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ABSTRACT This paper deals with a multichannel audio source separation problem under underdetermined

conditions. Multichannel non-negative matrix factorization (MNMF) is a powerful method for under-

determined audio source separation, which adopts the NMF concept to model and estimate the power

spectrograms of the sound sources in a mixture signal. This concept is also used in independent low-rank

matrix analysis (ILRMA), a special class of theMNMF formulated under determined conditions.While these

methods work reasonably well for particular types of sound sources, one limitation is that they can fail to

work for sources with spectrograms that do not comply with the NMF model. To address this limitation,

an extension of ILRMA called the multichannel variational autoencoder (MVAE) method was recently

proposed, where a conditional VAE (CVAE) is used instead of the NMF model for expressing source power

spectrograms. This approach has performed impressively in determined source separation tasks thanks to

the representation power of deep neural networks. While the original MVAE method was formulated under

determined mixing conditions, this paper proposes a generalized version of it by combining the ideas of

MNMF and MVAE so that it can also deal with underdetermined cases. We call this method the generalized

MVAE (GMVAE) method. In underdetermined source separation and speech enhancement experiments,

the proposed method performed better than baseline methods.

INDEX TERMS Underdetermined source separation, variational audoencoder, non-negative matrix factor-

ization.

I. INTRODUCTION

Blind source separation (BSS) refers to the problem

of separating out underlying source signals present in

observed mixture signals received by a microphone array.

A frequency-domain method is typically used to tackle

BSS problems for convolutive mixtures by using vari-

ous models for source signals and/or array responses. For

example, an extension of independent component analysis

(ICA) [1] called independent vector analysis (IVA) [2], [3]

makes it possible to jointly perform frequency-wise source

separation and permutation alignment by assuming that

the magnitudes of the frequency components originating

from the same source are likely to vary coherently over

time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

Other methods involve multichannel extensions of non-

negative matrix factorization (NMF) [4]–[9]. NMF is a

dimension reduction method for matrices consisting of only

non-negative entries. In audio signal processing, NMF was

originally applied for music transcription and monaural

source separation tasks [10], [11], where the power spectro-

gram (or the magnitude spectrogram) of a mixture signal is

regarded as a non-negative matrix to be approximated as the

product of two non-negative matrices. This can be viewed as

approximating the power spectrum (or the magnitude spec-

trum) of a mixture signal observed at each time frame by the

sum of a fixed number of basis spectra scaled by time-varying

magnitudes.

Multichannel NMF (MNMF) is a method that extends

the NMF so that it can additionally use spatial information

for source separation. It can also be seen as a frequency-

domain BSS method that uses spectral templates as clues
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TABLE 1. Categorization of proposed and conventional methods.

for jointly performing frequency-wise source separation and

permutation alignment. MNMF was originally formulated

as a method [4] for handling underdetermined as well as

determined scenarios in which sources can outnumber micro-

phones. A determined version of MNMF, focused on solving

BSS problems in determined settings, was subsequently pro-

posed [5]. While the determined version of MNMF is appli-

cable only to determined cases, it provides a significantly

faster algorithm than the general version. This determined

MNMF framework was later called independent low-Rank

matrix analysis (ILRMA) [12]. It is worthwhile to note that

the optimization algorithms forMNMF and ILRMA are guar-

anteed to converge to a stationary point, and work reasonably

well for some types of sound sources. However, they can fail

to work when encountering sound sources with spectrograms

that do not follow the NMF model, resulting in performance

limitations.

To address these limitations, new methods using varia-

tional autoencoders (VAEs) [13] have been proposed as alter-

natives to NMF-based source modeling [14]–[19]. AVAE is a

type of generative neural network capable of modeling high-

dimensional data such as images. The idea of these methods

is to use a VAE to model the spectra of source signals.

Some of these methods [16], [17] were designed to deal

with speech enhancement tasks by modeling the spectrogram

of a particular source to be enhanced using a regular VAE

and expressing the spectrograms of the other sources using

the NMF model. This allows these methods to handle semi-

supervised scenarios in which interference sources are unseen

in the training set. We hereafter refer to this type of method

as ‘‘VAE-NMF’’. Another VAE-based method worth noting

is the multichannel VAE (MVAE) method [14], [15]. This

method is an extension of ILRMA with the difference being

that a conditional VAE (CVAE) [20] instead of the NMF

model is used as a generative model of source spectrograms.

By training the CVAE using the spectrograms of class-labeled

speech samples, the resulting decoder can be used as a gener-

ative model of the speech spectrograms of multiple speakers

where its inputs are interpreted as the model parameters to

be optimized. Thanks to the ability of a VAE to accurately

represent spectrograms, the MVAE method consistently per-

formed better than ILRMA in determined source separation

tasks.

While the original MVAE method was formulated under

determined mixing conditions, we propose a generalized

version of the original MVAE method by combining the

ideas of MNMF and the MVAE method so that it can also

deal with underdetermined cases. We call this method the

generalized MVAE (GMVAE) method to distinguish it from

the MVAE method (Table 1). The remainder of this paper is

organized as follows. In Section 2, we begin by formulating

the BSS problem and state the motivation for introducing

VAE-based source models. In Section 3, we review related

work including those on MNMF, ILRMA and the MVAE

method and show that the relationship between MNMF and

the GMVAE method corresponds to that between ILRMA

and the MVAE method. In Section 4, we discuss the devel-

opment of a convergence-guaranteed parameter optimization

algorithm for the GMVAEmethod by combining the ideas for

the parameter optimization processes introduced in MNMF

and the MVAE method. In Section 5, we experimentally

show the superiority of the GMVAE method over MNMF in

underdetermined source separation tasks and over VAE-NMF

in semi-supervised speech enhancement tasks. Note that this

paper is an extended journal version of our preprint paper [18]

and conference paper [19].

II. PROBLEM FORMULATION

Suppose that there are J source signals and that a mixed

signal from these sound sources is captured by I micro-

phones. Let sj(f , n) and xi(f , n) respectively be the short-

time Fourier transform (STFT) coefficient of the j-th source

signal and that of the i-th observed signal, where f and

n are the frequency and time indices, respectively. We

denote the vectors containing the STFT coefficients of all

the sources s1(f , n), . . . , sJ (f , n) and the observed signals

x1(f , n), . . . , xI (f , n) as

s(f , n) = [s1(f , n), . . . , sJ (f , n)]
T ∈ C

J , (1)

x(f , n) = [x1(f , n), . . . , xI (f , n)]
T ∈ C

I , (2)

where (·)T represents the transpose and C denotes com-

plex numbers. We assume that sj(f , n) independently follows

a zero-mean complex Gaussian distribution with variance

vj(f , n):

sj(f , n) ∼ NC(sj(f , n)|0, vj(f , n)). (3)

Equation (3) is usually called the local Gaussian model

(LGM) [21]–[23]. When sj(f , n) and sj′ (f , n) are mutually

independent for j 6= j′, s(f , n) follows a complex Gaussian

distribution

s(f , n) ∼ NC(s(f , n)|0,V(f , n)), (4)

where V(f , n) is a diagonal covariance matrix with diagonal

entries v1(f , n), . . ., vJ (f , n).

In a general situation in which the sources can outnumber

the microphones, a mixing system is given as follows:

x(f , n) = A(f )s(f , n), (5)

which describes the relationship between s(f , n) and x(f , n),

where A(f ) = [a1(f ), . . . , aJ (f )] ∈ C
I×J is referred to as a

mixing matrix. From (4) and (5), x(f , n) is shown to follow

x(f , n) ∼ NC(x(f , n)|0,A(f )V(f , n)A
H(f )), (6)

where (·)H represents the conjugate transpose. Thus, given an

observed mixed signal X = {x(f , n)}f ,n, using the mixing
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matrices A = {A(f )}f and variance in source signals

V =
{

vj(f , n)
}

j,f ,n
, the log-likelihood is given as

log p(X |A,V)
c
= −

∑

f ,n

[

tr(X(f , n)X̂−1(f , n))+ logdetX̂(f , n)
]

, (7)

where
c
= denotes the equality up to constant terms and

X(f , n) = x(f , n)xH(f , n), (8)

X̂(f , n) = A(f )V(f , n)AH(f ). (9)

If there is no constraint imposed on vj(f , n), (7) will be split

into multiple frequency-wise source separation problems,

which indicates that there is a permutation ambiguity in the

separated components for each frequency since permutation

of j does not affect the value of the log-likelihood. Thus, per-

mutation alignment is generally required after A is obtained.

III. RELATED WORK

A. MULTICHANNEL NON-NEGATIVE MATRIX

FACTORIZATION (MNMF)

The covariance matrix of x(f , n) can be written as the linear

sum of the outer products of a steering vector aj(f ) multiplied

by source variances vj(f , n). With MNMF, the outer product

of aj(f ), namely the spatial covariance of the j-th source

denoted by Rj(f ), is treated as a full-rank matrix:

X̂(f , n) =
∑

j
vj(f , n)aj(f )a

H
j (f )

=
∑

j
vj(f , n)Rj(f ). (10)

As with IVA, imposing a constraint on vj(f , n) allows us

to jointly carry out frequency-wise source separation and

permutation alignment. With MNMF, vj(f , n) is modeled as

the sum of Kj spectral templates hj,1(f ), . . ., hj,Kj (f ) ≥ 0

scaled by time-varying activations uj,1(n), . . . , uj,Kj (n) ≥ 0:

vj(f , n) =
∑Kj

k=1
hj,k (f )uj,k (n). (11)

It is also possible to share all the spectral templates of every

source and let the contribution of the k-th spectral template to

source j be determined in a data-driven manner. Thus, vj(f , n)

can also be expressed as

vj(f , n) =
∑K

k=1
bj,khk (f )uk (n), (12)

where bj,k ∈ [0, 1] is a continuous indicator variable sat-

isfying
∑

k bj,k = 1. Here bj,k can be interpreted as the

expectation of a binary indicator variable that describes the

index of the source to which the k-th template is assigned.

The separation algorithm of MNMF consists of iteratively

updating the spatial covariance matrices R =
{

Rj(f )
}

j,f
,

and the source model parameters H1 =
{

hj,k (f )
}

j,k,f
,

U1 =
{

uj,k (n)
}

j,k,n
or B =

{

bj,k
}

j,k
, H2 = {hk (f )}k,f ,

U2 = {uk (n)}k,n. By using the principle of the majorization-

minimization (MM) algorithm [24], [25], we can derive

update equations [26].

B. INDEPENDENT LOW-RANK MATRIX ANALYSIS (ILRMA)

ILRMA is a special class of MNMF designed to solve deter-

mined source separation problems. Unlike MNMF, which

uses the mixing system shown in (5), ILRMA uses the fol-

lowing separation system:

s(f , n) = WH(f )x(f , n), (13)

assuming the mixing matrix is invertible. The inverse matrix

WH(f ) =
[

wH

1 (f ), . . . ,w
H
J (f )

]H

∈ C
J×I is called the

separation matrix.

As with MNMF, the MM-based update equations for H1

and U1 or for B, H2 and U2 are obtained as closed-form

expressions. The separation matrix WH(f ) can be updated

using a fast update rule called iterative projection (IP) [27],

originally developed for IVA.

C. DEEP NEURAL NETWORK APPROACH

Instead of using the NMF model, algorithms for the

LGM-based multichannel source separation framework,

where vj(f , n) is updated with the output of pretrained

deep neural networks at each iteration, have been proposed

[9], [28]. One drawback of these algorithms is that updating

vj(f , n) in this way does not guarantee an increase in the

log-likelihood.

D. MULTICHANNEL VARIATIONAL

AUTOENCODER (MVAE) METHOD

One limitation of the MNMF framework including ILRMA

is that it can fail to work for sources with spectrograms

that are difficult to express using the NMF model given by

(11) or (12). The MVAE method is an improved variant

of ILRMA that replaces (11) with a CVAE [14], [15]. The

MVAE method models the generative model of the complex

spectrogram of a particular sound source using a CVAE with

an auxiliary input, indicating the classes of a source, which is

represented as a one-hot vector.

The optimization algorithm of the MVAE method consists

of updating the separation matrices using IP, the global scale

using the MM algorithm and the inputs to the pretrained

decoder using backpropagation. The advantage of using the

MVAE method is that it can leverage the strong representa-

tional power of a VAE for modeling the power spectrogram

of sources.

E. VAE-NMF

After our preprint paper on this work [18] was first made

public, methods have beenmade tomodel sources usingNMF

and a VAE for multichannel speech enhancement [16], [17].

These methods are designed to model the spectrogram of a

particular source to be enhanced using a regular VAE and

express the spectrograms of the other sources using the NMF

model. This allows these methods to handle semi-supervised

scenarios in which interference sources are unseen in the

training set.
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FIGURE 1. Illustration of the modeling concepts of MNMF and GMVAE method. Network parameters to be optimized at training time and
parameters of the NMF and CVAE source models to be optimized at separation (inference) time are in colored blocks.

IV. GENERALIZED MVAE METHOD (GMVAE)

A. OVERVIEW

Figure 1 illustrates the modeling concepts of MNMF and

the GMVAE method. These methods share the same log-

likelihood (7) to maximize, which can be interpreted as

the similarity between the outer product of each observed

signal vector (8) and the sum of full-rank spatial covari-

ances scaled by source variances (10). As this figure shows,

while MNMF represents source spectrograms using the NMF

model, the GMVAE method represents them using a trained

CVAE decoder network. Note that with the GMVAEmethod,

we treat the spatial covariance Rj(f ) in the same manner as

MNMF. At separation (inference) time, the network param-

eters are fixed at the pretrained values for all the assumed

sources and decoder inputs, namely the latent variable zj,

latent code cj, and global scale gj become the parameters to

be estimated.

B. CVAE PRETRAINING

Our CVAE consists of an encoder network and decoder

network, which we train using class-labeled training exam-

ples prior to separation. Given a source spectrogram S̃ with

the one-hot encoded class label c, the encoder distribution

qφ(z|S̃, c) is expressed as a Gaussian distribution:

qφ(z|S̃, c) =
∏

d
N (z(d)|µφ(d; S̃, c), σ 2

φ (d; S̃, c)), (14)

where z denotes a latent variable, and z(d), µφ(d; S̃, c), and

σ 2
φ (d; S̃, c) represent the d–th elements of z, µφ(S̃, c), and

σ 2
φ (S̃, c), respectively. The decoder distribution pθ (S̃|z, c, g)

is expressed as a zero-mean complex Gaussian distribu-

tion (i.e., the LGM):

pθ (S̃|z, c, g) =
∏

f ,n
NC(s(f , n)|0, v(f , n)), (15)

v(f , n) = gσ 2
θ (f , n; z, c), (16)

where σ 2
θ (f , n; z, c) represents the (f , n)–th element of the

decoder output σ 2
θ (z, c) and g is the global scale of the

generated spectrogram. During CVAE training, both the

encoder and decoder network parameters φ and θ are trained

using the following objective function:

J (φ, θ; S̃, c) = E
z∼qφ (z|S̃,c)

[log pθ (S̃|z, c)]

−KL[qθ (z|S̃, c)||p(z)], (17)

where p(z) is a standard Gaussian distribution and KL[·||·] is

the Kullback-Leibler divergence.

The trained decoder distribution pθ (S̃|z, c, g) can be

used as a generative model capable of generating spec-

trograms of all the sources involved in the training

examples.

C. PARAMETER ESTIMATION

Since the decoder distribution is designed to be of the same

form as the LGM, using pθ (S̃j|zj, cj, gj) leads to the same log-

likelihood as (7). Thus, we can derive an iterative algorithm

for estimating Z =
{

zj
}

j
, C =

{

cj
}

j
, G =

{

gj
}

j
and R in

the same manner as the derivation of an MM algorithm for

MNMF.

The MM algorithm is an iterative algorithm that searches

for a stationary point of a cost function by iteratively min-

imizing an auxiliary function called a ‘‘majorizer’’ that is

guaranteed to never go below the objective function. When

constructing an MM algorithm for a certain minimization

problem, the main issue is to design the majorizer. If a

majorizer is properly designed, the algorithm is guaranteed

to converge to a stationary point of the cost function. If we

can build a tight majorizer/minorizer that is easy to opti-

mize, we can generally expect to obtain a fast-converging

algorithm.

As shown in a previous study [26], we can build

a majorizer L+ for the negative log-likelihood function

L = − log p(X |A,V) using the right side of the following

VOLUME 7, 2019 168107



S. Seki et al.: Underdetermined Source Separation Based on GMVAE

inequality:

L = − log p(X |A,V)

c
≤

∑

j

∑

f ,n

[

tr(X(f , n)Pj(f , n)R
−1
j (f )Pj(f , n))

gjσ
2
θ (f , n; zj, cj)

+gjσ
2
θ (f , n; zj, cj)tr(Q

−1(f , n)Rj(f ))

]

, (18)

where
c
≤ denotes the inequality that holds when constant

terms are ignored. The equality holds when the auxiliary

variables P =
{

Pj(f , n)
}

j,f ,n
and Q = {Q(f , n)}f ,n are given

by

Pj(f , n) = gjσ
2
θ (f , n; zj, cj)Rj(f )

×
(

∑

j
gjσ

2
θ (f , n; zj, cj)Rj(f )

)−1
, (19)

Q(f , n) = X̂(f , n). (20)

An iterative algorithm that consists of minimizing this

majorizer with respect to Z , C, G, and R and updating P

and Q using (19) and (20) is guaranteed to not increase

the negative log-likelihood L. The optimal update of R is

analytically obtained as

Rj(f )← 3−1j (f )#(Rj(f )�j(f )Rj(f )), (21)

where # denotes the geometric mean of two positive definite

matrices [29]:

A#B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 . (22)

3j(f ), �j(f ) are given as follows:

3j(f ) =
∑

n
vj(f , n)X̂

−1(f , n), (23)

�j(f ) =
∑

n
vj(f , n)X̂

−1(f , n)X(f , n)X̂−1(f , n). (24)

Since the majorizer is split into source-wise terms, Z and

C can be updated in parallel using backpropagation. Since

the sum-to-one constraints for cj must be taken into account,

this can be easily implemented by inserting an appropriately

designed softmax layer that outputs cj:

cj = softmax(ej), (25)

and treating ej as the parameter to be estimated instead. The

optimal update of G is obtained as follows:

gj← gj

×

√

√

√

√

∑

f ,n σ 2
θ (f , n; zj, cj)tr(X̂

−1(f , n)X(f , n)X̂−1(f , n)Rj(f ))
∑

f ,n σ 2
θ (f , n; zj, cj)tr(X̂

−1(f , n)Rj(f ))
.

(26)

D. REGULARIZATION OF z AND c

In CVAE pretraining, the encoder is trained so that the dis-

tribution of the latent variable z becomes close to a stan-

dard Gaussian distribution. Thus, to let the trained decoder

produce spectrograms that resemble those seen in the train-

ing data, z must not deviate from the assumed distribution.

To prevent z from deviating from a standard Gaussian dis-

tribution, we consider introducing regularization for zj given

by

LZ = −
∑

j
log p(zj), (27)

where p(zj) = N (zj; 0, I).

For the optimization of the latent code c, the resulting

c1, . . . , cJ must be disjoint since the class of each source

is usually different. To promote the orthogonality between

c1, . . . , cJ , we use the following regularization term:

LC = ‖CC
T − I‖1, (28)

where C ∈ [0, 1]J×L is a matrix composed of J latent codes

(L-dimensional vectors) and I ∈ R
J×J is an identity matrix.

This regularization term plays the role of encouraging each

latent code cj to become a different one-hot vector.

Thus, the objective function for Z and C is given as

I = L+ + λZLZ + λCLC, (29)

where λZ ≥ 0 and λC ≥ 0 are weight parameters.

E. SEPARATION PROCESS

After convergence, we can obtain separated source signals by

applying a multichannel Wiener filter:

ŝj(f , n) = vj(f , n)Rj(f )
(

∑

j
vj(f , n)Rj(f )

)−1
x(f , n), (30)

followed by applying the inverse STFT.

F. ADVANTAGES OVER RELATED WORK

The GMVAEmethod has several important advantages. First,

it provides the flexibility of allowing it to adapt to different

scenarios. A typical case is that in which we know which

sources are present in a mixture. In this case, we can sim-

ply fix cj at the corresponding one-hot vector and run the

iteration (Algorithm 1). Another case is that in which we

Algorithm 1 Fully informed GMVAE

Train φ and θ with (17)

for each j do

Fix cj at a specific one-hot vector

end for

Initialize Z , G, andR

repeat

Update Z with (18) using backpropagation

Update G using (26)

UpdateR using (21)

until converge

are given no information about the sources. It may appear

that the GMVAE method works only in supervised and

informed scenarios where audio samples of all the sources

in a test mixture are included in the training set. However,

thanks to the CVAE-based source modeling, if the training

set contains a wide enough variety of sources, the GMVAE
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method can work in nearly blind settings where there is no

information about which of the sources are present in a test

mixture and can even handle sources that are unseen in the

training set. For such cases, one simple way would be to

treat cj as a free parameter, initialized for example at a uni-

form distribution (i.e., [1/L, . . . , 1/L]), and run the iteration

until convergence (Algorithm 2). For semi-supervised speech

Algorithm 2 Uninformed GMVAE

Train φ and θ with (17)

for each j do

Initialize cj at a uniform distribution

end for

Initialize Z , G, andR

repeat

Update Z and C with (18) using backpropagation

Update G using (26)

UpdateR using (21)

until converge

enhancement scenarios where only the source to be enhanced

is known, we can simply specify (instead of having it esti-

mate) one of the latent codes (Algorithm 3).

Algorithm 3 Partially informed GMVAE

Train φ and θ with (17)

Initialize cTarget at a specific one-hot vector

Initialize cNon−target at a uniform distribution

Initialize Z , G, andR

repeat

Update Z and cNon−target with (18) using backpropaga-

tion

Update G using (26)

UpdateR using (21)

until converge

Second, the CVAE modeling can potentially have a certain

effect in avoiding local optima problems in supervised and

semi-supervised scenarios. One possible situation in these

scenarios that can lead to poor local optima is when the source

index pre-assigned to each vj(f , n) is different from the source

to which the estimate ofRj(f ) correspondsmost closely. Once

this kind of mismatch occurs, it usually becomes difficult to

avoid getting stuck in incorrect local optima. This is one of

telling examples of the problem that is very likely to occur

when the source index is pre-specified for each j. It should

be noted that supervised MNMF and VAE-NMF fall into this

type of method. With the GMVAE method, however, we can

take a soft-decision approach by treating cj as a free parameter

(instead of specifying it), initialized as a uniform distribution,

and let the algorithm find the best cj so that the distribution

of the source to which Rj(f ) is likely to correspond can be

estimated along with Rj(f ). We can then determine the index

ĵ that corresponds to the source of interest from inspection of

c1, . . . , cJ and forcing cĵ to the corresponding one-hot vector

during the iteration (Algorithm 4).

Algorithm 4 GMVAE with one-hot enforcement

Train φ and θ with (17)

for each j do

Initialize cj with a specific one-hot vector

end for

Initialize Z , G, andR

repeat

Update Z and C with (18) using backpropagation

Update G using (26)

UpdateR using (21)

until converge

Determine cj which is the most similar to the target as

cTarget

Determine cj′ (j 6= j′) as cNon−target

Update cTarget with a specific one-hot vector

repeat

Update Z and cNon−target with (18) using backpropaga-

tion

Update G using (26)

UpdateR using (21)

until converge

V. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETTINGS

We conducted three experiments to evaluate the GMVAE

method. The first two are speaker-closed and speaker-

open underdetermined source separation experiments where

the task is to separate out three sources from their mix-

tures captured by two microphones. The other is a semi-

supervised speech enhancement experiment where the task

is to extract a known source from noisy observations con-

taminated by unknown sources. As the experimental data,

we used audio samples from the Voice Conversion Chal-

lenge (VCC) 2018 dataset [30], which contains recordings

of 6 female and 6 male U.S. English speakers. The average

duration of each utterance is 3.5 seconds, and the dataset

includes 81 utterances of individual speakers for training and

35 utterances for evaluation. For these experiments, we used

the utterances of four female and four male speakers, ‘SF1’,

‘SF2’, ‘SF3’, ‘SF4’, ‘SM1’, ‘SM2’, ‘SM3’, and ‘SM4’. For

training, we used 100 utterances of ‘SF1’, ‘SF2’, ‘SM1’,

and ‘SM2’. Another 10 utterances of ‘SF1’, ‘SF2’, ‘SM1’,

and ‘SM2’ were used for evaluation under speaker-closed

conditions in the source separation task and treated as the

target sources in the speech enhancement task. Similarly,

10 utterances of ‘SF3’, ‘SF4’, ‘SM3’, and ‘SM4’ were used

for evaluation under speaker-open conditions in the source

separation task and treated as the interference sources in the

speech enhancement task.

Figure 2 shows the configuration of the room used

for the experiments. Reverberation time T60 was set to
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FIGURE 2. Configuration of room used for our experiments, where ❝and
× are locations of microphones and sound sources, respectively.

78 and 351 ms. In the source separation task, we created test

data using all possible combinations of three speakers for both

the speaker-closed and speaker-open conditions. For each set

of speakers, 10 speech mixtures were generated by randomly

choosing the utterances and randomly allocating them at loca-

tions indicated in Figure 2. In the speech enhancement task,

40 speechmixtures were generated by randomly choosing the

utterances of the target and interference speakers where target

and interference sources are located at the Src. 1 and Src. 2,

respectively.

We tested several different versions of the proposed

and baseline methods for comparison. We use the terms

‘‘fully supervised/semi-supervised/unsupervised’’ and ‘‘fully

informed/partially informed/uninformed’’ to properly cate-

gorize each version of the methods. Fully supervised, semi-

supervised, and unsupervised refer to whether a method

requires training examples and fully informed, partially

informed, and uninformed refer to how much information

about which sources are present in a test mixture is given

to a method. All versions of the GMVAE method are fully

supervised since they all require training examples to train

the CVAE. Thus, we omit ‘‘fully supervised’’ when referring

to this method. At separation time, the GMVAE method

can be implemented in either fully informed, uninformed,

or partially informed manners. Hence, we refer to these ver-

sions as fully informed GMVAE, uninformed GMVAE, and

partially informed GMVAE. MNMF can perform in either

unsupervised, semi-supervised, or fully supervised manners.

We implemented unsupervised uninformed, fully supervised

uninformed, and fully supervised fully informed MNMFs

for comparison. VAE-NMF falls into the semi-supervised

partially informed category. Categorization of each version

is summarized in Table 2.

All the speech signals were resampled at 16 kHz.We tested

two different STFT configurations, i.e., a 128-ms window

length with a 64-ms shift length and a 256-ms window length

with a 128-ms shift length. The numbers of basis spectra

for these baseline versions were set to 10 per speaker, as in

a previous study [4]. The spectral dictionaries used for the

fully/semi-supervised MNMF versions were trained for each

speaker using the same dataset used for the CVAE training

and obtained using an Itakura-Saito NMF (IS-NMF) [11]

TABLE 2. Methods for comparison.

FIGURE 3. Network configurations of (a) encoder and (b) decoder, where
[c,t] denotes input channel and input length. Both convolution and
deconvolution represent 1-dimensional operation. (k,s) represent kernel
size and stride size along frame, respectively.

with 1000 iterations. For a fair comparison, MNMF was run

for 200 iterations for the initialization of each method. All

the versions, including the baseline ones, were then run for

100 iterations. For the speech enhancement task, we imple-

mented Algorithm 4, which consists of updating c1, . . . , cJ
freely during the first 50 iterations, then searching for the

index ĵ that corresponds to the target speaker, and finally run-

ning the last 50 iterations while fixing c
ĵ
at the corresponding

one-hot vector. We refer to this algorithm as ‘‘GMAVE with

one-hot enforcement’’. The encoder and decoder networks of

our CVAE are shown in Figure 3. At training time, the batch

size and length were set to 9 and 128, respectively. The Adam

algorithm [31] with a learning rate of 0.0001 was used for the

CVAE pretraining. The number of training epochs was set to

1000. The VAE used with VAE-NMF was trained for each
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FIGURE 4. Spectrograms of (a) reference source and estimated sources by using (b) MNMF and (c) GMVAE.

FIGURE 5. Source separation performances under speaker-closed conditions.

speaker using the same training dataset and training configu-

ration, where the same network architectures as our CVAE

except for the conditioning part were used. At separation

time, the Adam algorithm with a learning rate of 0.01 was

used for updating Z and C. The number of training epochs

per iteration was set to 10.

As the evaluation metrics, we used the averages of

the signal-to-distortion ratio (SDR), source image-to-spatial

distortion ratio (ISR), signal-to-inference ratio (SIR), and

signal-to-artifact ratio (SAR) [32] between the reference

signals and separated signals. Note that, in the speech

enhancement task, separation performances of both the tar-

get source and interference source were evaluated and per-

mutation of estimated sources was not considered in the

evaluation.

B. EXPERIMENTAL RESULTS

Figures 4 (b) and (c) show examples of the NMF- and CVAE-

based source models fitted to the speech spectrogram shown

in Figure 4 (a). As these examples show, the CVAE source

model was able to express harmonic structures and higher-

frequency components better than the NMF model.

We next show the performances in the source sepa-

ration task. A comparison of the separation performance

of each version under speaker-closed conditions is shown

in Figure 5, where error bars show the 95 % confidence

intervals. When comparing the performance of the unin-

formed versions (Baseline1 to Baseline3 and Proposed1 to

Proposed3) at T60 = 78 ms, the proposed versions out-

performed the baseline ones for both STFT configurations.

The comparison of Baseline3 and Proposed3 directly reflects
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FIGURE 6. Source separation performances under speaker-open conditions.

the difference in ability between the NMF- and CVAE-based

source models. The results thus indicate the superiority of our

CVAE source model over the NMF counterpart. The compar-

ison between Proposed1, 2 &, 3 indicates that initialization

can affect separation performances. It indicates that using

Baseline2 for initialization worked better than using Base-

line1 & 3. Focusing on the comparison of the fully informed

versions (Baseline4 and Proposed4), Proposed4 significantly

outperformed Baseline4 and achieved the best performance.

This indicates that the prior information for the sources in

a target mixture can contribute to improving performance.

Although the performances of all of the versions degraded

for the longer reverberant condition (T60 = 351 ms), the pro-

posed versions still performed better than the baseline ones.

The comparisons between the performances obtained with

the two STFT configurations showed that using a 128-ms

frame length worked better, especially for a shorter reverber-

ant condition.

A comparison of the separation performance of each

method under speaker-open conditions is shown in Fig-

ure 6, where the fully informed versions (Baseline4 and

Proposed4) are omitted since all the sources in the mix-

ture are unseen in the training data. We can confirm from

the comparisons between Baseline1 and Proposed1, Base-

line2 and Proposed2, and Baseline3 and Proposed3 that the

proposed versions consistently performed better than the

baseline ones, especially in terms of the SIRmetric. This may

imply the ability of the GMVAE method to estimate the

spectrogram of each source accurately, leading to an accu-

rate estimation of its spatial covariance. Another interesting

finding from these results is that the GMVAE method can

perform reasonably well under speaker-open conditions even

though it is a method that requires supervisions. We also

confirmed that unlike under the speaker-closed conditions,

using a 128-ms STFT frame length was more robust against

varying reverberation conditions than using longer frame

lengths.

Table 3 shows an ablation study on Proposed2, where

the best performances are denoted in bold font and the last

columns correspond to the separation performances denoted

as ∗ in Figure 5. These results indicate that each regular-

ization technique improved the separation performance, and

Proposed2 using both regularizations achieved the best per-

formance. These results also indicate that the regularizations

were effective, especially when the STFT frame length was

128 ms. Figure 7 shows examples of the estimated Z and C

without and with the regularizations, where the histograms

represent Z at initialization step and separation step. Esti-

mated C is also shown in the figure. We can confirm that

the regularization for Z prevented Z from deviating from a

standard Gaussian distribution, and the regularization for C

promoted the orthogonality of C.

We finally show the performances of the speech enhance-

ment task. A comparison of the enhancement performances
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TABLE 3. Ablation study on Proposed2 under speaker-closed conditions at T60 = 78 [ms].

FIGURE 7. Regularization effects on Z and C.

FIGURE 8. Speech enhancement performances.

of Baseline5, Baseline6, Proposed5, and Proposed6 is shown

in Figure 8. Comparisons among Baseline5, Baseline6,

and Proposed5 revealed that Proposed5 outperformed the

baseline versions and performed better than VAE-NMF.

Moreover, Proposed6 performed better than the other ver-

sions particularly under the small reverberant condition. This

shows a certain effect of the one-hot enforcement process

adopted in Algorithm 4.

VI. CONCLUSION

We proposed the GMVAE method, a generalized version of

the MVAE method that can also deal with underdetermined

cases. We developed a convergence-guaranteed parameter

optimization algorithm for the GMVAE method by com-

bining the ideas for the parameter optimization processes

introduced in MNMF and the MVAE method. We fur-

ther introduced two regularization techniques for avoiding
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undesirable solutions and presented several algorithms

designed for fully informed, partially informed, and unin-

formed source separation and speech enhancement tasks.

Our experimental results revealed that the proposed GMVAE

method outperformed MNMF in source separation tasks and

VAE-NMF in speech enhancement tasks, demonstrating the

advantage of the CVAE source model. The results also indi-

cate that the GMVAE method can perform reasonably well

even under speaker-open conditions.
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