
 Open access  Journal Article  DOI:10.1111/GCB.14547

Underestimated ecosystem carbon turnover time and sequestration under the
steady state assumption: A perspective from long-term data assimilation.
— Source link 

Rong Ge, Honglin He, Xiaoli Ren, Li Zhang ...+16 more authors

Institutions: Chinese Academy of Sciences, University of Edinburgh, Beijing Normal University, University of Minnesota
...+2 more institutions

Published on: 01 Mar 2019 - Global Change Biology (Glob Chang Biol)

Related papers:

 Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations

 
Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric
CO2

 
The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and
residence times

 Global covariation of carbon turnover times with climate in terrestrial ecosystems

 Traceable components of terrestrial carbon storage capacity in biogeochemical models

Share this paper:    

View more about this paper here: https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-
1bdzx5gaow

https://typeset.io/
https://www.doi.org/10.1111/GCB.14547
https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow
https://typeset.io/authors/rong-ge-21djf9krb0
https://typeset.io/authors/honglin-he-4tnwauxzbn
https://typeset.io/authors/xiaoli-ren-145w8r8a1i
https://typeset.io/authors/li-zhang-3iifpd5kyx
https://typeset.io/institutions/chinese-academy-of-sciences-30n6xdz2
https://typeset.io/institutions/university-of-edinburgh-1ow1wfk0
https://typeset.io/institutions/beijing-normal-university-23v4eu8u
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/journals/global-change-biology-2u769imk
https://typeset.io/papers/causes-of-variation-in-soil-carbon-simulations-from-cmip5-3jfeyyx17q
https://typeset.io/papers/carbon-residence-time-dominates-uncertainty-in-terrestrial-5363dkr7wq
https://typeset.io/papers/the-decadal-state-of-the-terrestrial-carbon-cycle-global-14id1bzdg1
https://typeset.io/papers/global-covariation-of-carbon-turnover-times-with-climate-in-5gs1udmgw0
https://typeset.io/papers/traceable-components-of-terrestrial-carbon-storage-capacity-2pet2keux0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow
https://twitter.com/intent/tweet?text=Underestimated%20ecosystem%20carbon%20turnover%20time%20and%20sequestration%20under%20the%20steady%20state%20assumption:%20A%20perspective%20from%20long-term%20data%20assimilation.&url=https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow
https://typeset.io/papers/underestimated-ecosystem-carbon-turnover-time-and-1bdzx5gaow


 

 

 

 

 

Edinburgh Research Explorer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Underestimated ecosystem carbon turnover time and
sequestration under the steady state assumption: a perspective
from longterm data assimilation

Citation for published version:
Ge, R, He, H, Ren, X, Zhang, L, Yu, G, Smallman, TL, Zhou, T, Yu, S, Luo, Y, Xie, Z, Wang, S, Wang, H,
Zhou, G, Zhang, Q, Wang, A, Fan, Z, Zhang, Y, Shen, W, Yin, H & Lin, L 2018, 'Underestimated ecosystem
carbon turnover time and sequestration under the steady state assumption: a perspective from longterm
data assimilation', Global Change Biology. https://doi.org/10.1111/gcb.14547

Digital Object Identifier (DOI):
10.1111/gcb.14547

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Global Change Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. May. 2022

https://doi.org/10.1111/gcb.14547
https://doi.org/10.1111/gcb.14547
https://www.research.ed.ac.uk/en/publications/49e03516-eb38-490f-a2c4-031f9e6cda80


 

Underestimated ecosystem carbon turnover time and sequestration under the steady 1 

state assumption: a perspective from long-term data assimilation 2 

Running head: underestimated turnover time at equilibrium 3 

Rong Ge1,2, Honglin He1,3*, Xiaoli Ren1*, Li Zhang1,3, Guirui Yu1,3, T. Luke Smallman4, Tao Zhou5, Shi-4 

Yong Yu6, Yiqi Luo7, Zongqiang Xie8, Silong Wang9, Huimin Wang1, Guoyi Zhou10, Qibin Zhang8, 5 

Anzhi Wang9, Zexin Fan11, Yiping Zhang11, Weijun Shen10, Huajun Yin12, Luxiang Lin11 
6 

1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences 7 

and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 2University of Chinese 8 

Academy of Sciences, Beijing, China, 3College of Resources and Environment, University of Chinese 9 

Academy of Sciences, Beijing, China,  4School of GeoSciences, University of Edinburgh, Edinburgh, UK, 10 

5State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 11 

Beijing, China, 6Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota, USA, 12 

7Center for Ecosystem Science and Society (Ecoss) and Department of Biological Sciences, Northern 13 

Arizona University, Flagstaff, Arizona, USA, 8Institute of Botany, Chinese Academy of Sciences, Beijing, 14 

China, 9Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China, 10South China 15 

Botanical Garden, Chinese Academy of Sciences, Guangzhou, China, 11Key Laboratory of Tropical 16 

Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 17 

China, 12Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China 18 

 19 

* Corresponding authors: H. L. He (hehl@igsnrr.ac.cn) and X. L. Ren (renxl@igsnrr.ac.cn) 20 

Tel.: +86 10 64889599 21 

Fax: +86 10 64889399 22 

Keywords: steady state, non-steady state, turnover time, climate sensitivity, carbon 23 

sequestration 24 

Type of paper: Primary Research Articles 25 

mailto:hehl@igsnrr.ac.cn


 

Abstract 26 

It is critical to accurately estimate carbon (C) turnover time as it dominates the 27 

uncertainty in ecosystem C sinks and their response to future climate change. In the absence 28 

of direct observations of ecosystem C losses, C turnover times are commonly estimated under 29 

the steady-state assumption (SSA), which has been applied across a large range of temporal 30 

and spatial scales including many at which the validity of the assumption is likely to be 31 

violated. However the errors associated with improperly applying SSA to estimate C turnover 32 

time and its covariance with climate as well as ecosystem C sequestrations have yet to be 33 

fully quantified. Here we developed a novel model-data fusion (MDF) framework and 34 

systematically analyzed the SSA-induced biases using time-series data collected from 10 35 

permanent forest plots in the eastern China monsoon region. The results showed that (1) the 36 

SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 37 

4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, 38 

a major C sink globally; (2) the SSA-induced bias in MTT and NEP correlates negatively 39 

with forest age, which provides a significant caveat for applying the SSA to young-aged 40 

ecosystems; and (3) the sensitivity of MTT to temperature and precipitation was 22% and 42% 41 

lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal 42 

changes in MTT are likely to be underestimated, thereby resulting in large errors in the 43 

variability of predicted global NEP. With the development of observation technology and the 44 

accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state 45 

via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C 46 

sequestration estimations and providing a better understanding of regional or global C cycle 47 

dynamics and C-climate feedback.  48 



 

Introduction 49 

The terrestrial carbon (C) cycle is among the largest uncertainties affecting global C-50 

climate feedback (Le Quéré et al., 2018). Ecosystem C input (gross primary productivity, 51 

GPP) and C mean turnover time (MTT) are two key factors in determining the C 52 

sequestration capacity of terrestrial ecosystems (Xia et al., 2013; Luo et al., 2017). Terrestrial 53 

GPP has been well studied and exhibits a relatively strong convergence in global modelling 54 

studies (Anav et al., 2013), whereas the C turnover time has become the dominant uncertainty 55 

in terrestrial ecosystem C sequestration and its response to climate change (Carvalhais et al., 56 

2014; Friend et al., 2014; He et al., 2016). Therefore, accurately quantifying the ecosystem 57 

MTT and its relationship with climate is crucial for understanding the present and future C 58 

budget dynamics in terrestrial ecosystems. 59 

Ecosystem MTT refers to the average time required for atmospheric CO2 to enter the 60 

ecosystem via plant photosynthesis and return to the atmosphere via C loss pathways, such as 61 

ecosystem respiration (RE) and fire (Barrett, 2002). As the current understanding of these C 62 

cycle processes is mainly based on first-order kinetics (Manzoni and Porporato, 2009), MTT 63 

is commonly defined as the ratio of the C pool to the flux (Bolin and Rodhe, 1973; 64 

Friedlingstein et al, 2006; Koven et al., 2015). Therefore, the flux used for MTT estimation 65 

(i.e., influx or efflux), the state of C pools, as well as the C allocation and turnover rates that 66 

control the C flow in various pools, are all key states and processes that collectively determine 67 

for the overall ecosystem turnover time (Sitch et al., 2003; Trumbore et al., 2006). 68 

Currently, MTT estimations are mainly based on two assumptions, the steady-state 69 

assumption (SSA) and the non-steady-state assumption (NSSA), with each corresponding to 70 

specific ecological principles and applicable conditions. Without changes in external driving 71 

forces, such as disturbances and climate change, the internal processes of an ecosystem will 72 

gradually drive the ecosystem C cycle toward equilibrium (Luo and Weng, 2011), at which C 73 



 

influx equals efflux, C pools are stabilized and the long-term net ecosystem C exchange 74 

becomes zero (i.e., ∆C = 0 ); therefore, the MTT under the SSA can be defined as75 

“stock/influx” (Rodhe, 1978). When ecosystems are subject to natural (e.g., insect outbreaks 76 

and fire) and anthropogenic (e.g., land-use change) disturbances as well as global changes 77 

(e.g., increasing atmospheric CO2, climate warming, and nitrogen deposition), ecosystem C 78 

cycling processes become destabilized (Luo and Weng, 2011; Bellassen et al., 2011). 79 

Therefore, C pools in ecosystems vary dynamically over time (i.e., dC/dt ≠ 0), the C influx is 80 

not equal to the C efflux, and the MTT under the NSSA should be defined as“stock/efflux” 81 

(Schwartz, 1979). 82 

 An exact equilibrium is almost impossible to observe in reality; but when the relative 83 

difference between input and output is negligible, it is justified and valid to apply SSA (Odum, 84 

1969), usually occurring at large or coarse spatial scales where sufficient variation in the 85 

sink/source distribution could balance the gross influx and efflux, or occurring at long-time 86 

scales where the effects of transient changes in climate or atmospheric CO2 could be ignored. 87 

Specifically, at the global or continental scale near steady state, the more readily obtained 88 

influx can be used to estimate MTT instead of the efflux (Carvalhais et al., 2014; Yan et al., 89 

2014). In addition, key process parameters, such as the allocation and turnover rates, can be 90 

optimized and then incorporated into an analytical expression under the SSA to quantify the 91 

spatial patterns of ecosystem MTT (e.g., Barrett, 2002; Xia et al., 2013). Furthermore, the 92 

state of C pools in global models can be initialized via the spin-up process by iterating from 93 

hundred to thousand years in preindustrial period until equilibrium (Taylor et al., 2012), 94 

which determines the C pool size used in the analysis of MTT (Todd-Brown et al., 2013; 95 

Exbrayat et al., 2014; Koven et al., 2015). 96 

In addition to these aforementioned applications, the SSA has also been widely invoked 97 

in MTT research over a considerable range of temporal and spatial scales (e.g., Zhou & Luo, 98 



 

2008; Galbraith et al., 2013; Thurner et al., 2016; Wang et al., 2018), over which non-steady 99 

behaviour may exist. This appears to be an imperative choice in the absence of direct 100 

measurement of C effluxes, such as heterotrophic respiration, or current or past-historical 101 

ecosystem states for constraining the dynamic ecosystem C cycle processes. Specifically, at 102 

the regional scale with considerable C sinks, (1) the MTTs are still obtained based on influx, 103 

which is much higher than efflux, e.g., in the forest ecosystems in eastern China (Wang et al., 104 

2018) and the tropics (Galbraith et al., 2013) that have been shown to be major C sinks 105 

globally (Piao et al., 2009; Pan et al., 2011; Yu et al., 2014); (2) C turnover rates and 106 

allocation coefficients are still retrieved under the SSA but further used in a transient 107 

simulation of the regional MTT and net ecosystem productivity (NEP) (Zhou & Luo., 2008; 108 

Zhou et al., 2010, 2013b); (3) As global C models have been developed to fine spatial scales, 109 

the SSA is also widely used for C pool state initialization at local scales with dynamic C 110 

sources or sinks (e.g., young-aged forests) (Law et al., 2001; Morales et al., 2005; Carvalhais 111 

et al., 2008, 2010; Huang et al., 2011). Previous studies have reported the uncertainty in C 112 

pool states and C cycle parameters induced by the SSA (e.g., Carvalhais et al., 2008, 2010), 113 

which may further affect the validity of MTT estimation via the “stock/flux” approach. 114 

Therefore, a better understanding of the mismatch between the ideal SSA and realistic 115 

disequilibrium state in C turnover time estimation is needed and the effect of such 116 

inconsistencies on C sequestration should be determined. 117 

 With the development of observational technology and the accumulation of multiple and 118 

time-series C cycle datasets over the past decade, our understanding of terrestrial C dynamics 119 

has improved; accordingly, C effluxes can be better constrained to return to the definition of 120 

MTT at the realistic disequilibrium state (e.g., Bloom et al., 2016). On this basis, researchers 121 

have attempted to develop the model-data fusion (MDF) method to estimate ecosystem MTT 122 

under the NSSA, which integrates the process-based model and observational data to estimate 123 



 

these C cycle dynamics in better agreement with the actual disequilibrium state (Luo et al., 124 

2003; Xu et al., 2006; Zhang et al., 2010; Zhou et al., 2013b; Bloom et al., 2016). Moreover, 125 

the uncertainty in allocation and turnover parameters as well as C pool states have largely 126 

been reduced based on the time-series observations under the NSSA, thereby significantly 127 

enhancing the model’s ability to predict MTT and NEP (Safta et al., 2015; Smallman et al., 128 

2017). 129 

Regardless, a detailed comparative analysis of ecosystem MTT estimations under the 130 

NSSA and SSA has not been conducted based on multi-source and long-term continuous 131 

observational data. In this study, we systematically examined differences in ecosystem C 132 

cycle states and processes estimated under the two assumptions as well as the underlying 133 

mechanisms within a robust analytical framework, using large amounts of long-term 134 

continuous observational soil, biology, and climate data for 10 typical forest ecosystems from 135 

the Chinese Ecosystem Research Network (CERN) that represent the East Asian monsoon 136 

region, a large C sink accounting for 8% of the global forest NEP (Yu et al., 2014). Our 137 

analysis mainly focuses on the mismatch between the two assumptions with regard to (1) the 138 

magnitude and spatial pattern of the ecosystem MTT, (2) the relationship between the 139 

ecosystem MTT and climate, and (3) the ecosystem C sink in these forest ecosystems. These 140 

quantitative comparisons using the proposed framework could provide a reference for future 141 

MTT research in terms of SSA/NSSA method selection and facilitate an awareness of the 142 

corresponding uncertainty. 143 

Materials and Methods 144 

2.1 Site description 145 

The eastern China monsoon region covers tropical, subtropical, warm temperate, and 146 

temperate climate zones from south to north, and subhumid and humid areas from north-west 147 



 

to south-east. The large precipitation and temperature gradients support diverse forest 148 

ecosystems ranging from evergreen broad-leaved and coniferous forests to deciduous 149 

coniferous and broad-leaved forests. Here we selected 10 permanent plots with long-term 150 

observational data from CERN to cover the typical forest types with various ages in this 151 

region (Fig. 1; Table S1). All 10 sites are well protected and subject to minimal disturbance.  152 

  153 

2.2 Data 154 

The collected data are divided into four meteorological driving data, five stock-related 155 

constraint datasets of soil, foliage, root, wood, and leaf area index (LAI), and three flux-156 

related constraint datasets of litterfall, net ecosystem exchange (NEE) and soil respiration (Rs). 157 

The time-series observations at most of the sites cover the period from 2005 to 2015, but 158 

those of SNF, which was incorporated into CERN later, are from 2010 to 2015 (Table S2). 159 

2.2.1 Biometric data 160 

At each site, the biomass of leaves, branches, stems, and roots were estimated from the 161 

measured diameters at breast height (DBHs) and tree heights using the allometric method. 162 

The biomass inventory was performed at least once every five years. To split fine and coarse 163 

root biomass, the ratio of the fine root biomass to the entire root biomass in typical Chinese 164 

forests was obtained from Zhang et al. (2001), and the coarse root biomass was then 165 

combined with the branch and stem biomasses to constitute the woody biomass. Estimates of 166 

leaf, fine root, and woody biomass were used to constrain the corresponding C pools in the 167 

inverse analysis. 168 

The aboveground litterfall biomass was measured by 10 replicates of 100 cm × 100 cm 169 

baskets monthly during the growing season or once during the non-growing season. All 170 

collected litter was dried at 70 °C for 24 h and weighed. We used annual litterfall biomass 171 



 

data for the inverse analysis to avoid the effect of wind on the measurement of litterfall 172 

biomass within an individual month. 173 

The LAI at each site was measured optically with a LAI-2000 plant canopy analyser (LI-174 

COR, Lincoln, NE, USA) at least quarterly every year and corrected by the foliage clumping 175 

index, which was set for plant functional type (PFT)-specific empirical values as reported in 176 

Zhu et al. (2012). The seasonal variation in the LAI combined with the leaf C mass per leaf 177 

area (LCMA) parameter constrained the dynamic trajectory of the leaf C pool in the MDF 178 

analysis. 179 

2.2.2 Soil data 180 

Soil C content was calculated from soil organic matter (SOM) measured by the 181 

potassium dichromate oxidation titrimetric method and soil bulk density measured by the 182 

cutting ring method in each field campaign at 10 forest sites. At least three samples were 183 

collected from each of five soil layers (0–10, 10–20, 20–40, 40–60, and 60–100 cm) once 184 

every five years. We calculated the soil organic C (SOC) as follows (Post et al., 1985; Eqn. 1). 185 

𝑆𝑂𝐶 = ∑ 0.58 × 𝐻𝑖 × 𝐵𝑖 × 𝑂𝑖𝑛𝑖=1 × 100   (1) 186 

where SOC is soil organic C density (g C/m2) of all n layers, Hi is soil thickness (cm), Bi is 187 

soil bulk density (g/cm3), and Oi is SOM content of the ith layer (%). 188 

2.2.3 Flux data 189 

NEE data were obtained from ChinaFLUX, covering CBF, QYF, ALF, and BNF. The 190 

data were aggregated to the daily time step from half-hourly CO2 flux data measured by the 191 

eddy covariance technique and processed by quality control and gap filling (Li et al., 2008). 192 

To reduce the impact of gap-filled data on parameter estimations, we only aggregated NEE 193 



 

data for the days with at least 50% observed half-hourly fluxes, which were relatively evenly 194 

distributed in the daytime and nighttime. 195 

Rs data were measured using static chamber-gas chromatography techniques at CBF, 196 

QYF, DHF, HSF, and BNF (Zheng, 2010). A total of 46 replicates were measured 2–3 times 197 

per month with sampling times between 9:00 am and 11:00 am. In this study, the monthly 198 

averaged heterotrophic respiration (Rh) was obtained according to the ratio of root respiration 199 

to Rs in the typical Chinese forest ecosystem to constrain the seasonal variation of C efflux 200 

from litter and soil in the inverse analysis (Chen et al., 2008). 201 

2.2.4 Meteorological data 202 

In situ observations of daily air temperature (T), photosynthetically active radiation 203 

(PAR), relative humidity (RH), and saturated vapour pressure difference (VPD) at the 10 sites 204 

from 2005 to 2015 were obtained from the CERN scientific and technological resources 205 

service system (http://www.cnern.org.cn/) and processed by standardized quality control and 206 

gap filling (Li et al., 2008; Liu et al., 2017a). 207 

2.3 Model 208 

Data Assimilation Linked Ecosystem Carbon (DALEC) has been applied extensively in 209 

the MDF framework (Richardson et al., 2010; Bloom et al., 2016). It is a box model of C 210 

pools connected via fluxes running at a daily time step, and its main structure (i.e., C cycle, C 211 

allocation, and turnover process) is generally consistent with the state-of-the-art process-based 212 

models (Fig. 2). Here, we used two versions of DALEC, an evergreen forest-specific version 213 

(DALEC-E; Williams et al 2005) with five pools (i.e., foliage, fine root, woody (including 214 

branch, stem, and coarse root), litter and SOM) and a deciduous forest-specific version 215 

(DALEC-D; Fox et al., 2009) with an additional labile pool of stored C that supports leaf 216 

flushing.  217 

http://www.cnern.org.cn/


 

The detailed C cycle of forest ecosystems can be characterized by several properties (Xia 218 

et al., 2013): (1) the C cycle is usually initiated with the canopy C influx GPP. Specifically, 219 

GPP is estimated herein using a canopy photosynthesis model (Ji, 1995; Appendix S1), which 220 

is a function of LAI, PAR, T, and RH. Note that the daily LAI is estimated as the ratio of the 221 

simulated foliar C pool and optimized LCMA parameter. (2) GPP is consumed in a certain 222 

fraction (𝑓𝑎𝑢𝑡𝑜) as autotrophic respiration (Ra) and partitioned into various plant pools (i.e., 223 

foliar, labile, wood, and fine roots); then, the degraded C from biomass pools goes to two 224 

dead organic matter pools with temperature-dependent losses (Rh). (3) C transfers are 225 

dominated by the donor pools (e.g., the litter decomposing into soil). (4) C exiting from C 226 

reservoirs is based on the first order differential equation. These properties of the forest C 227 

cycle in DALEC can be mathematically described by a matrix model as Eqn. 2 and 228 

determined as a function of key C cycle parameters (Table S3). All these parameters will be 229 

optimized based on the stock- and flux-related observations. 230 

𝑑𝐂𝑑𝐭 = 𝐵𝐼(𝑡)–𝐴𝜉𝑘𝐶(𝑡)   (2) 231 

where C(t) is a vector of C pool sizes at time t; B = (𝑓𝑓𝑜𝑙 𝑓𝑟𝑜𝑜 𝑓𝑤𝑜𝑜 0 0)𝑇represents the 232 

partitioning fractions from photosynthetically fixed C input to the foliage (ffol), root (froo), 233 

woody (fwoo), litter, and soil pools; I(t) is the input flux of fixed C via plant photosynthesis; 234 𝑘 = 𝑑𝑖𝑎𝑔(𝜃𝑓𝑜𝑙, 𝜃𝑟𝑜𝑜, 𝜃𝑤𝑜𝑜, 𝜃𝑚𝑖𝑛 + 𝜃𝑙𝑖𝑡, 𝜃𝑠𝑜𝑚), a diagonal matrix of exit rates to quantify the 235 

fraction of C left from the foliage (𝜃𝑓𝑜𝑙), root (𝜃𝑟𝑜𝑜), woody (𝜃𝑤𝑜𝑜), soil (𝜃𝑠𝑜𝑚), litter (𝜃𝑙𝑖𝑡) pool, 236 

and the litter mineralization rate into soil (𝜃𝑚𝑖𝑛); and 𝜉 = 𝑑𝑖𝑎𝑔(1, 1, 1, 𝑓(𝑇), 𝑓(𝑇)), a 237 

diagonal matrix of temperature scalar 𝑓(𝑇) to quantify response of C decay rate to changes in 238 

temperature. The response to soil moisture was not considered in DALEC given the overall 239 

good moisture condition in these forest ecosystems (MAP=1160.18±413.79 mm). A is a 240 

square matrix of transfer coefficients to quantify C movement among pools as follows: 241 



 

𝐴 =
( 
  
1 0 0 0 00 1 0 0 00 0 1 0 0−1 −1 0 1 00 0 −1 − 𝜃𝑚𝑖𝑛𝜃𝑚𝑖𝑛 + 𝜃𝑙𝑖𝑡 1) 

   242 

2.4 Estimation of ecosystem MTT and NEP based on the MDF framework 243 

The analytical framework developed here systematically considered the C pool initial 244 

state, cost function, observational and forcing data involved in the inverse analysis, and 245 

formula for estimating MTT to diagnose the SSA-induced bias in contrast to the NSSA, 246 

which affected parameter retrieval and the estimation of MTT and NEP (Fig. 3). Note that 247 

models were the same in the NSSA and SSA setups. The temporal domains for model 248 

simulation were from 2005 to 2015. 249 

2.4.1 Parameter estimation under the SSA and NSSA 250 

Under the NSSA, C pools are time-variant, i.e., C influx is not equal to the C efflux, thus 251 

not restricted to NEP ~0; the dynamic long-term observations of C stocks and fluxes were 252 

used to constrain the DALEC model. As an important factor that may affect the estimated 253 

MTT and NEP, the initial state of the C pools was determined by the initial observation of C 254 

stocks or optimized (i.e., the labile pool, which cannot be directly observed) to avoid the 255 

uncertainty arising from the spin-up process. Then, the turnover and allocation parameters 256 

were inverted under the disequilibrium state (Eqn. 3) with dynamic environmental forcing. 257 

{ 𝑑𝐶𝑑𝑡 ≠ 0                                                                        𝐶𝑖(t + 1) = 𝐶𝑖(t) + 𝐼𝑖(t)– 𝑘𝑖𝐶𝑖(t), i = 1,2…n 𝐶𝑖(t = 0) =  𝐶𝑖0                                                                                      (3) 258 

where Ci, Ii, ki represent the size, input and turnover rate of the ith C reservoir, respectively; 259 

Ci0 represent the initial state of the ith C reservoir; and t represent the daily step. According to 260 



 

the Bayesian theory, the posterior distributions of parameters are calculated by maximizing 261 

the likelihood function (Eqn. 4). 262 

𝐿𝑁𝑆𝑆𝐴 = ∏ ∏ 1√2𝜋𝜎𝑗 𝑒−(𝑥𝑗,𝑖−𝜇𝑗,𝑖(𝑷𝑵𝑺𝑺𝑨))2 2𝜎𝑗2⁄ ,   𝑚 = 1,2, … 8𝑛𝑗𝑖=1𝑚𝑗=1    (4) 263 

where LNSSA is the integrated likelihood function under the NSSA; m is the number of 264 

multiple data types; n is the number of data points in the jth data type; xj,i is the measured 265 

value composed of eight dynamic C stock and flux observations; μj,i(pNSSA) represents the 266 

modeled fluxes and stocks based on parameters under the NSSA (PNSSA); and σj is the standard 267 

deviation of each data point in the jth data type. 268 

Under the SSA, C pools are stabilized such that an additional constraint of long-term 269 

NEP ~ 0 was used to constrain the initial state of C pools at steady state, in addition to the 270 

observed C stock and flux constraints. As the meteorological forcing spans 2005 to 2015, we 271 

averaged total ecosystem C pools (CTOT) over each 10-year segment to obtain CTOT , and 272 

determined steady-state criterion by which changes in   ∆𝐶TOT  (Eqn. 6) between two 273 

neighbouring segments are within a threshold of 0.5 g C m-2 yr-1 (as one criterion in Thornton 274 

and Rosenbloom, 2005 and Xia et al., 2012). 275 

  ∆𝐶TOT = |𝐶TOT(t + 1) − 𝐶TOT(t)| ≤ 0.5                                               (5) 276 

where t represents the period for parameter optimization during 2005 to 2015.  277 

The C turnover and allocation parameters were retrieved under the repeated 10 year 278 

(2005–2015) cycle of meteorological forcing until the initial state of C pools were stationary 279 

at the annual time scales (i.e., long term NEP ~ 0, Eqn. 5), and the likelihood function was 280 

maximized compared to the observations (Eqn. 6). 281 

𝐿𝑆𝑆𝐴 = ∏ ∏ 1√2𝜋𝜎𝑗 𝑒−(𝑥𝑗,𝑖−𝜇𝑗,𝑖(𝑷𝑺𝑺𝑨))2 2𝜎𝑗2⁄ ,   𝑚 = 1,2, … 8𝑛𝑗𝑖=1𝑚𝑗=1         (6) 282 



 

where μj,i(PSSA) represents the modelled values based on parameters under the SSA (PSSA), 283 

and LSSA is the integrated likelihood under the SSA and consists of five stock-related 284 

observations, two efflux observations (litterfall and Rs), and the tolerance of long-term NEE 285 

described in Eqn. 5. 286 

Specifically, we applied the Metropolis simulated annealing algorithm, a variation of the 287 

Markov Chain Monte Carlo (MCMC) technique, for parameter estimation (Zobitz et al., 288 

2011). Besides, ecological and dynamic constraints were imposed on the DALEC parameters 289 

and pool dynamics (Appendix S2) which can significantly reduce uncertainty in model 290 

parameters and simulations (Bloom and Williams, 2015).  291 

2.4.2 Estimation of ecosystem MTT under the SSA and NSSA 292 

Here, we use the MTT_(MDF scheme, i.e., SSA/NSSA)_(flux term used, i.e., Input (I) 293 

/Output (O) ) to consistently define the C turnover times in different analyses. Under the SSA, 294 

long-term NEP = 0; i.e., the C influx equalizes the efflux, such that the ecosystem MTT can 295 

be defined as the ratio of retrieved total ecosystem C stocks to the ecosystem influx 296 

(Sanderman et al., 2003, Eqn. 7).: 297 

𝑀𝑇𝑇_𝑆𝑆𝐴_𝐼 = 𝐶𝑝𝑜𝑜𝑙_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝐼𝑆𝑆𝐴̅̅ ̅̅ ̅̅  − ∆𝐶𝑝𝑜𝑜𝑙 = 𝐶𝑝𝑜𝑜𝑙_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝐼𝑆𝑆𝐴̅̅ ̅̅ ̅̅                                                                              (7) 298 

where MTT_SSA_I is the ecosystem MTT under the SSA as estimated from C influx, 𝐶𝑝𝑜𝑜𝑙_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 299 

is the mean annual ecosystem C pool, 𝐼𝑆𝑆𝐴̅̅ ̅̅ ̅ is the mean annual ecosystem C input (GPP), and 300  ∆𝐶𝑝𝑜𝑜𝑙 is the change in the ecosystem C pool. 301 

 We have further derived an analytical expression for MTT_SSA_I (Eqn. 8): 302 

𝑀𝑇𝑇_𝑆𝑆𝐴_𝐼 = ∑ 𝐶𝑝𝑜𝑜𝑙𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑖 𝐼𝑆𝑆𝐴̅̅ ̅̅ ̅̅ = 𝐼𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅𝐼𝑆𝑆𝐴̅̅ ̅̅ ̅̅ × ∑ 𝐶𝑝𝑜𝑜𝑙𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑖 𝐼𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅                                                             (8) 303 



 

= (𝑓𝑓𝑜𝑙𝜃𝑓𝑜𝑙 + 𝑓𝑟𝑜𝑜𝜃𝑟𝑜𝑜 + 𝑓𝑤𝑜𝑜𝜃𝑤𝑜𝑜 + 𝑓𝑓𝑜𝑙+𝑓𝑟𝑜𝑜(𝜃𝑚𝑖𝑛+𝜃𝑙𝑖𝑡)×𝜉 + 𝑓𝑤𝑜𝑜+(𝑓𝑓𝑜𝑙+𝑓𝑟𝑜𝑜)× 𝜃𝑚𝑖𝑛𝜃𝑚𝑖𝑛+𝜃𝑙𝑖𝑡𝜃𝑠𝑜𝑚×𝜉 ) × (1 − 𝑓𝑎𝑢𝑡𝑜)  304 

= (1 1 …  1)(A𝜉𝑘)−1𝐵(1 − 𝑓𝑎𝑢𝑡𝑜)                                     305 

where 𝐶𝑝𝑜𝑜𝑙𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝐼𝑖_𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅  represent the mean annual size and influx of the ith C pool, 306 

respectively, which are simulated based on the site-specific SSA-optimized parameters at 307 

each site. 308 

This form is compatible with the inverse matrix composed of the optimized allocation, 309 

turnover, and transit parameters (Xia et al., 2013; Luo et al., 2017), which consider the 310 

ecosystem MTT to be aggregated from the sum of turnover times for pools in series and the 311 

influx-weighted turnover time of pools in parallel (Barrett, 2002). The inherent consistency is 312 

theoretically supported by Sierra et al. (2017), because both forms are based on the hypothesis 313 

that the size of the C pool is equivalent to the product of C input flux and C turnover time in 314 

the equilibrium state (Bolin and Rodhe, 1973). 315 

Under the NSSA, each C pool is an instantaneous state variable; thus, the efflux-316 

weighted turnover time of pools is also time-varable and cannot be parameterized. Therefore, 317 

constructing an inverse matrix explicitly composed of the turnover and allocation parameters 318 

to represent the MTT is difficult. In this case, the ratio of the total ecosystem C stock to the 319 

efflux simulated based on these optimized parameters under NSSA is used to estimate 320 

ecosystem MTT (Schwartz, 1979; Bloom et al., 2016; Eqn. 9).  321 

𝑀𝑇𝑇_𝑁𝑆𝑆𝐴_𝑂 = 𝐶𝑝𝑜𝑜𝑙_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝐼𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  − ∆𝐶𝑝𝑜𝑜𝑙 = 𝐶𝑝𝑜𝑜𝑙_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                      (9) 322 

= ∑ 𝐶𝑝𝑜𝑜𝑙𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑖 𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑂𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ × ∑ 𝐶𝑝𝑜𝑜𝑙𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑖 𝑂𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   323 

= (1 1 …  1)(𝜉𝑘)−1𝑤  324 



 

where 𝑤 = (𝑂𝑓𝑜𝑙_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑂𝑤𝑜𝑜_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑂𝑟𝑜𝑜_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑂𝑙𝑖𝑡_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑂𝑠𝑜𝑚_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ ); 325 

MTT_NSSA_O is the ecosystem MTT under the NSSA based on C output; 𝐶𝑝𝑜𝑜𝑙_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the 326 

mean annual ecosystem C pool; 𝐼𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅ is the mean annual ecosystem C input (GPP); 𝑂𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  is 327 

the mean annual ecosystem C output (RE); 𝐶𝑝𝑜𝑜𝑙𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑂𝑖_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ represent the mean annual 328 

size and output of the ith C pool, respectively; w represents the output-dependent weight of C 329 

pools; and 𝑂𝑓𝑜𝑙_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑂𝑤𝑜𝑜_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑂𝑟𝑜𝑜_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑂𝑙𝑖𝑡_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and 𝑂𝑠𝑜𝑚_𝑁𝑆𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represent the mean annual 330 

output of the foliage, wood, root, litter and soil pools, respectively. All C stocks and fluxes 331 

were simulated based on the site-specific NSSA-optimized parameters at each site. Because 332 

the C reservoirs, fluxes, and turnover times are instantaneous values, we used the average of 333 

the fluxes and reservoirs for multiple years to reflect the average turnover time during a 334 

specific period (i.e., 2005-2015). Note that with few natural and anthropogenic disturbances at 335 

these well-protected CERN sites (Zhou et al., 2006; Zhang et al., 2010), the total ecosystem 336 

output was approximately equivalent to the RE. 337 

2.4.3 Estimation of ecosystem NEP based on the SSA- and NSSA-inverted parameters 338 

The optimized parameter values under the NSSA and SSA along with the initial 339 

observations of corresponding C pool sizes were used in forward modeling driven by the 340 

dynamic environmental variables from 2005 to 2015 (Zhou et al., 2008). NEP was further 341 

derived from the difference between the ecosystem C influx and RE to examine the effects of 342 

retrieved parameters on C sequestration under different hypotheses. 343 

2.5 Estimation of ecosystem MTT based on observation 344 

To test the robustness of MTT_SSA_I based on SSA-inversion at the 10 sites, the MTT 345 

under the SSA based on observed influx (MTT_OBS_I) was calculated from the ratio of mean 346 

annual total ecosystem stock measurements in CERN and the mean annual GPP observed 347 



 

from moderate resolution imaging spectroradiometer (MODIS) (Carvalhais et al., 2014). 348 

MODIS products of GPP (MOD17A2H, 500m) at each site were downloaded from the 349 

University of Oklahoma Data Center (http://www.eomf.ou.edu/visualization/manual/) and 350 

then accumulated to the annual time step from the 8-day observational data. Because the 351 

annual MODIS GPP values are consistent with the tower-based GPP at the flux sites (Fig. S1, 352 

R2 = 0.90, p < 0.01, mean absolute error (MAE) = 37.39 g C m-2 yr-1), it is reasonable to use 353 

this high-resolution product as a reliable observation at the site scale. 354 

Results 355 

3.1 Key parameters retrieved under the SSA and NSSA 356 

 Under the NSSA, the ratio of Ra to GPP (𝑓𝑎𝑢𝑡𝑜) varied from 0.3 to 0.7, with a mean 357 

value of 0.53, showing a trend of first decreasing and then increasing with decreasing 358 

latitude (Figs. 4a and S2). The proportion of NPP allocated to wood (𝑓𝑤𝑜𝑜) ranged from 0.5 359 

to 0.9, with a mean value of 0.67, showing an increasing trend with decreasing latitude (Figs. 360 

4d and S2). The MTTs (i.e., the inverse of the turnover rate) of wood, soil, foliage, fine root, 361 

and litter at the 10 sites were 48.54, 86.55, 3.12, 2.40, and 1.13 years, respectively. 362 

Specifically, the turnover rate of wood and soil (𝜃𝑤𝑜𝑜 and 𝜃𝑠𝑜𝑚), the two largest C pools in 363 

living vegetation and dead organic matter, respectively, showed obvious increasing trends 364 

with decreasing latitude (Figs. 4g, 4i, and S2). The temperature sensitivity of soil 365 

decomposition (Rhtemp) exhibited a spatial pattern of tropical forest > temperate forest > 366 

subtropical forest (Figs. 4k, and S2). However, compared to the key C-cycle parameters 367 

under the NSSA, the allocation to faster-turnover C pools under the SSA was mostly 368 

overestimated (𝑓𝑎𝑢𝑡𝑜,𝑓𝑓𝑜𝑙), but to slow-turnover pools (𝑓𝑤𝑜𝑜) was underestimated; turnover 369 

rate of major pools (𝜃𝑤𝑜𝑜  and 𝜃𝑠𝑜𝑚)  were overestimated; furthermore, the sensitivity to 370 



 

climate (Rhtemp) was underestimated; and these parameters lacked obvious spatial patterns 371 

(Figs. 4a, 4c, 4d, 4g, 4i, and 4k). 372 

We compared the modelled and observed datasets to validate the inverted parameters 373 

based on multi-source data. Under the NSSA, the simulated and observed vegetation and soil 374 

C stocks and C fluxes agreed well, with the scatter points falling along the 1:1 line (Fig. 5). 375 

Specifically, the determination coefficients (R2) for C stocks varied between 0.94 and 0.99, 376 

and the root-mean-square errors (RMSEs) were small relative to their magnitudes (Fig. 5a-e). 377 

In contrast, R2 for C fluxes (NEE and Rs) were slightly lower (0.450.50), but the RMSEs 378 

were only 1.37 and 0.67 g C m-2 d-1, respectively (Fig. 5 g, h). Under the SSA, the model 379 

performance regarding the C stocks was comparable with that under the NSSA (Fig. 5a-e), 380 

but due to the overestimation of C turnover rates (Fig. 4e-j), simulated C effluxes, such as 381 

litterfall and Rs, were markedly overestimated, which in turn overestimated NEE (Fig. 5f-h).  382 

3.2 Magnitude of MTT and its relationship with forest age under the SSA and NSSA 383 

At the 10 sites, the MDF-based ecosystem MTT under NSSA (MTT_NSSA_O) and SSA 384 

(MTT_SSA_I) and the observation-based ecosystem MTT under SSA (MTT_OBS_I) ranged 385 

from 9.64 to 38.23, 7.29 to 33.59, and 8.73 to 36.31 years, with averages of 24.44, 17.27, and 386 

17.20 years, respectively. As MTT_SSA_I and MTT_OBS_I were nearly identical (Fig. 6b, 387 

MAE = 0.25, R2 = 0.86, p < 0.001), MTT_SSA_I was selected to represent the estimated MTT 388 

under SSA in the ensuing analyses. 389 

The ecosystem MTT_SSA_I was significantly lower (with an average of 29%) than the 390 

MTT_NSSA_O (Fig. 6a, p < 0.05). Because wood and soil are the two largest C pools in 391 

forest ecosystems, the differences in their turnover rates estimated under the SSA and NSSA 392 

and the relative contributions to the difference between the whole-ecosystem MTT_SSA_I and 393 

MTT_NSSA_O (ΔMTT) deserved further analysis. Both the 𝜃𝑤𝑜𝑜  and 𝜃𝑠𝑜𝑚  were 394 



 

significantly overestimated under the SSA (Figs. 4g, 4i) with the magnitude of the 395 

overestimation for 𝜃𝑤𝑜𝑜  being greater than that for 𝜃𝑠𝑜𝑚  (1.24E-04 vs 5.02E-05), which 396 

largely accounted for the ecosystem ΔMTT. Meanwhile, less C was allocated to slow-397 

turnover structural C pools under the SSA (Fig. 4d, fwoo_SSA = 0.46 vs fwoo_NSSA = 0.68), thus 398 

leading to underestimations of the vegetation MTT and ecosystem MTT. 399 

The ecosystem ΔMTT varied among different ecosystems (Fig. 6a), and these 400 

differences should be closely associated with how far the ecosystems deviate from the 401 

equilibrium state, as most likely reflected by the age-related growth. Thus, forest age was 402 

used as a proxy of the gap between the actual and equilibrium state. We found that the forest 403 

age accounted for more than 50% of the variation in ecosystem ΔMTT with a significantly 404 

negative correlation (Fig. 7a, p < 0.005). Further analysis revealed that rather than the 405 

overestimation of 𝜃𝑠𝑜𝑚, the overestimation of 𝜃𝑤𝑜𝑜 under the SSA (Δ𝜃𝑤𝑜𝑜), which exhibited a 406 

significant power function relationship with forest age, dominated the age-dependent ΔMTT 407 

in the entire ecosystem (Figs. 7b, S3). 408 

3.3 Latitudinal pattern of MTT and its covariance with climate under the SSA and 409 

NSSA 410 

The ecosystem MTT_NSSA_O and MTT_SSA_I exhibited similar latitudinal patterns, 411 

both of which decreased with decreasing latitude (Fig. 8a), showing a pattern of temperate 412 

MTT > subtropical MTT > tropical MTT (Fig. 6a). ALF appears to be an outlier, mainly due 413 

to its high elevation (2488 m) and special vertical zonality. We further analysed the 414 

relationship between MTT and climate, which is recognized as an important factor regulating 415 

the latitudinal MTT gradient (Carvalhais et al., 2014). Both the ecosystem MTT_SSA_I and 416 

MTT_NSSA_O were negatively correlated with temperature and precipitation (Figs. 8b, 8c), 417 

but the sensitivity of the MTT_SSA_I to these two climatic variables was significantly lower 418 



 

than that of the MTT_NSSA_O, which decreased from 1.02 yr/°C to 0.80 yr/°C (by 22%) for 419 

temperature and from 1.34 yr/100 mm to 0.78 yr/100 mm (by 42%) for precipitation. 420 

3.4 Ecosystem C sequestration based on the SSA- and NSSA-inverted parameters 421 

Under the dynamic environmental conditions, all 10 forests were net C sinks based on 422 

both the SSA- and NSSA-inverted parameters (Fig. 9). However, with respect to actual eddy 423 

covariance observations, the NEP was obviously underestimated with the SSA-inverted 424 

parameters, whereas the NEP based on NSSA parameters was highly consistent (Fig. 5g); for 425 

example, the mean annual NSSA-estimated and observed NEP were 347.4 and 306.6 g C m-2 426 

yr-1 at CBF, respectively, and 465.9 and 469.3 g C m-2 yr-1 at QYF. Overall, the mean annual 427 

NEP for 10 typical forest ecosystems in eastern China monsoon region reached 325.2 g C m-2 428 

yr-1 based on NSSA-inverted parameters, which was 4.83 times that estimated with SSA-429 

inverted parameters (67.3 g C m-2 yr-1). Furthermore, the SSA-induced bias in NEP was 430 

significantly greater (p < 0.05) in young and middle-aged forests (7.3-fold) than that in mature 431 

forests (3.8-fold). The underestimation of NEP in SSA analysis was largely due to the 432 

overestimation of RE, which is closely associated with the overestimation of C turnover rates 433 

and allocations to fast-turnover pools (Fig. 4); whereas GPP was comparable to that under the 434 

NSSA (Fig. S4).  435 

Discussion 436 

4.1 Robustness of MTT estimations under SSA and NSSA 437 

The robustness of MTT_SSA_I estimations in the 10 ecosystems has been assessed with 438 

respect to MTT_OBS_I, which is generally recognized as a benchmark in current research 439 

(e.g., Thurner et al., 2017). Although eddy covariance measurements for MTT_OBS_I 440 

estimation are lacking for some of the sites, the MOD17A2H product performed as a suitable 441 

alternative for GPP observations because its spatial resolution is finer that the footprint of the 442 



 

flux towers (Mi et al., 2006; Zhao et al., 2005). Furthermore, we found the magnitude and 443 

spatial pattern of ecosystem MTT_SSA_I in eastern China monsoon forests were consistent 444 

with various MTT_SSA estimations by observation or inversion approach in regional or global 445 

forest ecosystems (Table S4). A negative correlation of MTT_SSA_I with both temperature 446 

and precipitation was observed in this study, which was supported by research on 447 

MTT_SSA_I based on forest inventory and remote sensing observations (Gill and Jackson, 448 

2000; Sanderman et al., 2003; Carvalhais et al., 2014). The high consistency and robustness 449 

of MTT_SSA calculated by various methods indicated that the deviation in MTT_SSA 450 

identified in this study has broad implications for various SSA applications in C cycle 451 

research. 452 

Due to the complexity of ecosystem C emission processes and the scarcity of ecosystem 453 

efflux data, it remains challenging to validate the inverted MTT_NSSA_O of whole-454 

ecosystem with respect to observation-based estimates at disequilibrium state. However, the 455 

magnitude of the key process parameters regulating the ecosystem MTT under the NSSA as 456 

inferred in this study was broadly consistent with a number of empirical studies on C 457 

allocations, vegetation turnover rates and mortality, and soil decomposition rates (Table S5). 458 

The turnover times of fine roots measured from δ13C signals tend to be systematically 459 

overestimated due to sampling biases, with the finest and most ephemeral roots being missed 460 

(Strand et al., 2008). Regarding the pattern of these key processes, fauto first decreased and 461 

then increased as temperature increased at the turning point of approximately 11°C, which 462 

was highly congruent with the synthetic analysis based on the global forest database and 463 

could be ascribed to the asymmetric response of RE and GPP to rising temperature (Piao et al., 464 

2010). The decrease in fwoo with increasing latitude and decreasing temperature was supported 465 

by the inventory-based synthesis in Chinese forests (Li et al., 2009), and this pattern may be 466 

explained by the adaptive strategies of forest trees to temperature (Reich et al., 2014) as well 467 



 

as the age-structure-related strategy (Zhou et al., 2013b), which tends to allocate less C to the 468 

structural pool in old forests mainly distributed in cold, high-latitude regions in China (Zhang 469 

et al., 2014). 𝜃𝑤𝑜𝑜 and 𝜃𝑠𝑜𝑚 both increased with rising temperature, which agrees well with 470 

the variation in the plant mortality rate based on forest inventory (Mantgem et al., 2009; Zhou 471 

et al., 2013a) and the variation in soil C decomposition based on Rs observations from the 472 

chamber or isotope method (Karhu et al., 2010; Frank et al., 2012; Chen et al., 2013). In 473 

addition, Rhtemp was higher in tropical and temperate forests than subtropical forests, which is 474 

consistent with the regional variation in temperature sensitivity in Chinese forests based on 475 

field sampling and incubation experiments (Liu et al., 2017b; Zhou et al., 2009).  476 

Overall, the robustness of estimations under the NSSA compared to the empirical 477 

research indicates that the C cycle dynamics estimated by NSSA method match the realistic 478 

observations well. Thus, the SSA-induced bias in MTT estimation and the underlying 479 

mechanism can be reliably quantified in contrast to our estimations under NSSA. 480 

4.2 Identification of the uncertainty in MTT under SSA  481 

Under the background of global environmental changes, extensively distributed 482 

disturbances drive the ecosystems far from a steady state at local scales (Luo and Weng, 483 

2011), which makes the spatially-specific research a great challenge. Although the spatial 484 

aggregation of regional/global may approximately estimate the MTT under the SSA (Odum, 485 

1969), identifying the explanatory mechanism is difficult because the aggregation also merges 486 

some spatially heterogeneous influencing factors, such as temperature and terrain, that 487 

nonlinearly impact the MTT. In addition, previous studies have challenged the inherent 488 

concept behind SSA for the ecosystem C cycle (Lugo & Brown, 1986; Cannell & Thornley, 489 

2003), e.g., whether SSA-applicable old-growth forests are quasi-neutral or large C sinks 490 

(Zhou et al., 2006; Luyssaert et al., 2008). Moreover, some uncertainties from the SSA have 491 

been revealed in C cycle studies; e.g., model initialization until equilibrium systematically 492 



 

overestimated the C pools (Pietsch & Hasenauer, 2006), exhibiting a 6-fold range among 493 

various global C models (Exbrayat et al., 2014). This further led to compensatory biases in 494 

NEP simulation, whereas relaxing the SSA in initialization made a 92% decrease in NEP 495 

errors (Carvalhais et al., 2008, 2010). Besides, key turnover parameters determined under the 496 

SSA were overestimated, e.g., the decay rate of recalcitrant pools (Wutzler & Reichstein, 497 

2007); this further resulted in underestimation of NEP in transient simulation, which may be 498 

up to 30% even when C sinks only account for 10% of the C input in disequilibrium 499 

ecosystems (Zhou et al., 2013b). It is noteworthy that these biases in pool initialization and 500 

parameter inversion will propagate into the MTT estimation via the “pool/flux” method and 501 

need to be determined. 502 

Our study provides a new MDF framework to trace the uncertainty in turnover time 503 

induced by traditional SSA through direct comparison with the realistic disequilibrium state 504 

rather than conducting sensitivity experiments as reported in Carvalhais et al. (2008) or Zhou 505 

et al. (2014). Additionally, we collectively consider the factors resulting in the mismatch 506 

between MTT_SSA_I and MTT_NSSA_O, i.e., the pool initialization, the turnover and 507 

allocation parameter inversions as well as the formulas for estimating MTT used under two 508 

assumptions (Fig. 3). Via this framework, a significant underestimation in MTT_SSA_I was 509 

observed in these sites, which may be partly explained by the overestimated turnover rates and 510 

underestimated allocation to structural pools under SSA (Fig. 4). Moreover, in ecosystems 511 

with substantial sinks where GPP is much higher than RE, the input-based MTT_SSA_I 512 

should be smaller than the output-based MTT_NSSA_O, which might be more evident in 513 

younger forests due to the intrinsic relationship between age and forest growth (Zaehle et al., 514 

2006; Goulden et al., 2011).  515 

To further distinguish the SSA-induced biases arising from the parameterization or the 516 

MTT estimation, we contrasted MTT_NSSA_O vs MTT_SSA_O (R2 = 0.76, RMSE = 9.01 yr) 517 



 

and MTT_NSSA_I vs MTT_SSA_I (R2 = 0.74, RMSE = 4.41 yr) to obtain the biases that only 518 

stem from the improper use of SSA in parameterization. We found that these biases were 519 

much higher than those induced by only using SSA in MTT estimation, i.e., MTT_NSSA_I vs 520 

MTT_NSSA_O, or MTT_SSA_I vs MTT_SSA_O (Table S6). This indicated that the effect 521 

of the improper SSA on parameterization was deeper than that on MTT estimation, which 522 

provides a significant caveat for SSA applied especially in model optimization (e.g., Barret et 523 

al., 2002; Zhou & Luo, 2008; Zhou et al., 2010, 2013b). In the future, with the accumulation 524 

of spatiotemporal observations (Le Toan et al., 2011), we suggest evaluating the dynamic 525 

disequilibrium state of C cycle (e.g., Bloom et al., 2016), and further quantifying and 526 

reducing the SSA-induced uncertainty at large scales, especially with non-steady-state 527 

behavior, using this proposed framework. 528 

4.3 Implications of SSA-induced uncertainty in MTT for C cycle research 529 

As a key factor determining the ecosystem C sequestration capacity, the uncertainty of 530 

MTT tends to dominate the uncertainty in terrestrial ecosystem C sequestration (Friend et al., 531 

2014; He et al., 2016). Thus, identifying the relative contribution of this highly uncertain 532 

ecosystem trait to C sequestration has become a hot topic in C cycle research (Todd-Brown et 533 

al., 2013; Carvalhais et al., 2014; Yan et al., 2017). We employed a systematic framework 534 

and quantified that the deviation in MTT when improperly invoking SSA directly results in a 535 

pronounced underestimation of ecosystem NEP (4.83-fold) in this large C uptake region. The 536 

substantial underestimation of NEP found is supported by Yu et al. (2014), who revealed that 537 

state-of-the-art process-based models under the SSA tended to underestimate NEP by five- to 538 

seven-fold relative to eddy covariance observations in eastern Asia monsoon subtropical 539 

forests. Moreover, process-based models significantly underestimated NEP compared to other 540 

approaches, e.g., biomass and soil inventory, and atmospheric inversion (Piao et al., 2009). 541 

This is mainly because the models consistently assume that the ecosystem has approached an 542 



 

equilibrium state, which obviously neglects age-structure-related effects and underestimates 543 

the turnover times at regional and global scales (Carvalhais et al., 2014; Yan et al., 2014; 544 

Thurner et al., 2017). 545 

Here, we firstly reveal that the deviation in ecosystem MTT induced by SSA has a 546 

clearly decreasing relationship with increasing forest age. Furthermore, the biases in 547 

vegetation allocation and turnover, rather than those in soil turnover, dominate the magnitude 548 

of the deviation in MTT and its dependency on forest age. This finding is most likely due to 549 

the significantly stronger relationship between vegetation C turnover and stand age, whereas 550 

soil C turnover is mostly affected by climatic factors (Wang et al., 2018). In addition, the 551 

vegetation C partition scheme varies with stand age (Zhou et al., 2013b). The decisive role of 552 

whole-vegetation turnover time in determining the uncertainty in ecosystem C storage 553 

capacity has been supported by recent modelling and experimental research (Friend et al., 554 

2014; Medlyn et al., 2015; Xue et al., 2017). Therefore, our results further highlight the need 555 

to focus on the deviation in vegetation C turnover time under the SSA to avoid considerable 556 

bias in ecosystem MTT and thus the C sequestration estimation.  557 

The East Asian monsoon forest ecosystems represent one of the highest C uptake regions 558 

worldwide, including mid- and high-latitude European and North American forests. 559 

Particularly, the young age structure of forest stands in this region has been identified as a 560 

major driver of the large NEP (Yu et al., 2014). Therefore, our result offers a significant 561 

caveat for applying SSA in regions with a large portion of young ecosystems. We expect that 562 

improved representations of forest age-driven growth and mortality into calibrated process-563 

based models will help reduce the aforementioned biases for the C balance of ecosystems 564 

regionally and globally. Additionally, our finding on the age-dependent deviation of MTT 565 

could also offer an opportunity to correct the MTT_OBS_I at regional or global scales (e.g., 566 



 

Thurner et al., 2016) with spatially-explicit forest age information, thereby providing a better 567 

benchmark to inform or parameterize C cycle models. 568 

In addition to the uncertainty in the magnitude of C storage capacity, previous studies 569 

have revealed that the major uncertainty in the response of ecosystem C storage to climate 570 

arises from the uncertainty in the response of MTT to climate, which is 30% higher than that 571 

caused by NPP (Friend et al., 2014). However, to our knowledge, this is the first attempt to 572 

quantify the relationship between climate and ecosystem MTT in the disequilibrium state and 573 

to discuss the differences with that at the equilibrium state. Theoretically, an ecosystem at 574 

equilibrium is stable for a long time under the local climate (Luo and Weng, 2011); thus, a 575 

relatively strong correlation can be expected between the ecosystem MTT and climate. 576 

However, it is inappropriate to invoke the ideal SSA in ecosystems at dynamic disequilibrium, 577 

with the MTTs underestimated to a greater extent in young and middle-aged forests (by more 578 

than 50%) than mature forests (less than 20%). This age-induced inconsistency in MTT 579 

underestimations disturbs the actual spatial pattern of MTT and its covariance with climate, 580 

thereby leading to a decreased sensitivity of MTT to climate under the SSA. In contrast, the 581 

MTT_NSSA estimation based on long-term observational data in this study implicitly 582 

incorporated the age-structure-related effect on C cycle dynamics, thus providing a proper 583 

perspective on the actual correlation between MTT and climate. Currently, the contributions 584 

of climate-driven changes in C turnover times to C storage are usually underestimated in 585 

modelling studies (Hararuk et al., 2015; Koven et al., 2015, 2017). Therefore, the substantial 586 

underestimation we revealed in sensitivities of MTT to temperature and precipitation induced 587 

by the SSA calls for more attention in future C-climate feedback research. Under global 588 

warming and changes in precipitation regimes (IPCC, 2013), the underestimated response of 589 

MTT to climate will apparently underestimate the spatial and temporal changes in MTT, 590 

thereby underestimating the change in predicted global NEP. Here the exchange of space for 591 



 

time to interpret the sensitivity of MTT to climate could cause some degree of bias, as such 592 

inference cannot include certain processes like acclimation of microbial respiration to 593 

warming or shifts in plant species over time (e.g., Koven et al., 2017; Yan et al., 2017). 594 

Nonetheless, the present-day spatial correlation between climate and MTT approximated the 595 

temporal correlation between these variables (Fig. S5) and well supported this inference. 596 

4.4 Advantages and challenges of C cycle MDF based on long-term data 597 

Carbon turnover times and C cycle dynamics are always model-dependent because of the 598 

difficulty obtaining them from observations alone under the NSSA (Sierra et al., 2017). 599 

However, even the state-of-the-art models fail to accurately capture the observed C 600 

allocations and turnover processes, resulting in high uncertainties in C dynamic simulations 601 

(De Kauwe et al., 2014; Negrón-Juárez et al., 2015). Therefore, applying MDF technology to 602 

constrain these C states and processes becomes important for accurately estimating MTT and 603 

C sequestration in the disequilibrium state (Bloom et al., 2016).  604 

The uncertainties in the current ecosystem MTT and C sequestration estimates mainly 605 

result from the lack of initial state of the C pools and inaccurate model parameters (Bellassen 606 

et al., 2011; Wang et al., 2011), because C cycle modelling typically relies on pre-arranged 607 

parameters retrieved from literature, prescribed PFT or spin-up processes (Exbrayat et al., 608 

2014; Zhou et al., 2013b). In this study, the long-term and multi-source observations 609 

combined with a series of experimental constraints directly provided the initial values of the 610 

corresponding C pools and better constrained the NSSA parameters and dynamic C pool 611 

trajectories (Smallman et al., 2017; Bloom and Williams, 2015), thus substantially reducing 612 

the uncertainties arising from the SSA and limited data. Furthermore, insights into the 613 

underlying mechanisms that regulate the ecosystem C cycle can be provided based on the key 614 

process parameters, which are difficult to obtain from observations without SSA. For example, 615 



 

we might explore how the C allocation and turnover in live and dead C respond to climate, 616 

thereby regulating the response of the whole-ecosystem MTT to climate (Fig. S6).  617 

The uncertainty from the model structure and observational data also induce errors in the 618 

estimations of ecosystem MTT and C sequestration (Ahlström et al., 2012). However, as this 619 

study aimed to compare the differences in MTTs estimated under different hypotheses with 620 

the same model and data, these two factors would not undermine the main conclusions. When 621 

applied at the regional scale, some external disturbances such as fire and land-use change (Erb, 622 

2016); vegetation mortality dynamics affected by drought, insect pests, and frost (Thurner et 623 

al., 2016); as well as the dynamic scheme of C allocation limited by resources availability 624 

(Xia et al. 2015) should be added to the model. Although the model without moisture effect 625 

did not significantly affect the results in these forests (Table S7), the explicit representation of 626 

moisture effect may improve the model simulation when applied at large scales. Besides, 627 

more underground process observations should be added in future research to better constrain 628 

the corresponding parameters, e.g., 𝜃𝑚𝑖𝑛, reflecting the decomposition of litter into soil.  629 

In this study, we provided insights into the large biases associated with the improper 630 

application of the SSA, causing considerable underestimation in the magnitudes of MTT and 631 

its sensitivities to climate, and spatiotemporal variations in ecosystem C sequestration. Our 632 

findings on the age-dependent uncertainty in MTT provide significant implications for the 633 

implementation of mitigation policies for regional to global ecosystems with substantial 634 

young plantations. Moreover, the MDF framework we developed has the potential to facilitate 635 

future model intercomparisons, benchmarking and optimization at large scales, as well as to 636 

effectively quantify and then reduce the uncertainty in ecosystem C sequestration by 637 

estimating MTT in the disequilibrium state with long-term and multi-source observations. 638 
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Figure captions 890 

Figure 1. Map showing the distribution of 10 forest ecosystems in the Chinese Ecosystem Research 891 

Network (CERN). BNF: Xishuangbanna tropical seasonal rainforest, HSF: Heshan subtropical 892 

evergreen broad-leaved forest, DHF: Dinghu Mountain subtropical evergreen coniferous and 893 

broad-leaved mixed forest, ALF: Ailao subtropical evergreen broad-leaved forest, QYF: 894 

Qianyanzhou subtropical evergreen artificial coniferous mixed forest, HTF: Huitong subtropical 895 

evergreen broad-leaved forest, SNF: Shennongjia subtropical evergreen deciduous broad-leaved 896 

mixed forest, MXF: Maoxian warm temperate deciduous coniferous mixed forest, BJF: Beijing 897 

warm temperate deciduous broad-leaved mixed forest, CBF: Changbai Mountain temperate 898 

deciduous coniferous and broad-leaved mixed forest. 899 

Figure 2. Structures of the Data Assimilation Linked Ecosystem Carbon (DALEC)-evergreen model 900 

(grey) and the DALEC-deciduous model (grey and black). Dotted arrows show the inputs into the 901 

photosynthesis model. 902 

Figure 3. Flow chart of the model data fusion framework under the steady state assumption (SSA) and 903 

non-steady state assumption (NSSA). 904 

Figure 4. Optimized key parameters involved in the allocation and turnover processes under the non-905 

steady state assumption (NSSA) and steady state assumption (SSA) at 10 sites along a decreasing 906 

latitudinal gradient. The black and grey boxes denote NSSA and SSA, respectively. 907 



 

Figure 5. Comparisons between the observed and modelled values at all sites under the non-steady 908 

state (NSSA: black dots) and steady state (SSA: red dots) assumptions 909 

Figure 6. Magnitude of ecosystem C turnover times under the equilibrium and disequilibrium 910 

hypotheses. The black, light-grey, and dark grey boxes denote the inversion-based MTT under 911 

non-steady state (MTT_NSSA_O), inversion-based MTT under steady state (MTT_SSA_I), and 912 

observation-based MTT under steady state (MTT_OBS_I), respectively. 913 

Figure 7. Relationships between forest age and differences of the entire-ecosystem MTT (ΔMTT) as 914 

well as wood turnover rates (Δθwoo) estimated under the steady state assumption (SSA) and non-915 

steady state assumption (NSSA) hypotheses. 916 

Figure 8. Associations of mean carbon turnover times with temperature and precipitation under the 917 

steady state assumption (SSA, grey triangles) and non-steady state assumption (NSSA, black 918 

dots). 919 

Figure 9. Comparison of net ecosystem productivity (NEP) estimated with the parameters inverted 920 

under the steady state assumption (SSA) and non-steady state assumption (NSSA) in 10 forest 921 

ecosystems of different ages 922 




