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Underdetermined Convolutive Blind Source
Separation via Time-Frequency Masking

V. G. Reju∗, Soo Ngee Koh, Senior Member, IEEE, and Ing Yann Soon

Abstract— In this paper we consider the problem of separation
of unknown number of sources from their underdetermined con-
volutive mixtures via time-frequency (TF) masking. We propose
two algorithms, one for the estimation of the masks which are to
be applied to the mixture in the TF domain for the separation
of signals in the frequency domain, and the other for solving
the permutation problem. The algorithm for mask estimation is
based on the concept of angles in complex vector space. Unlike
the previously reported methods, the algorithm does not require
any estimation of the mixing matrix or the source positions for
mask estimation. The algorithm clusters the mixture samples in
the TF domain based on the Hermitian angle between the sample
vector and a reference vector using the well known k-means or
fuzzy c-means clustering algorithms. The membership functions
so obtained from the clustering algorithms are directly used as
the masks. The algorithm for solving the permutation problem
clusters the estimated masks by using k-means clustering of small
groups of nearby masks with overlap. The effectiveness of the
algorithm in separating the sources, including collinear sources,
from their underdetermined convolutive mixtures obtained in a
real room environment, is demonstrated.

Index Terms— Keywords: Blind source separation, Sparse
component analysis, Time-Frequency Masking.

I. INTRODUCTION

THE separation of signals from their mixtures without any
information about the sources or the mixing process is

called blind source separation (BSS). Independent component
analysis is one of the techniques commonly used for the
separation of sources from their mixtures. Many algorithms
have been proposed for both instantaneous and convolutive
BSS. In the case where the number of sources is less than
or equal to the number of mixtures, methods based on in-
dependent component analysis (ICA) [1], [2], [3], [4] are
the most popularly used. However, in practical situations the
number of sources may be more than the number of mixtures
and cases like this are called underdetermined BSS. When
mixing is underdetermined, sparse component analysis (SCA)
is shown to outperform ICA [5]. In SCA, sparsity of the
signals is utilized to separate the signals from their mixtures.
A signal is said to be sparse if the signal amplitude is
zero during most of the time period. However, in practice
natural signals such as speech are not very sparse in the time
domain. In [6], Bofill, et al. show that signals like speech
are more sparse in the frequency domain than in the time
domain and hence if we transform the time domain signal
into the frequency domain, the sparsity can be utilized to
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separate the signals from their mixtures. By utilizing sparsity
in the TF domain, many algorithms have been proposed
for blind source separation of underdetermined instantaneous
mixtures. The problem of underdetermined convolutive blind
source separation has also been addressed by many researchers
[7], [8], [5], [9]. Convolutive mixing of the signals can be
mathematically expressed as

xp(n) =
Q∑
q=1

L−1∑
l=0

hpq (l) sq (n− l) (1)

where p = 1, · · · , P , q = 1, · · · , Q, P is the number
of mixtures, Q is the number of sources, N is the total
number of samples, L is the length of the mixing filters, x =
[x1, x2, · · · , xP ]T are the P sensor outputs, T is the transpose
operator, xp = [xp(0), · · · , xp(N − 1)]T are the the mixture
samples at the pth sensor output, s = [s1, s2, · · · , sQ]T are the
sources, sq = [sq(0), · · · , sq(N − 1)]T are the samples of the
qth source and hpq(l), l = 0, · · · , L−1 is the impulse response
from the qth source position to the pth sensor. Using the
convolution-multiplication property, the mixing process can be
expressed in the TF domain as

X(k, t) = H (k)S(k, t) =
Q∑
q=1

Hq(k)Sq(k, t) (2)

where X(k, t) = [X1(k, t), · · · , XP (k, t)]T is a column vector
of the short time Fourier transform (STFT) [10] coefficients
of the P mixed signals in the kth frequency bin at time
frame t, S(k, t) = [S1(k, t), · · · , SQ(k, t)]T is the column
vector of the STFT coefficients of the Q source signals,
Hq(k) = [H1q(k), · · · , HPq(k)]

T is the qth column vector
of the mixing matrix at the kth frequency bin, i.e., H (k) =
[H1 (k) , · · · ,HQ (k)] is the mixing matrix at the kth fre-
quency bin and Hpq(k) is the kth DFT coefficient of the
impulse response (or mixing filter) from the q th source to
the pth sensor. Here, it is assumed that the impulse responses
remain the same for all t. In this paper all the signals in the
time domain are represented by small letters whereas signals
in the frequency domain are represented by capital letters.

For underdetermined BSS of speech signals, the most
widely used assumption is its disjoint orthogonality property
in the TF domain [11]. Two speech signals s1 and s2 with
supports Ω1 and Ω2 in the TF plane are said to be TF-disjoint
if Ω1 ∩ Ω2 = ∅. However, in practice the signals may not
be perfectly disjoint. In [11] it is shown that for practical
purposes an approximate disjoint orthogonality is sufficient
for the separation of speech signals from their mixtures.
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The disjoint orthogonality property of the speech signals has
been successfully utilized for the generation of binary masks
which can be applied to the mixtures in the TF domain
for the separation of the sources from their underdetermined
convolutive mixtures [7], [8], [9], [5]. The techniques used
for the estimation of masks in some of the recent papers are
reviewed below.

The direction of arrival (DOA) information is utilized in
[8] for the estimation of the binary masks. For the case
of three sources and two mixtures demonstrated in [8], the
DOA θDOA(k, t) is estimated at each time-frequency point. A
histogram is then plotted using the DOAs, θDOA(k, t), ∀t, and
the three peaks obtained from the histogram is taken as the
DOAs of the three sources at that frequency. The q th signal
is then extracted using the binary mask

Mq(k, t) =
{

1 θDOAq − Δ ≤ θDOA(k, t) ≤ θDOAq + Δ
0 otherwise

(3)
i.e., Yq(k, t) = Mq(k, t)Xp(k, t), where q = 1, 2, 3; p = 1 or
2 and Δ is the extraction range parameter.

In [7], a two stage algorithm for the extraction of the
dominant sources from their mixtures is proposed. The main
assumption is that the total number of dominant sources is
less than the number of microphones, but the number of
dominant sources plus the interfering sources can be greater
than the number of microphones. Thus, in the first stage, the
frequency domain ICA algorithm is applied to the output of
the microphones under the assumption that the number of
independent components are equal to the number of micro-
phones and in the second stage, time-frequency masking is
used to improve the performance as the components separated
by the ICA algorithm will contain some residuals caused by
the interfering sources, when the total number of sources
is more than the number of microphones. After solving the
permutation problem and estimating the number of sources in
the first stage, binary masks are obtained based on the angles
between the mixture sample vectors X(k, t) and the Fourier
transform of the estimated mixing filters Ĥ(k).

For the estimation of the binary masks, in [5], the impulse
responses of the channels (i.e., the mixing filters) are estimated
first. For the estimation of the mixing filters, it is assumed
that the sources are sparse in the time domain so that the time
interval during which only one of the sources is effectively
present is estimated; then, for each estimated time interval the
cross-correlation technique [12], [13] for the blind single input
multiple output (SIMO) channel identification is applied. Since
the single source intervals for the same source can exist at
many different time slots, after estimation of the mixing filters,
they are clustered into Q clusters using the k-means clustering
algorithm. The centroids of the clusters are then taken as the
estimated channel parameters. Under the assumption that the
sources in their TF domain are disjoint, the spatial direction
vectors, v(k, t) = X(k,t)

||X(k,t)|| , of the mixture at each point in the
kth frequency bin (after forcing the first entry of the spatial
vector to real and positive) are clustered into Q clusters by

minimizing the criterion

v(k, t) ∈ Ci ⇔ i = arg min
q

∥∥∥∥∥∥v(k, t) − Ĥq(k)e−j∠Hq1(k)∥∥∥Ĥq(k)
∥∥∥

∥∥∥∥∥∥
(4)

where Ci is the ith cluster and Ĥq(k) is the Fourier transform
of the qth channel vector estimate. The samples in each cluster
are then taken as the samples corresponding to one source.

The main shortcoming with the algorithm proposed in [8]
is that it requires the DOA of the sources. The accurate
estimation of DOA is very difficult in a reverberant envi-
ronment and when the sources are very close or collinear
with the microphone array. For the algorithms in both [7] and
[5], the approximate mixing parameters are to be estimated
first. In [7], this is done using the ICA algorithm and hence
it cannot be used when the number of dominant (or the
required) sources are more than the number of microphones.
The channel estimation algorithm in [5] utilizes the assumption
that the sources are sparse enough in the time domain for
effective channel estimation.

In this paper, utilizing the concept of angles in complex
vector space [14], we propose a simple algorithm for the
design of the separation masks which are used to separate
the sources from their underdetermined convolutive mixtures
under the assumption that the sources are sufficiently disjoint
in the TF domain. Same as in the TF masking approach, the
proposed algorithm does not have the well known scaling
problem. In addition to that, the algorithm does not require
any geometrical information about the sources or microphones.
Another advantage is that well known clustering algorithms
can be directly used and the membership function obtained
from the clustering algorithms can be used as the mask.
Also, the additional computational complexity in estimating
the masks due to the increase in the number of microphones
is very low. In addition to the TF masking method for the
separation of the signals, we also propose an algorithm to
solve the well known permutation problem. The algorithm
is based on k-means clustering, where the estimated masks
will be clustered to solve the permutation problem. Since the
already available masks are used to solve the permutation
problem, instead of using magnitude envelopes or power
ratios of the separated signals, some computation time can
be saved. A similar approach for solving the permutation
problem is previously reported in [15], see Section.II-D for
a brief discussion on the difference between the proposed
algorithm and that in [15]. Unlike the conventional DOA based
algorithms [16], [17], [18], the proposed algorithms for solving
the permutation problem does not require any geometrical
information of the source positions and hence it can be used
even when the sources are very close or collinear. We will also
show that the proposed algorithm is suitable for separation of
collinear sources in a real room environment.

This paper is organized as follows. In the next section
the proposed algorithms for estimation of the masks and
automatic detection of the number of sources, followed by the
algorithm for solving the permutation problem, are described.
The experimental results are given in Section III. Finally
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Section IV concludes the paper.

II. PROPOSED METHOD

A. Basic idea

Let us first consider the case of instantaneous mixing. For
instantaneous mixing, the impulse responses will be simple
pulses of amplitude hpq , where hpq is the (p, q)th element of
the mixing matrix. If the impulse response is a simple pulse,
the imaginary part of Hpq(k) will be zero and the real part will
be the same as hpq , i.e., I{Hpq(k)} = 0 and R{Hpq(k)} =
hpq , ∀k. Hence Hq(k) = hq = [h1q, · · · , hPq]T , ∀k, where hq
is the qth column of the mixing matrix in the time domain and
Hq(k) is the qth column of the mixing matrix in the frequency
domain at the kth frequency bin. For ease of explanation
assume that P = Q = 2. Now consider a point (k1, t1) in the
TF plane where only the components of source s1 is present.
Then from (2)

X(k1, t1) = H1(k1)S1(k1, t1) (5)

This can be written as:

R{X(k1, t1)} + jI{X(k1, t1)} =
H1(k1) (R{S1(k1, t1)} + jI{S1(k1, t1)}) (6)

Since R{S1(t1, k1)} and I{S1(t1, k1)} are real, comparing
real and imaginary parts of (6), it can be seen that the direction
of the column vectors R{X(k1, t1)} and I{X(k1, t1)} are the
same and it is also the same as that of H1(k1), which is the
same as that of the first column vector of the mixing matrix
h1. Similarly, at another instant (k2, t2), if only source s2 is
present, then

R{X(k2, t2)} + jI{X(k2, t2)} =
H2(k2) (R{S2(k2, t2)} + jI{S2(k2, t2)}) (7)

Here the directions of both R{X(k2, t2)} and I{X(k2, t2)}
are the same as that of H2(k2), which is the same as that of
the second column vector of the mixing matrix h2. Hence if
the sources are sparse in the TF domain, the scatter plot of
both R{X(k, t)} and I{X(k, t)} will show a clear orientation
towards the directions of the column vectors of the mixing
matrix and once we know the directions, we can determine
the mixing matrix and hence the sources can be estimated up
to a scaling factor with permutation.

When the mixing is convolutive, the column vectors H q(k)
in (2) will be a complex column vector and multiplication of
this complex vector by a complex scalar, Sq(k, t), will change
the complex-valued angle of the vectors. Hence the above
approach, used for instantaneous mixing, cannot be directly
applied for convolutive mixing. Now consider two complex
vectors u1 and u2. The cosine of the complex-valued angle
between u1 and u2 is defined as [14]

cos(θC) =
uH1 u2

||u1|| ||u2||
(8)

where ||u|| =
√

uHu and H represents the complex conjugate
transpose operation. cos(θC) in (8) can be expressed as

cos(θC) = ρejϕ (9)

where ρ ≤ 1 [14]

ρ = cos(θH) = |cos(θC)| (10)

In addition, 0 ≤ θH ≤ π/2 and −π ≤ ϕ ≤ π are called the
Hermitian and pseudo angle respectively between the vectors
u1 and u2 [14]. The Hermitian angle between the complex
vectors u1 and u2 will remain the same even if we multiply
the vectors by any complex scalars, whereas ϕ will change (see
appendix for proof). This fact can be used for the design of
masks for the BSS of underdetermined convolutive mixtures as
follows. Since multiplication of a complex vector by a complex
scalar is not affecting the Hermitian angle between the vector
and another vector (reference vector), we take a P element
vector r, with all the elements equal to 1+ j1 as the reference
vector . The Hermitian angle between the reference vector r
and Hq(k) will remain the same even if we multiply Hq(k) by
any complex scalar Sq(k, t). If the signals sq , q = 1, · · · , Q
are sparse in the TF domain, at any point in the TF plane
only one of the source components will be present and the
Hermitian angle between the reference vector and the mixture
vectors X(k, t) at that point will be the same as that between
Hq(k) corresponding to the source component S q(k, t) present
at that point and the reference vector r. Hence the mixture
samples in each frequency bin, k, will form Q clusters with
a clear orientation with respect to the reference vector r; all
the samples in one cluster will belong to the same source.
It is not necessary to make all the elements of the reference
vector equal to 1+j1. In fact, any random vector can be taken.
The only difference is that, for different reference vectors, the
Hermitian angles between the reference vectors and Hq(k),
q = 1, · · · , Q will be different whereas those between the
column vectors Hq(k), q = 1, · · · , Q will remain the same,
for a particular frequency bin. By finding the clusters, we are
finding the samples which belong to the sources corresponding
to those particular clusters. In the following section this idea is
illustrated with two sources and two sensors, i.e., P = Q = 2.

Assume that at point (k1, t1) only the contribution of source
s1 is present, i.e., S1(k1, t1) 	= 0 and S2(k1, t1) = 0. Let the
reference vector be r = [1 + j1, 1 + j1]T . At pont (k1, t1)
the Hermitian angle Θ(k1)

H (t1) between the reference vector r
and the mixture vector X(k1, t1) = [X1(k1, t1), X2(k1, t1)]T

will be the same as that between r and H1(k1, t1) =
[H11(k1), H21(k1)]T . This angle, Θ(k1)

H (t1), will be the same
for all the points in the frequency bin k1, where only the
component of the source s1 is present. Similarly at another
point, (k1, t2), if S1(k1, t2) = 0 and S2(k1, t2) 	= 0, the
Hermitian angle Θ(k1)

H (t2) between r and X(k1, t2) will be the
same as that between r and H2(k1) = [H12(k1), H22(k1)]T

and this will remain the same for all the points in the
frequency bin k1 where only the component of source s2 is
present. Hence if we calculate the Hermitian angle between r
and X(k1, t), ∀t, depending on presence or absence of the
components of the sources, there will be a clear grouping
of the mixture vectors according to the Hermitian angles
between the reference vector and the mixture vectors. This is
demonstrated in Fig.1(a) where the Hermitian angle between
the reference vector r and H1(k) is 14.96o and that between r
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and H2(k) is 29.40o for k = 54. In practice the signals in the
TF domain may not be fully sparse, i.e., there may be instants
where both the components of sources s1 and s2 are present.
However, as demonstrated in [11] for the case of instantaneous
mixing, for speech signals, approximate sparsity or disjoint
orthogonality is sufficient for the separation of sources from
their mixtures via binary masking.

For a general case of P mixtures and Q sources, the
Hermitian angle between the reference vector r having P
elements (say each element is 1+j1), and each of the mixture
vectors in the kth

1 frequency bin, X(k1, t), ∀t is calculated, to
obtain a vector of Hermitian angles, Θ(k1)

H , where the value
of Θ(k1)

H at t1 is given by

Θ(k1)
H (t1) = cos−1 (|cos(θC(k1, t1))|) (11)

cos(θC(k1, t1)) =
X(k1, t1)Hr

||X(k1, t1)|| ||r||
(12)

The Hermitian angle vector, Θ(k)
H , calculated for the frequency

bin k is used for partitioning the mixture samples in the k th

frequency bin. The membership functions for the partitioning
of the samples so obtained from the clustering algorithm are
used as the mask, Mq(k, t), ∀t, which will be multiplied by the
mixture in the TF domain,Xp(k, t), ∀t, to obtain the separated
signal Yq(k, t), ∀t in the TF domain, i.e.,

Yq(k, t) = Mq(k, t)Xp(k, t), ∀t, q = 1, · · · , Q (13)

where p ∈ {1, · · · , P} is the index of the microphone output
to which the mask is applied.

B. Clustering of mixture samples and mask estimation

The partitioning of the values of Θ(k)
H and hence the

corresponding mixture samples in the TF domain into different
groups can be done using the well established data clustering
algorithms [19], [20]. In this paper we examine the use of
two well known clustering algorithms namely, k-means [20]
and fuzzy c-means (FCM) [21] clustering algorithms for the
partitioning of samples in Θ(k)

H . The k-means algorithm is a
hard partitioning technique, which means that any sample in
the data vector to be clustered will be fully assigned to any one
of the clusters, i.e., the membership function will be binary (0
or 1). Hence if we use the membership function obtained from
the k-means algorithm as the mask, it will be a binary mask.
On the other hand the FCM algorithm is a soft partitioning
technique and hence the mask generated by FCM will be a
smooth one compared to that from the k-means algorithm. In
the following section the clustering and the mask estimation
procedure using the k-means and fuzzy c-means algorithms
are explained in detail.

1) k-means clustering: If the samples in the TF domain
is perfectly sparse, the vector of Hermitian angles Θ (k)

H will
contain only Q different values, each corresponding to a
particular source and hence we can partition the samples
perfectly without any ambiguity. However, in a real situation
this may not be the case. Hence we have to use a clustering
algorithm to partition the samples into different clusters. The
Hermitian angles in degree, calculated for k = 54, P = Q = 2
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Fig. 1. Masks generated by k-means clustering algorithm for frequency bin
k = 54.

is shown in Fig.1(a). From the Figure, it is clear that most of
the values are either close to 14.96o or to 29.40o, which are
the actual directions of the mixing vectors H1(k) and H2(k)
respectively with respect to the reference vector r. Using the
k-means algorithm we can partition the samples in Θ (k)

H into
2 clusters. Since the k-means algorithm is a hard partitioning
technique, each sample will belong to either one of the clusters
and the membership function obtained will be binary ( 0 or 1).
The direction of the estimated mixing matrix is the centroid
of the angles corresponding to that particular cluster. Since
we are estimating the signals by masking, our main interest is
on the estimated membership function, which will be used as
the mask. The membership functions obtained from k-means
clustering are purely binary. To make it smoother, the samples
away from the mean direction or centroid by Δφ are given
the membership value cos(Δφ). The membership function so
obtained are used as the mask, as shown in Fig.1(b), which is
multiplied with the mixture samples obtained from one of the
microphone outputs in the TF plane. Fig.1(c) is the magnitude
envelope of the DFT coefficient of the clean signals picked up
by the microphone on which the mask is applied. Fig.1(d) is
the magnitude envelope of the estimated signals obtained by
applying the mask on the mixture samples in the TF domain.

It is a well known fact that the starting centroid of the k-
means clustering algorithm will have an impact on the final
centroid of the clusters [22]. Hence in our algorithm, we
initialized the k-means algorithm with the result obtained from
the histogram method on Θ(k)

H , i.e., the k-means algorithm is
initialized with the bin centers of the highest Q bins in the
histogram. We start with max(10, Q) bins and if any one of
the highest Q bins are empty (this happens when the angle
between the column vectors Hq(k), q = 1, · · · , Q are very
small), the number of bins are doubled to reduce the bin
width and the histogram estimation is repeated. This process
is repeated until none of the Q bins is empty.

2) Fuzzy c-means clustering: The k-means algorithm de-
scribed in Section II-B.1 is a hard partitioning method, and
as a result of which the estimated signal will contain abrupt
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Fig. 2. Masks generated by FCM clustering algorithm for frequency bin
k = 54.

changes in their amplitude as shown in Fig.1(d). These
abrupt changes in the amplitude will introduce artifacts in
the reconstructed signals in the time domain. To avoid this
problem we examine the use of the FCM clustering algorithm,
which partitions the samples into clusters with membership
values which are inversely related to the distance of Θ (k)

H (t)
to the centroids of the clusters. For example, if a sample
is equidistant from the estimated centroids of the clusters,
the k-means clustering algorithm will assign that sample to
one of the clusters, with membership value equal to 1 with
respect to the cluster into which the sample is assigned and
zero for the other clusters, i.e., the membership function will
be binary. In the case of the FCM algorithm, for the same
condition, the sample will be assigned to all the clusters with
equal membership values of 1/Q, where Q is the number
of clusters. The FCM algorithm when applied to the same
frequency bin as that used in Section II-B.1 is shown is Fig.2.
From the Figure it can be seen that the mask, which is the
same as the membership function obtained from the FCM
algorithm, is smooth and hence the magnitude envelope of
the DFT coefficients of the estimated signals are also smooth.
Consequently, it will reduce the artifacts in the reconstructed
speech signals in the time domain. However, as shown in
Section III-A, the reduction in artifacts is at the cost of
reduction is signal to interference ratio (SIR).

C. Automatic detection of the number of sources

In the previous section, we assumed that the total number of
sources is known in advance. However, in a practical situation
this may not be the case. Hence we need to estimate the
number of sources present in the mixture before clustering
Θ(k)
H for the mask estimation, i.e, we need to estimate the

number of clusters in Θ(k)
H . Many algorithms are available in

the literature for the estimation of the number of clusters [23],
[24], [25], [26]. One commonly used technique is the cluster
validation technique. In this technique, we must have some
knowledge about the possible maximum number of clusters.
Then the data is clustered for different number of clusters,

c, c = 2, · · · , cmax , where cmax is the possible maximum
number of clusters. The clusters so obtained for different
values of c are validated using the cluster validation technique
[23], [24], [25] and the number of clusters in the best clustering
is taken as the actual number of clusters. In this paper we
use a recently reported cluster validation technique [24] for
the estimation of the number of clusters. Since our data are
one dimensional, the validation index proposed in [24] for
multidimensional data can be simplified as

Validation index V (U,Ψ, c) = Scat (c)+
Sep (c)

Sep (cmax)
(14)

where the different column vectors of U ∈ R
T ×c contains

the membership values of the data to different clusters, Ψ =
[ψ1, · · · , ψc]T , ψi is the centroid of the ith cluster, c is the
total number of clusters, T is the total number of samples in
Θ(k)
H . Here Scat (c) represents the compactness of the obtained

cluster when the number of clusters is c

Scat (c) =

1
c

c∑
i=1

σψi

σ
Θ

(k)
H

(15)

σ
Θ

(k)
H

=
1
T

T∑
t=1

(
Θ(k)
H (t) − Θ̄(k)

H

)2

(16)

σψi =
1
T

T∑
t=1

uti

(
Θ(k)
H (t) − ψi

)2

(17)

Θ̄(k)
H =

1
T

T∑
t=1

Θ(k)
H (t) (18)

The range of Scat (c) is between 0 and 1. For compact clus-
tering Scat (c) will be smaller. The term Sep (c) represents
the separation between the clusters, which is given by

Sep (c) =
d2
max

d2
min

c∑
i=1

⎛
⎝ c∑
j=1

(ψi − ψj)
2

⎞
⎠

−1

(19)

dmin = min
i�=j

|ψi − ψj | (20)

and
dmax = max

i�=j
|ψi − ψj | (21)

The value of Sep (c) will be smaller when the cluster cen-
ters are well distributed and larger for irregular cluster cen-
ters. Hence the best clustering is the one which minimizes
V (U,Ψ, c).

The source contribution from different sources will be
different in each frequency bins and in some bins the con-
tribution from some of the sources may be very weak. Hence
the number of clusters (or sources) estimated from a single
frequency bin will not be reliable. To make the estimation
more robust, the cluster validation technique is applied to
many frequency bins and the number which is most frequently
detected over these frequency bins is taken as the actual
number, Q, of sources present.
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D. Permutation problem

The main weaknesses with frequency domain blind source
separation are the scaling and the permutation problems. Since
we are applying the masks directly to the mixture in the TF
domain without any other stage in front of it, the well known
scaling problem is avoided. In general, this is true for all
TF making approaches. We therefore only need to solve the
permutation problem. In the literature many algorithms have
been reported for solving the permutation problems [27], [16],
[17], [18], [28], [29], [30], [31]. The DOA based algorithms
[16], [17], [18], [28] are not effective in highly reverberant
environments or when the sources are collinear or very close
to one another [30]. In [27] it is shown that for speech signals,
the magnitude envelopes of the adjacent frequency bin in the
TF domain are highly correlated and this property can be
used to solve the permutation problem. Later in [29] it is
shown that the correlation between the power ratios are more
suitable than that between the magnitude envelopes. This fact
is further verified in Fig.3, where in Fig.3(a), the correlation
matrix whose entries are the correlations between the bin wise
magnitude envelopes of the STFT coefficients of the two clean
signals ŝ1 and ŝ2 picked up by the microphones are shown.
In the Figure, the magnitudes of the entries in the correlation
matrix are shown by gray levels. The above correlation matrix
Cmag

Ŝ1Ŝ2
∈ R

2K
′×2K

′
is calculated as:

Cmag

Ŝ1Ŝ2
=

[
RS̃1S̃1

RS̃1S̃2

RS̃2S̃1
RS̃2S̃2

]
(22)

where RS̃iS̃j
∈ R

K
′×K′

, i, j ∈ {1, 2} is the correlation

matrix whose (m,n)th element,
(
RS̃iS̃j

)
mn

, is the Pearson

correlation coefficient between mth and nth rows of S̃i ∈
R
K

′×T and S̃j ∈ R
K

′×T respectively, K
′
= K

2 + 1 if DFT
length K is even; otherwise K

′
= K+1

2 and T is the total
number of samples in each frequency bin. Because of the
conjugate smmetry property of the DFT coefficients, only the
first K

′
bins are taken. The (k, t)th element of S̃q , q ∈ {1, 2},

is given by

S̃q(k, t) =
∣∣∣Ŝq(k, t)∣∣∣ (23)

Here, Ŝq(k, t) are the STFT coefficients of ŝq = hpq ∗ sq,
which is the clean signal picked up by the pth microphone to
which the mask is applied.

The correlations between the bin wise power ratios of the
STFT coefficients of the signals are shown in Fig.3(b). The
correlation matrix is defined as:

CP
ratio

Ŝ1Ŝ2
=

[
RP ratio

Ŝ1
P ratio

Ŝ1
RP ratio

Ŝ1
P ratio

Ŝ2

RP ratio
Ŝ2

P ratio
Ŝ1

RP ratio
Ŝ2

P ratio
Ŝ2

]
(24)

where P ratio
Ŝq

(k, t) = ||Ŝq(k,t)||2
||Ŝ1(k,t)||2+||Ŝ2(k,t)||2 , q = 1, 2, k =

1, · · · ,K ′
, ∀t and the correlation matrix RP ratio

Ŝi
P ratio

Ŝj

∈

R
K

′
×K

′
, i, j ∈ {1, 2} is defined in a similar way as that

in (22). (The size of all the correlation matrices shown in

Fig.3 are the same as that of Cmag

Ŝ1Ŝ2
). Comparing Fig.3(a)

and (b), it can be seen that the correlation between the power
ratios is the better choice than that between the magnitude
envelops for solving the permutation problem. The reason for
the improvement in performance are [29] as follows: 1) The
values of power ratios are clearly bounded between 0 and 1. 2)
Because of the sparseness of the signals, most of the time, the
power ratios will be closer to either 0 or 1. 3) The power ratios
of different sources are exclusive to each other, i.e., for a two
source case, if P ratio

Ŝ1
(k, t) is close to 1 then P ratio

Ŝ2
(k, t) will be

close to 0. This shows that the binary mask or the membership
functions obtained from the clustering algorithms in Section II-
B are the ideal candidates to replace the power ratios in solving
the permutation problem as their values are also close to either
1 or 0. This approach has another advantage that we need
not calculate the power ratios; instead, the already available
masks/membership functions can be used which will save
some computation time. The correlations calculated between
the power ratios of the STFT coefficients in each frequency bin
of the separated signals, CP ratio

Y1Y2
, and that between the masks,

CM1M2 , are shown respectively in Fig.3(c) and (d). (In cases
where it is necessary to specify the algorithm used to estimate
the masks, the name of the clustering algorithm will be added
as superscript to CM1M2 and Mq. For example the correlation
matrix and the masks estimated by the k-means algorithm
will be represented as CKM

M1M2
and MKM

q respectively whereas
those by the FCM algorithm will be represented as CFCM

M1M2

and MFCM
q respectively). The correlation matrix CP ratio

Y1Y2
is

defined similarly to CP ratio

Ŝ1Ŝ2
, except that Ŝ1 and Ŝ2 are replaced

by Y1 and Y2 respectively. The correlation matrix CM1M2 is
calculated as

CM1M2 =
[

RM1M1 RM1M2

RM2M1 RM2M2

]
(25)

where M1 ∈ R
K

′
×T and M2 ∈ R

K
′
×T are the arrays of

first K
′

masks corresponding to the first and second sources
respectively. The correlation matrix RMiMj , i, j ∈ {1, 2} is
defined in a similar way as that in (22). For both Fig.3(c) and
(d) the permutation problem is solved based on the correlation
between the bin-wise power ratios of the separated signals and
that of the clean signals picked up by the microphone on which
the masks are applied. From the figures it is clear that both the
methods will give almost the same performance. A quantitative
comparison is given in Section III-A.

The main disadvantage of the correlation based method in
solving the permutation problem is that, as the permutation
in one frequency bin is solved based on the permutation
of the previous frequency bins, failure in one frequency bin
will lead to a complete misalignment beyond that frequency
bin. Many algorithms have been proposed to circumvent this
problem [32], [31], [30]. Sawada et al. [32] combined the DOA
and correlation based approaches to improve the robustness
of the algorithm. However, the algorithm cannot be used
when the sources are collinear [30]. The partial separation
method [31], [30] improved the robustness of the correlation
method by incorporating a time domain stage in front of
the frequency domain stage. To reduce the computational
cost, the time domain stage is normally implemented using
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Fig. 3. Correlation matrices (a)
`
Cmag

Ŝ1Ŝ2

´

m′n′ , correlation between the bin-wise magnitude envelopes of the clean signals picked up by the microphones (b)
`
CP ratio

Ŝ1Ŝ2

´

m′n′ , correlation between the bin-wise power ratios of the clean signals picked up by the microphones (c)
`
CP ratio

Y1Y2

´
m′n′ , Correlation between

the bin-wise power ratios of the separated signals (d)
`
CKM

M1M2

´
m′n′ , correlation between the masks estimated using k-means clustering algorithm; in both

(c) and (d) the permutation problem is solved based on the correlation between the bin-wise power ratios of the separated signals and that of the clean
signals picked up by the microphone on which masks are applied (e)

`
CKM

M1M2

´
m′n′ , correlation between the masks estimated using k-means clustering

(f)
`
CFCM

M1M2

´
m′n′ , correlation between the masks estimated using fuzzy c-means clustering; in both (e) and (f) the permutation problem is solved by the

proposed algorithm based on k-means clustering.

No. of masks assigned by k-means
Freq. algorithm to different clusters Cq ,
bin q = 1, 2, · · · , 6

C1 C2 C3 C4 C5 C6

k 1 2 1 1 1 0
k + 1 1 1 0 1 3 0
k + 2 1 0 0 1 3 1
k + 3 0 1 1 1 2 1
k + 4 1 1 1 1 1 1
k + 5 0 4 1 0 0 1
k + 6 0 2 2 0 1 1
k + 7 1 1 1 1 1 1
k + 8 1 0 1 1 2 1
k + 9 1 1 1 1 1 1
k + 10 1 1 2 1 0 1
k + 11 1 1 1 1 1 1
k + 12 3 1 1 0 0 1
k + 13 1 2 1 1 1 0
k + 14 1 1 1 1 1 1
k + 15 1 1 1 1 1 1

TABLE I

ILLUSTRATION OF MASK ASSIGNMENT TO DIFFERENT CLUSTERS

computationally efficient algorithms [33] with a small number
of unmixing filter taps so as to obtain the partially separated
signals. The partially separated signal is then input to the
frequency domain stage where it is fully separated. Then the
permutation problem in each frequency bin is solved based
on the bin wise correlation between the magnitude envelops
of the DFT coefficients of the fully separated and partially
separated signals. Though we can use the partial separation
method with an additional time domain stage in front of the
masking stage, the separation of the signals using a time
domain ICA algorithm will be very poor when the mixtures
are underdetermined and hence this approach could not be
used. In this paper we propose an algorithm based on k-means
clustering to solve the permutation problem, where the masks
are clustered into Q clusters, Cq , q = 1, · · · , Q, in such a way
that the sum of the distances Dq, q = 1, · · · , Q, is minimum.
Dq is the total distance between the masks within the q th

cluster to its cluster centroid, i.e.,

minimize D =
Q∑
q=1

∑
M

(k)
i ∈Cq

i=1,··· ,Q
k=kst,··· ,kend

(
1 − r

M
(k)
i

Cq

)
(26)
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where M
(k)
i is the ith mask in the kth frequency bin, Cq

is the centroid of the qth cluster Cq , r
M

(k)
i

Cq

is the Pearson

correlation between M (k)
i and the cluster centroid Cq , kst and

kend are the indices of the starting and ending frequency bins
of the group of adjacent frequency bins used for clustering,
i.e., the total number of frequency bins used is kend − kst +
1. Here we use 1 − r

M
(k)
i

Cq

as the distance measure so that

masks which are highly correlated (smaller distance) will form
one cluster. Since there are Q sources, we form Q clusters
using the k-means algorithm. In an ideal case, each cluster
must contain one and only one mask from each frequency
bin after clustering. But in practice this may not be the case,
especially when the number of sources are large. Under such
situations, we need to identify the bins in each cluster where
the permutation could not be solved perfectly. This can be
done as follows:

After clustering, if any of the clusters is missing the mask
for any frequency bin or containing more than one mask
for the same frequency bin, it is assumed that the k-means
clustering algorithm fails to solve the permutation problem
in that particular frequency bin for those clusters. A typical
example for the case of six sources (hence six clusters) is
shown in Table I, where the masks from 16 adjacent bins are
clustered. The number of masks assigned by the clustering
algorithm to different clusters are shown in the table. In the
table, entries other than ‘1’ indicates that the algorithm fails to
solve the permutation problem for that cluster at that particular
frequency bin. For example at the k th frequency bin, the
algorithm fails in clusters C2 and C6. For frequency bins where
the k-means clustering algorithm fails to solve the permutation
problem, the correlation between the cluster centroids of the
failed clusters and the masks in those clusters are used to
solve the permutation problem. This is done by reassigning
the masks in the failed clusters in such a way that the sum of
the correlations between the centroids of the clusters and the
masks is maximum, i.e., the permutation matrix Πk for the
kth frequency bin among the failed clusters is calculated as

Πk = argmax
Π

F∑
i

F∑
j

(Π •RCM)ij (27)

where • represents element wise multiplication between the
matrices, F is the number of failed clusters, Π is the per-
mutation matrix with one and only one element, which is
1, in any row or column, RCM ∈ R

F×F is the correlation
matrix, (RCM)ij is the Pearson correlation between the ith

and jth rows of C and M respectively, C = [· · · , CT
q , · · · ]T ,

Cq ∈ R
1×T is the centroid of the qth cluster, q ∈

{indices of failed clusters}, M = [· · · ,MT
q , · · · ]T , Mq ∈

R
1×T are the masks in the failed clusters at the kth frequency

bin. Then the matrix of permutation solved masks at frequency
bin k will be ΠkM.

For example, for the (k+1)th frequency bin in Table I three
masks are assigned to cluster C5 whereas none is assigned to
clusters C3 and C6. Hence for the (k+1)th frequency bin, the
permutation problem is to be solved among the clusters C3, C5

and C6 by calculating the correlations between the centroids

of the clusters, C = [CT3 , C
T
5 , C

T
6 ]T , and the masks assigned

to C5. The masks assigned to clusters C1, C2 and C4 are not
altered.

For speech signals in the TF domain, when the frequency
bins are far apart, the correlation between them will decrease
[29]. To overcome this problem, instead of taking all the masks
to form the clusters, we take only a few adjacent frequency
bins at a time with overlap (for example 16 bins with 75%
overlap in our experiments) and cluster them using the k-
means clustering algorithm as explained previously. For k-
means algorithm, it is a well known fact that the initialization
vector, used as the initial centroids, has an impact on the final
clusters obtained [20], [22]. In our case, we use the centroids
of the current clusters as the starting centroids (initializing
vector) for the next group of masks for clustering. For the
starting group of masks (i.e., for bins k = 1 to 16 in our
experiments) the centroids of the clusters obtained by applying
the k-means algorithm on the masks in the frequency range
of 500Hz to 1000Hz are used as the initialization vectors. The
advantages of taking small groups of adjacent masks, overlap-
ping and initializing with the centroids of the previous clusters
are: 1) The correlations between the masks corresponding to
the same source will be high if the masks belong to the nearby
frequency bins and hence there will be a clear separation
between the clusters. 2) The centroids of the current clusters
will be close to those of the clusters formed by the next group
of masks, if both groups are overlapped. This will decrease
the convergence time of the k-means clustering algorithm. 3)
When initialized with the centroids of the previous group,
because of the overlap, the starting centroids will be close
to the actual centroids. Hence the permutation of the present
group will be the same as that of the previous group of masks.

A similar approach for solving permutation problem using
the masks is reported in [15]. Like our method, [15] also uses
the correlation between the masks as the distance measure.
The main difference between our method and that in [15] is
that, in our method, the well known k-means algorithm is used
for clustering the masks. There are many improved versions
for the basic k-means clustering algorithm (see [20] and the
references therein) and any of these algorithms can be used.
Moreover, we used small groups of adjacent frequency bins
with overlap and each group is initialized with the cluster
centroids of the previous group. As explained above and
shown in [22], this kind of initialization will increase the
convergence speed and significantly reduce the computation
time. However, there may be some frequency bins where the k-
means algorithm fails to fully solve the permutation problem.
The permutation of these bins could be solved by maximizing
the sum of the correlations between the centroids of the failed
clusters and the masks in those clusters, using (27).

E. Construction of the output signals

Using the separated signals Yq obtained by applying the
masks to one of the microphone outputs in the TF domain, i.e.,
Yq(k, t) = Mq(k, t)Xp(k, t), q = 1, · · · , Q, p ∈ {1, · · · , P},
the separated signals in the time domain is constructed by
taking inverse STFT followed by the overlap add method
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[10]. The masks can be applied to any one of the microphone
outputs. However, the performance will be slightly affected by
the microphone position, please read Section.III-D for more
explanation.

III. EXPERIMENTAL RESULTS

For performance evaluation of the proposed algorithm,
both real room and simulated impulse responses are used.
In Section III-A the impulse response of a real furnished
room is used whereas for the remaining experiments, to
have a fine control on the position of the microphones and
sources as well as on the acoustic environment, simulated
impulse responses are used [34]. In all the experiments in this
paper, average performances of 50 combinations of speech
utterances, selected randomly from 16 speech utterances are
used. For the same number of sources, in all the experiments,
the combination of speech utterances used are the same. For
experiments in Sections III-D and III-E, the wall reflections up
to 29th order is taken and humidity, temperature, absorption
of sound due to air, etc., are considered while calculating
the impulse responses. The reverberation time, TR60, of the
simulated room is 115ms.

During the separation process, the signals may be distorted
especially when the sources are overlapped in their TF domain.
Hence it is necessary to measure the distortion and the artifacts
introduced by the algorithm to assess the quality of separation.
The quality of separation of the algorithm are measured
using the method proposed in [35], [36], where the separated
(estimated) signals are first decomposed into three components
as

yq = yqtarget + eqinterf + eqartif (28)

where yqtarget is the target source with allowed deformation
such as filtering or gain, eqinterf accounts for the interference
due to unwanted sources and eqartif corresponds to the artifacts
introduced by the separation algorithm. Then the source to
distortion ratio (SDR), source to interference ratio (SIR) and
source to artifacts ratio in dB are calculated as

SDR = 10 log10

∣∣∣∣yqtarget ∣∣∣∣2
||eqinterf + eqartif ||

2 (29)

SIR = 10 log10

∣∣∣∣yqtarget ∣∣∣∣2
||eqinterf ||

2 (30)

SAR = 10 log10

∣∣∣∣∣∣yqtarget+eqinterf

∣∣∣∣∣∣2
||eqartif ||

2 (31)

In the proposed algorithm, since we are applying the mask to
one of the microphone outputs in the TF domain, the target
signal is taken as the signal picked up by the microphone to
which the mask is applied. Here the target source is yqtarget =
hpq ∗sq where hpq is the impulse response from qth source to
pth microphone, if the mask is applied to the pth microphone
output. The other experimental conditions are: length of speech
utterances are 5 seconds, speech sampling frequency is 16
kHz, DFT frame size K=2048 and the window function used
is Hanning window.

Mic.1

Mic.2

s3

s1

s2

35◦

−32◦

1.3
3m

1.3m

1.69m

1.1m

1.
4m

20
cm

Room size = 4.9m×2.8m×2.65m

Microphones and sources are at 1.5m height

Fig. 4. The source-microphone configuration for the measurement of real
room impulse response
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Fig. 5. Measured real room impulse response from source s3 to first
microphone.

A. Experiments using real room impulse responses

In this experiment we use the impulse responses measured
in a real furnished room. The reverberation time of the room
(TR60) is 187 ms and the impulse response is measured
with the help of an acoustic impulse response measuring
software ‘Sample Champion’ [37]. The microphone and loud
speaker transfer function are neglected in the measurements.
The position of the microphones and sources are shown in
Fig.4. One of the impulse responses (from source s3 to the
first microphone) is shown in Fig.5. The sources s1 and s2
are collinear. The separation of the sources when they are
collinear is a challenging task using independent component
analysis. For example, using the computationally efficient
implementation [33] of the time domain convolutive BSS
algorithm proposed in [38], [3], with an unmixing filter length
of 512, the SIR obtained is 10.9dB for noncollinear sources (s 1

and s3) and only 3.8dB for collinear sources (s1 and s2). Here
we have taken the unmixing filter length to be equal to 512
because, as discussed in [30], if the filter length is longer, the
interdependency of the unmixing filter coefficients will cause
the convergence to be poor. On the other hand, an unmixing
filter with a shorter filter length will not be able to achieve
any significant unmixing effect.

B. Detection of the number of sources

For the detection of the number of sources present in
the mixture, the cluster validation technique explained in
Section.II-C is applied to Θ(k)

H for the three different cases
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No. of source: 2
Sources: s1 and s3

No. of source: 2
Sources: s1 and s2

No. of source: 2
Sources: s1 and s3

No. of source: 2
Sources: s1 and s2
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Fig. 6. (a), (b) and (c) Mean histogram of the ‘estimated number of clusters (or sources)’ for the first 60 frequency bins. (d), (e) and (f) Total number of
frequency bins used versus ‘estimated number of clusters (or sources) ’; the estimation result will be more reliable with higher number of frequency bins
used. In the figures, at some points, the ‘number of clusters estimated’ are not integers because it is the mean performance of 50 sets of speech utterances.
All the source positions are with reference to Fig.4.

shown in Fig.4. The first case involves non-collinear sources
(s1 and s3), the second case collinear sources (s1 and s2)
and finally the third case all the three sources (s1, s2 and
s3). The mean performance obtained for 50 combinations of
speech utterances are shown in Fig.6. Fig.6(a), (b) and (c)
show the mean histogram of the estimated number of clusters
(or sources) over the first 60 frequency bins for three cases of
s1 and s3, s1 and s2 and s1, s2 and s3 respectively. From the
Figure it can be seen that the algorithm successfully estimated
the number of sources in all the three cases. Fig.6(d), (e) and
(f) show the total number of frequency bins used versus the
estimated number of sources. The Figures clearly show that
it is not necessary to apply the cluster validation technique to
all the frequency bins, instead a fraction of the total frequency
bins is sufficient for the successful estimation of the number
of sources. Since the Hermitian angle calculated at any instant
depends on the relative amplitude of the source, the variations
in the calculated Hermitian angles will be high during the
period where the unvoiced parts of the sources overlap. For
example in Figs.1 and 2, during the period t = 80 to 120 the
magnitude envelop amplitudes of the sources are small and the
variation in Hermitial angles are high. In contrast, during the

periods where the magnitude envelop amplitudes are high, the
variations in Hermitian angles are low. Considering this fact
in our experiments, Θ(k)

H (t) at any point where ‖X (k, t)‖ <

0.1 1
T

T∑
t=1

‖X (k, t)‖ are removed from Θ(k)
H before clustering

them for the estimation of the number of sources. This will
reduce not only the estimation error but also the computation
time. It may be noted that the samples with smaller amplitudes
are removed only for the estimation of the number of clusters.
For mask estimation all the samples are used.

C. Separation performance

The separation performance obtained using the proposed al-
gorithm for the three cases namely collinear, non-collinear and
underdetermined with collinear sources are shown in Table II.
In the Table, the performances of the algorithm when k-means
and fuzzy c-means clustering are used for the design of masks
are shown for the cases where the permutation problem is
solved by 1) comparing the correlation between power ratios
of the separated signals with that of the clean signals picked
up by the microphones, and 2) using the proposed k-means
clustering approach. Here the correlation between the power
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s1 and s3 SDR -0.2 6.1 6.4 6.5 6.8 6.5 6.8 6.8 7.1
(Non-collinear) SIR 0.0 18.2 18.2 16.8 16.8 18.9 18.9 17.3 17.3

SAR 16.1 6.6 -9.5 7.2 -8.9 6.9 -9.1 7.4 -8.6
s1 and s2 SDR -0.3 4.7 5.0 5.1 5.3 5.4 5.7 5.7 5.9
(Collinear) SIR -0.0 15.6 15.6 14.5 14.5 16.9 16.9 15.6 15.6

SAR 16.2 5.4 -10.8 5.9 -10.3 6.0 -10.2 6.4 -9.7
s1, s2 and s3 SDR -3.4 1.8 5.2 2.0 5.4 0.5 3.9 1.0 4.4

(Underdetermined SIR -3.2 11.9 15.1 10.4 13.6 10.0 13.2 9.1 12.3
with collinear) SAR 16.0 2.6 -13.4 3.2 -12.8 1.7 -14.3 2.5 -13.5

TABLE II

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM USING k-MEANS AND FCM CLUSTERING.

Mask estimation No. of sources Time to solve the Total time to separate
method (Each of 5 sec length) permutation problem the sources from their

alone (using the proposed mixtures.
algorithm based on K-

means clustering)
(seconds) (seconds)

k-means 2 2.3306 5.7911
3 3.2150 9.6001

FCM 2 2.2950 5.0497
3 3.3325 10.4966

TABLE III

ALGORITHM EXECUTION TIME
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Microphones and sources are at 1.25m height

Fig. 7. The source-microphone configuration for the simulated room impulse
response

ratios of the clean signals and the separated signals for solving
the permutation problem is used as the bench mark to evaluate
the proposed k-means clustering algorithm for solving the
permutation problem because it is very robust, independent
of the quality of separation in each bin and in the ideal case
where the separation is perfect, the permutation can be solved
perfectly. The permutation matrix estimation procedure can be

mathematically expressed as follows:

Πk = argmax
Π

Q∑
i

Q∑
j

(
Π • RPratio

Y Pratio
Ŝ

)
ij

(32)

where RPratio
Y Pratio

Ŝ
is the correlation matrix,

(
RPratio

Y Pratio
Ŝ

)
ij

is

the Pearson correlation between ith and jth rows of Pratio
Y and

Pratio
Ŝ respectively, Pratio

Y is the matrix of power ratios of the
separated signals in the kth frequency bin whose tth column is

given by Pratio
Y (t) =

[
‖Y1(k,t)‖2

PQ
q=1 ‖Yq(k,t)‖2 , · · · ,

‖YQ(k,t)‖2

PQ
q=1 ‖Yq(k,t)‖2

]T
.

Similarly, Pratio
Ŝ is the matrix of power ratios of the sig-

nal picked up by the pth microphone at the kth fre-
quency bin whose column vectors are given by P ratio

Ŝ
(t) =[

‖Hp1(k)S1(k,t)‖2

PQ
q=1 ‖HpqSq(k,t)‖2 , · · · ,

‖HpQ(k)SQ(k,t)‖2

PQ
q=1 ‖Hpq(k)Sq(k,t)‖2

]T
, where p ∈

{1, · · · , P} is the index of the microphone to which the
mask is applied. From Table II, it can be seen that the
SIR improvement is higher when k-means clustering is used
compared to FCM clustering. However, the improvement in
artifacts and distortion are higher when the FCM clustering
algorithm is used. It can also be seen from the Table that the
proposed method based on k-means clustering for solving the
permutation problem is as good as solving the permutation
problem by comparing the separated signals with the clean
signals. Table II show that the k-means clustering for solving
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Fig. 8. SDR/SIR/SAR versus index of the microphone output on which mask is applied, for different microphone spacings. Dotted lines are for the cases
where the permutation problem is solved by finding the correlation between the bin-wise power ratios of the separated signals and that of clean signals picked
up by the microphones. Solid lines are for the cases where the permutation problem is solved by the proposed method based on the k-means clustering
algorithm. The mean input SDR, SIR and SAR are -0.09dB, 0dB and 20.82dB respectively.

the permutation problem out-perform the correlation method
using the clean signals in the experiments using two sources.
The reason for this is can be explained as follows. In practice,
the sources are not perfectly disjoint in their TF domain.
Hence the separated signals will have some distortion when
we use binary masking method. Due to this, the correlation
between the separated signals or the corresponding masks in
the adjacent bins will be higher than that between the separated
signals and the clean signals. When the number of sources
increases the distortion on the separated signals will be more
because of the increased spectra overlap. If the distortions on
the separated signals are too high, the robustness of the k-
means clustering algorithm will decrease and the correlation
method using the clean signals will out-perform the k-means
clustering method.

The time taken to execute the proposed algorithm when
coded in Matlab and run in a PC with Intel Core 2 Duo 2.66
GHz CPU, 2 GB of RAM is shown in Table III. Note that
the k-means algorithm for the mask estimation is initialized
with the result obtained from the histogram method on Θ (k)

H ,
whereas the FCM algorithm was initialized with randomly
selected samples from Θ(k)

H .

D. Microphone spacing and selection of microphone output
to apply mask.

The estimated mask can be applied to the mixture in the
TF domain obtained from one of the microphone outputs. In
this experiment we examine the output of the microphone on
which the mask is to be applied to obtain the best performance.
It is logical to apply the masks to the output of the center
microphone which is proven experimentally and shown in
Figs.8 to be the best choice.

In our experiments, the simulated impulse responses ob-
tained for the source microphone configuration shown in Fig.7
is used. Out of the total six sources, only two sources are
active at any time and hence we have a total of 6!

2!(6−2)! = 15
combinations of source positions. For each combination of
source positions the experiment is repeated for 50 sets of
utterances. The performances shown in Figs.8 are the mean
performances of these 750 experiments. To study the effect of
microphone spacing, these 750 experiments are repeated for
different microphone spacing. For this purpose microphone
arrays consisting of five microphones with different spacings
(2cm, 5cm, 10cm and 20cm) are used. For all the microphone
spacings the center of the array is kept at the same point. The
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Fig. 9. Variation in angle between the column vectors Hq(k), q = 1, 2
versus microphone spacing. Dotted lines show the angles for different source
combinations, as marked in the figure, and solid line shows the mean angle.

experimental results show that the performance improves as
the spacing between the microphones increases, and after a
certain distance this improvement begins to drop. The reason
for the variation in performance because of the variation in
spacing between the microphones can be explained as follows.

When the microphones are very close the difference be-
tween the impulse responses of any one source and the
microphones is small. For example, the impulse response
between source s1 and microphone Mic.1 will be almost the
same as that between s1 and microphone Mic.2 when both
microphones are very close to one another. Hence in the
frequency domain, the column vectors H q(k), q = 1, · · · , Q
will be very close to one another and as a result the angles
between them will be small. When the angles between the
mixing vectors are very small, partitioning of the samples will
be difficult and the separation performance will also be poor.
On the other hand, if we go on increasing the spacing, as the
maximum Hermitian angle between the column vectors H q(k),
q = 1, · · · , Q is π/2, after a certain distance there will not be
any increase in performance. This fact is illustrated in Fig.9
where the average angle between the column vectors H q(k),
q = 1, · · · , Q, over the first 100 bins as a function of spacing
between the microphones are shown.

It may be noted that, in Fig.8, for 2 cm microphone spacing
the performance is lower when the proposed k-means cluster-
ing algorithm is used for solving the permutation problem than
when the correlation between the power ratios of the separated
and clean signals are used. This is because when the spacing is
small, the clustering of Θ(k)

H will be difficult which will lead
to error in mask estimation. For the proposed algorithm for
solving the permutation problem, the robustness of the cluster
formation depends on the quality of the estimated masks. If
the mask quality is poor, the permutation problem will not
be solved perfectly which will result in poor separation in
the time domain. When we use the correlation between the
clean signals and separated signals for solving the permutation
problem, the robustness will be very high and the decrease in
performance will be mainly due to the imperfect separation in
each frequency bin, and that due to the error in solving the
permutation problem will be minimum.

E. Effect on the number of microphones

Generally in BSS, the larger the number of microphones,
the better the performance. This observation also holds in our
case. The SDR, SIR and SAR improvements for different
combinations of number of sources and microphones are
shown in Fig.10 where the masks are generated using k-
means clustering. The source microphone positions are the
same as that in Fig.7. The spacings between the microphones
are fixed at 10cm for all the experiments. For the case of odd
number of microphones, the masks are applied to the output
of the centre microphone. When the numbers of microphones
are 2 and 4, masks are applied to the first and the second
microphone outputs respectively. As explained in Section III-
D, for two sources, because of the 15 combinations of source
position, 750 simulations were done. Similarly, 1000, 750,
300 and 50 simulations were done for 3, 4, 5 and 6 sources
respectively and the mean performances so obtained are shown
in Fig.10. From Figs.8 and 10, it can be seen that the binary
masking method for the separation of the sources from their
mixtures will introduce artifacts due to nonlinear distortions.
This cannot be avoided and it will increase as the overlapping
of the sources increases. To mitigate this problem, some post
processing techniques have to be used [39].

IV. CONCLUSION

In this paper, an algorithm for separation of an unknown
number of sources from their underdetermined convolutive
mixtures via TF masking and a method for solving the
permutation problem by clustering the masks using k-means
clustering is proposed. The algorithm uses the membership
functions from the clustering algorithm as the masks. The
separation performance of the algorithm is evaluated for
the two popular clustering algorithms, namely k-means and
fuzzy c-means. The crisp nature of the membership functions
generated by the k-means algorithm resulted in more artifacts
in the separated signals compared to those by fuzzy c-means
algorithm, which is a soft partitioning technique. For the
automatic detection of the number of sources, the optimum
number of clusters formed by the Hermitian angles in different
frequency bins are estimated and the number that estimated
most frequently is taken as the number of sources present in
the mixture. In this paper, the cluster validation technique is
used for the estimation of the number of cluster; however,
other techniques can also be used. In TF masking methods
for BSS, in general, the scaling problem does not exist and
this is true for the proposed algorithm also. However, the
well-known permutation problem still exists but could be
solved by clustering. The validity of the proposed algorithms
are demonstrated for both real room and simulated speech
mixtures.

For the experiments in this paper, the signals used were
not sparse in the time domain. Furthermore, in the frequency
domain, the overlappings are high for larger numbers of
sources. In a practical situation, for example, conversation in
a meeting room, the signals will be sparse even in the time
domain. Considering this fact and the speed of the algorithm
(the algorithm will be much faster than that shown in Table III,
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if we implement it in other languages such as C or C++), the
proposed algorithm is suitable for real world applications.

APPENDIX

If we multiply u1 and u2 by the complex scalars a and b
respectively, then (8) will become

cos(θC) =
(au1)H(bu2)√

(au1)H(au1)
√

(bu2)H(bu2)

=
∑

i a
∗u∗i1bui2√∑

i a
∗u∗i1aui1

√∑
i b

∗u∗i2bui2

(33)

where uiq is the ith element of the column vector uq and *
represents the complex conjugate operation. Let

a = AejθA (34)

b = BejθB (35)

ui1 = Ui1e
jφi (36)

ui2 = Ui2e
jψi (37)

then cos(θC) will be as shown in (39) and

cos(θH) = |cos(θC)|

=

∣∣ej(θB−θA)
∑
i Ui1Ui2e

j(ψi−φi)
∣∣√∑

i U
2
i1

√∑
i U

2
i2

=

∣∣ej(θB−θA)
∣∣ ∣∣∑

i Ui1Ui2e
j(ψi−φi)

∣∣√∑
i U

2
i1

√∑
i U

2
i2

=

∣∣∑
i Ui1Ui2e

j(ψi−φi)
∣∣√∑

i U
2
i1

√∑
i U

2
i2

(38)

which is independent of a and b.

cos(θC) =
∑
iAe

−jθAUi1e
−jφiBejθBUi2e

jψi√∑
iAe

−jθAUi1e−jφiAejθAUi1ejφi

√∑
iBe

−jθBUi2e−jψiBejθBUi2ejψi

=
ABej(θB−θA)

∑
i Ui1Ui2e

j(ψi−φi)

A
√∑

i U
2
i1B

√∑
i U

2
i2

=
ej(θB−θA)

∑
i Ui1Ui2e

j(ψi−φi)√∑
i U

2
i1

√∑
i U

2
i2

(39)
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