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When co-occurring with elevated levels of ambient relative humidity (RH), hot
extremes are more perceivable and consequently more health-damaging.
Quantifying changes in humid-heat extremes has therefore gained considerable
scientific and societal attention, but a fundamental yet critical aspect to the
estimation—data reliability—has been largely downplayed in previous analysis. By
comparing ~10 observational and reanalysis datasets to fully-homogenized
observations across China, we report ubiquitous inhomogeneity in RH series in
these popularly-used datasets [including HadISD(H) and ERA5], which accordingly
produce unrealistically strong drying trends 2–3 times the homogenized dataset-
based estimate during 1979–2013 in warm-moist southeast China. Locally, an
inhomogeneity-caused exaggeration of drying by a magnitude of 1% decade−1

translates into a significant underestimation of increasing rates for frequency and
intensity of humid-heat extremes by more than 1.2 days decade−1 and .07% decade−1

respectively. From a regional perspective, these inhomogeneous records have
underestimated the frequency increase of extremes by up to 2 days decade−1 and
their intensification by up to .4°C decade−1 in southeast China. Extremes identified via
homogenized and non-homogenized datasets also differ in the bivariate joint
distribution structure, with former cases featuring similarly hot temperatures yet
discernably lower humidity.
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1 Introduction

It is unequivocal that human influence has warmed the atmosphere, leading to more
frequent, more intense, longer-lasting, and more widespread hot temperature extremes
worldwide (IPCC, 2021). These hot extremes are a major cause of suffering and death as
punctuated by some of the deadly cases such as the 2003 European event (~70,000 mortality)
and the 2010 Russian event (~50,000 mortality, Hoag, 2014). The combination of extremely
high temperatures with high humidity, i.e., the so-called humid-heat stress, represents a greater
threat to human health, as it lowers the cooling efficiency of sweat, therefore making it difficult
or even impossible for the body to prevent overheating (Mora et al., 2017; Buzan and Huber,
2020; IPCC, 2021; Vecellio et al., 2022). Hence, considerable efforts have been devoted to
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defining, monitoring and understanding extreme humid-heat events,
based on diverse metrics configuring temperature and humidity as
well as other relevant variables (e.g., winds and radiation) in different
ways (Delworth et al., 1999; Diffenbaugh et al., 2007; Stull, 2011;
Willett and Sherwood, 2012; Fischer and Knutti, 2013).

Regardless of metrics used, humid heat extremes have exhibited
significantly increasing trends for frequency and intensity in most
continents (Rogers et al., 2021; Tuholske et al., 2021). When
incorporating humidity into the indices in a highly non-linear
manner, these increases are markedly larger than their
temperature-only counterparts (Delworth et al., 1999; Wang and
Zhu, 2020; Rogers et al., 2021). Even at the current level of global
warming, several populous regions, including North and South China,
Eastern India, and the Middle East (Freychet et al., 2020; Saeed et al.,
2021; Raymond et al., 2020; Mora et al., 2017), have experienced
humid-heat extremes very close to or even above upper physiological
limit. Though the survivability limits are still exceeded only on the
rarest of occasions for now, the likelihood of exceedance is expected to
grow rapidly in future warmer climates in these hotspots (Dunne et al.,
2013; Mora et al., 2017; Kang and Eltahir, 2018; Saeed et al., 2021).

For the bivariate extremes, data quality of both air temperature
and relative humidity (RH) matters to the accuracy of estimate for
their long-term changes, and hence to assessments of related human
health impacts and risks as well as adaptation planning (Sherwood,
2018; Brouillet and Joussaume, 2019). In contrast to high-quality air
temperature datasets provided by multiple agencies, observational
records of relative humidity are subject to large uncertainties
resulting primarily from data inhomogeneity, and thus should be
used with caution (IPCC, 2021; Schröder et al., 2019). It has been
observed that global mean and boreal midlatitude summer-mean
surface RH slightly increased during 1973–2000, followed by a
steep decline based on the HadISDH (Willett et al., 2014; Douville
and Plazzotta, 2017; Dunn et al., 2017); however, none of the
CMIP5 models could capture such evolution. It is not yet clear if
this discrepancy is related to the misrepresentation of internal
variability in simulations or observational data inhomogeneity.
Byrne and O’Gorman (2018) provided a candidate theory
suggesting that the observed negative trends for relative humidity
over midlatitude continents were linked to warming over the
neighbouring oceans. The observational and theoretical
uncertainties along with the observation-simulation discrepancy,
preclude any robust detection and attribution conclusion with
respect to relative humidity changes (IPCC, 2021).

The inhomogeneity issue in relative humidity records stands out
starkly over China, the southeastern parts in particular, which may be
related to the technical defects of humidity sensors under high
temperature and humidity environments there (Yu and Mu, 2008;
Zhu et al., 2015). The dielectric parameter of the humicap varies
volatilely at high humidity and even more drastically combined with
high temperatures, making observed humidity deviating far from real
values. Using quality-controlled yet non-homogenized observations,
the annual China Climate Bulletin released before 2014 used to report
a significant decreasing trend in nationwide surface RH (China
Climate Bulletin, 2014); whilst turning to a homogenized RH
dataset instead, RH is believed to remain essentially unchanged
since 1961 as concluded in the post-2014 Bulletins. Zhu et al.
(2015) detected break points in the RH series observed in more
than 68% of stations across China, mainly occurring during
2000–2005, coincident with the massive automation of the

observing system. Without diving into the history of instrument
replacement, conventional homogenization procedures by
automatic software are reluctant to accurately detect and properly
address potential region-wide inhomogeneities from the source (e.g.,
homogenized HadISDH, Willett et al., 2014).

Despite improved awareness of RH inhomogeneity (Li et al.,
2020c; Wang and Sun, 2021; Zhang et al., 2021), the extent to
which such inhomogeneity distorts the estimate for past and future
changes in humid-heat extremes has been seldomly quantified
(Freychet et al., 2020). The ERA5 (Hersbach et al., 2018) and
HadISD (Dunn et al., 2016), are the most widely-used datasets to
analyze humid-heat extremes at impact-relevant scales (sub-daily to
daily) worldwide (Li et al., 2020b; Raymond et al., 2020; Speizer et al.,
2022), with in-situ observations adding values to understanding on the
regional heterogeneity (Luo and Lau, 2018; Wang et al., 2019; Li et al.,
2020a). If RH is inhomogeneous in these datasets, the derived
quantification of long-term changes in extremes would be biased.
The recent availability of two homogenized RH datasets covering the
domain of mainland China (Zhu et al., 2015; Li et al., 2020a) offers us a
unique chance to revisit the existing understanding of humid-heat
extremes in the populous region as a showcase, calling for more
emphasis on the importance of RH data quality in characterizing the
multivariate extreme event worldwide.

We do this by comprehensively comparing homogenized
observations with popularly-used ~10 datasets including raw
station-based observations, gridded observations and reanalysis
(detailed information see Supplementary Table S1). In addition to
the differences in local-to-regional changes in RH and humid-heat
extremes, we will also compare the T-RH joint distribution during
humid-heat extremes, i.e., the impact-relevant nature of events, in
homogenized and non-homogenized datasets.

2 Materials and methods

2.1 Data

There are currently two homogenized datasets including daily
mean T and RH, available in China. One is based on raw daily records
observed at 2,479 meteorological stations and was homogenized by
using the PMTred and PMFT methods (Wang, 2008a; Wang, 2008b),
with identified “break points” in the time series further manually
double-checked with metadata to pin down its origin from any of site
relocation, replacement/upgrading of observing instruments, or
changes in observing timing and reporting protocol (Zhu et al.,
2015, referred to as OBS-1 and used as the reference hereafter).
The other is homogenized with respect to a dataset containing
756 stations, alternatively using the MASH method but not
compared to the metadata (Li et al., 2020a; termed as OBS-2
hereafter). Raw daily observations from 2,479 stations across China
are used for comparison, named OBS-3. Notably, the OBS-3 is most
commonly used to study humid-heat as well as other types (e.g.,
precipitation) of weather extremes across China. It was often claimed
as “a homogenized dataset” (Luo and Lau, 2018; Kong et al., 2020) by
referring to Xu et al. (2013). As a matter of fact, the homogenization in
Xu et al. (2013) was conducted with respect to daily temperatures only,
and other variables in the datasets including RH were only quality-
controlled by the data developer—National Meteorological
Information Center—by means of detecting, flagging and

Frontiers in Environmental Science frontiersin.org02

Li et al. 10.3389/fenvs.2022.1104039

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104039


correcting suspect/wrong values if possible (Zhu et al., 2015; Xu et al.,
2021).

Three gridded datasets produced by site observations are also
considered, including the CN05.1 (Wu and Gao, 2013) covering
mainland China at a resolution of .25°, the HadISD v3.3.0—global
sub-daily station dataset based on the ISD dataset from NOAA’s
NCEI, where temperature, dewpoint temperature, sea-level pressure
are quality controlled (Dunn et al., 2016), and the
HadISDH—homogenized global gridded (5° × 5°) monthly mean
land surface air temperature and humidity datasets based on the
HadISD dataset (Smith et al., 2011; Willett et al., 2014).

As a supplement or sometimes proxy to observations, reanalysis
data with greater spatial coverage and fewer missing values is also
broadly taken for the analysis of humid-heat extremes both globally
and regionally. The potential inhomogeneity of reanalyzed relative
humidity, however, has been seldomly noted and examined. To this
end, we also collected reanalysis data for RH as many as possible,
including ERA5 (.25° × .25°, Hersbach et al., 2018), ERA-Interim
(.75° × .75°, Dee et al., 2011), JRA-55 (.8° × .8°, Kobayashi et al., 2015),
NCEP-DOE 2 (2.5° × 2.5°, Kanamitsu et al., 2002), and CRA-40
(.125° × .8°, Liao et al., 2021). Detailed information on datasets
used could be found in Supplementary Table S1.

Given that period common to observations and reanalysis datasets
started in 1979 and the formal homogenization for OBS-1 was
conducted with respect to raw records before 2014, a 35-year
period over 1979–2013 is selected for comparison amongst
datasets. Though the homogenized dataset—OBS-1 is claimed to be
extended to the very recent, the extension was actually made by simply
concatenating post-2013 automatic observations, which are found
potentially inhomogeneous again due to the re-parameterization of
the automatic observing instrument. So further homogenization
efforts are needed to reconcile period-specific inhomogeneities
stemming from different sources.

2.2 Data pre-processing, metrics, extremes
and methods

Before conducting the analysis, all reanalysis data are adjusted by
their scaling and offsetting factors specified in the netcdf files. Also, the
time zone of each dataset is converted to local standard time of
homogenized station observations to guarantee the consistency of
follow-up comparisons.

Given closer relevance of summertime humid heat stress to human
health impacts, we put our focus on the summer season spanning from
June to August. In the OBS-1 and OBS-3 datasets, we only use
2,270 stations that operate continuously throughout the study
period without missing values. Since HadISDH only provides
monthly-mean data and unknown errors of CRA-40 temperature
data occur in 2013 (details see below), these two sets of data are
not involved in the calculation of extreme events.

Heat stress indicators that characterize human thermal discomfort
due to high air temperature and humidity are diverse, with varying
levels of equation complexity, input parameters and their weightings,
and physiological assumptions (e.g., a person of average height,
weight, health, and in moderate clothing). All indices consider T
and RH. We here adopt three representative indices, including wet-
bulb temperature (Tw), wet-bulb globe temperature (WBGT), and
NOAA-developed heat index (HI), to account for linear and non-

linear combinations between heat and humidity (Supplementary
Figure S1) as well as their distinct impacts on human health
(Buzan and Huber, 2020). The multi-indices comparison also
acknowledges their different sensitivities to RH (Sherwood, 2018),
especially in extreme states (Buzan and Huber, 2020), thus acting to
strengthen the robustness of our quantification of influences from RH
inhomogeneity on trend estimates for humid-heat extremes.

The thermodynamic wet bulb temperature (Tw) refers to the
temperature of wet air when it changes adiabatically to the
saturated state, and is usually measured by a wet bulb
thermometer. Given Tw above 31°C physical labor becomes
difficult (Sherwood and Huber, 2010); while, when its value
approaches or even exceeds 35°C, evaporative cooling from
sweating is no longer effective as a means of dissipating body heat.
Some recent pieces of evidence also point to the danger of much lower
Tw values to even young, healthy people (Asseng et al., 2021; Vecellio
et al., 2022). Considering the availability of observational
meteorological variables, we follow the empirical expression of Tw
proposed by Stull (2011) that:

Tw � T × atan 0.151997 RH% + 8.313659( ) 1 /

2[ ] + atan T + RH%( )
− atan RH% − 1.676331( ) + 0.00391838 × RH%( ) 3 /

2

× atan 0.023101RH%( ) − 4.686035

WBGT is another typical measure of heat stress expressed as a
linear combination of wet-bulb temperature, black globe temperature,
and air temperature (Yaglou and Minard, 1957). The WBGT is
employed as the ISO standard for thermal comfort (ISO, 1989) and
is in use by a number of bodies including the military, civil engineers,
and sports associations, with established thresholds relating directly to
levels of physical activity (Willett and Sherwood, 2012). Considering
the availability of variables used for calculation, we here adopt a
“simplified WBGT” (sWBGT) version, developed by the Australian
Bureau of Meteorology (ACSM, 1984), which depends only on T and
humidity and represents heat stress for average daytime shady
conditions outdoors (Willett Sherwood, 2012; Fischer and Knutti,
2013):

sWBGT � 0.56T + 0.393e + 3.94

where water vapor pressure e (hPa) is expressed as a function of air T
and RH:

e � RH
100

( )*6.105e 17.27T/237.7+T( )

The third index used here is the HI developed by Rothfusz (1990)
and further refined and recommended by the National Oceanic and
Atmospheric Administration (NOAA) with explicit thresholds
warning of different levels of danger (Diffenbaugh et al., 2007).
The HI is directly comparable to air temperature, with their
difference informing the feels-like amplification effect of moisture
on T (Delworth et al., 1999). The index is expressed as a polynomial
equation composed of T and RH:

HI � −42.379 + 2.04901523*T + 10.14333127*RH

− 0.22475541*T*RH − 0.00683783*T*T

− 0.05481717*RH*RH + 0.00122874*T*T*RH

+ 0.00085282*T*RH*RH − 0.00000199*T*T*RH*RH
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where T is air temperature in degrees F and RH is RH in percent.
If the RH is less than 13% and the temperature falls between 80° and

112°F, then the following adjustment needs to be subtracted from HI:

Adjustment � 13 − RH( )/4[ ]*SQRT 17 − ABS T − 95( )[ ]/17{ }
On the other hand, if the RH is greater than 85% and the

temperature is between 80° and 87°F, then the following adjustment
is added to HI:

Adjustment � RH − 85( )/10[ ]* 87 − T( )/5[ ]
In case that conditions of temperature and humidity warrant a HI

value below 80°F, HI is re-calculated as:

HI � 0.5* T + 61.0 + T − 68.0( )*1.2[ ] + RH*0.094( ){ }
All heat stress indices are finally converted to values in °C.
For each station or grid, summertime daily heat stress values are

firstly calculated based on the aforementioned three indices respectively,
and then all samples during 1979–2008 (a 30-year reference period) are
pooled and empirically ranked to obtain local 95th percentiles of each
heat stress index used as thresholds to identify their extremes.

With respect to the index considered, we count the number of
threshold-exceeding days in each summer as the frequency of extreme
humid-heat events, and the average amongst these extreme heat stress
values represents the mean intensity of extremes of the year.

Given the same network density of OBS-1 and OBS-3, biases in the
trend estimate for T, RHand extreme heat stress due to data inhomogeneity
could be measured by a direct site-to-site comparison; whilst as with the
comparison between station observations and gridded observations/
reanalysis of different resolutions, we prepare a box-average series using
all stations or grids at a scale of 5° × 5°, and calculate the areal-weighted
mean of box values across a region to produce the regional-mean series.We
did not interpolate station- and gridded- data onto the same mesh grid, to
avoid untraceable uncertainties from interpolation algorithms.

We use ordinary least squares scheme to quantify linear trends for T,
RH and extreme events, along with students’ t-test to evaluate the
significance (at the .05 level). As a cross-validation, we additionally
employ Kendall’s tau slope estimator (results now shown), and report
highly consistent results in terms of both trend magnitude and
significance. To isolate and quantify the influence of RH
inhomogeneity on the estimate for changes in extreme humid-heat
events at a local scale (Figure 3), we configure homogenized T from
the OBS-1 to both homogenized RH (OBS-1) and raw RH (OBS-3).
More specifically, we regress station-based differences in trends for
extremes evaluated via homogenized and non-homogenized data onto
the underlying differences in RH trends.

3 Results

During 1979–2013, daily mean air temperature exhibits significant
warming trends across China in both homogenized and raw site
observations (Figures 1A, B), characteristic of highly similar spatial
patterns and local-to-regional magnitudes for trends between the two
(Figure 1C). This suggests a minor influence of potential temporal
inhomogeneity in T on the estimate for long-term changes of the
variable. By contrast, the pattern, magnitude, significance and even
the sign of trends for RH differ pronouncedly between homogenized
and non-homogenized station-based observational datasets. The

inhomogeneity issue in relative humidity is particularly stark in
southeast China (south of 30N, east of 105E, black rectangle in
Figures 1D, E), leading to widespread biases in trend estimates for
RHwith incorrect signs there (Figure 1F). The region (black rectangle) is
typical of humid-hot subtropical climates in favor of the occurrence of
oppressive heat (Supplementary Figure S1; Vargas Zeppetello et al.,
2022) with the two variables playing equivalently important roles to
cause extremes there (Buzan and Huber, 2020).

With respect to the identified RH inhomogeneity hotspot, we
further expand the comparison to gridded observations and widely-
used reanalysis data at a regional scale. Large interannual to inter-
decadal variability could be found in the domain-average RH series in
homogenized observations (black curve, OBS-1, Figure 2A),
experiencing a relatively wet regime before 2000 followed by a shift
to a dry episode. This might be explained via a moist static energy
balance perspective in the context of equal fractional changes in specific
humidity over land and neighboring oceans (Byrne and O’Gorman,
2018) through remote moisture transport and local evapotranspiration
processes (Byrne and O’Gorman, 2016; Douville et al., 2020).

Though the regional variability is generally captured by other
datasets, the RH drop around 2000, when coincidentally the
observational network across China shifted from manual to
automatic practices (2000–2005), is exaggerated in non-homogenized
datasets (except for CRA-40). This is mainly because of the systematic
difference in manual and automatic observing instruments, with the
lower values recorded in the latter period (e.g., Supplementary Figure S2,
RH) deemed more accurate and used since then (Zhu et al., 2015). The
inhomogeneity gives rise to long-term drying trends of unrealistically
high magnitude and significance (Figure 2B). Specifically, the regional
drying rate estimated by OBS-1 is around −.47%/decade; while the
estimate based on OBS-3 is −1.43%/decade, almost three times sharper
than the correct one. In particular, the HadISDHwas commonly used as
homogenized observations to calculate heat stress indices globally
(Raymond et al., 2020; Rogers et al., 2021). Our analysis brings into
question the homogeneity of HadISDH over southeastern China,
suggesting that detecting region-wide inhomogeneities by automated
methods (Dunn et al., 2014) without knowing detailed histories of
station information (e.g., relocation and instrument replacement) might
be less effective than expected. Another extensively-used
dataset—ERA5 also suffers from severe inhomogeneities in RH for
the region, and is therefore not suitable to characterize humid-heat
extremes at sub-daily to daily scales in the region (Freychet et al., 2020).
Encouragingly, incorporating into homogenized station observations
(OBS-1), the CRA-40 reanalysis newly released by the China
Meteorological Administration performs well in reproducing both
variability and trends of RH in southeastern China. Though
expanding the study region northward to 35N does not alter the
comparison of trend magnitude and significance amongst datasets in
any significantmanner (figure omitted), itmight introduce confounding
factors related to differential representation of irrigation in the 30–35N
latitudinal band, an intensely irrigated region (Kang and Eltahir, 2018).
So, to distinguish influences of data inhomogeneity from other similar
confounding factors, southeastern China to the south of 30N is a better
candidate study area.

Though air temperature records were also subject to changes in
observing sites, instruments and timing, the inhomogeneities from these
sources seemed to pose a trivial influence on the temporal variability and
long-term trends as well as their significance of domain-averaged series of
air temperature (Supplementary Figure S3, OBS-1 andOBS-2 vs. OBS-3).
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The differences in magnitudes and significances of trends for air
temperature amongst datasets are much less conspicuous than those
for relative humidity. Notably, despite better performance in representing
RH during 1979–2013 in CRA-40, for unknown reasons, its temperature

records in 2013 are inconsistent with counterparts from any of other
datasets. This year’s error in temperature records has reported back to the
data developer for improvement, and the flaw also excludes CRA-40 for
participation in follow-up analysis on extremes.

FIGURE 1
Trends for summertime T and RH in China during 1979–2013. (A,B) show T trends (°C per decade) estimated by OBS-1 (homogenized) and OBS-3 (non-
homogenized), respectively. The box-and-whisker plots shown in (C) presents the distribution of T trends amongst stations within each 5°latitudinal band,
including the 5th, 25th, median, 75th, and 95th percentiles in OBS-1 (black) and OBS-3 (red). The numbers labeled to the negative/positive side of the x-axis
indicate the fraction of stations observing negative/positive trends within the latitudinal band, in which the fraction of station registering significant trends
are bold-highlighted in the second column. (D–F) are the same as (A–C) but for RH.

FIGURE 2
Domain-averaged series of RH over southeastern China during 1979–2013 based on eleven datasets (A) and their linear trends (B). The RH series is pre-
processing into anomalies with respect to the 1979–2008 climatology. The error bars in (B) enclose the 95% confidence interval of trend estimates, with
symbols “**” and “***” indicating their significance at the .05 and .01 levels respectively.
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We next quantify extent to which the RH inhomogeneity in
observation and reanalysis datasets distorts the trend estimate for
humid-heat metrics, similarly starting with a site-by-site comparison
(OBS-1 vs. OBS-3). We do this by regressing the differential trends for
extremes in homogenized and non-homogenized observations onto
the differences of RH trends in them (homogeneous trend minus non-
homogeneous one). As indicated by Figures 3A–C, given the same
atmospheric warming (local trends for T from OBS-1), an
exaggeration of drying trend by 1% decade−1 due to RH
inhomogeneity translates into an underestimation of increasing
trends for humid-heat extremes’ frequency by more than 1.2 days
decade−1, with extreme sWBGT events influenced most. The RH
inhomogeneity also significantly abates the intensification rates of
extreme humid-heat events, especially those resulting from the highly
non-linear combination between T and RH as showcased by the HI
index (Figures 3D–F; also Supplementary Figures S4A–C). Locally, an
1% decade−1 drying bias caused by the RH inhomogeneity leads to an
underestimation of intensification rates (absolute trends normalized
by local index climatology, for the purpose of objective comparison
amongst indices) for HI extremes by around .19% decade−1, equivalent
to a bias around .07°C decade−1 there (Supplementary Figure S4).

For the domain-average series of frequency, with reference to the
trend evaluated via homogenized data, all non-homogenized datasets
discernably underestimate the increase, by themagnitudes ranging from
.5 to 2 days decade−1, basically proportional to the regional drying biases
(both the X-axis and Y-axis represent the homogenized OBS-1 minus
other datasets). The limited sample size (~9 datasets) prohibits us from

further evaluating the significance of such relationship. Despite being
widely used, the HadISD and ERA5 datasets are amongst the worst that
considerably underestimate past increases in the frequency of humid-
heat extremes (Figure 4). Their bad performance arises jointly from an
overestimation of the RH drying rate and an underestimation of the
warming trend (Supplementary Figure S5).

Notably, despite significant negative correlation between air
temperature and relative humidity at the regional scale, we did not find
the cancellation or say compensation effect between greater warming and
stronger RH reduction biases in the same dataset (Supplementary Figure
S5) as reported in historical simulations and future projections (Fischer
and Knutti, 2013), except for NCEP2 which shows the strongest negative
correlation between the two variables. Rather, slightly weaker warming
trends and drying bias in RH trends in tandem contribute to an
underestimation of regional increases in humid-heat extremes in
frequency and intensity, with the “out-of-range” RH bias (outside the
grey shadings in Supplementary Figure S5) dominating in most datasets.
Even forNCEP2 seeminglymost faithfully reproducing extremes’ statistics,
such better performance apparent arises from the wrong reason, and
therefore should not be further leveraged as a reliable benchmark formodel
evaluation and impact quantification (Casanueva et al., 2019). Similar
“right statistics for wrong reason” might exist at local scales where the
T-RH anti-correlation is even stronger (e.g., <−.85).

When referring to extreme humid-heat conditions, the combination
in a fashion of high temperature and high humidity comes to one’s mind
first and naturally. But as a matter of fact, extreme humid-heat events
represent a typical case that not all of its components are necessarily

FIGURE 3
Influences of local RH trend bias (homogenized OBS1 minus non-homogenized OBS3) on the estimate for trends for frequency (A–C) and intensity
(D–F) of humid-heat extremes across southeast China, identified using three indicators. To improve comparability in intensity amongst indicators (D–F), the
trend for intensity at each station is normalized by local indicator climatology. Linear regressions are shown by black curves and the 95% regression
confidence intervals are shaded in grey, with regression coefficients (Slope) and significance (P) indicated at the lower-right of each panel.
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extreme, but their combination leads to an extreme impact (Zscheischler
et al., 2018). Different forms of joint distributions of temperature and
humidity during extreme humid-heat events are worth further sorting
out, because they might cause distinct impacts on human health (Mora
et al., 2017; Asseng et al., 2021).

Compared to humid-heat extremes previously identified by non-
homogenized observations (OBS-3), counterparts from homogenized
observations are similarly warm (mostly within the range of 25–33°C,
Supplementary Figure S6) but not necessarily that moist, regardless of
indicators selected (Figure 5). Quantitatively, we used to believe that
the majority of extremes (around 60%–80% events across the region)
occurred in the context of RH wetter than 70%; while subject to the
homogenization correction, the understanding is revised into that the
conventionally favorable thermodynamic environment host only half
of extremes. Such a contrast in the RH constituent to extremes is also
ubiquitous amongst other observation and reanalysis datasets
(Supplementary Figure S7). In particular, though the bivariate
distribution difference is largely determined by RH biases, the
temperature difference also plays a non-trivial role in shaping the
differential joint distribution structure in some datasets, e.g., ERA5
(Supplementary Figure S7E) and NCEP2 (Supplementary Figure
S7G). In addition to the absolute magnitude for humid-heat
extremes, the accurate mapping of typical bivariate configuration
constituting the extremes, based on homogenized datasets, matters
to identification of key thresholds for early warning against health-

damaging events (Han et al., 2022; Vecellio et al., 2022). In light of the
distinct bivariate distribution structures (Supplementary Figure S7)
along with the harder-detectable inhomogeneity in the bivariate
combined indices (e.g., Supplementary Figure S2, Tw), a
component-wise bias correction technique might be superior to an
“one-step” correction scheme with respect to the combined index, for
both observations and simulations (Casanueva et al., 2019).

4 Discussion and conclusion

4.1 Discussion

We here addressed the issue of ubiquitous inhomogeneity of
relative humidity in most observational and reanalysis datasets,
with a specific focus on its influences on the estimate for changes
in daily humid-heat extremes in China. We acknowledge that the
intrinsic diurnal cycle of humid heat stress, resulting from quasi out-
of-phase variations of air temperature and relative humidity (Fischer
and Knutti, 2013), makes the daily-mean value conservative to
represent daily maxima, the most concerning value to human
health (Schär, 2016; Kang and Eltahir, 2018; Raymond et al., 2020).
The current unavailability of homogenized hourly to sub-daily (e.g., 6-
h) RH observations, however, prohibits us from moving forward in
this regard (Wang and Sun, 2021), Our analysis clearly demonstrates

FIGURE 4
Scatter plot–between regional-mean (southeast China) RH trend bias and extreme events’ frequency (A–C)/intensity (D–F) trend bias, amongst
inhomogeneous datasets with reference to homogenized one (OBS-1, black dot in the center).
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that using sub-daily records from ERA-5 or raw HadISD observations
to achieve the goal is problematic. As a result, efforts are badly needed
to collect, quality-control and homogenize hourly temperature and
relative humidity, to revisit and better inform changing risks of
impact-relevant heat stress in the populous region, as well as in
other vulnerable regions around the world.

The data inhomogeneity-caused bias in the estimate for past changes
in humid-heat extremes would propagate into their future projections, as
all of model validation, bias correction (Casanueva et al., 2019), selection
(Ridder et al., 2022) and weighting scheme (Ribes et al., 2021) as well as
the design of emergent constraints (Freychet et al., 2021) are contingent
on thorough comparisons of historical simulations to observations. By
leveraging homogenized RH records as an observational constraint,
follow-up efforts are therefore worth extending into projection
analyses, in terms of both magnitudes and width of the uncertainty
range for projected frequency and intensity of humid-heat extremes.

To the other end of spectrum of T-RH configuration, low relative
humidity combined with high temperatures aggravates risks for
wildfire occurrence and agricultural impacts (Chiodi et al., 2021;
Balch et al., 2022). The unrealistically strong drying trend for RH
is expected to result in an overestimation of increasing fire risks, which
also remains under-appreciated in the region because of little attention
paid to hot-dry-fire compound events there for now.

5 Conclusion

We present the most comprehensive comparison to date on long-
term changes in relative humidity across China, based on ~10 widely-
used observational and reanalysis datasets subject to different levels of
homogenization. We report an artificially sharp decline in RH around
2000–2005 in most datasets due mainly to the massive transition from
manual observation practices to automatic observations with
observational instruments replaced at the time. The inhomogeneity
issue stands out particularly stark in warm-moist southern China,
leading to unrealistically strong and significant drying trends there.

The biased drying trends in these inhomogeneous datasets lead to
underestimation of changes in humid-heat extremes, with a drying bias of
1% decade−1 attenuating the magnitude for increases in extremes’
frequency (intensity) by more than 1.2 days decade−1 (.07% decade−1)

locally, regardless of metrics considered. For the region as a whole, these
inhomogeneous records have underestimated domain-averaged frequency
(intensity) of extremes by .47–1.95 days decade−1 (−.04%~.41% decade−1).
Humid-heat extremes identified by homogenized and non-homogenized
datasets also differ in the T-RH joint anomalies, with most cases in the
latter equivalently hot or slightly cooler yet discernably moister.

Our results call for emphasis on data quality of observed/reanalyzed
relative humidity, not only in China but also in other parts of the world,
and the need of re-evaluating past changes of humid-heat extremes to
improve projections of deadly heat stress worldwide.
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