are now beginning

to experience dramatically deteriorating effects of material

properties on (active and leakage) power, and die yields. So far,

the problem has been confined to the hardware manufacturers

who have responded with increasing guardbands applied to

microelectronic chip designs. However, the problem continues

to worsen with critical dimensions shrinking to atomic scale.

For instance, the oxide in 22 nm process is only five atomic

layers thick, and gate length is only 42 atomic diameters

across. This has translated into exponentially increasing costs

of fabrication and equipment to achieve increasingly precise

control over manufacturing quality and scale.

We are beginning to see early signs of trouble that may

make benefits of semiconductor industry unattainable for all

but the most popular (hence highest volumes) of consumer

gadgets. Most problematic is the substantial fluctuation in

critical device/circuit parameters of the manufactured parts

across the die, die-to-die and over time due to increasing

susceptibility to errors and circuit aging-related wear-out.

Consequently, the microelectronic substrate on which modern

computers are built is increasingly plagued by variability in

performance (speed, power) and error characteristics, both

across multiple instances of a system and in time over its usage

life. Consider the variability in circuit delay and power as it has

increased over time as shown in Fig. 1. The most immediate

impact of such variability is on chip yields: a growing number

of parts are thrown away since they do not meet the timing

and power related specifications. Left unaddressed, this trend

toward parts that scale in neither capability nor cost will

cripple the computing and information technology industries.

The solution may stem from the realization that the problem

is not variability per se, rather how computer system designers

have been treating the variability. While chip components no

longer function like the precisely chiseled parts of the past,

the basic approach to the design and operation of computers

has remained unchanged. Software assumes hardware of fixed

specifications that hardware designers try hard to meet. Yet

hardware designers must accept conservative estimates of

hardware specifications and cannot fully leverage software’s

inherent flexibility and resilience. Guardband for hardware

0278-0070/$31.00 c© 2012 IEEE
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Fig. 1. Circuit variability as predicted by ITRS [2].

design increases cost—maximizing performance incurs too

much area and power overheads [1]. It leaves enormous

performance and energy potential untapped as the software

assumes lower performance than what a majority of instances

of that platform may be capable of most of the time.

In this paper, we outline a novel flexible hardware–software

stack and interface that use adaptation in software to re-

lax variation-induced guard-bands in hardware design. We

envision a new paradigm for computer systems, one where

nominally designed (and hence underdesigned) hardware parts

work within a software stack that opportunistically adapts to

variations.

This paper is organized as follows. The next section dis-

cusses sources of variability and exemplifies them with mea-

surements from actual systems. Section III gives an introduc-

tion of underdesigned and opportunistic computing. Section

IV outlines various methods of variation monitoring with ex-

amples. Section V discusses underdesigned and opportunistic

computing (UnO) hardware while Section VI discusses UnO

software stack implications. We conclude in Section VII.

II. Measured Variability in Contemporary

Computing Systems

Scaling of physical dimensions in semiconductor circuits

faster than tolerances of equipments used to fabricate them

has resulted in increased variability in circuit metrics such as

power and performance. In addition, new device and intercon-

nect architectures as well as new methods of fabricating them

are changing sources and nature of variability. In this section,

we discuss underlying physical sources of variation briefly, and

illustrate the magnitude of this variability visible to the soft-

ware layers by measured off-the-shelf hardware components.

There are four sources of hardware variation.

1) Manufacturing. The International Technology Roadmap

for Semiconductors (ITRS) highlights power/

performance variability and reliability management

in the next decade as a red brick (i.e., a problem

with unknown solutions) for design of computing

hardware. As an example, Fig. 2 shows within-die 3σ

Fig. 2. Frequency variation in an 80-core processor within a single die in
Intel’s 65 nm technology [4].

Fig. 3. Sleep power variability across temperature for ten instances of an off-
the-shelf ARM Cortex M3 processor [6]. Only 5 out of 10 measured boards
are shown for clarity.

performance variation of more than 25% at 0.8 V in a

recent experimental Intel processor. Similarly, on the

memory/storage front, recent measurements done by us

show 27% and 57% operation energy variation and 50%

bit error rate variation between nominally identical flash

devices (i.e., same part number) [3]. This variability

can also include variations coming from manufacturing

the same design at multiple silicon foundries.

2) Environment. ITRS projects Vdd variation to be 10%

while the operating temperature can vary from −30 °C

to 175°C (e.g., in the automotive context [5]) resulting

in over an order of magnitude sleep power variation (see

Fig. 3) resulting in several tens of percent performance

change and large power deviations.

3) Vendor. Parts with almost identical specifications can

have substantially different power, performance, or relia-

bility characteristics, as shown in Fig. 4. This variability

is a concern as single vendor sourcing is difficult for

large-volume systems.

4) Aging. Wires and transistors in integrated circuits suffer

substantial wear-out leading to power and performance

changes over time of usage (see Fig. 5). Physical mech-

anisms leading to circuit aging include bias temperature

instability (i.e., BTI where threshold voltage of tran-

sistors degrades over time), hot carrier injection (HCI),

where transistor threshold voltage degrades every time it

switches, and electromigration (EM), where wire width

shrinks as more currents passes through it.

In the remainder of this section, we give a few examples

of variability measurement in modern off-the-shelf computing

components.
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Fig. 4. Power variation across five 512 MB DDR2-533 DRAM parts [7].

Fig. 5. Normalized frequency degradation in a 65 nm ring oscillator due to
NBTI [8].

A. Power Variability in Contemporary Embedded Processors

Energy management methods in embedded systems rely on

knowledge of power consumption of the underlying computing

platform in various modes of operation. In previous work

[6], we measured and characterized instance and temperature-

dependent power consumption for the Atmel SAM3U, a

contemporary embedded processor based on an ARM Cortex

M3 core, and discussed the implications of this variation to

system lifetime and potential software adaptation. Fig. 3 shows

that at room temperature the measured sleep power spread was

9× which increased to 14× if temperature variation (20 °C to

60 °C) was included as well. 1 Such large variation in leakage

power is to be expected given its near exponential dependence

on varying manufacturing process parameters (e.g., gate length

and threshold voltage) as well as temperature. To the best of

our knowledge, this embedded processor was manufactured

in 90 nm or older technology. Given that the leakage as well

as leakage variability are likely to increase with technology

generations, we expect future embedded processors to fare

much worse in terms of variability. Another interesting point to

note is that six out of the ten boards that we measured were out

of datasheet specification highlighting the difficulty in ensuring

a pessimistic datasheet specification for sleep power.

On the same processor core, we measured active power

variation as well. The power spread at room temperature is

about 5%, and larger if temperature dependence is included as

well (see Fig. 6). Actual switching power has a weak linear

dependence on temperature and its process dependence is also

relatively small. Most of the temperature-dependent variation

1All temperature experiments were conducted in a controlled temperature
chamber. Further details can be found in [6]

Fig. 6. Measured active power variability for ARM Cortex M3 processor.
Only 5 out of 10 measured boards are shown for clarity.

observed is likely due to variation in short-circuit power at

lower temperatures and leakage component of active power at

higher temperatures.

B. Power Consumption Variability in Contemporary General

Purpose Processors

On the other end of the power and performance spectrum

are the higher end modern processors from Intel and AMD

that are meant for laptop, desktop, and server class devices.

Energy management is critically important in these platforms

due to battery lifetime concerns (mobile devices) or rising

energy costs (desktops and servers). In modern platforms,

the processor is often a dominant energy consumer and with

increasingly energy efficient designs has a very large dynamic

range of operation. As a result characterizing processor power

consumption accurately such that adaptive algorithms that can

manage their power consumption is key.

However, it is likely that characterizing power consumption

on just one instance of a processor may not be enough since

part-to-part power variability may be significant and knowing

its extent is therefore critical. Using a highly instrumented

Calpella platform from Intel, we were able to isolate the power

consumption of multiple subsystems within contemporary x86

processors (Intel Nehalem class). Using this Calpella plat-

form, and an extensive suite of single-threaded and modern

multithreaded benchmarks such as the SPEC CPU2006 and

PARSEC suites, we characterized the variability in power

consumption across multiple cores on the same die, and also

across cores on different dies. We used Linux cpu-sets

to pin the benchmark and the OS threads to specific cores

for these experiments. To minimize experimental error (which

is eventually very small as measured by standard deviations

across runs), we ran each benchmark configuration multiple

times (n = 5); we swapped the processors in and out and

repeated the experiments to eliminate any effects due to the

thermal couplings of the heatsink, as well as rebooted the

Calpella platform multiple times to account for any effects

due to the OS scheduling decisions.

Table I summarizes the variability in power consumption

across cores on six instances of identical dual-core Core i5–

540M processors for different configurations such as turning

TurboBoost ON or OFF and also turning processor sleep states

(C-states) ON or OFF. We do not show the variability across
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TABLE I

Variability in Power and Energy Consumption Measured Across Six Identical Core i5-540M Parts,

With Different Processor Features Enabled or Disabled

TurboBoost = OFF TurboBoost = ON

C-States = ON C-States = OFF C-States = ON C-States = OFF

Power Energy Power Energy Power Energy Power Energy

Maximum variation (for any particular benchmark) 22% 16.7% 16.8% 16.8% 11.7% 10.6% 15.1% 14.7%

Average variation (across all benchmarks) 14.8% 13.4% 14.7% 13.9% 8.6% 7.9% 13.2% 11.7%

Our data show that the variability across parts is indeed significant and it decreases with TurboBoost and processor C-states enabled due to reduction in
leakage power. The MaximumVariation values presented in depicts variability for a particular benchmark that shows the largest variation while the
AverageVariation shows the average variation in power and energy across all the benchmarks for a particular configuration.

multiple cores on the same processor (within die variability)

since it was quite low and instead focus on the variability

across instances (across-die variability). We also measure

benchmark completion times and use that to measure the

variability in energy consumption. The data presented in the

table are for our final benchmark set consists of 19 benchmarks

from the SPEC CPU 2006 benchmark set [9] chosen to cover

a wider range of resource usage patterns.

As shown in Table I the variation in power consumption

observed across dies is significant (maximum 22% for a par-

ticular benchmark and average 12.8% across all benchmarks)

and depends on the processor configuration. Our data provide

evidence that the power variation we observe is dominated

by the differences in leakage power across processor dies.

For instance, disabling the processor sleep states (C-states =

OFF) increases the parts of the chip that remain powered

on, thereby increasing the leakage power consumption and

in turn increasing the power variability. As shown in Table

I, the average power variation across all benchmarks indeed

increases when C-states are disabled (C-States = OFF case);

the variation increases from 8.6% (TurboBoost = ON, C-states

= ON) to 13.2% (TurboBoost = ON, C-States = OFF). Fur-

ther details about our measurement methodology and dataset,

extended results under different processor configurations, and

discussions about potential causes of this observed variability

can be found in [10].

C. Variation in Memories

The push toward “big data” applications has pushed the

performance, reliability, and cost of memory technologies to

the forefront of system design. Two technologies are playing

particularly important roles: DRAM (because it is very fast)

and NAND Flash (because it is nonvolatile, very dense/cheap,

and much faster than disk). In both technologies, variability

manifests itself as bit-errors, differences in performance, and

differences in energy efficiency.

a) Flash Memory: To attain ever-greater flash memory

densities, flash memory manufacturers are pushing the limits

of the process technology and the principles of operation that

underlie flash devices. The result is growing grow levels of

variability in flash performance at multiple scales.

Careful measurements of flash behavior [3] allow us to

quantify variability in flash’s read, write, and erase perfor-

mance, raw bit error rate, and energy consumption. The

results show both systematic variation with flash blocks and

Fig. 7. Programming performance exhibits wide and predictable variation
across pages within a single flash block. Since program power is constant,
the same effect leads to energy efficiency variation as well. Chip identifier
denotes the manufacturer (the initial letter), cell type (MLC or SLC), and
capacity. Error bars: one standard deviation.

random variation at multiple scales. Fig. 7 show the system-

atic variation we observe in program latency for multilevel

cell (MLC) flash devices. Power measurements of the same

operations show that power consumption is roughly constant

across pages, leading to a similar variation in energy per

programmed bit. We have demonstrated that SSD firmware

and the operating system can leverage this variation to improve

performance of high-priority IO requests or reduce energy

consumption during, for instance, battery powered operation.

Rising density has had as especially detrimental affect on

flash’s bit error rate and the number of program/erase cycles

a flash block can sustain before it becomes unusable. We

frequently observe variation of 10× or more in raw bit error

rate across blocks on the same chip. Even more insidious is the

decrease in data retention (i.e., how long data remain intact in

an idle block) with program/erase cycling: accelerated aging

measurements show that by the end of its program/erase life

time, data retention time drops by 90% (from 10 years to

1). We are using these and other measurements to predict

when individual flash blocks will go bad, and allocate different

types of data (e.g., long-term storage versus temporary files)

to different region of the flash memory within an SSD.

b) DRAM: [11] tested 22 double date rate (DDR3) dual

inline memory modules (DIMMs), and found that power usage

in DRAMs is dependent both on operation type (write, read,

and idle) as well as data, with write operations consuming

more than reads, and 1s in the data generally costing more

power than 0 s. Temperature had little effect (1%–3%) across
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Fig. 8. Maximum variations in write, read, and idle power by DIMM
Category, 30 °C. Instrumentation measurement error is less than 1%.

Fig. 9. Classification of UnO computing machines.

the −50 °C to 50 °C range. Variations were up to 12.29% and

16.40% for idle power within a single model and for different

models from the same vendor, respectively. In the scope of all

tested 1 gigabyte (GB) modules, deviations were up to 21.84%

in write power. The measured variability results are summa-

rized in Fig. 8. Our ongoing work addresses memory manage-

ment methods to leverage such power variations (for instance

variability-aware Linux virtual memory management [12]).

III. UnO Computing Machines

UnO computing machines provide a unified way of address-

ing variations due to manufacturing, operating conditions, and

even reliability failure mechanisms in the field: difficult-to-

predict spatiotemporal variations in the underlying hardware,

instead of being hidden behind conservative specifications, are

fully exposed to and mitigated by multiple layers of software.

A taxonomy of UnO machines is shown in Fig. 9. They can

be classified along the following two axes.

1) Type of Underdesign. Use parametrically underprovi-

sioned circuits (e.g., voltage overscaling as in [13], [14])

or be implemented with explicitly altered functional

description (e.g., [15]–[17]).

2) Type of Operation. Erroneous operation may rely upon

application’s level of tolerance to limited errors (as in

[18]–[20] to ensure continued operation. In contrast,

error-free UnO machines correct all errors (e.g., [13])

or operate hardware within correct-operation limits (e.g.,

[6], [21] ). Furthermore, for erroneous systems, the

exact error characteristics may or may not be known.

In parametrically underdesigned erroneous systems, it

may not be easy to infer the exact error behavior. For

instance, voltage overscaling can cause timing errors

thereby changing the functional behavior of the circuit

but the exact input dependence of such errors may be

tough to predict especially in the presence of process

or environmental variations. On the other hand, such

input to error mapping is known a priori for functionally

underdesigned systems (though it may be too complex

to keep track of).

A large class of applications is tolerant to certain kinds

of errors due to algorithmic or cognitive noise tolerance.

For example, certain multimedia and iterative applications are

tolerant to certain numerical errors and other errors in data.

An numerical or data error often simply affects the quality of

output for such applications. The number of errors tolerable

by such applications is bounded by the degree to which a

degradation in output quality is acceptable. System correctness

can be carefully relaxed for such applications for improved

power and performance characteristics. Note that only certain

classes of errors are acceptable. The system still needs to

avoid errors in control or errors that may cause exceptions or

I/O errors. Our recent work [22] presents a compiler analysis

framework for identifying vulnerable operations in error toler-

ant GPU applications. A large class of other applications, e.g.,

mission-critical applications, do not tolerate any error in the

output. For such applications, the system needs to guarantee

correct operation under all conditions. For such applications,

hardware monitoring mechanisms could be used to to identify

an aggressive, but safe operating point. Alternatively, hardware

error resilience mechanisms can be used to guarantee that no

hardware error is exposed to applications.

The IC design flow will use software adaptability and error

resilience for relaxed implementation and manufacturing

constraints. Instead of crashing and recovering from errors,

the UnO machines make proactive measurements and predict

parametric and functional deviations to ensure continued

operations and availability. This will preempt impact on

software applications, rather than just reacting to failures (as

is the case in fault-tolerant computing) or under-delivering

along power/performance/reliability axes. Fig. 10 shows the

UnO adaptation scheme. Underdesigned hardware may be

acceptable for appropriate software applications (i.e., the ones

that degrade gracefully in presence of errors or are made

robust). In other cases, software adaptation may be aided by

hardware signatures (i.e., measured hardware characteristics).

There are several ways to implement such adaptation ranging

from software-guided hardware power management to just-in-

time recompilation strategies. Some examples are described

later in Section V. For hardware design flow, the objective

is to develop efficient design and test methods, given that the

goal is no longer to optimize yield for fixed specifications, but

rather to ensure that designs exhibit well-behaved variability

characteristics that a well-configured software stack can easily

exploit.

IV. Sensing and Exposing Hardware Signatures

A hardware signature provides a way of capturing one

or more hardware characteristics of interest and transmitting
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Fig. 10. Examples of UnO adaptaion aided by embedded hardware moni-
toring.

these characteristics to the software at a given point in time.

Examples of hardware signatures include performance, power,

temperature, error rate, delay fluctuations, and working mem-

ory size.

Hardware signatures may be collected at various levels

of spatial and temporal granularities depending on hardware

and software infrastructure available to collect them and their

targeted use in the UnO context. UnO machines expose these

signatures to opportunistic software via architectural assists

to dynamically recognize and use interesting behaviors. Key

challenges in realizing this vision are as follows:

1) identification of hardware characteristics of interest and

derivation of corresponding signatures that can be ef-

fectively sensed and utilized by the architecture and

software layers;

2) techniques (hardware, software, or combinations

thereof) to enable effective sensing;

3) design of the overall platform to support a signature-

driven adaptive software stack.

A. Production Test of UnO Machines

Signatures can be collected at various points in time, for

example during production testing or boot-time, periodically

during runtime, or adaptively based on environmental condi-

tions (voltage, temperature), workload, and actions triggered

by other sensing actions. While runtime sensing is central to

UnO, it is supported by production-time sensing that goes

beyond traditional production testing methods that generally

focus on screening defective and/or binning manufactured

parts according to their power/performance characteristics.

Some of the challenges associated with production-time sens-

ing are listed below.

1) Today, performance/power binning is generally lim-

ited to high-end processors. For complex SoCs with

a large mix of heterogeneous components (including

a significant proportion of nonprocessor components),

it is difficult to create comprehensive tests to achieve

high-confidence binning. In contrast, we expect UnO

machines to support a large number of highly granular

bins. This requires innovations in production testing

techniques.

2) A wide range of parameters beyond traditional chip-

level power and performance may need to be mea-

sured and calibrated for UnO machines. Examples

include the noise margins and erroneous behaviors

of memory cells and sequential elements, error rates,

and degradation behaviors of various design blocks

and canary circuits under voltage/frequency overscal-

ing or voltage/temperature stress. behavior of various

functional blocks and their error/degradation behaviors.

With conventional production test methodologies, it

may be highly difficult to accomplish these tasks cost-

effectively.

3) Today’s production testing methodologies typically do

not factor in end-user application intent (some excep-

tions exist). Factoring in application intent can improve

manufacturing yield since several chips give accept-

able application behavior despite being defective (see

[18]). Establishing this defect to application behavior

mapping, especially in case of programmable, general

purpose computing systems is highly difficult. Factoring

in application behaviors during production testing may

require complex fault diagnosis (which can result in

expensive test time) and/or extensive use of functional

tests. Functional test generation is generally considered

to be “black art” and difficult to automate.

B. Runtime Sensing Methods

Techniques for collecting signatures during system runtime

can be classified into the following four categories.

1) Monitors. By monitors, we refer to structures that are

generally “decoupled” from the functional design (but

can be aware of it). Such structures are inserted (in

a sparse manner) to capture hardware characteristics

of interest. Several examples exist in the literature to

monitor various circuit characteristics (e.g., achievable

frequency [23], leakage power [24], or aging [25]). The

challenge is to minimize the overheads introduced by

the monitoring circuits; these overheads take the form of

area, delay, and/or power, as well as design complexity

while retaining accuracy.

2) Error Detection Circuits and In Situ Sensors. Circuit

delay variation can be characterized using a variety of

delay fault detection flip-flop designs (provided timing-

critical paths are exercised) [26]–[30]. These approaches

can be used either for concurrent error detection (i.e.,

detect a problem after errors appear in system data and

systems) or for circuit failure prediction (i.e., provide

early indications of impending circuit failures before

errors appear in system data and states) [27]. Depending

on the final objective, such error detection circuits may

be employed in a variety of ways, such as:

1) simply keep them activated all the time.

2) activate them periodically.

3) activate them based on operating conditions or

signatures collected by (simpler) monitors.

3) Online Self-Test and Diagnostics. Online self-test and

diagnostics techniques allow a system to test itself con-

currently during normal operation without any downtime
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TABLE II

Comparing Different Hardware Signature Generation Methods

Monitors Error indicators On-line self-test Software

and diagnostics inferences

Hardware costs Low Generally high Medium Low

Accuracy Low High High Low

Coverage Low High High Low

Hardware changes Required Generally required Generally required Minimal

Diagnosability Low Medium to low High Low

On-line operation Yes Yes Partial with Yes with

system support multiprogramming

Applicability Distributed effects General as long as Transient errors General but diagnosis

(failure mechanisms Localized events (generally) errors are created. cannot be detected. of problems is

addressed) not covered. difficult

visible to the end user. Major technology trends such as

the emergence of many-core SoC platforms with lots

of cores and accelerators, the availability of inexpensive

off-chip nonvolatile storage, and the wide-spread use of

test compression techniques for low-cost manufacturing

test create several new opportunities for online self-

test and diagnostics that overcome the limitations of

traditional pseudorandom logic built-in self-test (Logic

BIST) techniques [31]. In addition to hardware support,

effective online self-test diagnostics must be orchestrated

using software layers such as virtualization [32] and the

operating system [33].

4) Software-Based Inference. A compiler can use the func-

tional specification to automatically insert (in each com-

ponent) software-implemented test operations to dynam-

ically probe and determine which parts are working.

Such test operations may be used, for instance, to de-

termine working parts of the instruction set architecture

(ISA) for a given processor core. Software-implemented

test operations may be instrumented using a variety of

techniques: special test sequences with known inputs and

outputs, self-checking tests, and quick error detection

tests [34]–[41].

One area of recent work in monitors that could be employed

in UnO machines are aging sensors that estimate or measure

the degree of aging (for different mechanisms, such as negative

bias temperature instability, NBTI, or oxide degradation for

example) that a particular chip has experienced. One design

was presented in [25], where a unified NBTI and gate-

oxide wear-out sensor was demonstrated in a 45 nm CMOS

technology. With a very small area, sprinkling hundreds or

even thousands of such sensors throughout a design becomes

feasible, providing a fairly reliable indication of system ex-

pected lifetime.

Alternatively, in situ sensors directly measure the hardware

used in the chip itself. Such designs tend to incur relatively

higher overhead in area, performance, or some other metric.

One recent in situ design [42] reuses header devices aimed

at leakage reduction to evaluate the nature of leakage in a

circuit block. Area overhead in this case can be kept in the

5% range, though such checks must be scheduled (this can be

done without affecting user performance).

Since each method of runtime sensing inevitably makes a

fundamental tradeoff between cost, accuracy, and applicability

across various stages of system lifetime (see Table II), it is nec-

essary to combine these approaches to meet the area/power/test

time/accuracy constraints. Intelligent algorithms drawing from

recent work in information theory, compressive sensing (e.g.,

[43]), and similar fields can be used to adjust sampling

rates based on prior observations, detect data outliers, and

otherwise exploit the vast information being provided by the

runtime sensing techniques. In addition, to build models of

hardware variability that can be used by software layers (for

example, to decide which code versions to make available),

randomness and dependencies must be captured, which has

initially been approached using simplified probabilistic models

[44]. As mentioned earlier, collective use of many sensors

brings up questions of the appropriate monitoring granularity

(i.e., what to test when). Temporal granularity is determined

by time dependence of wear-out mechanisms, timescales of

ambient/operating variability and initial design-time guard-

band. Statistical system adaptation techniques must be able

to take advantage of fine granularity. This establishes a close

tie between system design and software adaptability versus

test procedures during manufacturing, and both must be co-

optimized for the best result (e.g., examples shown in [45]).

Frequently measuring high precision signatures (speed, power,

and error rate) at a large number of points in a circuit

incurs large overheads. Preliminary work [21] shows that

for discrete algorithm configurations or code versions, it is

possible to derive optimal quantization strategies (e.g., what

exact frequencies to test). Spatial granularity is dependent on

the magnitude of within-die process variations, heterogeneity

in design (e.g., use of multiple device types necessitating

multiple measurements) and opportunities of leveraging het-

erogeneity/deviations in the ISA (e.g., LOAD consuming more

power while ADD consuming less than expected).

Providing architectural and system support for test and

monitoring is equally important. For instance, CASP [31]

integrates microarchitecture support, as well as software-

assisted techniques utilizing virtual machine monitors and

operating systems, to efficiently orchestrate online self-test and

diagnostics at the system level. CASP provides efficient online

test access mechanisms to fetch high-quality test patterns from
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Fig. 11. Four phases of CASP operation that include software orchestration
to minimize the performance impact of self-test.

off-chip storage and apply them to various components in an

SoC in four phases (see Fig. 11).

A simple technique that stalls the component-under-test can

result in significant system performance degradation or even

visible system unresponsiveness [46]. An example software

optimization is CASP-aware OS scheduling [33]. We modified

the scheduler of a Linux operating system to consider the

unavailability of cores undergoing online self-test and diag-

nostics. Experimental results on a dual quad-core Xeon system

show that the performance impact of CASP on noninteractive

applications in the PARSEC benchmark suite is negligible

(e.g., < 1%) when spare cores are available.

V. Variability-Aware Software

Variability has been typically addressed by process, device,

and circuit designers with software designers remaining iso-

lated from it by a rigid hardware–software interface, which

leads to decreased chip yields and increased costs [1]. Re-

cently, there have been some efforts to handle variability at

higher layers of abstraction. For instance, software schemes

have been used to address voltage [47] or temperature variabil-

ity [48]. Hardware “signatures” are used to guide adaptation in

quality-sensitive multimedia applications in [49]. In embedded

sensing, [50], [51] propose sensor node deployment schemes

based on the variability in power across nodes.

A software stack that changes its functions to exploit and

adapt to runtime variations can operate the hardware platform

close to its operational limits. The key to this achievement

is to understand the information exchanges that need to take

place, and the design choices that exist for the responses to

variability, where they occur (i.e., which layer of software),

and when they occur (design or run time).

The hardware variability may be visible to the software in

several ways: changes in the availability of modules in the

platform (e.g., a processor core not being functional); changes

in module speed or energy performance (e.g., the maximum

feasible frequency for a processor core becoming lower or

its energy efficiency degraded); and changes in error rate of

modules (e.g., an ALU computing wrong results for a higher

fraction of inputs). The range of possible responses that the

software can make is rich: alter the computational load (e.g.,

throttle the data rate to match what the platform can sustain),

use a different set of hardware resources (e.g., use instructions

that avoid a faulty module or minimize use of a power hungry

module), change the algorithm (e.g., switch to an algorithm

that is more resilient to computational errors), and change

hardware’s operational setting (e.g., tune software-controllable

control knobs such as voltage/frequency).

These changes can occur at different places in the software

stack with corresponding tradeoffs in agility, flexibility, and

effectiveness: explicitly coded by the application developer

making use of special language features and API frame-

works; automatically synthesized during static or just-in-time

compilation given information about application requirements

and platform variability; and transparently managed by the

operating system resource scheduler.

A. Selective Use of Hardware Resources

One strategy for coping with variability is to selectively

choose units to perform a task from a pool of available

hardware. This can happen at different granularities where

variability may manifest itself across different cores in a

multicore processor, different memory banks, or different

servers in a data center. We briefly describe a few examples

below.

A large fraction of all integrated circuit failures are related to

thermal issues [52], [53]. A number of strategies are used to try

to minimize the effect of thermal variability on general purpose

designs, starting from on-chip, to within a single server and

finally at the large system level such as within datacenters. The

cost of cooling can reach up to 60% of datacenter running

costs [54]. The problem is further complicated by the fact

that software layers are designed to be completely unaware

of hardware process and thermal variability. [55] studied the

effect of temperature variability on mean time to failure

(MTTF) of general purpose processors. It compared the default

Linux scheduler with various thermal and power management

techniques implemented at the OS and hardware levels of a

16 core high end general purpose processor. The difference in

MTTF between default case and the best performing example

(including different dynamic power management schemes)

is as high as 73%. With relatively minor changes to the

operating system layer, the MTTF of devices can more than

double at lower energy cost by effectively leveraging hardware

characteristics.

In [19], the authors present an error resilient system ar-

chitecture (ERSA), a robust system architecture which targets

emerging applications such as recognition, mining, and syn-

thesis (RMS) with inherent error resilience, and ensures high

degree of resilience at low cost. While resilience of RMS

applications to errors in low-order bits of data is well known,

execution of such applications on error-prone hardware signif-

icantly degrades output quality (due to high-order bit errors

and crashes). ERSA avoids these pitfalls using a judicious

combination of the following key ideas.

1) Asymmetric reliability in many-core architectures:

ERSA consists of small number of highly reliable com-

ponents, together with a large number of components
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that are less reliable but account for most of the com-

putation capacity. Within an application, by assigning

the control-related code to reliable components and

the computation intensive code to relaxed reliability

components, it is possible to avoid highly conservative

overall system design.

2) Error-resilient algorithms at the core of probabilis-

tic applications: instead of traditional concurrent error

checks typically used in fault-tolerant computing, ERSA

relies on lightweight error checks such as timeouts,

illegal memory access checks, and application-aware

error compensation using the concepts of convergence

filtering and convergence damping.

3) Intelligent software optimizations: error injection ex-

periments on a multicore ERSA hardware prototype

demonstrate that even at very high error rates of 20

errors/flip-flop/108 cycles (equivalent to 25 000 er-

rors/core/s), ERSA maintains 90% or better accuracy

of output results, together with minimal impact on

execution time, for probabilistic applications such as the

K-Means clustering, LDPC decoding, and Bayesian net-

work inference. We also demonstrate the effectiveness of

ERSA in tolerating high rates of static memory errors

that are characteristic of emerging challenges related to

SRAM Vccmin problems and erratic bit errors.

In addition to processors, variation is also found in memory

subsystems. Experiments have shown that random access

memory chips are also subject to variations in power consump-

tion. [11] found up to 21.8% power variability across a series

of 1 GB DIMMs and up to 16.4% power variation across 1 GB

DIMMs belonging to the same vendor. Variation in memory

power consumption, error, and latency characteristics can be

handled by allowing the run time system to select different

application memory layout, initialization, and allocation strate-

gies for different application requirements. An architecture

for hardware-assisted variability-aware memory virtualization

(VaMV) that allows programmers to exploit application-level

semantic information [56] by annotating data structures and

partitioning their address space into regions with different

power, performance, and fault-tolerance guarantees (e.g., map

look-up tables into low-power fault-tolerant space or pixel data

in low-power nonfault-tolerant space) was explored in [57].

The VaMV memory supervisor allocates memory based on pri-

ority, application annotations, device signatures based on the

memory subsystem characteristics (e.g., power consumption),

and current memory usage. Experimental results on embedded

benchmarks show that VaMV is capable of reducing dynamic

power consumption by 63% on average while reducing total

execution time by an average of 34% by exploiting: 1) SRAM

voltage scaling, 2) DRAM power variability, and 3) Efficient

dynamic policy-driven variability-aware memory allocation.

B. Software Adaptations for Quality-Complexity Tradeoffs

Application parameters can be dynamically adapted to ex-

plore energy, quality, and performance tradeoffs [58]. For

example, Green [59] provides a software adaptation modality

where the programmer provides “breakable” loops and a

function to evaluate quality of service for a given number

Fig. 12. Hardware guided adaptation improves PSNR (for samples of video
sequences encoded using adaptive and nonadaptive methods, please see http:
//nanocad.ee.ucla.edu/Main/Codesign).

of iterations. The system uses a calibration phase to make

approximation decisions based on the quality of service re-

quirements specified by the programmer. At runtime, the

system periodically monitors quality of service and adapts the

approximation decisions as needed. Such adaptations can be

used to maximally leverage underlying hardware platform in

presence of variations.

In the context of multimedia applications, [21] demon-

strated how by adapting application parameters to the post

manufacturing hardware characteristics across different die,

it is possible to compensate for application quality losses

that might otherwise be significant in presence of process

variations. This adaptation in turn results in improved man-

ufacturing yield, relaxed requirement for hardware overdesign

and better application quality. Fig. 12 shows that quality-

variation tradeoff can differ significantly for different hardware

instances of a video encoder. In H.264 encoding, adapting

parameters such as subpixel motion estimation, FFT transform

window size, run length encoding mechanism, and size of

motion estimation search window can lead to significant yield

improvements (as much as 40% points at 0% overdesign), a

reduction in overdesign (by as much as 10% points at 80%

yield) as well as application quality improvements (about 2.6

dB increase in average PSNR at 80% yield). Though this

approach follows the error-free UnO machine model, exploting

errors also as a quality tuning axis has been explored in [60].

In context of erroneous UnO machines, several alternatives

exist ranging from detecting and then correcting faults within

the application as they arise (e.g., [61], [62]) to designing

applications to be inherently error-tolerant (e.g., application

robustification [63]). In addition, many applications have in-

herent algorithmic and cognitive error tolerance. For such

applications, significant performance and energy benefits can

be obtained by selectively allowing errors.

C. Alternate Code Paths

One broad class of approaches for coping with hardware

variability is for the software to switch to a different code

path in anticipation of or in response to a variability event.

Petabricks [64] and Eon [65] feature language extensions that

allow programmers to provide alternate code paths. In [64], the

compiler automatically generates and profiles combinations

of these paths for different quality/performance points. In
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[65], the runtime system dynamically chooses paths based

on energy availability. Levels is an energy-aware program-

ming abstraction for embedded sensors based on alternative

tasks [66]. Programmers define task levels, which provide

identical functionality with different quality of service and

energy usage characteristics. The run-time system chooses the

highest task levels that will meet the required battery lifetime.

While the systems described in [64], [65], and [66] do not

consider hardware variability, similar mechanisms for express-

ing application elasticity can be leveraged in a variability-

aware software system. For example, the application can read

the current hardware signature, or register interest in receiving

notifications or exceptions when a specific type or magnitude

of changes occur in that signature, as illustrated in scenarios

1 and 2 of Fig. 13. Application response to variability events

could be structured as transitions between different run-levels,

with code-blocks being activated or deactivated as a result of

transitions.

Algorithms and libraries with multiple implementations can

be matched to underlying hardware configuration to deliver the

best performance [67], [68]. Such libraries can be leveraged to

choose the algorithm that best tolerates the predicted hardware

variation and deliver a performance satisfying the quality-of-

service requirement. With support from the OS, the switch

to alternative algorithms may be done in an application-

transparent fashion by relinking a different implementation of

a standard library function.

D. Adjusting Hardware Operating Point

Variation-aware adjustment of hardware operating point,

whether in the context of adaptive circuits (e.g., [69]–[71]),

adaptive microarchitectures (e.g., [28], [72]–[74]), or software-

assisted hardware power management (e.g., [4], [75], [76])

has been explored extensively in literature. UnO software

stack will be cognizant of actuation mechanisms available in

hardware and utilize them in an application-aware manner.

E. An Example UnO Software Stack for Embedded Sensing

Throttling the workload is a common strategy to achieve

system lifetime objectives in battery powered systems. A par-

ticularly common technique is duty cycling, where the system

is by default in a sleep state and is woken up periodically to

attend to pending tasks and events. A higher duty cycle rate

typically translates into higher quality of service and a typical

application-level goal is to maximize quality of data through

higher duty cycles, while meeting a lifetime goal. Duty cycling

is particularly sensitive to variations in sleep power at low duty

cycling ratios. Variability implies that any fixed, network-wide

choice of duty cycle ratio that is selected to ensure desired

lifetime needs to be overly conservative and result in lower

quality of sensing or lifetime.

In order to maximize the sensing quality in the presence

of power variation, an opportunistic sensing software stack

can help discover and adapt the application duty cycle ratio to

power variations across parts and over time. The run-time sys-

tem for the opportunistic stack has to keep track of changes in

hardware characteristics and provide this information through

Fig. 13. Designing a software stack for variability-aware duty cycling.

interfaces accessible to either the system or the applications.

Fig. 13 shows several different ways such an opportunistic

stack may be organized; the scenarios shown differ in how

the sense-and-adapt functionality is split between applications

and the operating system. Scenario 1 relies on the application

polling the hardware for its current “signature.” In the second

scenario, the application handles variability events generated

by the operating system. In the last scenario, handling of

variability is largely offloaded to the operating system.

Using architecture similar to that of scenario 3 in Fig. 13,

[6] explored a variability-aware duty cycle scheduler where

application modules specify a range of acceptable duty cy-

cling ratios, and the scheduler selects the actual duty cycle

based on run-time monitoring of operational parameters, and

a power-temperature model that is learned off-line for the

specific processor instance. Two programming abstractions are

provided: tasks with variable iterations and tasks with variable

period. For the first, the programmer provides a function that

can be invoked repeatedly a bounded number of times within

each fixed period. For the second, the application programmer

provides a function that is invoked once within each variable

but bounded period of time. The system adjusts the number of

iterations or period of each task based on the allowable duty

cycle. The scheduler determines an allowable duty cycle based

on: 1) sleep and active power versus temperature curves for

each instance; 2) temperature profile for the application, which

can be precharacterized or learned dynamically; 3) lifetime

requirement; and 4) battery capacity.

In an evaluation with ten instances of Atmel SAM3U

processors, [6] found that variability-aware duty cycling yields

a 3 − 22x improvement in total active time over schedules

based on worst-case estimations of power, with an average

improvement of 6.4x across a wide variety of deployment

scenarios based on collected temperature traces. Conversely,

datasheet power specifications fail to meet required lifetimes

by 7%–15%, with an average 37 days short of a required

lifetime of one year. Finally, a target localization application

using variability-aware duty cycle yields a 50% improvement

in quality of results over one based on worst-case estimations

of power consumption.

With current technology characteristics, a variability-aware

schedule is beneficial for smaller duty cycles (< 5%). With the

expected projection of sleep and active power variation with

the scaling of technology, there will be significant benefits of a

variability-aware schedule even for higher duty cycles. Some
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classes of real time, highly synchronized embedded sensing

applications are not amenable to this type of adaptation.

Furthermore, this scheme adds some complexity to the appli-

cation, in the form of bounds to task activations, which may

in turn lead to further complexities in data storage, inference,

and communication strategies. Nevertheless, the benefits of

variability-aware duty cycling outweigh the added complexity

for a large class of sensing applications. While this adapta-

tion scheme indirectly leads to a form of energy-based load

balancing across a network of sensors, further opportunities

for network-wide adaptation exist in role selection for nodes,

where a node could take different roles (e.g., data collector,

router, aggregator) depending on its respective energy rank in

the network.

F. Variability Simulation Challenges

Due to the statistical nature of variability, it is important

to test variability-aware software techniques on large number

of hardware platforms, which, unfortunately is impractical in

most cases. It is, therefore, essential to develop simulation and

emulation infrastructures for UnO computing systems which

are scalable while retaining variability modeling accuracy. The

work in this direction has been somewhat limited (e.g., [77] in

context of performance variability for a specific system or error

emulation in [19], [63]) and a key challenge for UnO software

methods is building such emulation platforms for large class

of computing systems which model all manifestations (error,

delay, power, aging, etc.) of variability.

VI. Implications for Circuits and Architectures

Software on UnO machines can react to hardware signature

of a resource by either changing its utilization profile or

changing the hardware’s operating point. In addition, the

computing platform can be implemented just to report the

hardware signature (with or without self-healing) or it may

allow (software-driven) adaptation. The power/area cost will

depend on the desired spatial granularity of healing/adaptation

(i.e., instruction level, component level, and platform level).

Since the mechanisms for such healing or adaptation (e.g.,

shutdown using power gating; power/performance change us-

ing voltage scaling, etc.) are fairly well understood, future

research focus should be on optimizing application-dependent

tradeoffs and reducing hardware implementation overheads.

The embedded sensing and H.264 encoder examples,

discussed previously, fall into the category of parametrically

underdesigned, error-free UnO systems. Certain classes

of applications are inherently capable of absorbing some

amount of errors in computations, which allows for quality

to be traded off for power. Errors in hardware (which are

circuit observable but system insignificant, such as errors in

speculation units of a processor [78]) can be permitted to

improve other design metrics such as power, area, and delay.

Error probability can be traded off with design metrics by

adjusting verification thresholds, or selective guardbanding,

or selective redundancy, etc. Recent work (“stochastic

computing” [79]) advocates that hardware should be allowed

to produce errors even during nominal operation if such

Fig. 14. Goal of a gradual slack soft processor [20] design is to transform a
slack distribution characterized by a critical wall into one with a more gradual
failure characteristic. This allows performance/power tradeoffs over a range of
error rates, whereas conventional designs are optimized for correct operation
and recovery-driven designs are optimized for a specific target error rate.

Fig. 15. Different microarchitectures exhibit different error rate behaviors,
demonstrating the potential to influence the energy efficiency of a timing
speculative architecture through microarchitectural optimizations. (Notations
describe the number of ALUs, issue queue length, number of physical
registers, and load store queue size for a microarchitecture.)

errors can be tolerated by software. Similarly, software should

designed to make forward progress in spite of the errors

produced by hardware. The resulting system will potentially

be significantly more power efficient as hardware can now be

underdesigned exactly to meet the software reliability needs.

Design methodologies that are aware of the error resilience

mechanisms used during the design process can result in

significantly lower power processor designs (e.g., [80]).

Unfortunately, current design methodologies are not always

suitable for such underdesign. For example, conventional

processors are optimized such that all the timing paths are

critical or near-critical (“timing slack wall”). This means that

any time an attempt is made to reduce power by trading off

reliability (by reducing voltage, for example), a catastrophi-

cally large number of timing errors is seen [20]. The slack

distribution can be manipulated (for example, to make it look

gradual, instead of looking like a wall (Fig. 14) to reduce the

number of errors when power is reduced [81]. Furthermore,

the frequently exercised components (or timing paths) that

contribute the most to the error rate can be optimized at

the expense of infrequently exercised components to perform

the slack redistribution without an overhead. The resulting

processor will produce only a small number of errors for large

power savings. Also, the error rate will increase gradually with

increased power savings [80]. Hardware can be explicitly de-

signed for a target error rate. The errors are either detected and

corrected by a hardware error resilience mechanism or allowed

to propagate to an error tolerant application where the errors

manifest themselves as reduced performance or output quality.

Corresponding opportunities exist at the microarchitectural

level. Architectural design decisions have always been, and

still are made in the context of correctness. Until now, error
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resilience has been viewed as a way to increase the efficiency

of a design that has been architected for correctness but

operates outside the bounds of the correctness guarantee.

However, optimizing a design for correctness can result in

significant inefficiency when the actual intent is to operate

the design at a nonzero error rate and allow errors to be

tolerated or corrected by the error resilience mechanism [82].

In other words, one would make different, sometimes coun-

terintuitive, architectural design choices when optimizing a

processor specifically for error resilience than when optimizing

for correctness [83]. This is not surprising considering that

many microarchitectural decisions such as increasing the size

of caches and register files, etc., tend to modify the slack

distribution of the processor to look more like a wall. Similarly,

microarchitectural decisions such as increasing the size of

instruction and load-store queues worsen the delay scalability

of the processor. When the processors are optimized for

nonzero error rates, such decisions need to be avoided (see

Fig. 15).

Though, most existing work [84]–[86] introduces errors by

intelligently overscaling voltage supplies, there has been some

work in the direction of introducing error into a system via

manipulation of its logic-function, for adders [87], [88] as

well as generic combinational logic [17]. Let us consider an

example functionally underdesigned integer multiplier circuit

[15] with potentially erroneous operation. We use a modified

2×2 multiplier as a building block which computes 3 × 3

as 7 instead of 9. By representing the output using three

bits (111) instead of the usual four (1001), we are able

to significantly reduce the complexity of the circuit. These

inaccurate multipliers achieve an average power saving of

31.78%–45.4% over corresponding accurate multiplier de-

signs, for an average percentage error of 1.39%–3.32%. The

design can be enhanced (albeit at power cost) to allow for

correct operation of the multiplier using a correction unit,

for nonerror-resilient applications which share the hardware

resource. Of course the benefits are strongly design dependent.

For instance, in the multiplier case, the savings translate to

18% saving for an FIR filter and only 1.5% for a small

embedded microprocessor. Functional underdesign will be a

useful power reduction and/or performance improvement knob

especially for robust and gracefully degrading applications.

Much research needs to be done to functionally or para-

metrically underdesign large general class of circuits auto-

matically. Mechanisms to pass application intent to physical

implementation flows (especially to logic synthesis in case of

functional underdesign) need to be developed. Formally quan-

tifying impact of hardware errors on applications is important

(e.g., [89] computes the fundamental limits of accuracy of

LDPC error control decoders due to noise in transmission as

well as underdesigned hardware units). Error steering toward

less important (depending on the application) parts of ISA

during design or at runtime can be done with ISA extensions

specifying latency and reliability constraints to the hardware.

Annotations indicating access patterns, reliability requirements

[90], etc. of code segments as well as data can be used

effectively especially in case of heterogeneous circuits and

systems (e.g., [19]).

An adaptive software stack cognizant of the exact hardware

state enables a fluid specification for UnO computing plat-

forms so that meeting a rigid specification becomes less im-

portant than selecting good power/performance/area/reliability

operating points. Using an adaptable software stack—and

knowing the bounds of this adaptability—we can relax the

notion of harsh constraints for design of computing systems

and alleviate the “last-MHz problem” that results in a very high

cost to achieve the marginally high performance. Similarly, an

application-aware fluid test specification can lead to large gains

in parametric manufacturing yield. For instance in our recent

simulation study [21], we show 30% improvement in hardware

yield or equivalently 8% reduction in overdesign for simple

H.264 video encoder by leveraging a software application that

adapts to underlying hardware.

VII. Conclusion

At its core, handling variability of hardware specification at

run time amounts to detecting the variability using hardware-

or software-based sensing mechanisms that we discussed ear-

lier, followed by selecting a different execution strategy in

the UnO machine’s hardware or software or both. Though the

focus in UnO systems is adaptation in the software layer,

we realize that flexibility, agility, accuracy, and overhead

requirements may dictate choice of layer (in the hardware–

software stack) where adaptation happens for different vari-

ation sources and manifestations. To realize the UnO vision,

several challenges exist:

1) What are the most effective ways to detect the nature

and extent of various forms of hardware variations?

2) What are the important software-visible manifestations

of these hardware variations, and what are appropriate

abstractions for representing the variations?

3) What software mechanisms can be used to oppor-

tunistically exploit variability in hardware performance

and reliability, and how should these mechanisms be

distributed across application, compiler-generated code,

and run-time operating system services?

4) How can hardware designers and design tools leverage

application characteristics and opportunistic software

stack?

5) What is the best way of verifying and testing hardware

when there are no strict constraints at the hardware–

software boundary and the hardware and application

behaviors are no longer constant?

Our early results illustrating UnO hardware–software stack

are very promising. For instance, our implementation of

variability-aware dutycycling in TinyOS gave over 6X av-

erage improvement in active time for embedded sensing.

With shrinking dimensions approaching physical limits of

semiconductor processing, this variability and resulting ben-

efits from UnO computing are likely to increase in future.

Such a vision of a redefined—and likely flexible/adaptive—

hardware/software interface presents us with an opportunity to

substantially improve the energy efficiency, performance and

cost of computing systems.
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